Properties

Label 961.2.a.i.1.4
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,-3,8,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.04940\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.351432 q^{2} -2.89329 q^{3} -1.87650 q^{4} +2.97323 q^{5} -1.01680 q^{6} -1.08213 q^{7} -1.36233 q^{8} +5.37114 q^{9} +1.04489 q^{10} -2.43137 q^{11} +5.42925 q^{12} +2.87365 q^{13} -0.380294 q^{14} -8.60242 q^{15} +3.27422 q^{16} -1.82477 q^{17} +1.88759 q^{18} +2.11827 q^{19} -5.57925 q^{20} +3.13091 q^{21} -0.854462 q^{22} -0.442216 q^{23} +3.94161 q^{24} +3.84010 q^{25} +1.00989 q^{26} -6.86040 q^{27} +2.03060 q^{28} -3.15914 q^{29} -3.02317 q^{30} +3.87532 q^{32} +7.03466 q^{33} -0.641282 q^{34} -3.21741 q^{35} -10.0789 q^{36} +3.14675 q^{37} +0.744430 q^{38} -8.31432 q^{39} -4.05051 q^{40} -6.94624 q^{41} +1.10030 q^{42} -8.41238 q^{43} +4.56245 q^{44} +15.9696 q^{45} -0.155409 q^{46} -7.96205 q^{47} -9.47329 q^{48} -5.82900 q^{49} +1.34953 q^{50} +5.27958 q^{51} -5.39239 q^{52} -4.97700 q^{53} -2.41097 q^{54} -7.22902 q^{55} +1.47421 q^{56} -6.12878 q^{57} -1.11022 q^{58} -12.0139 q^{59} +16.1424 q^{60} -14.4351 q^{61} -5.81225 q^{63} -5.18654 q^{64} +8.54403 q^{65} +2.47221 q^{66} -6.43759 q^{67} +3.42416 q^{68} +1.27946 q^{69} -1.13070 q^{70} +1.67787 q^{71} -7.31724 q^{72} +14.3602 q^{73} +1.10587 q^{74} -11.1105 q^{75} -3.97493 q^{76} +2.63105 q^{77} -2.92192 q^{78} -3.44764 q^{79} +9.73502 q^{80} +3.73571 q^{81} -2.44113 q^{82} +12.8536 q^{83} -5.87513 q^{84} -5.42545 q^{85} -2.95638 q^{86} +9.14030 q^{87} +3.31232 q^{88} +2.25938 q^{89} +5.61225 q^{90} -3.10965 q^{91} +0.829816 q^{92} -2.79812 q^{94} +6.29811 q^{95} -11.2124 q^{96} +3.41286 q^{97} -2.04850 q^{98} -13.0592 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 3 q^{3} + 8 q^{4} + 3 q^{5} - 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} - 18 q^{11} - 8 q^{13} - 9 q^{14} - 18 q^{15} + 4 q^{16} - 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} + q^{21}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.351432 0.248500 0.124250 0.992251i \(-0.460347\pi\)
0.124250 + 0.992251i \(0.460347\pi\)
\(3\) −2.89329 −1.67044 −0.835221 0.549914i \(-0.814661\pi\)
−0.835221 + 0.549914i \(0.814661\pi\)
\(4\) −1.87650 −0.938248
\(5\) 2.97323 1.32967 0.664834 0.746991i \(-0.268502\pi\)
0.664834 + 0.746991i \(0.268502\pi\)
\(6\) −1.01680 −0.415106
\(7\) −1.08213 −0.409005 −0.204503 0.978866i \(-0.565558\pi\)
−0.204503 + 0.978866i \(0.565558\pi\)
\(8\) −1.36233 −0.481655
\(9\) 5.37114 1.79038
\(10\) 1.04489 0.330423
\(11\) −2.43137 −0.733086 −0.366543 0.930401i \(-0.619459\pi\)
−0.366543 + 0.930401i \(0.619459\pi\)
\(12\) 5.42925 1.56729
\(13\) 2.87365 0.797008 0.398504 0.917167i \(-0.369530\pi\)
0.398504 + 0.917167i \(0.369530\pi\)
\(14\) −0.380294 −0.101638
\(15\) −8.60242 −2.22114
\(16\) 3.27422 0.818556
\(17\) −1.82477 −0.442571 −0.221285 0.975209i \(-0.571025\pi\)
−0.221285 + 0.975209i \(0.571025\pi\)
\(18\) 1.88759 0.444910
\(19\) 2.11827 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(20\) −5.57925 −1.24756
\(21\) 3.13091 0.683220
\(22\) −0.854462 −0.182172
\(23\) −0.442216 −0.0922083 −0.0461042 0.998937i \(-0.514681\pi\)
−0.0461042 + 0.998937i \(0.514681\pi\)
\(24\) 3.94161 0.804577
\(25\) 3.84010 0.768019
\(26\) 1.00989 0.198057
\(27\) −6.86040 −1.32028
\(28\) 2.03060 0.383748
\(29\) −3.15914 −0.586637 −0.293318 0.956015i \(-0.594760\pi\)
−0.293318 + 0.956015i \(0.594760\pi\)
\(30\) −3.02317 −0.551953
\(31\) 0 0
\(32\) 3.87532 0.685067
\(33\) 7.03466 1.22458
\(34\) −0.641282 −0.109979
\(35\) −3.21741 −0.543841
\(36\) −10.0789 −1.67982
\(37\) 3.14675 0.517323 0.258661 0.965968i \(-0.416719\pi\)
0.258661 + 0.965968i \(0.416719\pi\)
\(38\) 0.744430 0.120763
\(39\) −8.31432 −1.33136
\(40\) −4.05051 −0.640442
\(41\) −6.94624 −1.08482 −0.542410 0.840114i \(-0.682488\pi\)
−0.542410 + 0.840114i \(0.682488\pi\)
\(42\) 1.10030 0.169780
\(43\) −8.41238 −1.28288 −0.641438 0.767175i \(-0.721662\pi\)
−0.641438 + 0.767175i \(0.721662\pi\)
\(44\) 4.56245 0.687816
\(45\) 15.9696 2.38061
\(46\) −0.155409 −0.0229138
\(47\) −7.96205 −1.16138 −0.580692 0.814123i \(-0.697218\pi\)
−0.580692 + 0.814123i \(0.697218\pi\)
\(48\) −9.47329 −1.36735
\(49\) −5.82900 −0.832715
\(50\) 1.34953 0.190853
\(51\) 5.27958 0.739289
\(52\) −5.39239 −0.747791
\(53\) −4.97700 −0.683643 −0.341822 0.939765i \(-0.611044\pi\)
−0.341822 + 0.939765i \(0.611044\pi\)
\(54\) −2.41097 −0.328091
\(55\) −7.22902 −0.974761
\(56\) 1.47421 0.196999
\(57\) −6.12878 −0.811777
\(58\) −1.11022 −0.145779
\(59\) −12.0139 −1.56408 −0.782041 0.623227i \(-0.785821\pi\)
−0.782041 + 0.623227i \(0.785821\pi\)
\(60\) 16.1424 2.08398
\(61\) −14.4351 −1.84823 −0.924115 0.382115i \(-0.875196\pi\)
−0.924115 + 0.382115i \(0.875196\pi\)
\(62\) 0 0
\(63\) −5.81225 −0.732274
\(64\) −5.18654 −0.648317
\(65\) 8.54403 1.05976
\(66\) 2.47221 0.304308
\(67\) −6.43759 −0.786476 −0.393238 0.919437i \(-0.628645\pi\)
−0.393238 + 0.919437i \(0.628645\pi\)
\(68\) 3.42416 0.415241
\(69\) 1.27946 0.154029
\(70\) −1.13070 −0.135145
\(71\) 1.67787 0.199127 0.0995635 0.995031i \(-0.468255\pi\)
0.0995635 + 0.995031i \(0.468255\pi\)
\(72\) −7.31724 −0.862345
\(73\) 14.3602 1.68073 0.840365 0.542021i \(-0.182341\pi\)
0.840365 + 0.542021i \(0.182341\pi\)
\(74\) 1.10587 0.128555
\(75\) −11.1105 −1.28293
\(76\) −3.97493 −0.455956
\(77\) 2.63105 0.299836
\(78\) −2.92192 −0.330842
\(79\) −3.44764 −0.387890 −0.193945 0.981012i \(-0.562128\pi\)
−0.193945 + 0.981012i \(0.562128\pi\)
\(80\) 9.73502 1.08841
\(81\) 3.73571 0.415079
\(82\) −2.44113 −0.269578
\(83\) 12.8536 1.41087 0.705434 0.708776i \(-0.250752\pi\)
0.705434 + 0.708776i \(0.250752\pi\)
\(84\) −5.87513 −0.641029
\(85\) −5.42545 −0.588472
\(86\) −2.95638 −0.318795
\(87\) 9.14030 0.979943
\(88\) 3.31232 0.353094
\(89\) 2.25938 0.239494 0.119747 0.992804i \(-0.461792\pi\)
0.119747 + 0.992804i \(0.461792\pi\)
\(90\) 5.61225 0.591583
\(91\) −3.10965 −0.325980
\(92\) 0.829816 0.0865143
\(93\) 0 0
\(94\) −2.79812 −0.288604
\(95\) 6.29811 0.646173
\(96\) −11.2124 −1.14436
\(97\) 3.41286 0.346523 0.173262 0.984876i \(-0.444569\pi\)
0.173262 + 0.984876i \(0.444569\pi\)
\(98\) −2.04850 −0.206930
\(99\) −13.0592 −1.31250
\(100\) −7.20592 −0.720592
\(101\) 17.7173 1.76294 0.881469 0.472243i \(-0.156555\pi\)
0.881469 + 0.472243i \(0.156555\pi\)
\(102\) 1.85542 0.183713
\(103\) 8.07385 0.795540 0.397770 0.917485i \(-0.369784\pi\)
0.397770 + 0.917485i \(0.369784\pi\)
\(104\) −3.91485 −0.383883
\(105\) 9.30890 0.908456
\(106\) −1.74908 −0.169886
\(107\) −12.1512 −1.17470 −0.587350 0.809333i \(-0.699829\pi\)
−0.587350 + 0.809333i \(0.699829\pi\)
\(108\) 12.8735 1.23875
\(109\) −0.632102 −0.0605444 −0.0302722 0.999542i \(-0.509637\pi\)
−0.0302722 + 0.999542i \(0.509637\pi\)
\(110\) −2.54051 −0.242228
\(111\) −9.10447 −0.864158
\(112\) −3.54312 −0.334794
\(113\) −11.3003 −1.06305 −0.531523 0.847044i \(-0.678380\pi\)
−0.531523 + 0.847044i \(0.678380\pi\)
\(114\) −2.15385 −0.201727
\(115\) −1.31481 −0.122607
\(116\) 5.92810 0.550411
\(117\) 15.4348 1.42695
\(118\) −4.22209 −0.388675
\(119\) 1.97463 0.181014
\(120\) 11.7193 1.06982
\(121\) −5.08844 −0.462585
\(122\) −5.07297 −0.459286
\(123\) 20.0975 1.81213
\(124\) 0 0
\(125\) −3.44866 −0.308458
\(126\) −2.04261 −0.181970
\(127\) 0.117806 0.0104536 0.00522680 0.999986i \(-0.498336\pi\)
0.00522680 + 0.999986i \(0.498336\pi\)
\(128\) −9.57336 −0.846173
\(129\) 24.3395 2.14297
\(130\) 3.00265 0.263350
\(131\) 5.78395 0.505346 0.252673 0.967552i \(-0.418690\pi\)
0.252673 + 0.967552i \(0.418690\pi\)
\(132\) −13.2005 −1.14896
\(133\) −2.29224 −0.198762
\(134\) −2.26238 −0.195440
\(135\) −20.3975 −1.75554
\(136\) 2.48593 0.213166
\(137\) 11.8054 1.00861 0.504303 0.863527i \(-0.331750\pi\)
0.504303 + 0.863527i \(0.331750\pi\)
\(138\) 0.449643 0.0382762
\(139\) −15.4220 −1.30808 −0.654039 0.756461i \(-0.726927\pi\)
−0.654039 + 0.756461i \(0.726927\pi\)
\(140\) 6.03745 0.510258
\(141\) 23.0365 1.94003
\(142\) 0.589660 0.0494831
\(143\) −6.98691 −0.584275
\(144\) 17.5863 1.46553
\(145\) −9.39284 −0.780033
\(146\) 5.04663 0.417662
\(147\) 16.8650 1.39100
\(148\) −5.90486 −0.485377
\(149\) −11.9502 −0.979001 −0.489500 0.872003i \(-0.662821\pi\)
−0.489500 + 0.872003i \(0.662821\pi\)
\(150\) −3.90460 −0.318809
\(151\) −4.32213 −0.351730 −0.175865 0.984414i \(-0.556272\pi\)
−0.175865 + 0.984414i \(0.556272\pi\)
\(152\) −2.88578 −0.234068
\(153\) −9.80107 −0.792369
\(154\) 0.924636 0.0745093
\(155\) 0 0
\(156\) 15.6018 1.24914
\(157\) −8.70444 −0.694690 −0.347345 0.937737i \(-0.612917\pi\)
−0.347345 + 0.937737i \(0.612917\pi\)
\(158\) −1.21161 −0.0963908
\(159\) 14.3999 1.14199
\(160\) 11.5222 0.910912
\(161\) 0.478533 0.0377137
\(162\) 1.31285 0.103147
\(163\) 3.12790 0.244996 0.122498 0.992469i \(-0.460909\pi\)
0.122498 + 0.992469i \(0.460909\pi\)
\(164\) 13.0346 1.01783
\(165\) 20.9157 1.62828
\(166\) 4.51718 0.350601
\(167\) −13.3549 −1.03344 −0.516718 0.856156i \(-0.672846\pi\)
−0.516718 + 0.856156i \(0.672846\pi\)
\(168\) −4.26532 −0.329076
\(169\) −4.74212 −0.364779
\(170\) −1.90668 −0.146236
\(171\) 11.3775 0.870062
\(172\) 15.7858 1.20366
\(173\) 19.0447 1.44794 0.723972 0.689829i \(-0.242314\pi\)
0.723972 + 0.689829i \(0.242314\pi\)
\(174\) 3.21220 0.243516
\(175\) −4.15547 −0.314124
\(176\) −7.96085 −0.600072
\(177\) 34.7598 2.61271
\(178\) 0.794021 0.0595144
\(179\) −0.0793300 −0.00592940 −0.00296470 0.999996i \(-0.500944\pi\)
−0.00296470 + 0.999996i \(0.500944\pi\)
\(180\) −29.9669 −2.23360
\(181\) 2.16285 0.160763 0.0803817 0.996764i \(-0.474386\pi\)
0.0803817 + 0.996764i \(0.474386\pi\)
\(182\) −1.09283 −0.0810062
\(183\) 41.7651 3.08736
\(184\) 0.602442 0.0444126
\(185\) 9.35601 0.687868
\(186\) 0 0
\(187\) 4.43668 0.324442
\(188\) 14.9408 1.08967
\(189\) 7.42381 0.540003
\(190\) 2.21336 0.160574
\(191\) −5.34169 −0.386511 −0.193256 0.981148i \(-0.561905\pi\)
−0.193256 + 0.981148i \(0.561905\pi\)
\(192\) 15.0062 1.08298
\(193\) −2.13368 −0.153585 −0.0767927 0.997047i \(-0.524468\pi\)
−0.0767927 + 0.997047i \(0.524468\pi\)
\(194\) 1.19939 0.0861112
\(195\) −24.7204 −1.77026
\(196\) 10.9381 0.781293
\(197\) −5.87573 −0.418628 −0.209314 0.977848i \(-0.567123\pi\)
−0.209314 + 0.977848i \(0.567123\pi\)
\(198\) −4.58944 −0.326157
\(199\) 6.92796 0.491110 0.245555 0.969383i \(-0.421030\pi\)
0.245555 + 0.969383i \(0.421030\pi\)
\(200\) −5.23146 −0.369920
\(201\) 18.6258 1.31376
\(202\) 6.22643 0.438090
\(203\) 3.41858 0.239937
\(204\) −9.90710 −0.693636
\(205\) −20.6528 −1.44245
\(206\) 2.83741 0.197692
\(207\) −2.37520 −0.165088
\(208\) 9.40898 0.652396
\(209\) −5.15031 −0.356254
\(210\) 3.27145 0.225752
\(211\) 16.7087 1.15028 0.575139 0.818056i \(-0.304948\pi\)
0.575139 + 0.818056i \(0.304948\pi\)
\(212\) 9.33931 0.641427
\(213\) −4.85458 −0.332630
\(214\) −4.27032 −0.291913
\(215\) −25.0119 −1.70580
\(216\) 9.34610 0.635921
\(217\) 0 0
\(218\) −0.222141 −0.0150453
\(219\) −41.5482 −2.80756
\(220\) 13.5652 0.914567
\(221\) −5.24374 −0.352732
\(222\) −3.19961 −0.214744
\(223\) −6.26156 −0.419305 −0.209653 0.977776i \(-0.567233\pi\)
−0.209653 + 0.977776i \(0.567233\pi\)
\(224\) −4.19359 −0.280196
\(225\) 20.6257 1.37505
\(226\) −3.97131 −0.264167
\(227\) −7.84751 −0.520858 −0.260429 0.965493i \(-0.583864\pi\)
−0.260429 + 0.965493i \(0.583864\pi\)
\(228\) 11.5006 0.761648
\(229\) 12.7730 0.844063 0.422031 0.906581i \(-0.361317\pi\)
0.422031 + 0.906581i \(0.361317\pi\)
\(230\) −0.462067 −0.0304678
\(231\) −7.61239 −0.500859
\(232\) 4.30377 0.282557
\(233\) 12.7175 0.833150 0.416575 0.909101i \(-0.363230\pi\)
0.416575 + 0.909101i \(0.363230\pi\)
\(234\) 5.42428 0.354597
\(235\) −23.6730 −1.54426
\(236\) 22.5441 1.46750
\(237\) 9.97504 0.647949
\(238\) 0.693948 0.0449819
\(239\) −25.4246 −1.64458 −0.822291 0.569068i \(-0.807304\pi\)
−0.822291 + 0.569068i \(0.807304\pi\)
\(240\) −28.1663 −1.81812
\(241\) 2.36098 0.152084 0.0760421 0.997105i \(-0.475772\pi\)
0.0760421 + 0.997105i \(0.475772\pi\)
\(242\) −1.78824 −0.114953
\(243\) 9.77268 0.626918
\(244\) 27.0875 1.73410
\(245\) −17.3310 −1.10723
\(246\) 7.06291 0.450315
\(247\) 6.08718 0.387318
\(248\) 0 0
\(249\) −37.1893 −2.35677
\(250\) −1.21197 −0.0766518
\(251\) 2.35664 0.148750 0.0743748 0.997230i \(-0.476304\pi\)
0.0743748 + 0.997230i \(0.476304\pi\)
\(252\) 10.9067 0.687055
\(253\) 1.07519 0.0675966
\(254\) 0.0414009 0.00259772
\(255\) 15.6974 0.983009
\(256\) 7.00868 0.438043
\(257\) −26.0140 −1.62271 −0.811355 0.584554i \(-0.801269\pi\)
−0.811355 + 0.584554i \(0.801269\pi\)
\(258\) 8.55368 0.532529
\(259\) −3.40518 −0.211588
\(260\) −16.0328 −0.994314
\(261\) −16.9682 −1.05030
\(262\) 2.03267 0.125579
\(263\) 22.9355 1.41427 0.707133 0.707080i \(-0.249988\pi\)
0.707133 + 0.707080i \(0.249988\pi\)
\(264\) −9.58351 −0.589824
\(265\) −14.7978 −0.909019
\(266\) −0.805567 −0.0493925
\(267\) −6.53706 −0.400062
\(268\) 12.0801 0.737910
\(269\) −17.0473 −1.03939 −0.519697 0.854351i \(-0.673955\pi\)
−0.519697 + 0.854351i \(0.673955\pi\)
\(270\) −7.16836 −0.436252
\(271\) 7.24651 0.440194 0.220097 0.975478i \(-0.429363\pi\)
0.220097 + 0.975478i \(0.429363\pi\)
\(272\) −5.97469 −0.362269
\(273\) 8.99714 0.544531
\(274\) 4.14881 0.250639
\(275\) −9.33669 −0.563024
\(276\) −2.40090 −0.144517
\(277\) 15.1033 0.907468 0.453734 0.891137i \(-0.350092\pi\)
0.453734 + 0.891137i \(0.350092\pi\)
\(278\) −5.41979 −0.325058
\(279\) 0 0
\(280\) 4.38316 0.261944
\(281\) −2.48708 −0.148367 −0.0741834 0.997245i \(-0.523635\pi\)
−0.0741834 + 0.997245i \(0.523635\pi\)
\(282\) 8.09579 0.482097
\(283\) −4.72636 −0.280953 −0.140476 0.990084i \(-0.544863\pi\)
−0.140476 + 0.990084i \(0.544863\pi\)
\(284\) −3.14852 −0.186831
\(285\) −18.2223 −1.07939
\(286\) −2.45543 −0.145193
\(287\) 7.51670 0.443697
\(288\) 20.8149 1.22653
\(289\) −13.6702 −0.804131
\(290\) −3.30095 −0.193838
\(291\) −9.87440 −0.578848
\(292\) −26.9468 −1.57694
\(293\) −10.5489 −0.616273 −0.308136 0.951342i \(-0.599705\pi\)
−0.308136 + 0.951342i \(0.599705\pi\)
\(294\) 5.92691 0.345665
\(295\) −35.7202 −2.07971
\(296\) −4.28690 −0.249171
\(297\) 16.6802 0.967881
\(298\) −4.19970 −0.243282
\(299\) −1.27077 −0.0734908
\(300\) 20.8488 1.20371
\(301\) 9.10325 0.524703
\(302\) −1.51894 −0.0874050
\(303\) −51.2613 −2.94489
\(304\) 6.93570 0.397790
\(305\) −42.9190 −2.45753
\(306\) −3.44441 −0.196904
\(307\) 2.64850 0.151158 0.0755790 0.997140i \(-0.475919\pi\)
0.0755790 + 0.997140i \(0.475919\pi\)
\(308\) −4.93715 −0.281320
\(309\) −23.3600 −1.32890
\(310\) 0 0
\(311\) 5.51283 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(312\) 11.3268 0.641254
\(313\) −26.6755 −1.50779 −0.753893 0.656997i \(-0.771826\pi\)
−0.753893 + 0.656997i \(0.771826\pi\)
\(314\) −3.05902 −0.172631
\(315\) −17.2811 −0.973682
\(316\) 6.46949 0.363937
\(317\) 10.7402 0.603232 0.301616 0.953430i \(-0.402474\pi\)
0.301616 + 0.953430i \(0.402474\pi\)
\(318\) 5.06060 0.283784
\(319\) 7.68103 0.430055
\(320\) −15.4208 −0.862047
\(321\) 35.1570 1.96227
\(322\) 0.168172 0.00937186
\(323\) −3.86535 −0.215074
\(324\) −7.01005 −0.389447
\(325\) 11.0351 0.612117
\(326\) 1.09925 0.0608816
\(327\) 1.82886 0.101136
\(328\) 9.46304 0.522509
\(329\) 8.61594 0.475012
\(330\) 7.35045 0.404629
\(331\) 19.6476 1.07993 0.539965 0.841687i \(-0.318437\pi\)
0.539965 + 0.841687i \(0.318437\pi\)
\(332\) −24.1197 −1.32374
\(333\) 16.9016 0.926204
\(334\) −4.69336 −0.256809
\(335\) −19.1404 −1.04575
\(336\) 10.2513 0.559254
\(337\) 19.1787 1.04473 0.522366 0.852721i \(-0.325050\pi\)
0.522366 + 0.852721i \(0.325050\pi\)
\(338\) −1.66654 −0.0906476
\(339\) 32.6952 1.77576
\(340\) 10.1808 0.552133
\(341\) 0 0
\(342\) 3.99844 0.216211
\(343\) 13.8826 0.749590
\(344\) 11.4604 0.617904
\(345\) 3.80413 0.204807
\(346\) 6.69294 0.359815
\(347\) 10.6600 0.572257 0.286128 0.958191i \(-0.407632\pi\)
0.286128 + 0.958191i \(0.407632\pi\)
\(348\) −17.1517 −0.919429
\(349\) −18.7016 −1.00107 −0.500536 0.865716i \(-0.666864\pi\)
−0.500536 + 0.865716i \(0.666864\pi\)
\(350\) −1.46037 −0.0780598
\(351\) −19.7144 −1.05228
\(352\) −9.42234 −0.502212
\(353\) −12.6622 −0.673943 −0.336972 0.941515i \(-0.609403\pi\)
−0.336972 + 0.941515i \(0.609403\pi\)
\(354\) 12.2157 0.649259
\(355\) 4.98871 0.264773
\(356\) −4.23973 −0.224705
\(357\) −5.71317 −0.302373
\(358\) −0.0278791 −0.00147346
\(359\) −22.6781 −1.19691 −0.598453 0.801158i \(-0.704218\pi\)
−0.598453 + 0.801158i \(0.704218\pi\)
\(360\) −21.7558 −1.14663
\(361\) −14.5129 −0.763838
\(362\) 0.760096 0.0399498
\(363\) 14.7223 0.772722
\(364\) 5.83525 0.305850
\(365\) 42.6961 2.23481
\(366\) 14.6776 0.767210
\(367\) 8.71968 0.455164 0.227582 0.973759i \(-0.426918\pi\)
0.227582 + 0.973759i \(0.426918\pi\)
\(368\) −1.44791 −0.0754777
\(369\) −37.3092 −1.94224
\(370\) 3.28801 0.170935
\(371\) 5.38574 0.279614
\(372\) 0 0
\(373\) 25.4134 1.31586 0.657928 0.753081i \(-0.271433\pi\)
0.657928 + 0.753081i \(0.271433\pi\)
\(374\) 1.55919 0.0806240
\(375\) 9.97799 0.515261
\(376\) 10.8469 0.559387
\(377\) −9.07826 −0.467554
\(378\) 2.60897 0.134191
\(379\) 22.0979 1.13509 0.567546 0.823342i \(-0.307893\pi\)
0.567546 + 0.823342i \(0.307893\pi\)
\(380\) −11.8184 −0.606270
\(381\) −0.340848 −0.0174622
\(382\) −1.87724 −0.0960482
\(383\) −26.6426 −1.36137 −0.680687 0.732574i \(-0.738319\pi\)
−0.680687 + 0.732574i \(0.738319\pi\)
\(384\) 27.6985 1.41348
\(385\) 7.82271 0.398682
\(386\) −0.749843 −0.0381660
\(387\) −45.1841 −2.29683
\(388\) −6.40422 −0.325125
\(389\) −12.9551 −0.656847 −0.328424 0.944531i \(-0.606517\pi\)
−0.328424 + 0.944531i \(0.606517\pi\)
\(390\) −8.68754 −0.439911
\(391\) 0.806940 0.0408087
\(392\) 7.94100 0.401081
\(393\) −16.7347 −0.844152
\(394\) −2.06492 −0.104029
\(395\) −10.2506 −0.515766
\(396\) 24.5056 1.23145
\(397\) −2.92725 −0.146915 −0.0734574 0.997298i \(-0.523403\pi\)
−0.0734574 + 0.997298i \(0.523403\pi\)
\(398\) 2.43471 0.122041
\(399\) 6.63212 0.332021
\(400\) 12.5733 0.628667
\(401\) −12.2745 −0.612957 −0.306479 0.951878i \(-0.599151\pi\)
−0.306479 + 0.951878i \(0.599151\pi\)
\(402\) 6.54572 0.326471
\(403\) 0 0
\(404\) −33.2464 −1.65407
\(405\) 11.1071 0.551918
\(406\) 1.20140 0.0596245
\(407\) −7.65092 −0.379242
\(408\) −7.19251 −0.356082
\(409\) −17.1972 −0.850348 −0.425174 0.905112i \(-0.639787\pi\)
−0.425174 + 0.905112i \(0.639787\pi\)
\(410\) −7.25805 −0.358450
\(411\) −34.1565 −1.68482
\(412\) −15.1505 −0.746413
\(413\) 13.0006 0.639717
\(414\) −0.834723 −0.0410244
\(415\) 38.2167 1.87599
\(416\) 11.1363 0.546003
\(417\) 44.6204 2.18507
\(418\) −1.80999 −0.0885293
\(419\) 23.1455 1.13073 0.565366 0.824840i \(-0.308735\pi\)
0.565366 + 0.824840i \(0.308735\pi\)
\(420\) −17.4681 −0.852357
\(421\) 29.1822 1.42226 0.711128 0.703063i \(-0.248185\pi\)
0.711128 + 0.703063i \(0.248185\pi\)
\(422\) 5.87200 0.285844
\(423\) −42.7653 −2.07932
\(424\) 6.78030 0.329280
\(425\) −7.00727 −0.339903
\(426\) −1.70606 −0.0826588
\(427\) 15.6206 0.755935
\(428\) 22.8017 1.10216
\(429\) 20.2152 0.975998
\(430\) −8.79001 −0.423892
\(431\) 30.3522 1.46201 0.731007 0.682369i \(-0.239050\pi\)
0.731007 + 0.682369i \(0.239050\pi\)
\(432\) −22.4625 −1.08073
\(433\) −13.8400 −0.665107 −0.332553 0.943084i \(-0.607910\pi\)
−0.332553 + 0.943084i \(0.607910\pi\)
\(434\) 0 0
\(435\) 27.1762 1.30300
\(436\) 1.18614 0.0568057
\(437\) −0.936734 −0.0448101
\(438\) −14.6014 −0.697680
\(439\) 12.9201 0.616644 0.308322 0.951282i \(-0.400233\pi\)
0.308322 + 0.951282i \(0.400233\pi\)
\(440\) 9.84829 0.469499
\(441\) −31.3084 −1.49088
\(442\) −1.84282 −0.0876540
\(443\) 23.7583 1.12879 0.564395 0.825505i \(-0.309110\pi\)
0.564395 + 0.825505i \(0.309110\pi\)
\(444\) 17.0845 0.810794
\(445\) 6.71767 0.318448
\(446\) −2.20052 −0.104197
\(447\) 34.5755 1.63536
\(448\) 5.61248 0.265165
\(449\) −19.4129 −0.916151 −0.458075 0.888913i \(-0.651461\pi\)
−0.458075 + 0.888913i \(0.651461\pi\)
\(450\) 7.24854 0.341699
\(451\) 16.8889 0.795266
\(452\) 21.2050 0.997401
\(453\) 12.5052 0.587545
\(454\) −2.75787 −0.129433
\(455\) −9.24571 −0.433446
\(456\) 8.34940 0.390997
\(457\) 24.3420 1.13867 0.569334 0.822106i \(-0.307201\pi\)
0.569334 + 0.822106i \(0.307201\pi\)
\(458\) 4.48884 0.209750
\(459\) 12.5186 0.584319
\(460\) 2.46723 0.115035
\(461\) −38.3431 −1.78582 −0.892908 0.450239i \(-0.851339\pi\)
−0.892908 + 0.450239i \(0.851339\pi\)
\(462\) −2.67524 −0.124464
\(463\) −6.59429 −0.306463 −0.153231 0.988190i \(-0.548968\pi\)
−0.153231 + 0.988190i \(0.548968\pi\)
\(464\) −10.3437 −0.480195
\(465\) 0 0
\(466\) 4.46933 0.207038
\(467\) 38.4014 1.77701 0.888503 0.458871i \(-0.151746\pi\)
0.888503 + 0.458871i \(0.151746\pi\)
\(468\) −28.9633 −1.33883
\(469\) 6.96628 0.321673
\(470\) −8.31947 −0.383748
\(471\) 25.1845 1.16044
\(472\) 16.3669 0.753348
\(473\) 20.4536 0.940458
\(474\) 3.50555 0.161015
\(475\) 8.13437 0.373231
\(476\) −3.70538 −0.169836
\(477\) −26.7321 −1.22398
\(478\) −8.93503 −0.408679
\(479\) 7.52515 0.343833 0.171916 0.985112i \(-0.445004\pi\)
0.171916 + 0.985112i \(0.445004\pi\)
\(480\) −33.3372 −1.52163
\(481\) 9.04267 0.412310
\(482\) 0.829725 0.0377930
\(483\) −1.38454 −0.0629986
\(484\) 9.54843 0.434020
\(485\) 10.1472 0.460761
\(486\) 3.43444 0.155789
\(487\) 25.0323 1.13432 0.567160 0.823608i \(-0.308042\pi\)
0.567160 + 0.823608i \(0.308042\pi\)
\(488\) 19.6654 0.890209
\(489\) −9.04993 −0.409252
\(490\) −6.09066 −0.275148
\(491\) −39.7100 −1.79209 −0.896044 0.443964i \(-0.853572\pi\)
−0.896044 + 0.443964i \(0.853572\pi\)
\(492\) −37.7128 −1.70023
\(493\) 5.76468 0.259628
\(494\) 2.13923 0.0962487
\(495\) −38.8281 −1.74519
\(496\) 0 0
\(497\) −1.81567 −0.0814440
\(498\) −13.0695 −0.585659
\(499\) −23.6541 −1.05890 −0.529451 0.848341i \(-0.677602\pi\)
−0.529451 + 0.848341i \(0.677602\pi\)
\(500\) 6.47140 0.289410
\(501\) 38.6397 1.72630
\(502\) 0.828199 0.0369643
\(503\) −20.1864 −0.900068 −0.450034 0.893011i \(-0.648588\pi\)
−0.450034 + 0.893011i \(0.648588\pi\)
\(504\) 7.91818 0.352704
\(505\) 52.6776 2.34412
\(506\) 0.377857 0.0167978
\(507\) 13.7203 0.609342
\(508\) −0.221063 −0.00980807
\(509\) 11.8390 0.524755 0.262377 0.964965i \(-0.415493\pi\)
0.262377 + 0.964965i \(0.415493\pi\)
\(510\) 5.51658 0.244278
\(511\) −15.5395 −0.687427
\(512\) 21.6098 0.955027
\(513\) −14.5322 −0.641612
\(514\) −9.14217 −0.403244
\(515\) 24.0054 1.05780
\(516\) −45.6729 −2.01064
\(517\) 19.3587 0.851395
\(518\) −1.19669 −0.0525796
\(519\) −55.1020 −2.41871
\(520\) −11.6398 −0.510437
\(521\) −32.7484 −1.43474 −0.717368 0.696695i \(-0.754653\pi\)
−0.717368 + 0.696695i \(0.754653\pi\)
\(522\) −5.96316 −0.261000
\(523\) −29.5027 −1.29006 −0.645031 0.764157i \(-0.723155\pi\)
−0.645031 + 0.764157i \(0.723155\pi\)
\(524\) −10.8536 −0.474140
\(525\) 12.0230 0.524726
\(526\) 8.06030 0.351446
\(527\) 0 0
\(528\) 23.0331 1.00239
\(529\) −22.8044 −0.991498
\(530\) −5.20041 −0.225892
\(531\) −64.5285 −2.80030
\(532\) 4.30138 0.186488
\(533\) −19.9611 −0.864610
\(534\) −2.29734 −0.0994154
\(535\) −36.1283 −1.56196
\(536\) 8.77009 0.378810
\(537\) 0.229525 0.00990472
\(538\) −5.99098 −0.258290
\(539\) 14.1725 0.610451
\(540\) 38.2759 1.64713
\(541\) 13.2658 0.570342 0.285171 0.958477i \(-0.407950\pi\)
0.285171 + 0.958477i \(0.407950\pi\)
\(542\) 2.54666 0.109388
\(543\) −6.25776 −0.268546
\(544\) −7.07155 −0.303190
\(545\) −1.87939 −0.0805040
\(546\) 3.16189 0.135316
\(547\) 37.7639 1.61467 0.807333 0.590096i \(-0.200910\pi\)
0.807333 + 0.590096i \(0.200910\pi\)
\(548\) −22.1528 −0.946321
\(549\) −77.5331 −3.30903
\(550\) −3.28122 −0.139912
\(551\) −6.69191 −0.285085
\(552\) −1.74304 −0.0741887
\(553\) 3.73078 0.158649
\(554\) 5.30778 0.225506
\(555\) −27.0697 −1.14904
\(556\) 28.9393 1.22730
\(557\) −11.3637 −0.481496 −0.240748 0.970588i \(-0.577393\pi\)
−0.240748 + 0.970588i \(0.577393\pi\)
\(558\) 0 0
\(559\) −24.1743 −1.02246
\(560\) −10.5345 −0.445165
\(561\) −12.8366 −0.541962
\(562\) −0.874041 −0.0368692
\(563\) −20.1865 −0.850762 −0.425381 0.905014i \(-0.639860\pi\)
−0.425381 + 0.905014i \(0.639860\pi\)
\(564\) −43.2280 −1.82023
\(565\) −33.5985 −1.41350
\(566\) −1.66100 −0.0698169
\(567\) −4.04251 −0.169770
\(568\) −2.28581 −0.0959106
\(569\) −30.9897 −1.29915 −0.649577 0.760296i \(-0.725054\pi\)
−0.649577 + 0.760296i \(0.725054\pi\)
\(570\) −6.40390 −0.268230
\(571\) −10.3997 −0.435214 −0.217607 0.976036i \(-0.569825\pi\)
−0.217607 + 0.976036i \(0.569825\pi\)
\(572\) 13.1109 0.548195
\(573\) 15.4551 0.645645
\(574\) 2.64161 0.110259
\(575\) −1.69815 −0.0708178
\(576\) −27.8576 −1.16073
\(577\) 5.41386 0.225382 0.112691 0.993630i \(-0.464053\pi\)
0.112691 + 0.993630i \(0.464053\pi\)
\(578\) −4.80416 −0.199827
\(579\) 6.17335 0.256556
\(580\) 17.6256 0.731864
\(581\) −13.9092 −0.577052
\(582\) −3.47019 −0.143844
\(583\) 12.1009 0.501169
\(584\) −19.5632 −0.809532
\(585\) 45.8912 1.89737
\(586\) −3.70722 −0.153144
\(587\) −12.5628 −0.518523 −0.259261 0.965807i \(-0.583479\pi\)
−0.259261 + 0.965807i \(0.583479\pi\)
\(588\) −31.6471 −1.30510
\(589\) 0 0
\(590\) −12.5532 −0.516809
\(591\) 17.0002 0.699295
\(592\) 10.3032 0.423458
\(593\) 27.0700 1.11163 0.555816 0.831305i \(-0.312406\pi\)
0.555816 + 0.831305i \(0.312406\pi\)
\(594\) 5.86195 0.240519
\(595\) 5.87102 0.240688
\(596\) 22.4245 0.918545
\(597\) −20.0446 −0.820372
\(598\) −0.446591 −0.0182625
\(599\) −14.3551 −0.586533 −0.293266 0.956031i \(-0.594742\pi\)
−0.293266 + 0.956031i \(0.594742\pi\)
\(600\) 15.1362 0.617931
\(601\) 0.640017 0.0261068 0.0130534 0.999915i \(-0.495845\pi\)
0.0130534 + 0.999915i \(0.495845\pi\)
\(602\) 3.19918 0.130389
\(603\) −34.5772 −1.40809
\(604\) 8.11046 0.330010
\(605\) −15.1291 −0.615085
\(606\) −18.0149 −0.731805
\(607\) −6.51782 −0.264550 −0.132275 0.991213i \(-0.542228\pi\)
−0.132275 + 0.991213i \(0.542228\pi\)
\(608\) 8.20899 0.332919
\(609\) −9.89096 −0.400802
\(610\) −15.0831 −0.610698
\(611\) −22.8802 −0.925633
\(612\) 18.3917 0.743439
\(613\) 10.4453 0.421883 0.210941 0.977499i \(-0.432347\pi\)
0.210941 + 0.977499i \(0.432347\pi\)
\(614\) 0.930770 0.0375628
\(615\) 59.7545 2.40953
\(616\) −3.58435 −0.144417
\(617\) 21.7034 0.873744 0.436872 0.899524i \(-0.356086\pi\)
0.436872 + 0.899524i \(0.356086\pi\)
\(618\) −8.20946 −0.330233
\(619\) 28.5478 1.14743 0.573716 0.819054i \(-0.305501\pi\)
0.573716 + 0.819054i \(0.305501\pi\)
\(620\) 0 0
\(621\) 3.03377 0.121741
\(622\) 1.93739 0.0776822
\(623\) −2.44494 −0.0979544
\(624\) −27.2229 −1.08979
\(625\) −29.4541 −1.17817
\(626\) −9.37462 −0.374685
\(627\) 14.9013 0.595102
\(628\) 16.3338 0.651791
\(629\) −5.74208 −0.228952
\(630\) −6.07316 −0.241960
\(631\) 27.2405 1.08443 0.542214 0.840241i \(-0.317586\pi\)
0.542214 + 0.840241i \(0.317586\pi\)
\(632\) 4.69682 0.186829
\(633\) −48.3433 −1.92147
\(634\) 3.77447 0.149903
\(635\) 0.350265 0.0138998
\(636\) −27.0214 −1.07147
\(637\) −16.7505 −0.663680
\(638\) 2.69936 0.106869
\(639\) 9.01210 0.356513
\(640\) −28.4638 −1.12513
\(641\) 41.2081 1.62762 0.813811 0.581130i \(-0.197389\pi\)
0.813811 + 0.581130i \(0.197389\pi\)
\(642\) 12.3553 0.487625
\(643\) −30.8124 −1.21512 −0.607562 0.794273i \(-0.707852\pi\)
−0.607562 + 0.794273i \(0.707852\pi\)
\(644\) −0.897965 −0.0353848
\(645\) 72.3668 2.84944
\(646\) −1.35841 −0.0534459
\(647\) 8.91617 0.350531 0.175265 0.984521i \(-0.443922\pi\)
0.175265 + 0.984521i \(0.443922\pi\)
\(648\) −5.08926 −0.199925
\(649\) 29.2103 1.14661
\(650\) 3.87809 0.152111
\(651\) 0 0
\(652\) −5.86949 −0.229867
\(653\) 39.2414 1.53563 0.767817 0.640669i \(-0.221343\pi\)
0.767817 + 0.640669i \(0.221343\pi\)
\(654\) 0.642719 0.0251323
\(655\) 17.1970 0.671943
\(656\) −22.7435 −0.887986
\(657\) 77.1304 3.00914
\(658\) 3.02792 0.118041
\(659\) 32.9535 1.28369 0.641844 0.766835i \(-0.278170\pi\)
0.641844 + 0.766835i \(0.278170\pi\)
\(660\) −39.2482 −1.52773
\(661\) −0.169675 −0.00659960 −0.00329980 0.999995i \(-0.501050\pi\)
−0.00329980 + 0.999995i \(0.501050\pi\)
\(662\) 6.90481 0.268363
\(663\) 15.1717 0.589219
\(664\) −17.5108 −0.679551
\(665\) −6.81535 −0.264288
\(666\) 5.93978 0.230162
\(667\) 1.39702 0.0540928
\(668\) 25.0605 0.969619
\(669\) 18.1165 0.700426
\(670\) −6.72657 −0.259870
\(671\) 35.0972 1.35491
\(672\) 12.1333 0.468051
\(673\) −14.5863 −0.562262 −0.281131 0.959669i \(-0.590710\pi\)
−0.281131 + 0.959669i \(0.590710\pi\)
\(674\) 6.74003 0.259616
\(675\) −26.3446 −1.01400
\(676\) 8.89857 0.342253
\(677\) 15.7668 0.605968 0.302984 0.952996i \(-0.402017\pi\)
0.302984 + 0.952996i \(0.402017\pi\)
\(678\) 11.4902 0.441277
\(679\) −3.69314 −0.141730
\(680\) 7.39123 0.283441
\(681\) 22.7051 0.870063
\(682\) 0 0
\(683\) 20.5935 0.787988 0.393994 0.919113i \(-0.371093\pi\)
0.393994 + 0.919113i \(0.371093\pi\)
\(684\) −21.3499 −0.816334
\(685\) 35.1002 1.34111
\(686\) 4.87880 0.186273
\(687\) −36.9560 −1.40996
\(688\) −27.5440 −1.05011
\(689\) −14.3022 −0.544869
\(690\) 1.33689 0.0508947
\(691\) −5.95171 −0.226414 −0.113207 0.993571i \(-0.536112\pi\)
−0.113207 + 0.993571i \(0.536112\pi\)
\(692\) −35.7374 −1.35853
\(693\) 14.1317 0.536820
\(694\) 3.74626 0.142206
\(695\) −45.8532 −1.73931
\(696\) −12.4521 −0.471995
\(697\) 12.6752 0.480109
\(698\) −6.57233 −0.248767
\(699\) −36.7954 −1.39173
\(700\) 7.79771 0.294726
\(701\) −26.6304 −1.00582 −0.502908 0.864340i \(-0.667737\pi\)
−0.502908 + 0.864340i \(0.667737\pi\)
\(702\) −6.92828 −0.261491
\(703\) 6.66568 0.251401
\(704\) 12.6104 0.475272
\(705\) 68.4929 2.57959
\(706\) −4.44992 −0.167475
\(707\) −19.1723 −0.721050
\(708\) −65.2266 −2.45137
\(709\) −2.64278 −0.0992515 −0.0496258 0.998768i \(-0.515803\pi\)
−0.0496258 + 0.998768i \(0.515803\pi\)
\(710\) 1.75319 0.0657962
\(711\) −18.5178 −0.694471
\(712\) −3.07802 −0.115354
\(713\) 0 0
\(714\) −2.00779 −0.0751398
\(715\) −20.7737 −0.776892
\(716\) 0.148862 0.00556325
\(717\) 73.5608 2.74718
\(718\) −7.96983 −0.297431
\(719\) 5.19824 0.193862 0.0969308 0.995291i \(-0.469097\pi\)
0.0969308 + 0.995291i \(0.469097\pi\)
\(720\) 52.2882 1.94866
\(721\) −8.73692 −0.325380
\(722\) −5.10031 −0.189814
\(723\) −6.83101 −0.254048
\(724\) −4.05858 −0.150836
\(725\) −12.1314 −0.450548
\(726\) 5.17391 0.192022
\(727\) 24.2064 0.897767 0.448884 0.893590i \(-0.351822\pi\)
0.448884 + 0.893590i \(0.351822\pi\)
\(728\) 4.23636 0.157010
\(729\) −39.4824 −1.46231
\(730\) 15.0048 0.555352
\(731\) 15.3506 0.567763
\(732\) −78.3719 −2.89671
\(733\) 40.3628 1.49083 0.745416 0.666599i \(-0.232251\pi\)
0.745416 + 0.666599i \(0.232251\pi\)
\(734\) 3.06438 0.113108
\(735\) 50.1435 1.84957
\(736\) −1.71373 −0.0631689
\(737\) 15.6522 0.576555
\(738\) −13.1117 −0.482647
\(739\) 6.09785 0.224313 0.112157 0.993691i \(-0.464224\pi\)
0.112157 + 0.993691i \(0.464224\pi\)
\(740\) −17.5565 −0.645390
\(741\) −17.6120 −0.646993
\(742\) 1.89272 0.0694841
\(743\) 16.2263 0.595284 0.297642 0.954678i \(-0.403800\pi\)
0.297642 + 0.954678i \(0.403800\pi\)
\(744\) 0 0
\(745\) −35.5308 −1.30175
\(746\) 8.93109 0.326990
\(747\) 69.0385 2.52599
\(748\) −8.32541 −0.304407
\(749\) 13.1491 0.480458
\(750\) 3.50659 0.128043
\(751\) 36.4445 1.32988 0.664939 0.746898i \(-0.268458\pi\)
0.664939 + 0.746898i \(0.268458\pi\)
\(752\) −26.0695 −0.950659
\(753\) −6.81844 −0.248478
\(754\) −3.19039 −0.116187
\(755\) −12.8507 −0.467684
\(756\) −13.9307 −0.506656
\(757\) 43.5622 1.58329 0.791647 0.610978i \(-0.209224\pi\)
0.791647 + 0.610978i \(0.209224\pi\)
\(758\) 7.76591 0.282071
\(759\) −3.11084 −0.112916
\(760\) −8.58009 −0.311232
\(761\) 3.29928 0.119599 0.0597994 0.998210i \(-0.480954\pi\)
0.0597994 + 0.998210i \(0.480954\pi\)
\(762\) −0.119785 −0.00433935
\(763\) 0.684014 0.0247630
\(764\) 10.0237 0.362643
\(765\) −29.1408 −1.05359
\(766\) −9.36309 −0.338302
\(767\) −34.5239 −1.24658
\(768\) −20.2782 −0.731725
\(769\) −45.7136 −1.64847 −0.824237 0.566244i \(-0.808396\pi\)
−0.824237 + 0.566244i \(0.808396\pi\)
\(770\) 2.74916 0.0990727
\(771\) 75.2661 2.71064
\(772\) 4.00383 0.144101
\(773\) 30.0007 1.07905 0.539524 0.841970i \(-0.318604\pi\)
0.539524 + 0.841970i \(0.318604\pi\)
\(774\) −15.8791 −0.570764
\(775\) 0 0
\(776\) −4.64943 −0.166905
\(777\) 9.85218 0.353445
\(778\) −4.55283 −0.163227
\(779\) −14.7140 −0.527185
\(780\) 46.3877 1.66094
\(781\) −4.07953 −0.145977
\(782\) 0.283585 0.0101410
\(783\) 21.6729 0.774527
\(784\) −19.0855 −0.681624
\(785\) −25.8803 −0.923707
\(786\) −5.88110 −0.209772
\(787\) −43.2320 −1.54105 −0.770527 0.637408i \(-0.780007\pi\)
−0.770527 + 0.637408i \(0.780007\pi\)
\(788\) 11.0258 0.392777
\(789\) −66.3592 −2.36245
\(790\) −3.60241 −0.128168
\(791\) 12.2284 0.434792
\(792\) 17.7909 0.632173
\(793\) −41.4816 −1.47305
\(794\) −1.02873 −0.0365083
\(795\) 42.8142 1.51846
\(796\) −13.0003 −0.460783
\(797\) 22.8237 0.808458 0.404229 0.914658i \(-0.367540\pi\)
0.404229 + 0.914658i \(0.367540\pi\)
\(798\) 2.33074 0.0825073
\(799\) 14.5289 0.513995
\(800\) 14.8816 0.526144
\(801\) 12.1355 0.428786
\(802\) −4.31364 −0.152320
\(803\) −34.9149 −1.23212
\(804\) −34.9513 −1.23264
\(805\) 1.42279 0.0501467
\(806\) 0 0
\(807\) 49.3229 1.73625
\(808\) −24.1367 −0.849128
\(809\) −21.2384 −0.746703 −0.373352 0.927690i \(-0.621791\pi\)
−0.373352 + 0.927690i \(0.621791\pi\)
\(810\) 3.90341 0.137152
\(811\) 2.12314 0.0745534 0.0372767 0.999305i \(-0.488132\pi\)
0.0372767 + 0.999305i \(0.488132\pi\)
\(812\) −6.41495 −0.225121
\(813\) −20.9663 −0.735319
\(814\) −2.68878 −0.0942417
\(815\) 9.29997 0.325764
\(816\) 17.2865 0.605149
\(817\) −17.8197 −0.623433
\(818\) −6.04366 −0.211312
\(819\) −16.7024 −0.583628
\(820\) 38.7548 1.35338
\(821\) 41.7919 1.45855 0.729274 0.684222i \(-0.239858\pi\)
0.729274 + 0.684222i \(0.239858\pi\)
\(822\) −12.0037 −0.418678
\(823\) 16.2985 0.568130 0.284065 0.958805i \(-0.408317\pi\)
0.284065 + 0.958805i \(0.408317\pi\)
\(824\) −10.9992 −0.383176
\(825\) 27.0138 0.940499
\(826\) 4.56883 0.158970
\(827\) −31.0895 −1.08109 −0.540544 0.841316i \(-0.681782\pi\)
−0.540544 + 0.841316i \(0.681782\pi\)
\(828\) 4.45705 0.154893
\(829\) −28.0488 −0.974176 −0.487088 0.873353i \(-0.661941\pi\)
−0.487088 + 0.873353i \(0.661941\pi\)
\(830\) 13.4306 0.466183
\(831\) −43.6982 −1.51587
\(832\) −14.9043 −0.516714
\(833\) 10.6366 0.368535
\(834\) 15.6810 0.542990
\(835\) −39.7073 −1.37413
\(836\) 9.66453 0.334255
\(837\) 0 0
\(838\) 8.13409 0.280987
\(839\) −23.0676 −0.796382 −0.398191 0.917302i \(-0.630362\pi\)
−0.398191 + 0.917302i \(0.630362\pi\)
\(840\) −12.6818 −0.437562
\(841\) −19.0199 −0.655857
\(842\) 10.2556 0.353431
\(843\) 7.19585 0.247838
\(844\) −31.3539 −1.07925
\(845\) −14.0994 −0.485035
\(846\) −15.0291 −0.516711
\(847\) 5.50633 0.189200
\(848\) −16.2958 −0.559600
\(849\) 13.6747 0.469316
\(850\) −2.46258 −0.0844659
\(851\) −1.39154 −0.0477015
\(852\) 9.10960 0.312090
\(853\) 30.0209 1.02790 0.513948 0.857821i \(-0.328182\pi\)
0.513948 + 0.857821i \(0.328182\pi\)
\(854\) 5.48960 0.187850
\(855\) 33.8280 1.15689
\(856\) 16.5539 0.565800
\(857\) −54.5874 −1.86467 −0.932335 0.361596i \(-0.882232\pi\)
−0.932335 + 0.361596i \(0.882232\pi\)
\(858\) 7.10427 0.242536
\(859\) 9.33641 0.318554 0.159277 0.987234i \(-0.449084\pi\)
0.159277 + 0.987234i \(0.449084\pi\)
\(860\) 46.9348 1.60046
\(861\) −21.7480 −0.741170
\(862\) 10.6668 0.363311
\(863\) 13.3167 0.453307 0.226653 0.973975i \(-0.427222\pi\)
0.226653 + 0.973975i \(0.427222\pi\)
\(864\) −26.5862 −0.904482
\(865\) 56.6244 1.92529
\(866\) −4.86382 −0.165279
\(867\) 39.5520 1.34326
\(868\) 0 0
\(869\) 8.38250 0.284357
\(870\) 9.55061 0.323796
\(871\) −18.4994 −0.626828
\(872\) 0.861129 0.0291615
\(873\) 18.3309 0.620409
\(874\) −0.329199 −0.0111353
\(875\) 3.73189 0.126161
\(876\) 77.9649 2.63419
\(877\) −42.5661 −1.43735 −0.718677 0.695344i \(-0.755252\pi\)
−0.718677 + 0.695344i \(0.755252\pi\)
\(878\) 4.54055 0.153236
\(879\) 30.5210 1.02945
\(880\) −23.6694 −0.797897
\(881\) −5.77313 −0.194502 −0.0972509 0.995260i \(-0.531005\pi\)
−0.0972509 + 0.995260i \(0.531005\pi\)
\(882\) −11.0028 −0.370483
\(883\) 27.1971 0.915255 0.457627 0.889144i \(-0.348699\pi\)
0.457627 + 0.889144i \(0.348699\pi\)
\(884\) 9.83985 0.330950
\(885\) 103.349 3.47404
\(886\) 8.34943 0.280504
\(887\) −7.37169 −0.247517 −0.123759 0.992312i \(-0.539495\pi\)
−0.123759 + 0.992312i \(0.539495\pi\)
\(888\) 12.4033 0.416226
\(889\) −0.127481 −0.00427558
\(890\) 2.36081 0.0791345
\(891\) −9.08290 −0.304289
\(892\) 11.7498 0.393412
\(893\) −16.8658 −0.564393
\(894\) 12.1510 0.406389
\(895\) −0.235866 −0.00788414
\(896\) 10.3596 0.346089
\(897\) 3.67672 0.122762
\(898\) −6.82232 −0.227664
\(899\) 0 0
\(900\) −38.7040 −1.29013
\(901\) 9.08185 0.302560
\(902\) 5.93530 0.197624
\(903\) −26.3384 −0.876486
\(904\) 15.3948 0.512022
\(905\) 6.43065 0.213762
\(906\) 4.39473 0.146005
\(907\) 16.4830 0.547310 0.273655 0.961828i \(-0.411767\pi\)
0.273655 + 0.961828i \(0.411767\pi\)
\(908\) 14.7258 0.488694
\(909\) 95.1621 3.15633
\(910\) −3.24924 −0.107711
\(911\) 44.8070 1.48452 0.742262 0.670110i \(-0.233753\pi\)
0.742262 + 0.670110i \(0.233753\pi\)
\(912\) −20.0670 −0.664485
\(913\) −31.2519 −1.03429
\(914\) 8.55455 0.282959
\(915\) 124.177 4.10517
\(916\) −23.9684 −0.791940
\(917\) −6.25896 −0.206689
\(918\) 4.39945 0.145203
\(919\) −10.3568 −0.341640 −0.170820 0.985302i \(-0.554642\pi\)
−0.170820 + 0.985302i \(0.554642\pi\)
\(920\) 1.79120 0.0590541
\(921\) −7.66289 −0.252501
\(922\) −13.4750 −0.443776
\(923\) 4.82163 0.158706
\(924\) 14.2846 0.469929
\(925\) 12.0838 0.397314
\(926\) −2.31745 −0.0761561
\(927\) 43.3658 1.42432
\(928\) −12.2427 −0.401885
\(929\) 44.0624 1.44564 0.722820 0.691037i \(-0.242846\pi\)
0.722820 + 0.691037i \(0.242846\pi\)
\(930\) 0 0
\(931\) −12.3474 −0.404671
\(932\) −23.8643 −0.781701
\(933\) −15.9502 −0.522187
\(934\) 13.4955 0.441586
\(935\) 13.1913 0.431401
\(936\) −21.0272 −0.687296
\(937\) −34.5669 −1.12925 −0.564626 0.825347i \(-0.690980\pi\)
−0.564626 + 0.825347i \(0.690980\pi\)
\(938\) 2.44818 0.0799358
\(939\) 77.1799 2.51867
\(940\) 44.4223 1.44890
\(941\) −22.1491 −0.722039 −0.361020 0.932558i \(-0.617571\pi\)
−0.361020 + 0.932558i \(0.617571\pi\)
\(942\) 8.85064 0.288370
\(943\) 3.07173 0.100029
\(944\) −39.3363 −1.28029
\(945\) 22.0727 0.718025
\(946\) 7.18806 0.233704
\(947\) −28.0826 −0.912560 −0.456280 0.889836i \(-0.650819\pi\)
−0.456280 + 0.889836i \(0.650819\pi\)
\(948\) −18.7181 −0.607936
\(949\) 41.2661 1.33956
\(950\) 2.85868 0.0927479
\(951\) −31.0746 −1.00766
\(952\) −2.69008 −0.0871861
\(953\) 7.66676 0.248351 0.124175 0.992260i \(-0.460371\pi\)
0.124175 + 0.992260i \(0.460371\pi\)
\(954\) −9.39455 −0.304160
\(955\) −15.8821 −0.513932
\(956\) 47.7092 1.54302
\(957\) −22.2235 −0.718382
\(958\) 2.64458 0.0854426
\(959\) −12.7750 −0.412525
\(960\) 44.6168 1.44000
\(961\) 0 0
\(962\) 3.17789 0.102459
\(963\) −65.2657 −2.10316
\(964\) −4.43037 −0.142693
\(965\) −6.34391 −0.204218
\(966\) −0.486571 −0.0156552
\(967\) −1.85036 −0.0595037 −0.0297518 0.999557i \(-0.509472\pi\)
−0.0297518 + 0.999557i \(0.509472\pi\)
\(968\) 6.93211 0.222807
\(969\) 11.1836 0.359269
\(970\) 3.56606 0.114499
\(971\) 49.3715 1.58441 0.792203 0.610258i \(-0.208934\pi\)
0.792203 + 0.610258i \(0.208934\pi\)
\(972\) −18.3384 −0.588204
\(973\) 16.6885 0.535010
\(974\) 8.79715 0.281879
\(975\) −31.9278 −1.02251
\(976\) −47.2639 −1.51288
\(977\) −35.6224 −1.13966 −0.569831 0.821762i \(-0.692992\pi\)
−0.569831 + 0.821762i \(0.692992\pi\)
\(978\) −3.18044 −0.101699
\(979\) −5.49340 −0.175570
\(980\) 32.5215 1.03886
\(981\) −3.39511 −0.108397
\(982\) −13.9554 −0.445335
\(983\) −6.38359 −0.203605 −0.101802 0.994805i \(-0.532461\pi\)
−0.101802 + 0.994805i \(0.532461\pi\)
\(984\) −27.3793 −0.872821
\(985\) −17.4699 −0.556637
\(986\) 2.02590 0.0645177
\(987\) −24.9284 −0.793481
\(988\) −11.4226 −0.363400
\(989\) 3.72009 0.118292
\(990\) −13.6454 −0.433681
\(991\) −44.2919 −1.40698 −0.703489 0.710706i \(-0.748376\pi\)
−0.703489 + 0.710706i \(0.748376\pi\)
\(992\) 0 0
\(993\) −56.8463 −1.80396
\(994\) −0.638086 −0.0202389
\(995\) 20.5984 0.653014
\(996\) 69.7855 2.21124
\(997\) 5.32316 0.168586 0.0842931 0.996441i \(-0.473137\pi\)
0.0842931 + 0.996441i \(0.473137\pi\)
\(998\) −8.31281 −0.263137
\(999\) −21.5880 −0.683013
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.i.1.4 8
3.2 odd 2 8649.2.a.bf.1.5 8
31.2 even 5 961.2.d.p.531.2 16
31.3 odd 30 961.2.g.n.846.1 16
31.4 even 5 961.2.d.o.388.3 16
31.5 even 3 961.2.c.j.521.4 16
31.6 odd 6 961.2.c.i.439.4 16
31.7 even 15 961.2.g.k.235.2 16
31.8 even 5 961.2.d.o.374.3 16
31.9 even 15 961.2.g.k.732.2 16
31.10 even 15 961.2.g.t.844.1 16
31.11 odd 30 961.2.g.l.338.2 16
31.12 odd 30 961.2.g.m.547.1 16
31.13 odd 30 961.2.g.m.448.1 16
31.14 even 15 31.2.g.a.10.2 16
31.15 odd 10 961.2.d.q.628.2 16
31.16 even 5 961.2.d.p.628.2 16
31.17 odd 30 961.2.g.l.816.2 16
31.18 even 15 961.2.g.s.448.1 16
31.19 even 15 961.2.g.s.547.1 16
31.20 even 15 31.2.g.a.28.2 yes 16
31.21 odd 30 961.2.g.n.844.1 16
31.22 odd 30 961.2.g.j.732.2 16
31.23 odd 10 961.2.d.n.374.3 16
31.24 odd 30 961.2.g.j.235.2 16
31.25 even 3 961.2.c.j.439.4 16
31.26 odd 6 961.2.c.i.521.4 16
31.27 odd 10 961.2.d.n.388.3 16
31.28 even 15 961.2.g.t.846.1 16
31.29 odd 10 961.2.d.q.531.2 16
31.30 odd 2 961.2.a.j.1.4 8
93.14 odd 30 279.2.y.c.10.1 16
93.20 odd 30 279.2.y.c.28.1 16
93.92 even 2 8649.2.a.be.1.5 8
124.51 odd 30 496.2.bg.c.369.1 16
124.107 odd 30 496.2.bg.c.289.1 16
155.14 even 30 775.2.bl.a.351.1 16
155.82 odd 60 775.2.ck.a.524.2 32
155.107 odd 60 775.2.ck.a.599.3 32
155.113 odd 60 775.2.ck.a.524.3 32
155.138 odd 60 775.2.ck.a.599.2 32
155.144 even 30 775.2.bl.a.276.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.2 16 31.14 even 15
31.2.g.a.28.2 yes 16 31.20 even 15
279.2.y.c.10.1 16 93.14 odd 30
279.2.y.c.28.1 16 93.20 odd 30
496.2.bg.c.289.1 16 124.107 odd 30
496.2.bg.c.369.1 16 124.51 odd 30
775.2.bl.a.276.1 16 155.144 even 30
775.2.bl.a.351.1 16 155.14 even 30
775.2.ck.a.524.2 32 155.82 odd 60
775.2.ck.a.524.3 32 155.113 odd 60
775.2.ck.a.599.2 32 155.138 odd 60
775.2.ck.a.599.3 32 155.107 odd 60
961.2.a.i.1.4 8 1.1 even 1 trivial
961.2.a.j.1.4 8 31.30 odd 2
961.2.c.i.439.4 16 31.6 odd 6
961.2.c.i.521.4 16 31.26 odd 6
961.2.c.j.439.4 16 31.25 even 3
961.2.c.j.521.4 16 31.5 even 3
961.2.d.n.374.3 16 31.23 odd 10
961.2.d.n.388.3 16 31.27 odd 10
961.2.d.o.374.3 16 31.8 even 5
961.2.d.o.388.3 16 31.4 even 5
961.2.d.p.531.2 16 31.2 even 5
961.2.d.p.628.2 16 31.16 even 5
961.2.d.q.531.2 16 31.29 odd 10
961.2.d.q.628.2 16 31.15 odd 10
961.2.g.j.235.2 16 31.24 odd 30
961.2.g.j.732.2 16 31.22 odd 30
961.2.g.k.235.2 16 31.7 even 15
961.2.g.k.732.2 16 31.9 even 15
961.2.g.l.338.2 16 31.11 odd 30
961.2.g.l.816.2 16 31.17 odd 30
961.2.g.m.448.1 16 31.13 odd 30
961.2.g.m.547.1 16 31.12 odd 30
961.2.g.n.844.1 16 31.21 odd 30
961.2.g.n.846.1 16 31.3 odd 30
961.2.g.s.448.1 16 31.18 even 15
961.2.g.s.547.1 16 31.19 even 15
961.2.g.t.844.1 16 31.10 even 15
961.2.g.t.846.1 16 31.28 even 15
8649.2.a.be.1.5 8 93.92 even 2
8649.2.a.bf.1.5 8 3.2 odd 2