Properties

Label 961.2.g.s.448.1
Level $961$
Weight $2$
Character 961.448
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,3,6,-3,11,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 448.1
Root \(2.52368i\) of defining polynomial
Character \(\chi\) \(=\) 961.448
Dual form 961.2.g.s.547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.108599 - 0.334232i) q^{2} +(-1.93599 + 2.15013i) q^{3} +(1.51812 + 1.10298i) q^{4} +(-1.48661 + 2.57489i) q^{5} +(0.508398 + 0.880572i) q^{6} +(0.113113 - 1.07620i) q^{7} +(1.10215 - 0.800755i) q^{8} +(-0.561437 - 5.34171i) q^{9} +(0.699168 + 0.776504i) q^{10} +(-2.22117 + 0.988927i) q^{11} +(-5.31061 + 1.12880i) q^{12} +(-2.81086 - 0.597466i) q^{13} +(-0.347416 - 0.154680i) q^{14} +(-2.65829 - 8.18139i) q^{15} +(1.01179 + 3.11397i) q^{16} +(-1.66701 - 0.742199i) q^{17} +(-1.84634 - 0.392453i) q^{18} +(-2.07198 + 0.440414i) q^{19} +(-5.09690 + 2.26929i) q^{20} +(2.09499 + 2.32672i) q^{21} +(0.0893157 + 0.849782i) q^{22} +(0.357760 - 0.259928i) q^{23} +(-0.412010 + 3.92002i) q^{24} +(-1.92005 - 3.32562i) q^{25} +(-0.504947 + 0.874594i) q^{26} +(5.55018 + 4.03244i) q^{27} +(1.35874 - 1.50903i) q^{28} +(-0.976227 + 3.00452i) q^{29} -3.02317 q^{30} +3.87532 q^{32} +(2.17383 - 6.69036i) q^{33} +(-0.429101 + 0.476565i) q^{34} +(2.60294 + 1.89115i) q^{35} +(5.03946 - 8.72860i) q^{36} +(-1.57338 - 2.72517i) q^{37} +(-0.0778141 + 0.740352i) q^{38} +(6.72642 - 4.88703i) q^{39} +(0.423394 + 4.02832i) q^{40} +(-4.64794 - 5.16206i) q^{41} +(1.00518 - 0.447533i) q^{42} +(8.22855 - 1.74903i) q^{43} +(-4.46275 - 0.948588i) q^{44} +(14.5890 + 6.49543i) q^{45} +(-0.0480240 - 0.147803i) q^{46} +(-2.46041 - 7.57236i) q^{47} +(-8.65428 - 3.85313i) q^{48} +(5.70163 + 1.21192i) q^{49} +(-1.32004 + 0.280584i) q^{50} +(4.82313 - 2.14740i) q^{51} +(-3.60822 - 4.00733i) q^{52} +(0.520238 + 4.94973i) q^{53} +(1.95051 - 1.41713i) q^{54} +(0.755639 - 7.18942i) q^{55} +(-0.737104 - 1.27670i) q^{56} +(3.06439 - 5.30768i) q^{57} +(0.898189 + 0.652573i) q^{58} +(-8.03889 + 8.92809i) q^{59} +(4.98828 - 15.3523i) q^{60} -14.4351 q^{61} -5.81225 q^{63} +(-1.60273 + 4.93269i) q^{64} +(5.71707 - 6.34945i) q^{65} +(-2.00006 - 1.45313i) q^{66} +(3.21879 - 5.57511i) q^{67} +(-1.71208 - 2.96541i) q^{68} +(-0.133740 + 1.27245i) q^{69} +(0.914757 - 0.664610i) q^{70} +(-0.175386 - 1.66868i) q^{71} +(-4.89619 - 5.43777i) q^{72} +(13.1187 - 5.84081i) q^{73} +(-1.08170 + 0.229923i) q^{74} +(10.8677 + 2.31001i) q^{75} +(-3.63128 - 1.61675i) q^{76} +(0.813039 + 2.50228i) q^{77} +(-0.902923 - 2.77891i) q^{78} +(-3.14958 - 1.40228i) q^{79} +(-9.52229 - 2.02403i) q^{80} +(-3.65408 + 0.776698i) q^{81} +(-2.23009 + 0.992898i) q^{82} +(8.60075 + 9.55210i) q^{83} +(0.614118 + 5.84295i) q^{84} +(4.38928 - 3.18900i) q^{85} +(0.309026 - 2.94019i) q^{86} +(-4.57015 - 7.91573i) q^{87} +(-1.65616 + 2.86855i) q^{88} +(-1.82788 - 1.32803i) q^{89} +(3.75533 - 4.17071i) q^{90} +(-0.960936 + 2.95746i) q^{91} +0.829816 q^{92} -2.79812 q^{94} +(1.94622 - 5.98986i) q^{95} +(-7.50258 + 8.33246i) q^{96} +(-2.76106 - 2.00603i) q^{97} +(1.02425 - 1.77405i) q^{98} +(6.52961 + 11.3096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 3 q^{3} + 6 q^{4} - 3 q^{5} + 11 q^{6} - 3 q^{7} - 8 q^{8} + 5 q^{9} + 18 q^{10} - 2 q^{11} - 20 q^{12} - 27 q^{13} - 6 q^{14} + 4 q^{15} - 2 q^{16} - 16 q^{17} + 22 q^{18} - 4 q^{19} - 18 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.108599 0.334232i 0.0767908 0.236338i −0.905291 0.424791i \(-0.860347\pi\)
0.982082 + 0.188453i \(0.0603475\pi\)
\(3\) −1.93599 + 2.15013i −1.11774 + 1.24138i −0.150207 + 0.988655i \(0.547994\pi\)
−0.967538 + 0.252726i \(0.918673\pi\)
\(4\) 1.51812 + 1.10298i 0.759058 + 0.551488i
\(5\) −1.48661 + 2.57489i −0.664834 + 1.15153i 0.314496 + 0.949259i \(0.398165\pi\)
−0.979330 + 0.202268i \(0.935169\pi\)
\(6\) 0.508398 + 0.880572i 0.207553 + 0.359492i
\(7\) 0.113113 1.07620i 0.0427527 0.406765i −0.952127 0.305702i \(-0.901109\pi\)
0.994880 0.101063i \(-0.0322243\pi\)
\(8\) 1.10215 0.800755i 0.389667 0.283110i
\(9\) −0.561437 5.34171i −0.187146 1.78057i
\(10\) 0.699168 + 0.776504i 0.221096 + 0.245552i
\(11\) −2.22117 + 0.988927i −0.669707 + 0.298173i −0.713282 0.700877i \(-0.752792\pi\)
0.0435747 + 0.999050i \(0.486125\pi\)
\(12\) −5.31061 + 1.12880i −1.53304 + 0.325858i
\(13\) −2.81086 0.597466i −0.779591 0.165707i −0.199106 0.979978i \(-0.563804\pi\)
−0.580485 + 0.814271i \(0.697137\pi\)
\(14\) −0.347416 0.154680i −0.0928508 0.0413399i
\(15\) −2.65829 8.18139i −0.686369 2.11243i
\(16\) 1.01179 + 3.11397i 0.252948 + 0.778493i
\(17\) −1.66701 0.742199i −0.404308 0.180010i 0.194499 0.980903i \(-0.437692\pi\)
−0.598807 + 0.800893i \(0.704359\pi\)
\(18\) −1.84634 0.392453i −0.435187 0.0925020i
\(19\) −2.07198 + 0.440414i −0.475346 + 0.101038i −0.439354 0.898314i \(-0.644792\pi\)
−0.0359922 + 0.999352i \(0.511459\pi\)
\(20\) −5.09690 + 2.26929i −1.13970 + 0.507428i
\(21\) 2.09499 + 2.32672i 0.457163 + 0.507731i
\(22\) 0.0893157 + 0.849782i 0.0190422 + 0.181174i
\(23\) 0.357760 0.259928i 0.0745981 0.0541987i −0.549861 0.835256i \(-0.685319\pi\)
0.624459 + 0.781057i \(0.285319\pi\)
\(24\) −0.412010 + 3.92002i −0.0841012 + 0.800170i
\(25\) −1.92005 3.32562i −0.384010 0.665124i
\(26\) −0.504947 + 0.874594i −0.0990283 + 0.171522i
\(27\) 5.55018 + 4.03244i 1.06813 + 0.776043i
\(28\) 1.35874 1.50903i 0.256778 0.285180i
\(29\) −0.976227 + 3.00452i −0.181281 + 0.557925i −0.999864 0.0164625i \(-0.994760\pi\)
0.818584 + 0.574387i \(0.194760\pi\)
\(30\) −3.02317 −0.551953
\(31\) 0 0
\(32\) 3.87532 0.685067
\(33\) 2.17383 6.69036i 0.378415 1.16464i
\(34\) −0.429101 + 0.476565i −0.0735902 + 0.0817303i
\(35\) 2.60294 + 1.89115i 0.439977 + 0.319662i
\(36\) 5.03946 8.72860i 0.839910 1.45477i
\(37\) −1.57338 2.72517i −0.258661 0.448015i 0.707222 0.706991i \(-0.249948\pi\)
−0.965884 + 0.258977i \(0.916615\pi\)
\(38\) −0.0778141 + 0.740352i −0.0126231 + 0.120101i
\(39\) 6.72642 4.88703i 1.07709 0.782551i
\(40\) 0.423394 + 4.02832i 0.0669444 + 0.636933i
\(41\) −4.64794 5.16206i −0.725886 0.806178i 0.261383 0.965235i \(-0.415821\pi\)
−0.987269 + 0.159057i \(0.949155\pi\)
\(42\) 1.00518 0.447533i 0.155102 0.0690559i
\(43\) 8.22855 1.74903i 1.25484 0.266725i 0.467916 0.883773i \(-0.345005\pi\)
0.786926 + 0.617048i \(0.211672\pi\)
\(44\) −4.46275 0.948588i −0.672786 0.143005i
\(45\) 14.5890 + 6.49543i 2.17480 + 0.968282i
\(46\) −0.0480240 0.147803i −0.00708075 0.0217923i
\(47\) −2.46041 7.57236i −0.358888 1.10454i −0.953721 0.300693i \(-0.902782\pi\)
0.594833 0.803849i \(-0.297218\pi\)
\(48\) −8.65428 3.85313i −1.24914 0.556152i
\(49\) 5.70163 + 1.21192i 0.814518 + 0.173131i
\(50\) −1.32004 + 0.280584i −0.186682 + 0.0396806i
\(51\) 4.82313 2.14740i 0.675374 0.300696i
\(52\) −3.60822 4.00733i −0.500370 0.555717i
\(53\) 0.520238 + 4.94973i 0.0714602 + 0.679898i 0.970347 + 0.241717i \(0.0777105\pi\)
−0.898887 + 0.438181i \(0.855623\pi\)
\(54\) 1.95051 1.41713i 0.265431 0.192847i
\(55\) 0.755639 7.18942i 0.101890 0.969421i
\(56\) −0.737104 1.27670i −0.0984997 0.170606i
\(57\) 3.06439 5.30768i 0.405889 0.703020i
\(58\) 0.898189 + 0.652573i 0.117938 + 0.0856870i
\(59\) −8.03889 + 8.92809i −1.04657 + 1.16234i −0.0601391 + 0.998190i \(0.519154\pi\)
−0.986436 + 0.164149i \(0.947512\pi\)
\(60\) 4.98828 15.3523i 0.643984 1.98198i
\(61\) −14.4351 −1.84823 −0.924115 0.382115i \(-0.875196\pi\)
−0.924115 + 0.382115i \(0.875196\pi\)
\(62\) 0 0
\(63\) −5.81225 −0.732274
\(64\) −1.60273 + 4.93269i −0.200341 + 0.616586i
\(65\) 5.71707 6.34945i 0.709115 0.787552i
\(66\) −2.00006 1.45313i −0.246190 0.178868i
\(67\) 3.21879 5.57511i 0.393238 0.681108i −0.599636 0.800273i \(-0.704688\pi\)
0.992875 + 0.119164i \(0.0380215\pi\)
\(68\) −1.71208 2.96541i −0.207620 0.359609i
\(69\) −0.133740 + 1.27245i −0.0161004 + 0.153185i
\(70\) 0.914757 0.664610i 0.109334 0.0794361i
\(71\) −0.175386 1.66868i −0.0208144 0.198036i 0.979173 0.203027i \(-0.0650780\pi\)
−0.999988 + 0.00499096i \(0.998411\pi\)
\(72\) −4.89619 5.43777i −0.577022 0.640848i
\(73\) 13.1187 5.84081i 1.53542 0.683615i 0.547252 0.836968i \(-0.315674\pi\)
0.988171 + 0.153353i \(0.0490072\pi\)
\(74\) −1.08170 + 0.229923i −0.125746 + 0.0267281i
\(75\) 10.8677 + 2.31001i 1.25490 + 0.266737i
\(76\) −3.63128 1.61675i −0.416536 0.185454i
\(77\) 0.813039 + 2.50228i 0.0926544 + 0.285161i
\(78\) −0.902923 2.77891i −0.102236 0.314650i
\(79\) −3.14958 1.40228i −0.354355 0.157769i 0.221836 0.975084i \(-0.428795\pi\)
−0.576191 + 0.817315i \(0.695462\pi\)
\(80\) −9.52229 2.02403i −1.06462 0.226293i
\(81\) −3.65408 + 0.776698i −0.406009 + 0.0862998i
\(82\) −2.23009 + 0.992898i −0.246272 + 0.109647i
\(83\) 8.60075 + 9.55210i 0.944055 + 1.04848i 0.998750 + 0.0499757i \(0.0159144\pi\)
−0.0546959 + 0.998503i \(0.517419\pi\)
\(84\) 0.614118 + 5.84295i 0.0670058 + 0.637518i
\(85\) 4.38928 3.18900i 0.476084 0.345895i
\(86\) 0.309026 2.94019i 0.0333232 0.317049i
\(87\) −4.57015 7.91573i −0.489972 0.848656i
\(88\) −1.65616 + 2.86855i −0.176547 + 0.305789i
\(89\) −1.82788 1.32803i −0.193755 0.140771i 0.486678 0.873581i \(-0.338208\pi\)
−0.680433 + 0.732810i \(0.738208\pi\)
\(90\) 3.75533 4.17071i 0.395846 0.439632i
\(91\) −0.960936 + 2.95746i −0.100733 + 0.310026i
\(92\) 0.829816 0.0865143
\(93\) 0 0
\(94\) −2.79812 −0.288604
\(95\) 1.94622 5.98986i 0.199678 0.614547i
\(96\) −7.50258 + 8.33246i −0.765729 + 0.850429i
\(97\) −2.76106 2.00603i −0.280343 0.203681i 0.438724 0.898622i \(-0.355431\pi\)
−0.719067 + 0.694941i \(0.755431\pi\)
\(98\) 1.02425 1.77405i 0.103465 0.179207i
\(99\) 6.52961 + 11.3096i 0.656251 + 1.13666i
\(100\) 0.753224 7.16645i 0.0753224 0.716645i
\(101\) −14.3336 + 10.4140i −1.42625 + 1.03623i −0.435546 + 0.900167i \(0.643445\pi\)
−0.990700 + 0.136062i \(0.956555\pi\)
\(102\) −0.193944 1.84525i −0.0192033 0.182707i
\(103\) 5.40246 + 6.00004i 0.532320 + 0.591201i 0.947984 0.318317i \(-0.103118\pi\)
−0.415664 + 0.909518i \(0.636451\pi\)
\(104\) −3.57640 + 1.59231i −0.350694 + 0.156139i
\(105\) −9.10548 + 1.93543i −0.888604 + 0.188879i
\(106\) 1.71086 + 0.363654i 0.166173 + 0.0353212i
\(107\) −11.1007 4.94234i −1.07314 0.477794i −0.207386 0.978259i \(-0.566495\pi\)
−0.865756 + 0.500466i \(0.833162\pi\)
\(108\) 3.97813 + 12.2434i 0.382796 + 1.17812i
\(109\) −0.195330 0.601165i −0.0187093 0.0575812i 0.941266 0.337666i \(-0.109637\pi\)
−0.959975 + 0.280085i \(0.909637\pi\)
\(110\) −2.32087 1.03332i −0.221287 0.0985232i
\(111\) 8.90552 + 1.89293i 0.845274 + 0.179669i
\(112\) 3.46570 0.736657i 0.327478 0.0696075i
\(113\) −10.3234 + 4.59626i −0.971142 + 0.432380i −0.830094 0.557623i \(-0.811714\pi\)
−0.141047 + 0.990003i \(0.545047\pi\)
\(114\) −1.44121 1.60063i −0.134982 0.149912i
\(115\) 0.137435 + 1.30761i 0.0128159 + 0.121935i
\(116\) −4.79594 + 3.48445i −0.445291 + 0.323523i
\(117\) −1.61337 + 15.3502i −0.149157 + 1.41913i
\(118\) 2.11104 + 3.65643i 0.194337 + 0.336602i
\(119\) −0.987313 + 1.71008i −0.0905068 + 0.156762i
\(120\) −9.48112 6.88844i −0.865504 0.628825i
\(121\) −3.40483 + 3.78145i −0.309530 + 0.343768i
\(122\) −1.56764 + 4.82469i −0.141927 + 0.436806i
\(123\) 20.0975 1.81213
\(124\) 0 0
\(125\) −3.44866 −0.308458
\(126\) −0.631202 + 1.94264i −0.0562319 + 0.173064i
\(127\) 0.0788277 0.0875470i 0.00699483 0.00776854i −0.739637 0.673006i \(-0.765003\pi\)
0.746632 + 0.665237i \(0.231670\pi\)
\(128\) 7.74501 + 5.62708i 0.684569 + 0.497368i
\(129\) −12.1697 + 21.0786i −1.07149 + 1.85587i
\(130\) −1.50132 2.60037i −0.131675 0.228068i
\(131\) −0.604588 + 5.75227i −0.0528231 + 0.502578i 0.935840 + 0.352426i \(0.114643\pi\)
−0.988663 + 0.150152i \(0.952024\pi\)
\(132\) 10.6794 7.75907i 0.929526 0.675340i
\(133\) 0.239604 + 2.27968i 0.0207763 + 0.197673i
\(134\) −1.51383 1.68127i −0.130775 0.145240i
\(135\) −18.6341 + 8.29642i −1.60377 + 0.714043i
\(136\) −2.43160 + 0.516853i −0.208508 + 0.0443198i
\(137\) −11.5474 2.45449i −0.986565 0.209701i −0.313745 0.949507i \(-0.601584\pi\)
−0.672820 + 0.739806i \(0.734917\pi\)
\(138\) 0.410770 + 0.182886i 0.0349670 + 0.0155683i
\(139\) −4.76566 14.6672i −0.404218 1.24406i −0.921546 0.388268i \(-0.873073\pi\)
0.517328 0.855787i \(-0.326927\pi\)
\(140\) 1.86568 + 5.74196i 0.157678 + 0.485284i
\(141\) 21.0449 + 9.36981i 1.77230 + 0.789080i
\(142\) −0.576774 0.122597i −0.0484018 0.0102881i
\(143\) 6.83423 1.45266i 0.571507 0.121478i
\(144\) 16.0659 7.15300i 1.33882 0.596083i
\(145\) −6.28503 6.98024i −0.521944 0.579677i
\(146\) −0.527516 5.01898i −0.0436576 0.415374i
\(147\) −13.6441 + 9.91300i −1.12534 + 0.817611i
\(148\) 0.617226 5.87252i 0.0507357 0.482718i
\(149\) 5.97511 + 10.3492i 0.489500 + 0.847840i 0.999927 0.0120817i \(-0.00384583\pi\)
−0.510427 + 0.859921i \(0.670512\pi\)
\(150\) 1.95230 3.38148i 0.159404 0.276097i
\(151\) 3.49668 + 2.54048i 0.284556 + 0.206742i 0.720902 0.693037i \(-0.243728\pi\)
−0.436346 + 0.899779i \(0.643728\pi\)
\(152\) −1.93096 + 2.14455i −0.156622 + 0.173946i
\(153\) −3.02870 + 9.32137i −0.244856 + 0.753588i
\(154\) 0.924636 0.0745093
\(155\) 0 0
\(156\) 15.6018 1.24914
\(157\) −2.68982 + 8.27841i −0.214671 + 0.660689i 0.784506 + 0.620121i \(0.212917\pi\)
−0.999177 + 0.0405678i \(0.987083\pi\)
\(158\) −0.810728 + 0.900405i −0.0644981 + 0.0716324i
\(159\) −11.6498 8.46405i −0.923887 0.671243i
\(160\) −5.76111 + 9.97854i −0.455456 + 0.788873i
\(161\) −0.239267 0.414422i −0.0188568 0.0326610i
\(162\) −0.137230 + 1.30566i −0.0107818 + 0.102582i
\(163\) −2.53053 + 1.83853i −0.198206 + 0.144005i −0.682462 0.730922i \(-0.739091\pi\)
0.484255 + 0.874927i \(0.339091\pi\)
\(164\) −1.36248 12.9632i −0.106392 1.01225i
\(165\) 13.9953 + 15.5434i 1.08953 + 1.21005i
\(166\) 4.12665 1.83730i 0.320290 0.142602i
\(167\) 13.0631 2.77665i 1.01085 0.214863i 0.327422 0.944878i \(-0.393820\pi\)
0.683431 + 0.730015i \(0.260487\pi\)
\(168\) 4.17211 + 0.886809i 0.321885 + 0.0684188i
\(169\) −4.33214 1.92880i −0.333242 0.148369i
\(170\) −0.589196 1.81336i −0.0451893 0.139078i
\(171\) 3.51585 + 10.8207i 0.268864 + 0.827478i
\(172\) 14.4210 + 6.42066i 1.09959 + 0.489571i
\(173\) −18.6286 3.95962i −1.41630 0.301045i −0.564728 0.825277i \(-0.691019\pi\)
−0.851575 + 0.524232i \(0.824352\pi\)
\(174\) −3.14200 + 0.667854i −0.238195 + 0.0506299i
\(175\) −3.79621 + 1.69018i −0.286966 + 0.127766i
\(176\) −5.32685 5.91607i −0.401526 0.445940i
\(177\) −3.63339 34.5694i −0.273102 2.59840i
\(178\) −0.642377 + 0.466714i −0.0481482 + 0.0349817i
\(179\) 0.00829224 0.0788954i 0.000619791 0.00589692i −0.994208 0.107476i \(-0.965723\pi\)
0.994827 + 0.101580i \(0.0323896\pi\)
\(180\) 14.9835 + 25.9521i 1.11680 + 1.93436i
\(181\) −1.08143 + 1.87308i −0.0803817 + 0.139225i −0.903414 0.428769i \(-0.858947\pi\)
0.823032 + 0.567995i \(0.192281\pi\)
\(182\) 0.884121 + 0.642351i 0.0655354 + 0.0476142i
\(183\) 27.9463 31.0375i 2.06585 2.29436i
\(184\) 0.186165 0.572956i 0.0137243 0.0422389i
\(185\) 9.35601 0.687868
\(186\) 0 0
\(187\) 4.43668 0.324442
\(188\) 4.61695 14.2095i 0.336725 1.03633i
\(189\) 4.96750 5.51697i 0.361332 0.401300i
\(190\) −1.79065 1.30098i −0.129907 0.0943831i
\(191\) 2.67085 4.62604i 0.193256 0.334729i −0.753072 0.657939i \(-0.771429\pi\)
0.946327 + 0.323210i \(0.104762\pi\)
\(192\) −7.50308 12.9957i −0.541488 0.937885i
\(193\) 0.223030 2.12199i 0.0160540 0.152744i −0.983558 0.180592i \(-0.942199\pi\)
0.999612 + 0.0278478i \(0.00886537\pi\)
\(194\) −0.970327 + 0.704984i −0.0696654 + 0.0506149i
\(195\) 2.58398 + 24.5849i 0.185043 + 1.76056i
\(196\) 7.31902 + 8.12859i 0.522787 + 0.580614i
\(197\) −5.36775 + 2.38987i −0.382436 + 0.170272i −0.588945 0.808173i \(-0.700456\pi\)
0.206509 + 0.978445i \(0.433790\pi\)
\(198\) 4.48915 0.954197i 0.319030 0.0678119i
\(199\) −6.77657 1.44040i −0.480378 0.102108i −0.0386432 0.999253i \(-0.512304\pi\)
−0.441735 + 0.897146i \(0.645637\pi\)
\(200\) −4.77918 2.12783i −0.337939 0.150460i
\(201\) 5.75569 + 17.7142i 0.405975 + 1.24946i
\(202\) 1.92407 + 5.92169i 0.135377 + 0.416649i
\(203\) 3.12303 + 1.39046i 0.219194 + 0.0975913i
\(204\) 9.69061 + 2.05980i 0.678478 + 0.144215i
\(205\) 20.2014 4.29395i 1.41093 0.299902i
\(206\) 2.59210 1.15408i 0.180601 0.0804085i
\(207\) −1.58932 1.76512i −0.110465 0.122684i
\(208\) −0.983507 9.35744i −0.0681939 0.648822i
\(209\) 4.16669 3.02727i 0.288216 0.209401i
\(210\) −0.341960 + 3.25353i −0.0235975 + 0.224515i
\(211\) −8.35437 14.4702i −0.575139 0.996170i −0.996027 0.0890568i \(-0.971615\pi\)
0.420888 0.907113i \(-0.361719\pi\)
\(212\) −4.66966 + 8.08808i −0.320713 + 0.555492i
\(213\) 3.92744 + 2.85345i 0.269104 + 0.195515i
\(214\) −2.85740 + 3.17347i −0.195328 + 0.216934i
\(215\) −7.72911 + 23.7878i −0.527121 + 1.62231i
\(216\) 9.34610 0.635921
\(217\) 0 0
\(218\) −0.222141 −0.0150453
\(219\) −12.8391 + 39.5146i −0.867585 + 2.67015i
\(220\) 9.07691 10.0809i 0.611965 0.679656i
\(221\) 4.24227 + 3.08219i 0.285366 + 0.207331i
\(222\) 1.59980 2.77094i 0.107372 0.185973i
\(223\) 3.13078 + 5.42267i 0.209653 + 0.363129i 0.951605 0.307323i \(-0.0994333\pi\)
−0.741952 + 0.670453i \(0.766100\pi\)
\(224\) 0.438349 4.17061i 0.0292884 0.278661i
\(225\) −16.6865 + 12.1235i −1.11244 + 0.808232i
\(226\) 0.415115 + 3.94955i 0.0276130 + 0.262720i
\(227\) −5.25101 5.83184i −0.348522 0.387073i 0.543240 0.839577i \(-0.317197\pi\)
−0.891762 + 0.452505i \(0.850531\pi\)
\(228\) 10.5064 4.67773i 0.695800 0.309790i
\(229\) −12.4939 + 2.65565i −0.825618 + 0.175490i −0.601298 0.799025i \(-0.705349\pi\)
−0.224320 + 0.974516i \(0.572016\pi\)
\(230\) 0.451969 + 0.0960690i 0.0298020 + 0.00633460i
\(231\) −6.95427 3.09624i −0.457557 0.203718i
\(232\) 1.32994 + 4.09313i 0.0873148 + 0.268727i
\(233\) 3.92992 + 12.0950i 0.257457 + 0.792372i 0.993336 + 0.115258i \(0.0367696\pi\)
−0.735878 + 0.677114i \(0.763230\pi\)
\(234\) 4.95533 + 2.20626i 0.323940 + 0.144227i
\(235\) 23.1557 + 4.92190i 1.51051 + 0.321069i
\(236\) −22.0515 + 4.68718i −1.43543 + 0.305109i
\(237\) 9.11265 4.05721i 0.591930 0.263544i
\(238\) 0.464342 + 0.515703i 0.0300988 + 0.0334281i
\(239\) 2.65760 + 25.2853i 0.171906 + 1.63557i 0.651903 + 0.758302i \(0.273971\pi\)
−0.479997 + 0.877270i \(0.659362\pi\)
\(240\) 22.7870 16.5557i 1.47089 1.06867i
\(241\) −0.246790 + 2.34805i −0.0158971 + 0.151251i −0.999591 0.0286003i \(-0.990895\pi\)
0.983694 + 0.179851i \(0.0575617\pi\)
\(242\) 0.894121 + 1.54866i 0.0574763 + 0.0995519i
\(243\) −4.88634 + 8.46339i −0.313459 + 0.542927i
\(244\) −21.9142 15.9216i −1.40291 1.01928i
\(245\) −11.5967 + 12.8794i −0.740885 + 0.822836i
\(246\) 2.18256 6.71723i 0.139155 0.428275i
\(247\) 6.08718 0.387318
\(248\) 0 0
\(249\) −37.1893 −2.35677
\(250\) −0.374520 + 1.15265i −0.0236867 + 0.0729002i
\(251\) 1.57690 1.75132i 0.0995329 0.110542i −0.691320 0.722549i \(-0.742971\pi\)
0.790853 + 0.612006i \(0.209637\pi\)
\(252\) −8.82367 6.41077i −0.555839 0.403841i
\(253\) −0.537595 + 0.931142i −0.0337983 + 0.0585404i
\(254\) −0.0207005 0.0358542i −0.00129886 0.00224970i
\(255\) −1.64082 + 15.6114i −0.102752 + 0.977624i
\(256\) −5.67014 + 4.11960i −0.354384 + 0.257475i
\(257\) 2.71920 + 25.8715i 0.169619 + 1.61382i 0.666162 + 0.745807i \(0.267936\pi\)
−0.496542 + 0.868013i \(0.665397\pi\)
\(258\) 5.72353 + 6.35662i 0.356331 + 0.395746i
\(259\) −3.11079 + 1.38501i −0.193295 + 0.0860604i
\(260\) 15.6825 3.33341i 0.972586 0.206729i
\(261\) 16.5974 + 3.52788i 1.02735 + 0.218370i
\(262\) 1.85694 + 0.826761i 0.114722 + 0.0510775i
\(263\) 7.08747 + 21.8130i 0.437032 + 1.34505i 0.890990 + 0.454024i \(0.150012\pi\)
−0.453957 + 0.891023i \(0.649988\pi\)
\(264\) −2.96147 9.11446i −0.182266 0.560956i
\(265\) −13.5184 6.01879i −0.830430 0.369731i
\(266\) 0.787964 + 0.167487i 0.0483131 + 0.0102693i
\(267\) 6.39421 1.35913i 0.391319 0.0831775i
\(268\) 11.0357 4.91342i 0.674114 0.300135i
\(269\) −11.4069 12.6686i −0.695490 0.772420i 0.287161 0.957882i \(-0.407288\pi\)
−0.982651 + 0.185462i \(0.940622\pi\)
\(270\) 0.749297 + 7.12909i 0.0456008 + 0.433862i
\(271\) −5.86255 + 4.25939i −0.356124 + 0.258739i −0.751434 0.659809i \(-0.770637\pi\)
0.395309 + 0.918548i \(0.370637\pi\)
\(272\) 0.624525 5.94196i 0.0378674 0.360284i
\(273\) −4.49857 7.79175i −0.272266 0.471578i
\(274\) −2.07440 + 3.59297i −0.125319 + 0.217059i
\(275\) 7.55354 + 5.48797i 0.455496 + 0.330937i
\(276\) −1.60651 + 1.78422i −0.0967008 + 0.107397i
\(277\) 4.66717 14.3641i 0.280423 0.863053i −0.707310 0.706903i \(-0.750092\pi\)
0.987733 0.156150i \(-0.0499083\pi\)
\(278\) −5.41979 −0.325058
\(279\) 0 0
\(280\) 4.38316 0.261944
\(281\) −0.768550 + 2.36535i −0.0458479 + 0.141105i −0.971360 0.237613i \(-0.923635\pi\)
0.925512 + 0.378718i \(0.123635\pi\)
\(282\) 5.41714 6.01634i 0.322586 0.358268i
\(283\) 3.82370 + 2.77808i 0.227296 + 0.165140i 0.695605 0.718425i \(-0.255137\pi\)
−0.468309 + 0.883565i \(0.655137\pi\)
\(284\) 1.57426 2.72670i 0.0934153 0.161800i
\(285\) 9.11114 + 15.7810i 0.539697 + 0.934783i
\(286\) 0.256662 2.44198i 0.0151767 0.144397i
\(287\) −6.08114 + 4.41821i −0.358958 + 0.260798i
\(288\) −2.17575 20.7009i −0.128207 1.21981i
\(289\) −9.14717 10.1590i −0.538069 0.597586i
\(290\) −3.01557 + 1.34262i −0.177080 + 0.0788411i
\(291\) 9.65862 2.05300i 0.566198 0.120349i
\(292\) 26.3579 + 5.60255i 1.54248 + 0.327864i
\(293\) −9.63689 4.29062i −0.562993 0.250661i 0.105449 0.994425i \(-0.466372\pi\)
−0.668442 + 0.743764i \(0.733039\pi\)
\(294\) 1.83152 + 5.63683i 0.106816 + 0.328746i
\(295\) −11.0381 33.9719i −0.642666 1.97792i
\(296\) −3.91628 1.74364i −0.227629 0.101347i
\(297\) −16.3157 3.46800i −0.946731 0.201234i
\(298\) 4.10792 0.873166i 0.237966 0.0505812i
\(299\) −1.16091 + 0.516870i −0.0671372 + 0.0298914i
\(300\) 13.9506 + 15.4937i 0.805438 + 0.894529i
\(301\) −0.951549 9.05338i −0.0548464 0.521828i
\(302\) 1.22885 0.892809i 0.0707121 0.0513754i
\(303\) 5.35827 50.9805i 0.307824 2.92875i
\(304\) −3.46785 6.00650i −0.198895 0.344496i
\(305\) 21.4595 37.1689i 1.22877 2.12829i
\(306\) 2.78659 + 2.02458i 0.159299 + 0.115737i
\(307\) 1.77219 1.96822i 0.101144 0.112332i −0.690447 0.723383i \(-0.742586\pi\)
0.791592 + 0.611051i \(0.209253\pi\)
\(308\) −1.52566 + 4.69551i −0.0869327 + 0.267551i
\(309\) −23.3600 −1.32890
\(310\) 0 0
\(311\) 5.51283 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(312\) 3.50018 10.7724i 0.198158 0.609869i
\(313\) −17.8494 + 19.8237i −1.00891 + 1.12050i −0.0162089 + 0.999869i \(0.505160\pi\)
−0.992697 + 0.120635i \(0.961507\pi\)
\(314\) 2.47480 + 1.79805i 0.139661 + 0.101470i
\(315\) 8.64057 14.9659i 0.486841 0.843234i
\(316\) −3.23474 5.60274i −0.181969 0.315179i
\(317\) −1.12266 + 10.6814i −0.0630549 + 0.599927i 0.916679 + 0.399624i \(0.130859\pi\)
−0.979734 + 0.200303i \(0.935807\pi\)
\(318\) −4.09411 + 2.97454i −0.229586 + 0.166804i
\(319\) −0.802886 7.63895i −0.0449530 0.427699i
\(320\) −10.3185 11.4599i −0.576822 0.640626i
\(321\) 32.1175 14.2996i 1.79262 0.798127i
\(322\) −0.164497 + 0.0349649i −0.00916706 + 0.00194852i
\(323\) 3.78088 + 0.803652i 0.210374 + 0.0447164i
\(324\) −6.40400 2.85124i −0.355778 0.158402i
\(325\) 3.41003 + 10.4950i 0.189155 + 0.582158i
\(326\) 0.339686 + 1.04545i 0.0188135 + 0.0579019i
\(327\) 1.67074 + 0.743863i 0.0923923 + 0.0411357i
\(328\) −9.25625 1.96748i −0.511091 0.108636i
\(329\) −8.42766 + 1.79136i −0.464632 + 0.0987606i
\(330\) 6.71497 2.98970i 0.369647 0.164577i
\(331\) 13.1468 + 14.6010i 0.722614 + 0.802545i 0.986803 0.161926i \(-0.0517707\pi\)
−0.264188 + 0.964471i \(0.585104\pi\)
\(332\) 2.52120 + 23.9876i 0.138369 + 1.31649i
\(333\) −13.6737 + 9.93453i −0.749315 + 0.544409i
\(334\) 0.490589 4.66765i 0.0268439 0.255402i
\(335\) 9.57021 + 16.5761i 0.522876 + 0.905649i
\(336\) −5.12565 + 8.87788i −0.279627 + 0.484328i
\(337\) −15.5159 11.2730i −0.845206 0.614078i 0.0786142 0.996905i \(-0.474950\pi\)
−0.923820 + 0.382827i \(0.874950\pi\)
\(338\) −1.11513 + 1.23848i −0.0606551 + 0.0673643i
\(339\) 10.1034 31.0950i 0.548740 1.68885i
\(340\) 10.1808 0.552133
\(341\) 0 0
\(342\) 3.99844 0.216211
\(343\) 4.28996 13.2031i 0.231636 0.712902i
\(344\) 7.66851 8.51674i 0.413458 0.459192i
\(345\) −3.07760 2.23601i −0.165693 0.120383i
\(346\) −3.34647 + 5.79626i −0.179907 + 0.311609i
\(347\) −5.32998 9.23180i −0.286128 0.495589i 0.686754 0.726890i \(-0.259035\pi\)
−0.972882 + 0.231301i \(0.925702\pi\)
\(348\) 1.79284 17.0578i 0.0961065 0.914393i
\(349\) 15.1299 10.9925i 0.809884 0.588415i −0.103913 0.994586i \(-0.533136\pi\)
0.913797 + 0.406171i \(0.133136\pi\)
\(350\) 0.152650 + 1.45237i 0.00815948 + 0.0776322i
\(351\) −13.1915 14.6506i −0.704110 0.781994i
\(352\) −8.60774 + 3.83241i −0.458794 + 0.204268i
\(353\) 12.3855 2.63263i 0.659216 0.140121i 0.133856 0.991001i \(-0.457264\pi\)
0.525360 + 0.850880i \(0.323931\pi\)
\(354\) −11.9488 2.53979i −0.635071 0.134988i
\(355\) 4.55741 + 2.02909i 0.241882 + 0.107693i
\(356\) −1.31015 4.03222i −0.0694377 0.213707i
\(357\) −1.76547 5.43355i −0.0934384 0.287574i
\(358\) −0.0254688 0.0113395i −0.00134607 0.000599309i
\(359\) 22.1826 + 4.71505i 1.17075 + 0.248851i 0.751945 0.659226i \(-0.229116\pi\)
0.418805 + 0.908076i \(0.362449\pi\)
\(360\) 21.2804 4.52329i 1.12158 0.238399i
\(361\) −13.2582 + 5.90293i −0.697800 + 0.310681i
\(362\) 0.508604 + 0.564862i 0.0267316 + 0.0296885i
\(363\) −1.53890 14.6417i −0.0807715 0.768489i
\(364\) −4.72082 + 3.42987i −0.247438 + 0.179774i
\(365\) −4.46295 + 42.4622i −0.233602 + 2.22257i
\(366\) −7.33880 12.7112i −0.383605 0.664424i
\(367\) −4.35984 + 7.55147i −0.227582 + 0.394183i −0.957091 0.289788i \(-0.906415\pi\)
0.729509 + 0.683971i \(0.239749\pi\)
\(368\) 1.17139 + 0.851062i 0.0610628 + 0.0443647i
\(369\) −24.9647 + 27.7261i −1.29961 + 1.44337i
\(370\) 1.01605 3.12708i 0.0528219 0.162569i
\(371\) 5.38574 0.279614
\(372\) 0 0
\(373\) 25.4134 1.31586 0.657928 0.753081i \(-0.271433\pi\)
0.657928 + 0.753081i \(0.271433\pi\)
\(374\) 0.481817 1.48288i 0.0249142 0.0766779i
\(375\) 6.67658 7.41509i 0.344777 0.382914i
\(376\) −8.77534 6.37566i −0.452553 0.328799i
\(377\) 4.53913 7.86200i 0.233777 0.404914i
\(378\) −1.30448 2.25943i −0.0670954 0.116213i
\(379\) −2.30986 + 21.9768i −0.118649 + 1.12887i 0.759507 + 0.650499i \(0.225440\pi\)
−0.878156 + 0.478374i \(0.841226\pi\)
\(380\) 9.56127 6.94667i 0.490483 0.356357i
\(381\) 0.0356283 + 0.338980i 0.00182529 + 0.0173665i
\(382\) −1.25612 1.39506i −0.0642688 0.0713777i
\(383\) −24.3393 + 10.8365i −1.24368 + 0.553721i −0.919804 0.392379i \(-0.871652\pi\)
−0.323874 + 0.946100i \(0.604985\pi\)
\(384\) −27.0932 + 5.75885i −1.38260 + 0.293880i
\(385\) −7.65177 1.62643i −0.389970 0.0828907i
\(386\) −0.685016 0.304989i −0.0348664 0.0155235i
\(387\) −13.9626 42.9726i −0.709761 2.18442i
\(388\) −1.97901 6.09077i −0.100469 0.309212i
\(389\) −11.8350 5.26930i −0.600060 0.267164i 0.0841452 0.996454i \(-0.473184\pi\)
−0.684205 + 0.729290i \(0.739851\pi\)
\(390\) 8.49770 + 1.80624i 0.430298 + 0.0914626i
\(391\) −0.789306 + 0.167772i −0.0399169 + 0.00848461i
\(392\) 7.25447 3.22990i 0.366406 0.163134i
\(393\) −11.1977 12.4363i −0.564848 0.627327i
\(394\) 0.215843 + 2.05361i 0.0108740 + 0.103459i
\(395\) 8.29294 6.02517i 0.417263 0.303159i
\(396\) −2.56153 + 24.3713i −0.128722 + 1.22471i
\(397\) 1.46363 + 2.53508i 0.0734574 + 0.127232i 0.900414 0.435033i \(-0.143263\pi\)
−0.826957 + 0.562265i \(0.809930\pi\)
\(398\) −1.21736 + 2.10852i −0.0610205 + 0.105691i
\(399\) −5.36549 3.89826i −0.268611 0.195157i
\(400\) 8.41320 9.34381i 0.420660 0.467190i
\(401\) −3.79302 + 11.6737i −0.189414 + 0.582957i −0.999996 0.00266786i \(-0.999151\pi\)
0.810582 + 0.585625i \(0.199151\pi\)
\(402\) 6.54572 0.326471
\(403\) 0 0
\(404\) −33.2464 −1.65407
\(405\) 3.43229 10.5635i 0.170552 0.524905i
\(406\) 0.803894 0.892815i 0.0398966 0.0443097i
\(407\) 6.18972 + 4.49710i 0.306813 + 0.222913i
\(408\) 3.59625 6.22889i 0.178041 0.308376i
\(409\) 8.59861 + 14.8932i 0.425174 + 0.736423i 0.996437 0.0843442i \(-0.0268795\pi\)
−0.571263 + 0.820767i \(0.693546\pi\)
\(410\) 0.758673 7.21829i 0.0374682 0.356486i
\(411\) 27.6332 20.0767i 1.36305 0.990311i
\(412\) 1.58366 + 15.0675i 0.0780214 + 0.742324i
\(413\) 8.69909 + 9.66132i 0.428054 + 0.475403i
\(414\) −0.762557 + 0.339512i −0.0374777 + 0.0166861i
\(415\) −37.3816 + 7.94571i −1.83499 + 0.390039i
\(416\) −10.8930 2.31537i −0.534072 0.113520i
\(417\) 40.7627 + 18.1487i 1.99616 + 0.888747i
\(418\) −0.559316 1.72140i −0.0273571 0.0841963i
\(419\) 7.15236 + 22.0127i 0.349416 + 1.07539i 0.959177 + 0.282806i \(0.0912652\pi\)
−0.609762 + 0.792585i \(0.708735\pi\)
\(420\) −15.9579 7.10492i −0.778667 0.346685i
\(421\) −28.5445 6.06733i −1.39118 0.295703i −0.549413 0.835551i \(-0.685149\pi\)
−0.841763 + 0.539848i \(0.818482\pi\)
\(422\) −5.74368 + 1.22086i −0.279598 + 0.0594304i
\(423\) −39.0680 + 17.3942i −1.89955 + 0.845735i
\(424\) 4.53690 + 5.03874i 0.220332 + 0.244703i
\(425\) 0.732459 + 6.96889i 0.0355295 + 0.338041i
\(426\) 1.38023 1.00280i 0.0668723 0.0485856i
\(427\) −1.63280 + 15.5351i −0.0790168 + 0.751794i
\(428\) −11.4008 19.7468i −0.551080 0.954498i
\(429\) −10.1076 + 17.5069i −0.487999 + 0.845239i
\(430\) 7.11126 + 5.16664i 0.342936 + 0.249157i
\(431\) 20.3096 22.5561i 0.978279 1.08649i −0.0179599 0.999839i \(-0.505717\pi\)
0.996239 0.0866501i \(-0.0276162\pi\)
\(432\) −6.94129 + 21.3631i −0.333963 + 1.02783i
\(433\) −13.8400 −0.665107 −0.332553 0.943084i \(-0.607910\pi\)
−0.332553 + 0.943084i \(0.607910\pi\)
\(434\) 0 0
\(435\) 27.1762 1.30300
\(436\) 0.366536 1.12808i 0.0175539 0.0540254i
\(437\) −0.626797 + 0.696129i −0.0299838 + 0.0333004i
\(438\) 11.8128 + 8.58247i 0.564435 + 0.410086i
\(439\) −6.46006 + 11.1892i −0.308322 + 0.534029i −0.977995 0.208626i \(-0.933101\pi\)
0.669674 + 0.742656i \(0.266434\pi\)
\(440\) −4.92414 8.52887i −0.234749 0.406598i
\(441\) 3.27262 31.1369i 0.155839 1.48271i
\(442\) 1.49087 1.08318i 0.0709136 0.0515218i
\(443\) −2.48341 23.6281i −0.117991 1.12261i −0.879978 0.475014i \(-0.842443\pi\)
0.761988 0.647592i \(-0.224224\pi\)
\(444\) 11.4318 + 12.6963i 0.542527 + 0.602538i
\(445\) 6.13690 2.73232i 0.290917 0.129525i
\(446\) 2.15243 0.457513i 0.101921 0.0216639i
\(447\) −33.8199 7.18865i −1.59963 0.340012i
\(448\) 5.12726 + 2.28280i 0.242240 + 0.107852i
\(449\) −5.99891 18.4627i −0.283106 0.871311i −0.986960 0.160966i \(-0.948539\pi\)
0.703854 0.710345i \(-0.251461\pi\)
\(450\) 2.23992 + 6.89377i 0.105591 + 0.324975i
\(451\) 15.4288 + 6.86932i 0.726512 + 0.323464i
\(452\) −20.7417 4.40878i −0.975605 0.207371i
\(453\) −12.2319 + 2.59997i −0.574706 + 0.122157i
\(454\) −2.51944 + 1.12173i −0.118243 + 0.0526453i
\(455\) −6.18659 6.87090i −0.290032 0.322113i
\(456\) −0.872750 8.30367i −0.0408703 0.388855i
\(457\) −19.6931 + 14.3078i −0.921202 + 0.669293i −0.943823 0.330452i \(-0.892799\pi\)
0.0226207 + 0.999744i \(0.492799\pi\)
\(458\) −0.469212 + 4.46425i −0.0219248 + 0.208601i
\(459\) −6.25931 10.8414i −0.292159 0.506035i
\(460\) −1.23362 + 2.13669i −0.0575177 + 0.0996235i
\(461\) 31.0202 + 22.5375i 1.44476 + 1.04968i 0.987022 + 0.160587i \(0.0513388\pi\)
0.457734 + 0.889089i \(0.348661\pi\)
\(462\) −1.79009 + 1.98809i −0.0832823 + 0.0924944i
\(463\) −2.03775 + 6.27154i −0.0947022 + 0.291463i −0.987176 0.159636i \(-0.948968\pi\)
0.892474 + 0.451099i \(0.148968\pi\)
\(464\) −10.3437 −0.480195
\(465\) 0 0
\(466\) 4.46933 0.207038
\(467\) 11.8667 36.5219i 0.549125 1.69003i −0.161850 0.986815i \(-0.551746\pi\)
0.710975 0.703217i \(-0.248254\pi\)
\(468\) −19.3802 + 21.5239i −0.895851 + 0.994944i
\(469\) −5.63584 4.09468i −0.260239 0.189075i
\(470\) 4.15973 7.20487i 0.191874 0.332336i
\(471\) −12.5922 21.8104i −0.580220 1.00497i
\(472\) −1.71081 + 16.2772i −0.0787463 + 0.749221i
\(473\) −16.5473 + 12.0223i −0.760846 + 0.552787i
\(474\) −0.366430 3.48635i −0.0168307 0.160133i
\(475\) 5.44296 + 6.04502i 0.249740 + 0.277364i
\(476\) −3.38503 + 1.50711i −0.155153 + 0.0690784i
\(477\) 26.1480 5.55793i 1.19723 0.254480i
\(478\) 8.73978 + 1.85770i 0.399748 + 0.0849691i
\(479\) 6.87457 + 3.06075i 0.314107 + 0.139849i 0.557734 0.830019i \(-0.311671\pi\)
−0.243627 + 0.969869i \(0.578337\pi\)
\(480\) −10.3017 31.7055i −0.470208 1.44715i
\(481\) 2.79434 + 8.60009i 0.127411 + 0.392130i
\(482\) 0.757992 + 0.337480i 0.0345256 + 0.0153718i
\(483\) 1.35428 + 0.287861i 0.0616219 + 0.0130981i
\(484\) −9.33977 + 1.98523i −0.424535 + 0.0902377i
\(485\) 9.26995 4.12725i 0.420927 0.187409i
\(486\) 2.29809 + 2.55228i 0.104243 + 0.115774i
\(487\) −2.61658 24.8951i −0.118569 1.12811i −0.878380 0.477962i \(-0.841375\pi\)
0.759812 0.650143i \(-0.225291\pi\)
\(488\) −15.9096 + 11.5590i −0.720194 + 0.523252i
\(489\) 0.945976 9.00036i 0.0427785 0.407010i
\(490\) 3.04533 + 5.27467i 0.137574 + 0.238285i
\(491\) 19.8550 34.3899i 0.896044 1.55199i 0.0635377 0.997979i \(-0.479762\pi\)
0.832507 0.554015i \(-0.186905\pi\)
\(492\) 30.5103 + 22.1671i 1.37551 + 0.999368i
\(493\) 3.85732 4.28399i 0.173725 0.192941i
\(494\) 0.661059 2.03453i 0.0297425 0.0915379i
\(495\) −38.8281 −1.74519
\(496\) 0 0
\(497\) −1.81567 −0.0814440
\(498\) −4.03870 + 12.4298i −0.180979 + 0.556995i
\(499\) −15.8277 + 17.5784i −0.708544 + 0.786918i −0.984712 0.174192i \(-0.944269\pi\)
0.276168 + 0.961109i \(0.410935\pi\)
\(500\) −5.23547 3.80379i −0.234137 0.170111i
\(501\) −19.3199 + 33.4630i −0.863148 + 1.49502i
\(502\) −0.414099 0.717241i −0.0184822 0.0320120i
\(503\) 2.11006 20.0758i 0.0940828 0.895138i −0.841078 0.540914i \(-0.818078\pi\)
0.935161 0.354224i \(-0.115255\pi\)
\(504\) −6.40594 + 4.65419i −0.285343 + 0.207314i
\(505\) −5.50631 52.3890i −0.245028 2.33128i
\(506\) 0.252835 + 0.280802i 0.0112399 + 0.0124832i
\(507\) 12.5342 5.58057i 0.556662 0.247842i
\(508\) 0.216232 0.0459615i 0.00959374 0.00203921i
\(509\) −11.5803 2.46147i −0.513288 0.109103i −0.0560163 0.998430i \(-0.517840\pi\)
−0.457271 + 0.889327i \(0.651173\pi\)
\(510\) 5.03964 + 2.24379i 0.223159 + 0.0993568i
\(511\) −4.80197 14.7789i −0.212427 0.653782i
\(512\) 6.67779 + 20.5521i 0.295120 + 0.908285i
\(513\) −13.2758 5.91078i −0.586142 0.260967i
\(514\) 8.94239 + 1.90076i 0.394432 + 0.0838391i
\(515\) −23.4808 + 4.99100i −1.03469 + 0.219930i
\(516\) −41.7243 + 18.5768i −1.83681 + 0.817800i
\(517\) 12.9535 + 14.3863i 0.569694 + 0.632709i
\(518\) 0.125088 + 1.19014i 0.00549606 + 0.0522916i
\(519\) 44.5784 32.3881i 1.95678 1.42168i
\(520\) 1.21669 11.5760i 0.0533552 0.507641i
\(521\) 16.3742 + 28.3610i 0.717368 + 1.24252i 0.962039 + 0.272911i \(0.0879865\pi\)
−0.244672 + 0.969606i \(0.578680\pi\)
\(522\) 2.98158 5.16425i 0.130500 0.226033i
\(523\) 23.8682 + 17.3412i 1.04368 + 0.758279i 0.971001 0.239076i \(-0.0768446\pi\)
0.0726806 + 0.997355i \(0.476845\pi\)
\(524\) −7.26245 + 8.06577i −0.317262 + 0.352355i
\(525\) 3.71530 11.4345i 0.162149 0.499044i
\(526\) 8.06030 0.351446
\(527\) 0 0
\(528\) 23.0331 1.00239
\(529\) −7.04696 + 21.6883i −0.306390 + 0.942970i
\(530\) −3.47976 + 3.86466i −0.151151 + 0.167870i
\(531\) 52.2047 + 37.9289i 2.26549 + 1.64597i
\(532\) −2.15069 + 3.72510i −0.0932441 + 0.161504i
\(533\) 9.98053 + 17.2868i 0.432305 + 0.748774i
\(534\) 0.240137 2.28475i 0.0103917 0.0988708i
\(535\) 29.2284 21.2357i 1.26365 0.918098i
\(536\) −0.916724 8.72205i −0.0395965 0.376735i
\(537\) 0.153582 + 0.170570i 0.00662755 + 0.00736064i
\(538\) −5.47304 + 2.43675i −0.235959 + 0.105056i
\(539\) −13.8628 + 2.94662i −0.597112 + 0.126920i
\(540\) −37.4395 7.95800i −1.61114 0.342458i
\(541\) 12.1189 + 5.39570i 0.521034 + 0.231979i 0.650364 0.759622i \(-0.274616\pi\)
−0.129331 + 0.991602i \(0.541283\pi\)
\(542\) 0.786961 + 2.42202i 0.0338028 + 0.104034i
\(543\) −1.93375 5.95148i −0.0829853 0.255403i
\(544\) −6.46018 2.87626i −0.276978 0.123319i
\(545\) 1.83832 + 0.390746i 0.0787448 + 0.0167377i
\(546\) −3.09279 + 0.657393i −0.132359 + 0.0281338i
\(547\) 34.4990 15.3599i 1.47507 0.656744i 0.497521 0.867452i \(-0.334244\pi\)
0.977549 + 0.210708i \(0.0675769\pi\)
\(548\) −14.8231 16.4628i −0.633213 0.703254i
\(549\) 8.10442 + 77.1084i 0.345888 + 3.29090i
\(550\) 2.65456 1.92865i 0.113191 0.0822380i
\(551\) 0.699495 6.65525i 0.0297995 0.283523i
\(552\) 0.871520 + 1.50952i 0.0370944 + 0.0642493i
\(553\) −1.86539 + 3.23095i −0.0793245 + 0.137394i
\(554\) −4.29408 3.11983i −0.182438 0.132549i
\(555\) −18.1132 + 20.1167i −0.768860 + 0.853906i
\(556\) 8.94274 27.5229i 0.379257 1.16723i
\(557\) −11.3637 −0.481496 −0.240748 0.970588i \(-0.577393\pi\)
−0.240748 + 0.970588i \(0.577393\pi\)
\(558\) 0 0
\(559\) −24.1743 −1.02246
\(560\) −3.25535 + 10.0189i −0.137563 + 0.423377i
\(561\) −8.58937 + 9.53946i −0.362643 + 0.402756i
\(562\) 0.707114 + 0.513748i 0.0298278 + 0.0216712i
\(563\) 10.0933 17.4821i 0.425381 0.736781i −0.571075 0.820898i \(-0.693474\pi\)
0.996456 + 0.0841167i \(0.0268068\pi\)
\(564\) 21.6140 + 37.4365i 0.910113 + 1.57636i
\(565\) 3.51200 33.4145i 0.147751 1.40576i
\(566\) 1.34377 0.976309i 0.0564830 0.0410373i
\(567\) 0.422558 + 4.02037i 0.0177457 + 0.168840i
\(568\) −1.52951 1.69869i −0.0641767 0.0712754i
\(569\) −28.3105 + 12.6046i −1.18684 + 0.528414i −0.902658 0.430358i \(-0.858387\pi\)
−0.284178 + 0.958772i \(0.591721\pi\)
\(570\) 6.26396 1.33145i 0.262368 0.0557681i
\(571\) 10.1724 + 2.16222i 0.425703 + 0.0904861i 0.415781 0.909465i \(-0.363508\pi\)
0.00992234 + 0.999951i \(0.496842\pi\)
\(572\) 11.9774 + 5.33269i 0.500801 + 0.222971i
\(573\) 4.77588 + 14.6987i 0.199515 + 0.614045i
\(574\) 0.816303 + 2.51232i 0.0340718 + 0.104862i
\(575\) −1.55134 0.690700i −0.0646953 0.0288042i
\(576\) 27.2488 + 5.79192i 1.13537 + 0.241330i
\(577\) −5.29555 + 1.12560i −0.220457 + 0.0468595i −0.316816 0.948487i \(-0.602614\pi\)
0.0963589 + 0.995347i \(0.469280\pi\)
\(578\) −4.38882 + 1.95403i −0.182551 + 0.0812769i
\(579\) 4.13078 + 4.58769i 0.171669 + 0.190658i
\(580\) −1.84238 17.5291i −0.0765006 0.727854i
\(581\) 11.2528 8.17564i 0.466845 0.339183i
\(582\) 0.362733 3.45118i 0.0150358 0.143056i
\(583\) −6.05046 10.4797i −0.250585 0.434025i
\(584\) 9.78162 16.9423i 0.404766 0.701076i
\(585\) −37.1267 26.9741i −1.53500 1.11524i
\(586\) −2.48062 + 2.75500i −0.102473 + 0.113808i
\(587\) −3.88212 + 11.9479i −0.160232 + 0.493145i −0.998653 0.0518785i \(-0.983479\pi\)
0.838421 + 0.545023i \(0.183479\pi\)
\(588\) −31.6471 −1.30510
\(589\) 0 0
\(590\) −12.5532 −0.516809
\(591\) 5.25335 16.1682i 0.216094 0.665069i
\(592\) 6.89417 7.65675i 0.283348 0.314690i
\(593\) −21.9001 15.9114i −0.899330 0.653401i 0.0389638 0.999241i \(-0.487594\pi\)
−0.938294 + 0.345839i \(0.887594\pi\)
\(594\) −2.93098 + 5.07660i −0.120259 + 0.208295i
\(595\) −2.93551 5.08445i −0.120344 0.208442i
\(596\) −2.34400 + 22.3017i −0.0960141 + 0.913513i
\(597\) 16.2164 11.7819i 0.663695 0.482202i
\(598\) 0.0466815 + 0.444145i 0.00190895 + 0.0181624i
\(599\) −9.60542 10.6679i −0.392467 0.435879i 0.514236 0.857649i \(-0.328076\pi\)
−0.906703 + 0.421770i \(0.861409\pi\)
\(600\) 13.8276 6.15643i 0.564508 0.251335i
\(601\) −0.626031 + 0.133067i −0.0255363 + 0.00542791i −0.220662 0.975350i \(-0.570822\pi\)
0.195126 + 0.980778i \(0.437488\pi\)
\(602\) −3.12927 0.665147i −0.127539 0.0271094i
\(603\) −31.5878 14.0638i −1.28636 0.572722i
\(604\) 2.50627 + 7.71350i 0.101979 + 0.313858i
\(605\) −4.67515 14.3886i −0.190072 0.584981i
\(606\) −16.4574 7.32732i −0.668537 0.297652i
\(607\) 6.37539 + 1.35513i 0.258769 + 0.0550031i 0.335469 0.942051i \(-0.391105\pi\)
−0.0767002 + 0.997054i \(0.524438\pi\)
\(608\) −8.02961 + 1.70675i −0.325644 + 0.0692177i
\(609\) −9.03584 + 4.02301i −0.366151 + 0.163021i
\(610\) −10.0926 11.2089i −0.408636 0.453837i
\(611\) 2.39163 + 22.7548i 0.0967550 + 0.920562i
\(612\) −14.8792 + 10.8103i −0.601454 + 0.436982i
\(613\) −1.09183 + 10.3881i −0.0440987 + 0.419572i 0.950095 + 0.311962i \(0.100986\pi\)
−0.994193 + 0.107609i \(0.965680\pi\)
\(614\) −0.465385 0.806070i −0.0187814 0.0325303i
\(615\) −29.8772 + 51.7489i −1.20477 + 2.08672i
\(616\) 2.89980 + 2.10683i 0.116836 + 0.0848864i
\(617\) 14.5224 16.1287i 0.584649 0.649318i −0.376152 0.926558i \(-0.622753\pi\)
0.960801 + 0.277240i \(0.0894196\pi\)
\(618\) −2.53686 + 7.80766i −0.102048 + 0.314070i
\(619\) 28.5478 1.14743 0.573716 0.819054i \(-0.305501\pi\)
0.573716 + 0.819054i \(0.305501\pi\)
\(620\) 0 0
\(621\) 3.03377 0.121741
\(622\) 0.598686 1.84257i 0.0240051 0.0738802i
\(623\) −1.63598 + 1.81694i −0.0655443 + 0.0727943i
\(624\) 22.0238 + 16.0012i 0.881658 + 0.640562i
\(625\) 14.7271 25.5080i 0.589083 1.02032i
\(626\) 4.68731 + 8.11866i 0.187343 + 0.324487i
\(627\) −1.55761 + 14.8197i −0.0622051 + 0.591842i
\(628\) −13.2143 + 9.60079i −0.527310 + 0.383113i
\(629\) 0.600211 + 5.71063i 0.0239320 + 0.227698i
\(630\) −4.06374 4.51324i −0.161903 0.179812i
\(631\) 24.8854 11.0797i 0.990674 0.441076i 0.153580 0.988136i \(-0.450920\pi\)
0.837094 + 0.547060i \(0.184253\pi\)
\(632\) −4.59418 + 0.976523i −0.182747 + 0.0388440i
\(633\) 47.2869 + 10.0511i 1.87948 + 0.399497i
\(634\) 3.44815 + 1.53521i 0.136943 + 0.0609711i
\(635\) 0.108238 + 0.333122i 0.00429529 + 0.0132195i
\(636\) −8.35006 25.6988i −0.331101 1.01903i
\(637\) −15.3024 6.81305i −0.606302 0.269943i
\(638\) −2.64038 0.561229i −0.104533 0.0222193i
\(639\) −8.81516 + 1.87372i −0.348722 + 0.0741232i
\(640\) −26.0030 + 11.5773i −1.02786 + 0.457632i
\(641\) 27.5736 + 30.6236i 1.08909 + 1.20956i 0.976409 + 0.215928i \(0.0692775\pi\)
0.112682 + 0.993631i \(0.464056\pi\)
\(642\) −1.29148 12.2876i −0.0509706 0.484953i
\(643\) 24.9278 18.1111i 0.983055 0.714232i 0.0246661 0.999696i \(-0.492148\pi\)
0.958389 + 0.285464i \(0.0921478\pi\)
\(644\) 0.0938629 0.893046i 0.00369872 0.0351909i
\(645\) −36.1834 62.6715i −1.42472 2.46769i
\(646\) 0.679205 1.17642i 0.0267230 0.0462855i
\(647\) −7.21333 5.24079i −0.283585 0.206037i 0.436894 0.899513i \(-0.356078\pi\)
−0.720480 + 0.693476i \(0.756078\pi\)
\(648\) −3.40538 + 3.78206i −0.133776 + 0.148573i
\(649\) 9.02649 27.7807i 0.354321 1.09049i
\(650\) 3.87809 0.152111
\(651\) 0 0
\(652\) −5.86949 −0.229867
\(653\) 12.1263 37.3208i 0.474537 1.46047i −0.372044 0.928215i \(-0.621343\pi\)
0.846581 0.532260i \(-0.178657\pi\)
\(654\) 0.430063 0.477634i 0.0168168 0.0186770i
\(655\) −13.9127 10.1082i −0.543613 0.394958i
\(656\) 11.3718 19.6965i 0.443993 0.769018i
\(657\) −38.5652 66.7969i −1.50457 2.60600i
\(658\) −0.316504 + 3.01133i −0.0123386 + 0.117394i
\(659\) −26.6600 + 19.3696i −1.03853 + 0.754533i −0.969997 0.243117i \(-0.921830\pi\)
−0.0685280 + 0.997649i \(0.521830\pi\)
\(660\) 4.10255 + 39.0332i 0.159692 + 1.51936i
\(661\) −0.113535 0.126093i −0.00441599 0.00490446i 0.740933 0.671579i \(-0.234384\pi\)
−0.745349 + 0.666675i \(0.767717\pi\)
\(662\) 6.30786 2.80844i 0.245162 0.109153i
\(663\) −14.8401 + 3.15437i −0.576343 + 0.122505i
\(664\) 17.1282 + 3.64070i 0.664702 + 0.141287i
\(665\) −6.22613 2.77205i −0.241439 0.107496i
\(666\) 1.83549 + 5.64907i 0.0711240 + 0.218897i
\(667\) 0.431703 + 1.32864i 0.0167156 + 0.0514453i
\(668\) 22.8939 + 10.1930i 0.885791 + 0.394379i
\(669\) −17.7206 3.76664i −0.685120 0.145627i
\(670\) 6.57957 1.39853i 0.254191 0.0540300i
\(671\) 32.0628 14.2753i 1.23777 0.551092i
\(672\) 8.11874 + 9.01678i 0.313187 + 0.347830i
\(673\) 1.52469 + 14.5064i 0.0587724 + 0.559182i 0.983798 + 0.179278i \(0.0573763\pi\)
−0.925026 + 0.379904i \(0.875957\pi\)
\(674\) −5.45280 + 3.96169i −0.210034 + 0.152599i
\(675\) 2.75376 26.2003i 0.105992 1.00845i
\(676\) −4.44929 7.70639i −0.171126 0.296400i
\(677\) −7.88341 + 13.6545i −0.302984 + 0.524784i −0.976810 0.214106i \(-0.931316\pi\)
0.673826 + 0.738890i \(0.264650\pi\)
\(678\) −9.29573 6.75374i −0.357000 0.259376i
\(679\) −2.47120 + 2.74454i −0.0948358 + 0.105326i
\(680\) 2.28401 7.02948i 0.0875880 0.269568i
\(681\) 22.7051 0.870063
\(682\) 0 0
\(683\) 20.5935 0.787988 0.393994 0.919113i \(-0.371093\pi\)
0.393994 + 0.919113i \(0.371093\pi\)
\(684\) −6.59748 + 20.3050i −0.252261 + 0.776380i
\(685\) 23.4866 26.0846i 0.897378 0.996640i
\(686\) −3.94703 2.86768i −0.150698 0.109489i
\(687\) 18.4780 32.0048i 0.704979 1.22106i
\(688\) 13.7720 + 23.8538i 0.525053 + 0.909418i
\(689\) 1.49498 14.2238i 0.0569543 0.541884i
\(690\) −1.08157 + 0.785806i −0.0411746 + 0.0299151i
\(691\) 0.622123 + 5.91911i 0.0236667 + 0.225173i 0.999962 + 0.00873020i \(0.00277894\pi\)
−0.976295 + 0.216443i \(0.930554\pi\)
\(692\) −23.9130 26.5580i −0.909034 1.00958i
\(693\) 12.9100 5.74789i 0.490409 0.218344i
\(694\) −3.66439 + 0.778890i −0.139098 + 0.0295663i
\(695\) 44.8512 + 9.53341i 1.70130 + 0.361623i
\(696\) −11.3755 5.06471i −0.431189 0.191978i
\(697\) 3.91687 + 12.0549i 0.148362 + 0.456611i
\(698\) −2.03096 6.25066i −0.0768731 0.236591i
\(699\) −33.6142 14.9660i −1.27141 0.566067i
\(700\) −7.62731 1.62124i −0.288285 0.0612770i
\(701\) 26.0485 5.53677i 0.983837 0.209121i 0.312212 0.950012i \(-0.398930\pi\)
0.671625 + 0.740891i \(0.265597\pi\)
\(702\) −6.32930 + 2.81798i −0.238884 + 0.106358i
\(703\) 4.46021 + 4.95357i 0.168220 + 0.186827i
\(704\) −1.31814 12.5413i −0.0496794 0.472668i
\(705\) −55.4120 + 40.2591i −2.08693 + 1.51625i
\(706\) 0.465144 4.42555i 0.0175059 0.166558i
\(707\) 9.58617 + 16.6037i 0.360525 + 0.624448i
\(708\) 32.6133 56.4879i 1.22568 2.12295i
\(709\) 2.13805 + 1.55338i 0.0802962 + 0.0583386i 0.627209 0.778851i \(-0.284197\pi\)
−0.546913 + 0.837189i \(0.684197\pi\)
\(710\) 1.17312 1.30288i 0.0440262 0.0488961i
\(711\) −5.72231 + 17.6114i −0.214603 + 0.660481i
\(712\) −3.07802 −0.115354
\(713\) 0 0
\(714\) −2.00779 −0.0751398
\(715\) −6.41943 + 19.7570i −0.240073 + 0.738868i
\(716\) 0.0996083 0.110626i 0.00372254 0.00413430i
\(717\) −59.5120 43.2380i −2.22251 1.61475i
\(718\) 3.98491 6.90207i 0.148716 0.257583i
\(719\) −2.59912 4.50181i −0.0969308 0.167889i 0.813482 0.581590i \(-0.197569\pi\)
−0.910413 + 0.413701i \(0.864236\pi\)
\(720\) −5.46560 + 52.0017i −0.203691 + 1.93799i
\(721\) 7.06832 5.13543i 0.263238 0.191253i
\(722\) 0.533128 + 5.07237i 0.0198410 + 0.188774i
\(723\) −4.57084 5.07643i −0.169991 0.188794i
\(724\) −3.70770 + 1.65077i −0.137796 + 0.0613505i
\(725\) 11.8663 2.52226i 0.440703 0.0936742i
\(726\) −5.06085 1.07572i −0.187826 0.0399236i
\(727\) 22.1137 + 9.84565i 0.820151 + 0.365155i 0.773531 0.633758i \(-0.218488\pi\)
0.0466196 + 0.998913i \(0.485155\pi\)
\(728\) 1.30911 + 4.02902i 0.0485188 + 0.149325i
\(729\) −12.2007 37.5499i −0.451878 1.39074i
\(730\) 13.7076 + 6.10300i 0.507339 + 0.225882i
\(731\) −15.0152 3.19157i −0.555356 0.118045i
\(732\) 76.6593 16.2944i 2.83341 0.602260i
\(733\) 36.8732 16.4170i 1.36194 0.606376i 0.409841 0.912157i \(-0.365584\pi\)
0.952102 + 0.305781i \(0.0989174\pi\)
\(734\) 2.05047 + 2.27728i 0.0756843 + 0.0840559i
\(735\) −5.24143 49.8689i −0.193333 1.83944i
\(736\) 1.38644 1.00730i 0.0511047 0.0371297i
\(737\) −1.63610 + 15.5664i −0.0602664 + 0.573396i
\(738\) 6.55583 + 11.3550i 0.241324 + 0.417985i
\(739\) −3.04893 + 5.28089i −0.112157 + 0.194261i −0.916640 0.399715i \(-0.869109\pi\)
0.804483 + 0.593976i \(0.202442\pi\)
\(740\) 14.2035 + 10.3195i 0.522132 + 0.379351i
\(741\) −11.7847 + 13.0883i −0.432923 + 0.480809i
\(742\) 0.584884 1.80009i 0.0214718 0.0660833i
\(743\) 16.2263 0.595284 0.297642 0.954678i \(-0.403800\pi\)
0.297642 + 0.954678i \(0.403800\pi\)
\(744\) 0 0
\(745\) −35.5308 −1.30175
\(746\) 2.75986 8.49397i 0.101046 0.310986i
\(747\) 46.1958 51.3056i 1.69022 1.87717i
\(748\) 6.73540 + 4.89355i 0.246270 + 0.178926i
\(749\) −6.57456 + 11.3875i −0.240229 + 0.416089i
\(750\) −1.75329 3.03680i −0.0640213 0.110888i
\(751\) −3.80948 + 36.2448i −0.139010 + 1.32259i 0.673301 + 0.739368i \(0.264876\pi\)
−0.812311 + 0.583224i \(0.801791\pi\)
\(752\) 21.0907 15.3233i 0.769099 0.558783i
\(753\) 0.712721 + 6.78109i 0.0259730 + 0.247116i
\(754\) −2.13479 2.37093i −0.0777445 0.0863440i
\(755\) −11.7397 + 5.22684i −0.427251 + 0.190224i
\(756\) 13.6263 2.89637i 0.495585 0.105340i
\(757\) −42.6103 9.05709i −1.54870 0.329186i −0.647319 0.762220i \(-0.724110\pi\)
−0.901378 + 0.433034i \(0.857443\pi\)
\(758\) 7.09451 + 3.15868i 0.257684 + 0.114728i
\(759\) −0.961302 2.95858i −0.0348931 0.107390i
\(760\) −2.65139 8.16015i −0.0961761 0.296000i
\(761\) 3.01404 + 1.34194i 0.109259 + 0.0486452i 0.460638 0.887588i \(-0.347621\pi\)
−0.351379 + 0.936233i \(0.614287\pi\)
\(762\) 0.117167 + 0.0249047i 0.00424452 + 0.000902202i
\(763\) −0.669067 + 0.142215i −0.0242218 + 0.00514851i
\(764\) 9.15707 4.07699i 0.331291 0.147500i
\(765\) −19.4990 21.6558i −0.704988 0.782969i
\(766\) 0.978709 + 9.31179i 0.0353622 + 0.336449i
\(767\) 27.9304 20.2926i 1.00851 0.732724i
\(768\) 2.11965 20.1671i 0.0764861 0.727717i
\(769\) 22.8568 + 39.5891i 0.824237 + 1.42762i 0.902501 + 0.430688i \(0.141729\pi\)
−0.0782634 + 0.996933i \(0.524938\pi\)
\(770\) −1.37458 + 2.38084i −0.0495363 + 0.0857995i
\(771\) −60.8916 44.2403i −2.19296 1.59328i
\(772\) 2.67909 2.97543i 0.0964225 0.107088i
\(773\) 9.27071 28.5323i 0.333444 1.02624i −0.634039 0.773301i \(-0.718604\pi\)
0.967483 0.252935i \(-0.0813959\pi\)
\(774\) −15.8791 −0.570764
\(775\) 0 0
\(776\) −4.64943 −0.166905
\(777\) 3.04449 9.36998i 0.109221 0.336146i
\(778\) −3.04644 + 3.38341i −0.109220 + 0.121301i
\(779\) 11.9039 + 8.64869i 0.426501 + 0.309871i
\(780\) −23.1938 + 40.1729i −0.830472 + 1.43842i
\(781\) 2.03977 + 3.53298i 0.0729886 + 0.126420i
\(782\) −0.0296427 + 0.282031i −0.00106002 + 0.0100854i
\(783\) −17.5338 + 12.7390i −0.626605 + 0.455256i
\(784\) 1.99497 + 18.9809i 0.0712491 + 0.677890i
\(785\) −17.3173 19.2328i −0.618081 0.686448i
\(786\) −5.37266 + 2.39206i −0.191636 + 0.0853220i
\(787\) 42.2873 8.98843i 1.50738 0.320403i 0.621164 0.783680i \(-0.286660\pi\)
0.886213 + 0.463277i \(0.153327\pi\)
\(788\) −10.7848 2.29239i −0.384194 0.0816629i
\(789\) −60.6222 26.9907i −2.15821 0.960895i
\(790\) −1.11320 3.42609i −0.0396061 0.121895i
\(791\) 3.77878 + 11.6299i 0.134358 + 0.413511i
\(792\) 16.2528 + 7.23622i 0.577519 + 0.257128i
\(793\) 40.5751 + 8.62450i 1.44086 + 0.306265i
\(794\) 1.00625 0.213885i 0.0357106 0.00759051i
\(795\) 39.1128 17.4141i 1.38719 0.617615i
\(796\) −8.69889 9.66110i −0.308324 0.342429i
\(797\) −2.38573 22.6987i −0.0845069 0.804030i −0.951901 0.306407i \(-0.900873\pi\)
0.867394 0.497623i \(-0.165794\pi\)
\(798\) −1.88561 + 1.36998i −0.0667498 + 0.0484966i
\(799\) −1.51868 + 14.4493i −0.0537271 + 0.511179i
\(800\) −7.44080 12.8878i −0.263072 0.455654i
\(801\) −6.06773 + 10.5096i −0.214393 + 0.371339i
\(802\) 3.48981 + 2.53550i 0.123230 + 0.0895315i
\(803\) −23.3626 + 25.9468i −0.824449 + 0.915643i
\(804\) −10.8005 + 33.2406i −0.380905 + 1.17231i
\(805\) 1.42279 0.0501467
\(806\) 0 0
\(807\) 49.3229 1.73625
\(808\) −7.45866 + 22.9554i −0.262395 + 0.807568i
\(809\) −14.2113 + 15.7832i −0.499642 + 0.554908i −0.939229 0.343291i \(-0.888458\pi\)
0.439587 + 0.898200i \(0.355125\pi\)
\(810\) −3.15792 2.29437i −0.110958 0.0806158i
\(811\) −1.06157 + 1.83869i −0.0372767 + 0.0645652i −0.884062 0.467370i \(-0.845202\pi\)
0.846785 + 0.531935i \(0.178535\pi\)
\(812\) 3.20748 + 5.55551i 0.112560 + 0.194960i
\(813\) 2.19157 20.8514i 0.0768617 0.731291i
\(814\) 2.17527 1.58043i 0.0762431 0.0553939i
\(815\) −0.972112 9.24903i −0.0340516 0.323979i
\(816\) 11.5669 + 12.8464i 0.404924 + 0.449714i
\(817\) −16.2791 + 7.24793i −0.569535 + 0.253573i
\(818\) 5.91160 1.25655i 0.206694 0.0439342i
\(819\) 16.3374 + 3.47262i 0.570875 + 0.121343i
\(820\) 35.4043 + 15.7630i 1.23637 + 0.550468i
\(821\) 12.9144 + 39.7465i 0.450716 + 1.38716i 0.876092 + 0.482144i \(0.160142\pi\)
−0.425376 + 0.905017i \(0.639858\pi\)
\(822\) −3.70935 11.4162i −0.129379 0.398186i
\(823\) 14.8894 + 6.62920i 0.519013 + 0.231079i 0.649487 0.760372i \(-0.274984\pi\)
−0.130475 + 0.991452i \(0.541650\pi\)
\(824\) 10.7589 + 2.28687i 0.374802 + 0.0796667i
\(825\) −26.4235 + 5.61648i −0.919947 + 0.195541i
\(826\) 4.17383 1.85831i 0.145226 0.0646589i
\(827\) −20.8029 23.1040i −0.723389 0.803405i 0.263525 0.964653i \(-0.415115\pi\)
−0.986914 + 0.161247i \(0.948448\pi\)
\(828\) −0.465889 4.43264i −0.0161908 0.154045i
\(829\) 22.6920 16.4867i 0.788125 0.572606i −0.119282 0.992860i \(-0.538059\pi\)
0.907406 + 0.420254i \(0.138059\pi\)
\(830\) −1.40388 + 13.3570i −0.0487294 + 0.463629i
\(831\) 21.8491 + 37.8437i 0.757936 + 1.31278i
\(832\) 7.45215 12.9075i 0.258357 0.447487i
\(833\) −8.60516 6.25201i −0.298151 0.216619i
\(834\) 10.4927 11.6533i 0.363331 0.403520i
\(835\) −12.2702 + 37.7639i −0.424629 + 1.30687i
\(836\) 9.66453 0.334255
\(837\) 0 0
\(838\) 8.13409 0.280987
\(839\) −7.12828 + 21.9386i −0.246096 + 0.757404i 0.749359 + 0.662164i \(0.230362\pi\)
−0.995454 + 0.0952401i \(0.969638\pi\)
\(840\) −8.48576 + 9.42439i −0.292786 + 0.325172i
\(841\) 15.3874 + 11.1796i 0.530600 + 0.385503i
\(842\) −5.12779 + 8.88160i −0.176715 + 0.306080i
\(843\) −3.59793 6.23179i −0.123919 0.214634i
\(844\) 3.27737 31.1821i 0.112812 1.07333i
\(845\) 11.4067 8.28743i 0.392401 0.285096i
\(846\) 1.57097 + 14.9468i 0.0540111 + 0.513881i
\(847\) 3.68445 + 4.09200i 0.126599 + 0.140603i
\(848\) −14.8870 + 6.62810i −0.511220 + 0.227610i
\(849\) −13.3759 + 2.84314i −0.459060 + 0.0975762i
\(850\) 2.40877 + 0.512000i 0.0826201 + 0.0175614i
\(851\) −1.27124 0.565991i −0.0435775 0.0194019i
\(852\) 2.81502 + 8.66374i 0.0964410 + 0.296815i
\(853\) 9.27697 + 28.5516i 0.317637 + 0.977587i 0.974655 + 0.223712i \(0.0718176\pi\)
−0.657018 + 0.753875i \(0.728182\pi\)
\(854\) 5.01500 + 2.23282i 0.171610 + 0.0764055i
\(855\) −33.0888 7.03325i −1.13161 0.240532i
\(856\) −16.1921 + 3.44175i −0.553436 + 0.117637i
\(857\) −49.8681 + 22.2027i −1.70346 + 0.758429i −0.704656 + 0.709550i \(0.748898\pi\)
−0.998805 + 0.0488799i \(0.984435\pi\)
\(858\) 4.75368 + 5.27950i 0.162288 + 0.180239i
\(859\) −0.975920 9.28526i −0.0332980 0.316809i −0.998475 0.0552105i \(-0.982417\pi\)
0.965177 0.261599i \(-0.0842496\pi\)
\(860\) −37.9710 + 27.5876i −1.29480 + 0.940728i
\(861\) 2.27329 21.6289i 0.0774734 0.737110i
\(862\) −5.33338 9.23768i −0.181656 0.314637i
\(863\) −6.65836 + 11.5326i −0.226653 + 0.392575i −0.956814 0.290700i \(-0.906112\pi\)
0.730161 + 0.683275i \(0.239445\pi\)
\(864\) 21.5087 + 15.6270i 0.731741 + 0.531641i
\(865\) 37.8891 42.0801i 1.28827 1.43077i
\(866\) −1.50300 + 4.62577i −0.0510741 + 0.157190i
\(867\) 39.5520 1.34326
\(868\) 0 0
\(869\) 8.38250 0.284357
\(870\) 2.95130 9.08317i 0.100058 0.307948i
\(871\) −12.3785 + 13.7477i −0.419430 + 0.465824i
\(872\) −0.696668 0.506159i −0.0235922 0.0171407i
\(873\) −9.16547 + 15.8751i −0.310204 + 0.537290i
\(874\) 0.164599 + 0.285094i 0.00556766 + 0.00964346i
\(875\) −0.390088 + 3.71144i −0.0131874 + 0.125470i
\(876\) −63.0749 + 45.8266i −2.13110 + 1.54834i
\(877\) 4.44936 + 42.3329i 0.150244 + 1.42948i 0.766657 + 0.642056i \(0.221919\pi\)
−0.616413 + 0.787423i \(0.711415\pi\)
\(878\) 3.03822 + 3.37429i 0.102535 + 0.113877i
\(879\) 27.8823 12.4140i 0.940448 0.418714i
\(880\) 23.1522 4.92115i 0.780461 0.165892i
\(881\) 5.64698 + 1.20030i 0.190251 + 0.0404392i 0.302052 0.953291i \(-0.402328\pi\)
−0.111800 + 0.993731i \(0.535662\pi\)
\(882\) −10.0515 4.47524i −0.338453 0.150689i
\(883\) 8.40436 + 25.8660i 0.282829 + 0.870459i 0.987041 + 0.160469i \(0.0513006\pi\)
−0.704212 + 0.709990i \(0.748699\pi\)
\(884\) 3.04068 + 9.35826i 0.102269 + 0.314752i
\(885\) 94.4140 + 42.0358i 3.17369 + 1.41302i
\(886\) −8.16697 1.73594i −0.274375 0.0583201i
\(887\) 7.21060 1.53266i 0.242108 0.0514617i −0.0852592 0.996359i \(-0.527172\pi\)
0.327367 + 0.944897i \(0.393839\pi\)
\(888\) 11.3309 5.04486i 0.380241 0.169294i
\(889\) −0.0853015 0.0947369i −0.00286092 0.00317737i
\(890\) −0.246772 2.34787i −0.00827180 0.0787009i
\(891\) 7.34822 5.33880i 0.246175 0.178856i
\(892\) −1.22819 + 11.6854i −0.0411228 + 0.391257i
\(893\) 8.43290 + 14.6062i 0.282196 + 0.488778i
\(894\) −6.07548 + 10.5230i −0.203194 + 0.351943i
\(895\) 0.190820 + 0.138639i 0.00637840 + 0.00463418i
\(896\) 6.93191 7.69867i 0.231579 0.257194i
\(897\) 1.13617 3.49677i 0.0379356 0.116754i
\(898\) −6.82232 −0.227664
\(899\) 0 0
\(900\) −38.7040 −1.29013
\(901\) 2.80645 8.63736i 0.0934963 0.287752i
\(902\) 3.97149 4.41079i 0.132236 0.146863i
\(903\) 21.3082 + 15.4813i 0.709092 + 0.515186i
\(904\) −7.69738 + 13.3322i −0.256011 + 0.443424i
\(905\) −3.21533 5.56911i −0.106881 0.185123i
\(906\) −0.459374 + 4.37065i −0.0152617 + 0.145205i
\(907\) −13.3350 + 9.68848i −0.442783 + 0.321701i −0.786740 0.617285i \(-0.788233\pi\)
0.343957 + 0.938985i \(0.388233\pi\)
\(908\) −1.53927 14.6452i −0.0510824 0.486016i
\(909\) 63.6758 + 70.7192i 2.11199 + 2.34561i
\(910\) −2.96833 + 1.32159i −0.0983993 + 0.0438102i
\(911\) −43.8279 + 9.31591i −1.45208 + 0.308650i −0.865365 0.501142i \(-0.832913\pi\)
−0.586718 + 0.809792i \(0.699580\pi\)
\(912\) 19.6285 + 4.17217i 0.649965 + 0.138154i
\(913\) −28.5500 12.7113i −0.944868 0.420682i
\(914\) 2.64350 + 8.13586i 0.0874393 + 0.269110i
\(915\) 38.3728 + 118.099i 1.26857 + 3.90425i
\(916\) −21.8963 9.74884i −0.723473 0.322111i
\(917\) 6.12219 + 1.30131i 0.202173 + 0.0429731i
\(918\) −4.30331 + 0.914696i −0.142030 + 0.0301895i
\(919\) −9.46142 + 4.21250i −0.312104 + 0.138957i −0.556810 0.830640i \(-0.687975\pi\)
0.244707 + 0.969597i \(0.421308\pi\)
\(920\) 1.19855 + 1.33112i 0.0395149 + 0.0438857i
\(921\) 0.800990 + 7.62091i 0.0263935 + 0.251118i
\(922\) 10.9015 7.92041i 0.359022 0.260845i
\(923\) −0.503997 + 4.79522i −0.0165893 + 0.157836i
\(924\) −7.14231 12.3708i −0.234965 0.406971i
\(925\) −6.04191 + 10.4649i −0.198657 + 0.344084i
\(926\) 1.87486 + 1.36216i 0.0616116 + 0.0447634i
\(927\) 29.0174 32.2270i 0.953055 1.05847i
\(928\) −3.78319 + 11.6435i −0.124189 + 0.382216i
\(929\) 44.0624 1.44564 0.722820 0.691037i \(-0.242846\pi\)
0.722820 + 0.691037i \(0.242846\pi\)
\(930\) 0 0
\(931\) −12.3474 −0.404671
\(932\) −7.37447 + 22.6963i −0.241559 + 0.743441i
\(933\) −10.6728 + 11.8533i −0.349411 + 0.388061i
\(934\) −10.9181 7.93246i −0.357251 0.259558i
\(935\) −6.59563 + 11.4240i −0.215700 + 0.373604i
\(936\) 10.5136 + 18.2101i 0.343648 + 0.595216i
\(937\) 3.61323 34.3776i 0.118039 1.12307i −0.761806 0.647805i \(-0.775687\pi\)
0.879845 0.475261i \(-0.157646\pi\)
\(938\) −1.98062 + 1.43900i −0.0646694 + 0.0469851i
\(939\) −8.06750 76.7571i −0.263273 2.50487i
\(940\) 29.7243 + 33.0122i 0.969500 + 1.07674i
\(941\) −20.2342 + 9.00884i −0.659616 + 0.293680i −0.709113 0.705094i \(-0.750905\pi\)
0.0494979 + 0.998774i \(0.484238\pi\)
\(942\) −8.65724 + 1.84015i −0.282068 + 0.0599554i
\(943\) −3.00461 0.638650i −0.0978436 0.0207973i
\(944\) −35.9355 15.9995i −1.16960 0.520740i
\(945\) 6.82084 + 20.9924i 0.221882 + 0.682882i
\(946\) 2.22123 + 6.83625i 0.0722185 + 0.222266i
\(947\) −25.6547 11.4222i −0.833665 0.371172i −0.0549038 0.998492i \(-0.517485\pi\)
−0.778762 + 0.627320i \(0.784152\pi\)
\(948\) 18.3091 + 3.89172i 0.594651 + 0.126397i
\(949\) −40.3644 + 8.57971i −1.31028 + 0.278509i
\(950\) 2.61154 1.16273i 0.0847294 0.0377240i
\(951\) −20.7930 23.0930i −0.674259 0.748840i
\(952\) 0.281190 + 2.67535i 0.00911343 + 0.0867085i
\(953\) −6.20254 + 4.50641i −0.200920 + 0.145977i −0.683696 0.729767i \(-0.739629\pi\)
0.482776 + 0.875744i \(0.339629\pi\)
\(954\) 0.981997 9.34308i 0.0317933 0.302493i
\(955\) 7.94104 + 13.7543i 0.256966 + 0.445078i
\(956\) −23.8546 + 41.3173i −0.771512 + 1.33630i
\(957\) 17.9792 + 13.0626i 0.581184 + 0.422255i
\(958\) 1.76957 1.96531i 0.0571722 0.0634962i
\(959\) −3.94768 + 12.1497i −0.127477 + 0.392334i
\(960\) 44.6168 1.44000
\(961\) 0 0
\(962\) 3.17789 0.102459
\(963\) −20.1682 + 62.0714i −0.649912 + 2.00022i
\(964\) −2.96450 + 3.29241i −0.0954800 + 0.106041i
\(965\) 5.13233 + 3.72886i 0.165216 + 0.120036i
\(966\) 0.243285 0.421383i 0.00782758 0.0135578i
\(967\) 0.925182 + 1.60246i 0.0297518 + 0.0515317i 0.880518 0.474013i \(-0.157195\pi\)
−0.850766 + 0.525545i \(0.823862\pi\)
\(968\) −0.724603 + 6.89414i −0.0232896 + 0.221586i
\(969\) −9.04772 + 6.57355i −0.290654 + 0.211173i
\(970\) −0.372755 3.54653i −0.0119684 0.113872i
\(971\) 33.0360 + 36.6901i 1.06017 + 1.17744i 0.983597 + 0.180379i \(0.0577325\pi\)
0.0765771 + 0.997064i \(0.475601\pi\)
\(972\) −16.7529 + 7.45889i −0.537351 + 0.239244i
\(973\) −16.3239 + 3.46974i −0.523319 + 0.111235i
\(974\) −8.60491 1.82903i −0.275719 0.0586059i
\(975\) −29.1675 12.9862i −0.934106 0.415891i
\(976\) −14.6053 44.9506i −0.467505 1.43883i
\(977\) −11.0079 33.8790i −0.352175 1.08388i −0.957629 0.288004i \(-0.907008\pi\)
0.605454 0.795880i \(-0.292992\pi\)
\(978\) −2.90548 1.29360i −0.0929069 0.0413648i
\(979\) 5.37336 + 1.14214i 0.171733 + 0.0365030i
\(980\) −31.8108 + 6.76160i −1.01616 + 0.215991i
\(981\) −3.10159 + 1.38092i −0.0990260 + 0.0440892i
\(982\) −9.33798 10.3709i −0.297987 0.330948i
\(983\) 0.667267 + 6.34862i 0.0212825 + 0.202490i 0.999996 0.00274063i \(-0.000872371\pi\)
−0.978714 + 0.205230i \(0.934206\pi\)
\(984\) 22.1504 16.0932i 0.706127 0.513032i
\(985\) 1.82610 17.3742i 0.0581844 0.553588i
\(986\) −1.01295 1.75448i −0.0322588 0.0558739i
\(987\) 12.4642 21.5887i 0.396740 0.687175i
\(988\) 9.24105 + 6.71402i 0.293997 + 0.213601i
\(989\) 2.48922 2.76456i 0.0791527 0.0879080i
\(990\) −4.21668 + 12.9776i −0.134015 + 0.412455i
\(991\) −44.2919 −1.40698 −0.703489 0.710706i \(-0.748376\pi\)
−0.703489 + 0.710706i \(0.748376\pi\)
\(992\) 0 0
\(993\) −56.8463 −1.80396
\(994\) −0.197179 + 0.606856i −0.00625415 + 0.0192483i
\(995\) 13.7830 15.3076i 0.436952 0.485284i
\(996\) −56.4576 41.0189i −1.78893 1.29973i
\(997\) −2.66158 + 4.60999i −0.0842931 + 0.146000i −0.905090 0.425221i \(-0.860197\pi\)
0.820797 + 0.571220i \(0.193530\pi\)
\(998\) 4.15641 + 7.19911i 0.131569 + 0.227884i
\(999\) 2.25656 21.4697i 0.0713943 0.679271i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.s.448.1 16
31.2 even 5 961.2.c.j.521.4 16
31.3 odd 30 961.2.d.n.374.3 16
31.4 even 5 961.2.g.t.844.1 16
31.5 even 3 961.2.g.t.846.1 16
31.6 odd 6 961.2.d.q.628.2 16
31.7 even 15 961.2.d.p.531.2 16
31.8 even 5 31.2.g.a.28.2 yes 16
31.9 even 15 961.2.g.k.235.2 16
31.10 even 15 961.2.c.j.439.4 16
31.11 odd 30 961.2.g.m.547.1 16
31.12 odd 30 961.2.a.j.1.4 8
31.13 odd 30 961.2.g.l.816.2 16
31.14 even 15 961.2.d.o.388.3 16
31.15 odd 10 961.2.g.j.732.2 16
31.16 even 5 961.2.g.k.732.2 16
31.17 odd 30 961.2.d.n.388.3 16
31.18 even 15 31.2.g.a.10.2 16
31.19 even 15 961.2.a.i.1.4 8
31.20 even 15 inner 961.2.g.s.547.1 16
31.21 odd 30 961.2.c.i.439.4 16
31.22 odd 30 961.2.g.j.235.2 16
31.23 odd 10 961.2.g.l.338.2 16
31.24 odd 30 961.2.d.q.531.2 16
31.25 even 3 961.2.d.p.628.2 16
31.26 odd 6 961.2.g.n.846.1 16
31.27 odd 10 961.2.g.n.844.1 16
31.28 even 15 961.2.d.o.374.3 16
31.29 odd 10 961.2.c.i.521.4 16
31.30 odd 2 961.2.g.m.448.1 16
93.8 odd 10 279.2.y.c.28.1 16
93.50 odd 30 8649.2.a.bf.1.5 8
93.74 even 30 8649.2.a.be.1.5 8
93.80 odd 30 279.2.y.c.10.1 16
124.39 odd 10 496.2.bg.c.369.1 16
124.111 odd 30 496.2.bg.c.289.1 16
155.8 odd 20 775.2.ck.a.524.3 32
155.18 odd 60 775.2.ck.a.599.2 32
155.39 even 10 775.2.bl.a.276.1 16
155.49 even 30 775.2.bl.a.351.1 16
155.132 odd 20 775.2.ck.a.524.2 32
155.142 odd 60 775.2.ck.a.599.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.2 16 31.18 even 15
31.2.g.a.28.2 yes 16 31.8 even 5
279.2.y.c.10.1 16 93.80 odd 30
279.2.y.c.28.1 16 93.8 odd 10
496.2.bg.c.289.1 16 124.111 odd 30
496.2.bg.c.369.1 16 124.39 odd 10
775.2.bl.a.276.1 16 155.39 even 10
775.2.bl.a.351.1 16 155.49 even 30
775.2.ck.a.524.2 32 155.132 odd 20
775.2.ck.a.524.3 32 155.8 odd 20
775.2.ck.a.599.2 32 155.18 odd 60
775.2.ck.a.599.3 32 155.142 odd 60
961.2.a.i.1.4 8 31.19 even 15
961.2.a.j.1.4 8 31.12 odd 30
961.2.c.i.439.4 16 31.21 odd 30
961.2.c.i.521.4 16 31.29 odd 10
961.2.c.j.439.4 16 31.10 even 15
961.2.c.j.521.4 16 31.2 even 5
961.2.d.n.374.3 16 31.3 odd 30
961.2.d.n.388.3 16 31.17 odd 30
961.2.d.o.374.3 16 31.28 even 15
961.2.d.o.388.3 16 31.14 even 15
961.2.d.p.531.2 16 31.7 even 15
961.2.d.p.628.2 16 31.25 even 3
961.2.d.q.531.2 16 31.24 odd 30
961.2.d.q.628.2 16 31.6 odd 6
961.2.g.j.235.2 16 31.22 odd 30
961.2.g.j.732.2 16 31.15 odd 10
961.2.g.k.235.2 16 31.9 even 15
961.2.g.k.732.2 16 31.16 even 5
961.2.g.l.338.2 16 31.23 odd 10
961.2.g.l.816.2 16 31.13 odd 30
961.2.g.m.448.1 16 31.30 odd 2
961.2.g.m.547.1 16 31.11 odd 30
961.2.g.n.844.1 16 31.27 odd 10
961.2.g.n.846.1 16 31.26 odd 6
961.2.g.s.448.1 16 1.1 even 1 trivial
961.2.g.s.547.1 16 31.20 even 15 inner
961.2.g.t.844.1 16 31.4 even 5
961.2.g.t.846.1 16 31.5 even 3
8649.2.a.be.1.5 8 93.74 even 30
8649.2.a.bf.1.5 8 93.50 odd 30