Properties

Label 961.2.d.n.374.3
Level $961$
Weight $2$
Character 961.374
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,-9,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 374.3
Root \(-2.52368i\) of defining polynomial
Character \(\chi\) \(=\) 961.374
Dual form 961.2.d.n.388.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.284315 - 0.206567i) q^{2} +(-2.34072 + 1.70063i) q^{3} +(-0.579869 - 1.78465i) q^{4} +2.97323 q^{5} +1.01680 q^{6} +(-0.334395 - 1.02916i) q^{7} +(-0.420982 + 1.29565i) q^{8} +(1.65977 - 5.10826i) q^{9} +(-0.845333 - 0.614171i) q^{10} +(0.751335 + 2.31237i) q^{11} +(4.39235 + 3.19123i) q^{12} +(2.32483 - 1.68909i) q^{13} +(-0.117517 + 0.361681i) q^{14} +(-6.95951 + 5.05638i) q^{15} +(-2.64890 + 1.92454i) q^{16} +(0.563883 - 1.73545i) q^{17} +(-1.52709 + 1.10950i) q^{18} +(-1.71372 - 1.24509i) q^{19} +(-1.72408 - 5.30618i) q^{20} +(2.53296 + 1.84030i) q^{21} +(0.264043 - 0.812642i) q^{22} +(0.136652 - 0.420572i) q^{23} +(-1.21802 - 3.74869i) q^{24} +3.84010 q^{25} -1.00989 q^{26} +(2.11998 + 6.52462i) q^{27} +(-1.64279 + 1.19356i) q^{28} +(-2.55579 - 1.85689i) q^{29} +3.02317 q^{30} +3.87532 q^{32} +(-5.69116 - 4.13487i) q^{33} +(-0.518808 + 0.376936i) q^{34} +(-0.994234 - 3.05994i) q^{35} -10.0789 q^{36} -3.14675 q^{37} +(0.230042 + 0.707995i) q^{38} +(-2.56926 + 7.90738i) q^{39} +(-1.25168 + 3.85226i) q^{40} +(5.61962 + 4.08290i) q^{41} +(-0.340012 - 1.04645i) q^{42} +(-6.80576 - 4.94467i) q^{43} +(3.69110 - 2.68174i) q^{44} +(4.93489 - 15.1880i) q^{45} +(-0.125728 + 0.0913471i) q^{46} +(6.44144 - 4.67998i) q^{47} +(2.92741 - 9.00963i) q^{48} +(4.71576 - 3.42620i) q^{49} +(-1.09180 - 0.793236i) q^{50} +(1.63148 + 5.02118i) q^{51} +(-4.36254 - 3.16957i) q^{52} +(1.53798 - 4.73341i) q^{53} +(0.745029 - 2.29296i) q^{54} +(2.23389 + 6.87521i) q^{55} +1.47421 q^{56} +6.12878 q^{57} +(0.343078 + 1.05588i) q^{58} +(9.71948 - 7.06161i) q^{59} +(13.0595 + 9.48827i) q^{60} +14.4351 q^{61} -5.81225 q^{63} +(4.19600 + 3.04857i) q^{64} +(6.91226 - 5.02205i) q^{65} +(0.763955 + 2.35121i) q^{66} -6.43759 q^{67} -3.42416 q^{68} +(0.395375 + 1.21684i) q^{69} +(-0.349406 + 1.07536i) q^{70} +(0.518492 - 1.59575i) q^{71} +(5.91977 + 4.30097i) q^{72} +(-4.43754 - 13.6573i) q^{73} +(0.894668 + 0.650014i) q^{74} +(-8.98860 + 6.53060i) q^{75} +(-1.22832 + 3.78038i) q^{76} +(2.12856 - 1.54649i) q^{77} +(2.36388 - 1.71746i) q^{78} +(1.06538 - 3.27890i) q^{79} +(-7.87580 + 5.72210i) q^{80} +(-3.02226 - 2.19580i) q^{81} +(-0.754352 - 2.32166i) q^{82} +(10.3988 + 7.55516i) q^{83} +(1.81552 - 5.58758i) q^{84} +(1.67655 - 5.15991i) q^{85} +(0.913573 + 2.81169i) q^{86} +9.14030 q^{87} -3.31232 q^{88} +(-0.698188 - 2.14880i) q^{89} +(-4.54040 + 3.29880i) q^{90} +(-2.51576 - 1.82781i) q^{91} -0.829816 q^{92} -2.79812 q^{94} +(-5.09528 - 3.70194i) q^{95} +(-9.07105 + 6.59050i) q^{96} +(1.05463 + 3.24582i) q^{97} -2.04850 q^{98} +13.0592 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 9 q^{3} - 14 q^{4} + 6 q^{5} + 22 q^{6} + 11 q^{7} + 17 q^{8} + 5 q^{9} + 19 q^{10} - 14 q^{11} - 5 q^{12} + q^{13} + 27 q^{14} - 14 q^{15} - 2 q^{16} + 3 q^{17} - 9 q^{18} + 13 q^{19}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.284315 0.206567i −0.201041 0.146065i 0.482710 0.875780i \(-0.339653\pi\)
−0.683751 + 0.729715i \(0.739653\pi\)
\(3\) −2.34072 + 1.70063i −1.35142 + 0.981862i −0.352477 + 0.935820i \(0.614661\pi\)
−0.998940 + 0.0460413i \(0.985339\pi\)
\(4\) −0.579869 1.78465i −0.289934 0.892327i
\(5\) 2.97323 1.32967 0.664834 0.746991i \(-0.268502\pi\)
0.664834 + 0.746991i \(0.268502\pi\)
\(6\) 1.01680 0.415106
\(7\) −0.334395 1.02916i −0.126390 0.388987i 0.867762 0.496980i \(-0.165558\pi\)
−0.994152 + 0.107993i \(0.965558\pi\)
\(8\) −0.420982 + 1.29565i −0.148840 + 0.458081i
\(9\) 1.65977 5.10826i 0.553258 1.70275i
\(10\) −0.845333 0.614171i −0.267318 0.194218i
\(11\) 0.751335 + 2.31237i 0.226536 + 0.697206i 0.998132 + 0.0610932i \(0.0194587\pi\)
−0.771596 + 0.636113i \(0.780541\pi\)
\(12\) 4.39235 + 3.19123i 1.26796 + 0.921229i
\(13\) 2.32483 1.68909i 0.644793 0.468469i −0.216701 0.976238i \(-0.569530\pi\)
0.861493 + 0.507769i \(0.169530\pi\)
\(14\) −0.117517 + 0.361681i −0.0314078 + 0.0966634i
\(15\) −6.95951 + 5.05638i −1.79694 + 1.30555i
\(16\) −2.64890 + 1.92454i −0.662226 + 0.481135i
\(17\) 0.563883 1.73545i 0.136762 0.420910i −0.859098 0.511811i \(-0.828975\pi\)
0.995860 + 0.0909014i \(0.0289748\pi\)
\(18\) −1.52709 + 1.10950i −0.359940 + 0.261511i
\(19\) −1.71372 1.24509i −0.393154 0.285643i 0.373593 0.927593i \(-0.378126\pi\)
−0.766747 + 0.641950i \(0.778126\pi\)
\(20\) −1.72408 5.30618i −0.385517 1.18650i
\(21\) 2.53296 + 1.84030i 0.552736 + 0.401586i
\(22\) 0.264043 0.812642i 0.0562942 0.173256i
\(23\) 0.136652 0.420572i 0.0284939 0.0876953i −0.935798 0.352536i \(-0.885319\pi\)
0.964292 + 0.264841i \(0.0853194\pi\)
\(24\) −1.21802 3.74869i −0.248628 0.765198i
\(25\) 3.84010 0.768019
\(26\) −1.00989 −0.198057
\(27\) 2.11998 + 6.52462i 0.407990 + 1.25566i
\(28\) −1.64279 + 1.19356i −0.310459 + 0.225561i
\(29\) −2.55579 1.85689i −0.474599 0.344816i 0.324632 0.945840i \(-0.394760\pi\)
−0.799231 + 0.601024i \(0.794760\pi\)
\(30\) 3.02317 0.551953
\(31\) 0 0
\(32\) 3.87532 0.685067
\(33\) −5.69116 4.13487i −0.990704 0.719789i
\(34\) −0.518808 + 0.376936i −0.0889748 + 0.0646440i
\(35\) −0.994234 3.05994i −0.168056 0.517224i
\(36\) −10.0789 −1.67982
\(37\) −3.14675 −0.517323 −0.258661 0.965968i \(-0.583281\pi\)
−0.258661 + 0.965968i \(0.583281\pi\)
\(38\) 0.230042 + 0.707995i 0.0373177 + 0.114852i
\(39\) −2.56926 + 7.90738i −0.411412 + 1.26619i
\(40\) −1.25168 + 3.85226i −0.197907 + 0.609096i
\(41\) 5.61962 + 4.08290i 0.877638 + 0.637641i 0.932625 0.360846i \(-0.117512\pi\)
−0.0549877 + 0.998487i \(0.517512\pi\)
\(42\) −0.340012 1.04645i −0.0524650 0.161471i
\(43\) −6.80576 4.94467i −1.03787 0.754055i −0.0680000 0.997685i \(-0.521662\pi\)
−0.969868 + 0.243630i \(0.921662\pi\)
\(44\) 3.69110 2.68174i 0.556455 0.404288i
\(45\) 4.93489 15.1880i 0.735649 2.26410i
\(46\) −0.125728 + 0.0913471i −0.0185377 + 0.0134684i
\(47\) 6.44144 4.67998i 0.939580 0.682645i −0.00873953 0.999962i \(-0.502782\pi\)
0.948320 + 0.317317i \(0.102782\pi\)
\(48\) 2.92741 9.00963i 0.422535 1.30043i
\(49\) 4.71576 3.42620i 0.673680 0.489457i
\(50\) −1.09180 0.793236i −0.154403 0.112181i
\(51\) 1.63148 + 5.02118i 0.228453 + 0.703105i
\(52\) −4.36254 3.16957i −0.604975 0.439540i
\(53\) 1.53798 4.73341i 0.211257 0.650183i −0.788141 0.615495i \(-0.788956\pi\)
0.999398 0.0346884i \(-0.0110439\pi\)
\(54\) 0.745029 2.29296i 0.101386 0.312033i
\(55\) 2.23389 + 6.87521i 0.301218 + 0.927053i
\(56\) 1.47421 0.196999
\(57\) 6.12878 0.811777
\(58\) 0.343078 + 1.05588i 0.0450483 + 0.138644i
\(59\) 9.71948 7.06161i 1.26537 0.919344i 0.266360 0.963874i \(-0.414179\pi\)
0.999008 + 0.0445297i \(0.0141789\pi\)
\(60\) 13.0595 + 9.48827i 1.68597 + 1.22493i
\(61\) 14.4351 1.84823 0.924115 0.382115i \(-0.124804\pi\)
0.924115 + 0.382115i \(0.124804\pi\)
\(62\) 0 0
\(63\) −5.81225 −0.732274
\(64\) 4.19600 + 3.04857i 0.524499 + 0.381071i
\(65\) 6.91226 5.02205i 0.857361 0.622909i
\(66\) 0.763955 + 2.35121i 0.0940363 + 0.289414i
\(67\) −6.43759 −0.786476 −0.393238 0.919437i \(-0.628645\pi\)
−0.393238 + 0.919437i \(0.628645\pi\)
\(68\) −3.42416 −0.415241
\(69\) 0.395375 + 1.21684i 0.0475975 + 0.146490i
\(70\) −0.349406 + 1.07536i −0.0417620 + 0.128530i
\(71\) 0.518492 1.59575i 0.0615337 0.189381i −0.915564 0.402172i \(-0.868255\pi\)
0.977098 + 0.212791i \(0.0682553\pi\)
\(72\) 5.91977 + 4.30097i 0.697652 + 0.506874i
\(73\) −4.43754 13.6573i −0.519374 1.59847i −0.775179 0.631741i \(-0.782341\pi\)
0.255805 0.966728i \(-0.417659\pi\)
\(74\) 0.894668 + 0.650014i 0.104003 + 0.0755626i
\(75\) −8.98860 + 6.53060i −1.03791 + 0.754089i
\(76\) −1.22832 + 3.78038i −0.140898 + 0.433640i
\(77\) 2.12856 1.54649i 0.242572 0.176239i
\(78\) 2.36388 1.71746i 0.267657 0.194464i
\(79\) 1.06538 3.27890i 0.119865 0.368906i −0.873066 0.487602i \(-0.837872\pi\)
0.992931 + 0.118697i \(0.0378716\pi\)
\(80\) −7.87580 + 5.72210i −0.880541 + 0.639751i
\(81\) −3.02226 2.19580i −0.335806 0.243977i
\(82\) −0.754352 2.32166i −0.0833042 0.256384i
\(83\) 10.3988 + 7.55516i 1.14142 + 0.829287i 0.987316 0.158768i \(-0.0507523\pi\)
0.154100 + 0.988055i \(0.450752\pi\)
\(84\) 1.81552 5.58758i 0.198089 0.609655i
\(85\) 1.67655 5.15991i 0.181848 0.559670i
\(86\) 0.913573 + 2.81169i 0.0985131 + 0.303192i
\(87\) 9.14030 0.979943
\(88\) −3.31232 −0.353094
\(89\) −0.698188 2.14880i −0.0740078 0.227773i 0.907209 0.420680i \(-0.138208\pi\)
−0.981217 + 0.192907i \(0.938208\pi\)
\(90\) −4.54040 + 3.29880i −0.478600 + 0.347724i
\(91\) −2.51576 1.82781i −0.263724 0.191606i
\(92\) −0.829816 −0.0865143
\(93\) 0 0
\(94\) −2.79812 −0.288604
\(95\) −5.09528 3.70194i −0.522765 0.379811i
\(96\) −9.07105 + 6.59050i −0.925810 + 0.672641i
\(97\) 1.05463 + 3.24582i 0.107082 + 0.329563i 0.990213 0.139562i \(-0.0445693\pi\)
−0.883132 + 0.469125i \(0.844569\pi\)
\(98\) −2.04850 −0.206930
\(99\) 13.0592 1.31250
\(100\) −2.22675 6.85324i −0.222675 0.685324i
\(101\) 5.47495 16.8502i 0.544778 1.67665i −0.176741 0.984257i \(-0.556555\pi\)
0.721518 0.692395i \(-0.243445\pi\)
\(102\) 0.573355 1.76460i 0.0567706 0.174722i
\(103\) −6.53188 4.74569i −0.643605 0.467607i 0.217482 0.976064i \(-0.430216\pi\)
−0.861087 + 0.508458i \(0.830216\pi\)
\(104\) 1.20976 + 3.72325i 0.118626 + 0.365094i
\(105\) 7.53106 + 5.47164i 0.734956 + 0.533977i
\(106\) −1.41503 + 1.02808i −0.137440 + 0.0998562i
\(107\) −3.75493 + 11.5565i −0.363002 + 1.11721i 0.588220 + 0.808701i \(0.299829\pi\)
−0.951223 + 0.308506i \(0.900171\pi\)
\(108\) 10.4149 7.56685i 1.00217 0.728121i
\(109\) 0.511381 0.371540i 0.0489815 0.0355871i −0.563025 0.826440i \(-0.690363\pi\)
0.612007 + 0.790853i \(0.290363\pi\)
\(110\) 0.785062 2.41617i 0.0748527 0.230373i
\(111\) 7.36567 5.35147i 0.699119 0.507939i
\(112\) 2.86645 + 2.08260i 0.270854 + 0.196787i
\(113\) −3.49200 10.7473i −0.328500 1.01102i −0.969836 0.243758i \(-0.921620\pi\)
0.641337 0.767260i \(-0.278380\pi\)
\(114\) −1.74250 1.26600i −0.163200 0.118572i
\(115\) 0.406298 1.25046i 0.0378875 0.116606i
\(116\) −1.83188 + 5.63796i −0.170086 + 0.523472i
\(117\) −4.76961 14.6794i −0.440951 1.35711i
\(118\) −4.22209 −0.388675
\(119\) −1.97463 −0.181014
\(120\) −3.62146 11.1457i −0.330593 1.01746i
\(121\) 4.11663 2.99091i 0.374239 0.271901i
\(122\) −4.10412 2.98182i −0.371570 0.269961i
\(123\) −20.0975 −1.81213
\(124\) 0 0
\(125\) −3.44866 −0.308458
\(126\) 1.65251 + 1.20062i 0.147217 + 0.106960i
\(127\) 0.0953072 0.0692447i 0.00845715 0.00614448i −0.583549 0.812078i \(-0.698336\pi\)
0.592006 + 0.805934i \(0.298336\pi\)
\(128\) −2.95833 9.10481i −0.261482 0.804759i
\(129\) 24.3395 2.14297
\(130\) −3.00265 −0.263350
\(131\) 1.78734 + 5.50087i 0.156161 + 0.480613i 0.998277 0.0586835i \(-0.0186903\pi\)
−0.842116 + 0.539296i \(0.818690\pi\)
\(132\) −4.07918 + 12.5544i −0.355047 + 1.09272i
\(133\) −0.708341 + 2.18005i −0.0614209 + 0.189034i
\(134\) 1.83030 + 1.32979i 0.158114 + 0.114877i
\(135\) 6.30318 + 19.3992i 0.542492 + 1.66962i
\(136\) 2.01116 + 1.46119i 0.172455 + 0.125296i
\(137\) 9.55079 6.93905i 0.815979 0.592843i −0.0995790 0.995030i \(-0.531750\pi\)
0.915558 + 0.402186i \(0.131750\pi\)
\(138\) 0.138947 0.427636i 0.0118280 0.0364028i
\(139\) −12.4767 + 9.06482i −1.05826 + 0.768868i −0.973765 0.227556i \(-0.926927\pi\)
−0.0844915 + 0.996424i \(0.526927\pi\)
\(140\) −4.88440 + 3.54873i −0.412807 + 0.299922i
\(141\) −7.11868 + 21.9091i −0.599501 + 1.84508i
\(142\) −0.477045 + 0.346593i −0.0400327 + 0.0290855i
\(143\) 5.65253 + 4.10680i 0.472688 + 0.343428i
\(144\) 5.43447 + 16.7256i 0.452872 + 1.39380i
\(145\) −7.59896 5.52097i −0.631060 0.458492i
\(146\) −1.55949 + 4.79963i −0.129065 + 0.397220i
\(147\) −5.21157 + 16.0396i −0.429843 + 1.32292i
\(148\) 1.82470 + 5.61586i 0.149990 + 0.461621i
\(149\) −11.9502 −0.979001 −0.489500 0.872003i \(-0.662821\pi\)
−0.489500 + 0.872003i \(0.662821\pi\)
\(150\) 3.90460 0.318809
\(151\) 1.33561 + 4.11059i 0.108691 + 0.334515i 0.990579 0.136943i \(-0.0437278\pi\)
−0.881888 + 0.471458i \(0.843728\pi\)
\(152\) 2.33465 1.69622i 0.189365 0.137582i
\(153\) −7.92923 5.76092i −0.641040 0.465743i
\(154\) −0.924636 −0.0745093
\(155\) 0 0
\(156\) 15.6018 1.24914
\(157\) 7.04204 + 5.11634i 0.562016 + 0.408328i 0.832196 0.554481i \(-0.187083\pi\)
−0.270180 + 0.962810i \(0.587083\pi\)
\(158\) −0.980216 + 0.712169i −0.0779818 + 0.0566571i
\(159\) 4.44982 + 13.6951i 0.352893 + 1.08609i
\(160\) 11.5222 0.910912
\(161\) −0.478533 −0.0377137
\(162\) 0.405693 + 1.24860i 0.0318743 + 0.0980989i
\(163\) 0.966575 2.97481i 0.0757080 0.233005i −0.906040 0.423192i \(-0.860909\pi\)
0.981748 + 0.190187i \(0.0609095\pi\)
\(164\) 4.02791 12.3966i 0.314527 0.968014i
\(165\) −16.9211 12.2939i −1.31731 0.957081i
\(166\) −1.39588 4.29609i −0.108342 0.333441i
\(167\) −10.8044 7.84983i −0.836067 0.607438i 0.0852022 0.996364i \(-0.472846\pi\)
−0.921269 + 0.388925i \(0.872846\pi\)
\(168\) −3.45071 + 2.50709i −0.266228 + 0.193426i
\(169\) −1.46540 + 4.51003i −0.112723 + 0.346925i
\(170\) −1.54253 + 1.12072i −0.118307 + 0.0859551i
\(171\) −9.20462 + 6.68755i −0.703895 + 0.511410i
\(172\) −4.87808 + 15.0132i −0.371950 + 1.14474i
\(173\) −15.4075 + 11.1942i −1.17141 + 0.851080i −0.991177 0.132543i \(-0.957686\pi\)
−0.180235 + 0.983624i \(0.557686\pi\)
\(174\) −2.59872 1.88808i −0.197009 0.143135i
\(175\) −1.28411 3.95208i −0.0970696 0.298749i
\(176\) −6.44047 4.67927i −0.485468 0.352713i
\(177\) −10.7414 + 33.0586i −0.807371 + 2.48483i
\(178\) −0.245366 + 0.755159i −0.0183910 + 0.0566016i
\(179\) 0.0245143 + 0.0754473i 0.00183229 + 0.00563919i 0.951968 0.306196i \(-0.0990563\pi\)
−0.950136 + 0.311835i \(0.899056\pi\)
\(180\) −29.9669 −2.23360
\(181\) −2.16285 −0.160763 −0.0803817 0.996764i \(-0.525614\pi\)
−0.0803817 + 0.996764i \(0.525614\pi\)
\(182\) 0.337704 + 1.03935i 0.0250323 + 0.0770415i
\(183\) −33.7886 + 24.5489i −2.49773 + 1.81471i
\(184\) 0.487386 + 0.354107i 0.0359306 + 0.0261051i
\(185\) −9.35601 −0.687868
\(186\) 0 0
\(187\) 4.43668 0.324442
\(188\) −12.0873 8.78195i −0.881559 0.640490i
\(189\) 6.00599 4.36361i 0.436871 0.317406i
\(190\) 0.683966 + 2.10503i 0.0496201 + 0.152715i
\(191\) −5.34169 −0.386511 −0.193256 0.981148i \(-0.561905\pi\)
−0.193256 + 0.981148i \(0.561905\pi\)
\(192\) −15.0062 −1.08298
\(193\) −0.659342 2.02925i −0.0474605 0.146068i 0.924518 0.381139i \(-0.124468\pi\)
−0.971978 + 0.235070i \(0.924468\pi\)
\(194\) 0.370632 1.14069i 0.0266098 0.0818966i
\(195\) −7.63901 + 23.5105i −0.547041 + 1.68362i
\(196\) −8.84911 6.42925i −0.632079 0.459232i
\(197\) 1.81570 + 5.58815i 0.129363 + 0.398139i 0.994671 0.103102i \(-0.0328769\pi\)
−0.865307 + 0.501241i \(0.832877\pi\)
\(198\) −3.71293 2.69760i −0.263867 0.191710i
\(199\) 5.60484 4.07215i 0.397317 0.288667i −0.371131 0.928581i \(-0.621030\pi\)
0.768447 + 0.639913i \(0.221030\pi\)
\(200\) −1.61661 + 4.97542i −0.114312 + 0.351815i
\(201\) 15.0686 10.9480i 1.06286 0.772211i
\(202\) −5.03729 + 3.65981i −0.354423 + 0.257503i
\(203\) −1.05640 + 3.25126i −0.0741447 + 0.228194i
\(204\) 8.01501 5.82325i 0.561163 0.407709i
\(205\) 16.7084 + 12.1394i 1.16697 + 0.847852i
\(206\) 0.876809 + 2.69854i 0.0610901 + 0.188016i
\(207\) −1.92158 1.39611i −0.133559 0.0970363i
\(208\) −2.90754 + 8.94847i −0.201601 + 0.620465i
\(209\) 1.59153 4.89823i 0.110089 0.338818i
\(210\) −1.01093 3.11133i −0.0697611 0.214702i
\(211\) 16.7087 1.15028 0.575139 0.818056i \(-0.304948\pi\)
0.575139 + 0.818056i \(0.304948\pi\)
\(212\) −9.33931 −0.641427
\(213\) 1.50015 + 4.61698i 0.102788 + 0.316350i
\(214\) 3.45476 2.51003i 0.236163 0.171582i
\(215\) −20.2351 14.7016i −1.38002 1.00264i
\(216\) −9.34610 −0.635921
\(217\) 0 0
\(218\) −0.222141 −0.0150453
\(219\) 33.6132 + 24.4214i 2.27137 + 1.65024i
\(220\) 10.9745 7.97344i 0.739901 0.537569i
\(221\) −1.62040 4.98709i −0.109000 0.335468i
\(222\) −3.19961 −0.214744
\(223\) 6.26156 0.419305 0.209653 0.977776i \(-0.432767\pi\)
0.209653 + 0.977776i \(0.432767\pi\)
\(224\) −1.29589 3.98834i −0.0865852 0.266482i
\(225\) 6.37369 19.6162i 0.424912 1.30775i
\(226\) −1.22720 + 3.77694i −0.0816322 + 0.251238i
\(227\) 6.34877 + 4.61265i 0.421383 + 0.306153i 0.778194 0.628024i \(-0.216136\pi\)
−0.356811 + 0.934177i \(0.616136\pi\)
\(228\) −3.55389 10.9378i −0.235362 0.724370i
\(229\) 10.3336 + 7.50777i 0.682861 + 0.496128i 0.874306 0.485376i \(-0.161317\pi\)
−0.191445 + 0.981503i \(0.561317\pi\)
\(230\) −0.373820 + 0.271596i −0.0246489 + 0.0179085i
\(231\) −2.35236 + 7.23982i −0.154774 + 0.476345i
\(232\) 3.48183 2.52969i 0.228593 0.166083i
\(233\) −10.2887 + 7.47514i −0.674032 + 0.489713i −0.871373 0.490622i \(-0.836770\pi\)
0.197340 + 0.980335i \(0.436770\pi\)
\(234\) −1.67620 + 5.15880i −0.109576 + 0.337241i
\(235\) 19.1519 13.9146i 1.24933 0.907692i
\(236\) −18.2386 13.2511i −1.18723 0.862572i
\(237\) 3.08246 + 9.48683i 0.200227 + 0.616236i
\(238\) 0.561415 + 0.407892i 0.0363912 + 0.0264397i
\(239\) 7.85664 24.1802i 0.508204 1.56409i −0.287114 0.957897i \(-0.592696\pi\)
0.795317 0.606193i \(-0.207304\pi\)
\(240\) 8.70385 26.7877i 0.561831 1.72914i
\(241\) −0.729583 2.24543i −0.0469966 0.144641i 0.924805 0.380443i \(-0.124228\pi\)
−0.971801 + 0.235802i \(0.924228\pi\)
\(242\) −1.78824 −0.114953
\(243\) −9.77268 −0.626918
\(244\) −8.37048 25.7617i −0.535865 1.64922i
\(245\) 14.0210 10.1869i 0.895772 0.650816i
\(246\) 5.71401 + 4.15147i 0.364312 + 0.264688i
\(247\) −6.08718 −0.387318
\(248\) 0 0
\(249\) −37.1893 −2.35677
\(250\) 0.980506 + 0.712379i 0.0620126 + 0.0450548i
\(251\) 1.90656 1.38520i 0.120341 0.0874328i −0.525987 0.850493i \(-0.676304\pi\)
0.646328 + 0.763060i \(0.276304\pi\)
\(252\) 3.37034 + 10.3728i 0.212312 + 0.653428i
\(253\) 1.07519 0.0675966
\(254\) −0.0414009 −0.00259772
\(255\) 4.85076 + 14.9291i 0.303767 + 0.934897i
\(256\) 2.16580 6.66565i 0.135363 0.416603i
\(257\) −8.03877 + 24.7408i −0.501445 + 1.54329i 0.305222 + 0.952281i \(0.401269\pi\)
−0.806666 + 0.591007i \(0.798731\pi\)
\(258\) −6.92007 5.02773i −0.430825 0.313013i
\(259\) 1.05226 + 3.23852i 0.0653842 + 0.201232i
\(260\) −12.9708 9.42386i −0.804417 0.584443i
\(261\) −13.7275 + 9.97363i −0.849712 + 0.617352i
\(262\) 0.628129 1.93318i 0.0388059 0.119432i
\(263\) 18.5552 13.4812i 1.14417 0.831285i 0.156471 0.987683i \(-0.449988\pi\)
0.987694 + 0.156398i \(0.0499881\pi\)
\(264\) 7.75322 5.63304i 0.477178 0.346690i
\(265\) 4.57276 14.0735i 0.280902 0.864529i
\(266\) 0.651718 0.473500i 0.0399594 0.0290322i
\(267\) 5.28859 + 3.84239i 0.323657 + 0.235150i
\(268\) 3.73296 + 11.4889i 0.228027 + 0.701794i
\(269\) −13.7916 10.0202i −0.840887 0.610940i 0.0817310 0.996654i \(-0.473955\pi\)
−0.922618 + 0.385714i \(0.873955\pi\)
\(270\) 2.21514 6.81751i 0.134809 0.414901i
\(271\) −2.23929 + 6.89184i −0.136027 + 0.418649i −0.995748 0.0921146i \(-0.970637\pi\)
0.859721 + 0.510764i \(0.170637\pi\)
\(272\) 1.84628 + 5.68227i 0.111947 + 0.344538i
\(273\) 8.99714 0.544531
\(274\) −4.14881 −0.250639
\(275\) 2.88520 + 8.87972i 0.173984 + 0.535467i
\(276\) 1.94237 1.41121i 0.116917 0.0849450i
\(277\) 12.2188 + 8.87748i 0.734157 + 0.533396i 0.890876 0.454247i \(-0.150092\pi\)
−0.156719 + 0.987643i \(0.550092\pi\)
\(278\) 5.41979 0.325058
\(279\) 0 0
\(280\) 4.38316 0.261944
\(281\) 2.01209 + 1.46187i 0.120031 + 0.0872078i 0.646181 0.763184i \(-0.276365\pi\)
−0.526150 + 0.850392i \(0.676365\pi\)
\(282\) 6.54963 4.75859i 0.390025 0.283370i
\(283\) −1.46052 4.49503i −0.0868192 0.267202i 0.898216 0.439554i \(-0.144863\pi\)
−0.985035 + 0.172352i \(0.944863\pi\)
\(284\) −3.14852 −0.186831
\(285\) 18.2223 1.07939
\(286\) −0.758769 2.33525i −0.0448670 0.138086i
\(287\) 2.32279 7.14881i 0.137110 0.421981i
\(288\) 6.43215 19.7961i 0.379018 1.16650i
\(289\) 11.0595 + 8.03516i 0.650556 + 0.472657i
\(290\) 1.02005 + 3.13939i 0.0598993 + 0.184351i
\(291\) −7.98856 5.80403i −0.468298 0.340238i
\(292\) −21.8004 + 15.8389i −1.27577 + 0.926903i
\(293\) −3.25979 + 10.0326i −0.190439 + 0.586110i −1.00000 0.000925815i \(-0.999705\pi\)
0.809561 + 0.587036i \(0.199705\pi\)
\(294\) 4.79497 3.48375i 0.279648 0.203177i
\(295\) 28.8982 20.9958i 1.68252 1.22242i
\(296\) 1.32473 4.07709i 0.0769981 0.236976i
\(297\) −13.4945 + 9.80435i −0.783032 + 0.568906i
\(298\) 3.39763 + 2.46852i 0.196819 + 0.142998i
\(299\) −0.392691 1.20858i −0.0227099 0.0698939i
\(300\) 16.8671 + 12.2546i 0.973820 + 0.707522i
\(301\) −2.81306 + 8.65771i −0.162142 + 0.499022i
\(302\) 0.469377 1.44459i 0.0270096 0.0831271i
\(303\) 15.8406 + 48.7524i 0.910020 + 2.80075i
\(304\) 6.93570 0.397790
\(305\) 42.9190 2.45753
\(306\) 1.06438 + 3.27583i 0.0608467 + 0.187267i
\(307\) −2.14268 + 1.55675i −0.122289 + 0.0888485i −0.647249 0.762279i \(-0.724081\pi\)
0.524959 + 0.851127i \(0.324081\pi\)
\(308\) −3.99424 2.90198i −0.227593 0.165356i
\(309\) 23.3600 1.32890
\(310\) 0 0
\(311\) 5.51283 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(312\) −9.16358 6.65773i −0.518786 0.376920i
\(313\) −21.5809 + 15.6794i −1.21982 + 0.886254i −0.996086 0.0883946i \(-0.971826\pi\)
−0.223739 + 0.974649i \(0.571826\pi\)
\(314\) −0.945290 2.90930i −0.0533458 0.164181i
\(315\) −17.2811 −0.973682
\(316\) −6.46949 −0.363937
\(317\) 3.31891 + 10.2146i 0.186409 + 0.573707i 0.999970 0.00777223i \(-0.00247400\pi\)
−0.813561 + 0.581480i \(0.802474\pi\)
\(318\) 1.56381 4.81291i 0.0876941 0.269895i
\(319\) 2.37357 7.30509i 0.132894 0.409007i
\(320\) 12.4757 + 9.06410i 0.697411 + 0.506698i
\(321\) −10.8641 33.4362i −0.606375 1.86623i
\(322\) 0.136054 + 0.0988491i 0.00758200 + 0.00550864i
\(323\) −3.12714 + 2.27200i −0.173998 + 0.126417i
\(324\) −2.16622 + 6.66695i −0.120346 + 0.370386i
\(325\) 8.92758 6.48627i 0.495213 0.359793i
\(326\) −0.889309 + 0.646121i −0.0492543 + 0.0357853i
\(327\) −0.565148 + 1.73935i −0.0312527 + 0.0961860i
\(328\) −7.65576 + 5.56224i −0.422719 + 0.307123i
\(329\) −6.97044 5.06432i −0.384293 0.279205i
\(330\) 2.27141 + 6.99069i 0.125037 + 0.384825i
\(331\) 15.8953 + 11.5486i 0.873682 + 0.634767i 0.931572 0.363556i \(-0.118437\pi\)
−0.0578904 + 0.998323i \(0.518437\pi\)
\(332\) 7.45341 22.9392i 0.409059 1.25895i
\(333\) −5.22289 + 16.0744i −0.286213 + 0.880872i
\(334\) 1.45033 + 4.46365i 0.0793584 + 0.244240i
\(335\) −19.1404 −1.04575
\(336\) −10.2513 −0.559254
\(337\) −5.92655 18.2401i −0.322840 0.993599i −0.972406 0.233294i \(-0.925050\pi\)
0.649566 0.760305i \(-0.274950\pi\)
\(338\) 1.34826 0.979565i 0.0733355 0.0532813i
\(339\) 26.4510 + 19.2178i 1.43662 + 1.04376i
\(340\) −10.1808 −0.552133
\(341\) 0 0
\(342\) 3.99844 0.216211
\(343\) −11.2313 8.15999i −0.606431 0.440598i
\(344\) 9.27166 6.73626i 0.499895 0.363195i
\(345\) 1.17554 + 3.61794i 0.0632889 + 0.194783i
\(346\) 6.69294 0.359815
\(347\) −10.6600 −0.572257 −0.286128 0.958191i \(-0.592368\pi\)
−0.286128 + 0.958191i \(0.592368\pi\)
\(348\) −5.30018 16.3123i −0.284119 0.874429i
\(349\) −5.77910 + 17.7862i −0.309348 + 0.952075i 0.668671 + 0.743559i \(0.266864\pi\)
−0.978019 + 0.208517i \(0.933136\pi\)
\(350\) −0.451278 + 1.38889i −0.0241218 + 0.0742393i
\(351\) 15.9493 + 11.5878i 0.851309 + 0.618513i
\(352\) 2.91166 + 8.96118i 0.155192 + 0.477632i
\(353\) −10.2440 7.44268i −0.545232 0.396134i 0.280793 0.959768i \(-0.409403\pi\)
−0.826024 + 0.563635i \(0.809403\pi\)
\(354\) 9.88273 7.18023i 0.525261 0.381625i
\(355\) 1.54160 4.74454i 0.0818194 0.251814i
\(356\) −3.43001 + 2.49205i −0.181790 + 0.132078i
\(357\) 4.62205 3.35812i 0.244625 0.177730i
\(358\) 0.00861512 0.0265146i 0.000455323 0.00140134i
\(359\) 18.3470 13.3299i 0.968317 0.703523i 0.0132495 0.999912i \(-0.495782\pi\)
0.955067 + 0.296389i \(0.0957824\pi\)
\(360\) 17.6008 + 12.7878i 0.927646 + 0.673974i
\(361\) −4.48474 13.8026i −0.236039 0.726453i
\(362\) 0.614931 + 0.446773i 0.0323200 + 0.0234819i
\(363\) −4.54945 + 14.0018i −0.238784 + 0.734903i
\(364\) −1.80319 + 5.54965i −0.0945129 + 0.290881i
\(365\) −13.1938 40.6064i −0.690596 2.12543i
\(366\) 14.6776 0.767210
\(367\) −8.71968 −0.455164 −0.227582 0.973759i \(-0.573082\pi\)
−0.227582 + 0.973759i \(0.573082\pi\)
\(368\) 0.447430 + 1.37705i 0.0233239 + 0.0717836i
\(369\) 30.1838 21.9298i 1.57130 1.14162i
\(370\) 2.66005 + 1.93264i 0.138290 + 0.100473i
\(371\) −5.38574 −0.279614
\(372\) 0 0
\(373\) 25.4134 1.31586 0.657928 0.753081i \(-0.271433\pi\)
0.657928 + 0.753081i \(0.271433\pi\)
\(374\) −1.26141 0.916471i −0.0652262 0.0473896i
\(375\) 8.07236 5.86491i 0.416855 0.302863i
\(376\) 3.35188 + 10.3160i 0.172860 + 0.532009i
\(377\) −9.07826 −0.467554
\(378\) −2.60897 −0.134191
\(379\) 6.82862 + 21.0163i 0.350763 + 1.07954i 0.958426 + 0.285342i \(0.0921071\pi\)
−0.607663 + 0.794195i \(0.707893\pi\)
\(380\) −3.65208 + 11.2399i −0.187348 + 0.576597i
\(381\) −0.105328 + 0.324165i −0.00539610 + 0.0166075i
\(382\) 1.51872 + 1.10342i 0.0777046 + 0.0564557i
\(383\) 8.23303 + 25.3386i 0.420688 + 1.29474i 0.907063 + 0.420994i \(0.138319\pi\)
−0.486375 + 0.873750i \(0.661681\pi\)
\(384\) 22.4086 + 16.2808i 1.14353 + 0.830825i
\(385\) 6.32871 4.59807i 0.322541 0.234340i
\(386\) −0.231714 + 0.713143i −0.0117939 + 0.0362980i
\(387\) −36.5547 + 26.5585i −1.85818 + 1.35005i
\(388\) 5.18112 3.76430i 0.263032 0.191104i
\(389\) 4.00333 12.3210i 0.202977 0.624699i −0.796813 0.604225i \(-0.793483\pi\)
0.999790 0.0204735i \(-0.00651738\pi\)
\(390\) 7.02837 5.10641i 0.355895 0.258573i
\(391\) −0.652828 0.474307i −0.0330149 0.0239868i
\(392\) 2.45391 + 7.55234i 0.123941 + 0.381451i
\(393\) −13.5386 9.83639i −0.682933 0.496180i
\(394\) 0.638096 1.96386i 0.0321468 0.0989377i
\(395\) 3.16762 9.74894i 0.159380 0.490522i
\(396\) −7.57264 23.3062i −0.380539 1.17118i
\(397\) −2.92725 −0.146915 −0.0734574 0.997298i \(-0.523403\pi\)
−0.0734574 + 0.997298i \(0.523403\pi\)
\(398\) −2.43471 −0.122041
\(399\) −2.04944 6.30752i −0.102600 0.315771i
\(400\) −10.1720 + 7.39042i −0.508602 + 0.369521i
\(401\) −9.93025 7.21475i −0.495893 0.360287i 0.311553 0.950229i \(-0.399151\pi\)
−0.807446 + 0.589942i \(0.799151\pi\)
\(402\) −6.54572 −0.326471
\(403\) 0 0
\(404\) −33.2464 −1.65407
\(405\) −8.98586 6.52861i −0.446511 0.324409i
\(406\) 0.971954 0.706166i 0.0482373 0.0350464i
\(407\) −2.36426 7.27645i −0.117192 0.360680i
\(408\) −7.19251 −0.356082
\(409\) 17.1972 0.850348 0.425174 0.905112i \(-0.360213\pi\)
0.425174 + 0.905112i \(0.360213\pi\)
\(410\) −2.24286 6.90282i −0.110767 0.340906i
\(411\) −10.5549 + 32.4848i −0.520637 + 1.60236i
\(412\) −4.68177 + 14.4090i −0.230654 + 0.709881i
\(413\) −10.5177 7.64156i −0.517542 0.376016i
\(414\) 0.257944 + 0.793869i 0.0126772 + 0.0390165i
\(415\) 30.9180 + 22.4632i 1.51770 + 1.10268i
\(416\) 9.00948 6.54577i 0.441726 0.320933i
\(417\) 13.7884 42.4365i 0.675223 2.07812i
\(418\) −1.46431 + 1.06388i −0.0716217 + 0.0520362i
\(419\) −18.7251 + 13.6046i −0.914782 + 0.664628i −0.942220 0.334996i \(-0.891265\pi\)
0.0274378 + 0.999624i \(0.491265\pi\)
\(420\) 5.39794 16.6132i 0.263393 0.810639i
\(421\) −23.6089 + 17.1529i −1.15063 + 0.835981i −0.988564 0.150800i \(-0.951815\pi\)
−0.162064 + 0.986780i \(0.551815\pi\)
\(422\) −4.75054 3.45147i −0.231253 0.168015i
\(423\) −13.2152 40.6722i −0.642545 1.97755i
\(424\) 5.48537 + 3.98536i 0.266393 + 0.193546i
\(425\) 2.16537 6.66431i 0.105036 0.323267i
\(426\) 0.527201 1.62256i 0.0255430 0.0786132i
\(427\) −4.82704 14.8561i −0.233597 0.718937i
\(428\) 22.8017 1.10216
\(429\) −20.2152 −0.975998
\(430\) 2.71626 + 8.35979i 0.130990 + 0.403145i
\(431\) −24.5555 + 17.8406i −1.18279 + 0.859351i −0.992484 0.122373i \(-0.960950\pi\)
−0.190311 + 0.981724i \(0.560950\pi\)
\(432\) −18.1725 13.2031i −0.874326 0.635235i
\(433\) 13.8400 0.665107 0.332553 0.943084i \(-0.392090\pi\)
0.332553 + 0.943084i \(0.392090\pi\)
\(434\) 0 0
\(435\) 27.1762 1.30300
\(436\) −0.959605 0.697194i −0.0459567 0.0333895i
\(437\) −0.757834 + 0.550598i −0.0362521 + 0.0263387i
\(438\) −4.51207 13.8867i −0.215595 0.663534i
\(439\) 12.9201 0.616644 0.308322 0.951282i \(-0.400233\pi\)
0.308322 + 0.951282i \(0.400233\pi\)
\(440\) −9.84829 −0.469499
\(441\) −9.67482 29.7760i −0.460706 1.41791i
\(442\) −0.569463 + 1.75263i −0.0270866 + 0.0833639i
\(443\) 7.34171 22.5955i 0.348815 1.07354i −0.610695 0.791866i \(-0.709110\pi\)
0.959510 0.281676i \(-0.0908903\pi\)
\(444\) −13.8216 10.0420i −0.655946 0.476573i
\(445\) −2.07587 6.38888i −0.0984059 0.302862i
\(446\) −1.78026 1.29343i −0.0842975 0.0612458i
\(447\) 27.9722 20.3230i 1.32304 0.961243i
\(448\) 1.73435 5.33779i 0.0819405 0.252187i
\(449\) −15.7054 + 11.4106i −0.741181 + 0.538500i −0.893081 0.449896i \(-0.851461\pi\)
0.151900 + 0.988396i \(0.451461\pi\)
\(450\) −5.86419 + 4.26058i −0.276440 + 0.200846i
\(451\) −5.21895 + 16.0623i −0.245751 + 0.756343i
\(452\) −17.1552 + 12.4640i −0.806914 + 0.586258i
\(453\) −10.1169 7.35036i −0.475334 0.345350i
\(454\) −0.852229 2.62289i −0.0399971 0.123098i
\(455\) −7.47994 5.43449i −0.350665 0.254773i
\(456\) −2.58011 + 7.94076i −0.120825 + 0.371860i
\(457\) −7.52208 + 23.1506i −0.351868 + 1.08294i 0.605935 + 0.795514i \(0.292799\pi\)
−0.957803 + 0.287424i \(0.907201\pi\)
\(458\) −1.38713 4.26914i −0.0648162 0.199484i
\(459\) 12.5186 0.584319
\(460\) −2.46723 −0.115035
\(461\) 11.8487 + 36.4665i 0.551848 + 1.69841i 0.704126 + 0.710075i \(0.251339\pi\)
−0.152279 + 0.988338i \(0.548661\pi\)
\(462\) 2.16432 1.57247i 0.100693 0.0731578i
\(463\) −5.33489 3.87603i −0.247934 0.180134i 0.456877 0.889530i \(-0.348968\pi\)
−0.704810 + 0.709396i \(0.748968\pi\)
\(464\) 10.3437 0.480195
\(465\) 0 0
\(466\) 4.46933 0.207038
\(467\) −31.0674 22.5718i −1.43763 1.04450i −0.988532 0.151014i \(-0.951746\pi\)
−0.449096 0.893484i \(-0.648254\pi\)
\(468\) −23.4318 + 17.0242i −1.08314 + 0.786944i
\(469\) 2.15270 + 6.62532i 0.0994024 + 0.305929i
\(470\) −8.31947 −0.383748
\(471\) −25.1845 −1.16044
\(472\) 5.05765 + 15.5658i 0.232797 + 0.716476i
\(473\) 6.32051 19.4525i 0.290617 0.894429i
\(474\) 1.08328 3.33398i 0.0497565 0.153135i
\(475\) −6.58085 4.78126i −0.301950 0.219379i
\(476\) 1.14502 + 3.52402i 0.0524821 + 0.161523i
\(477\) −21.6268 15.7128i −0.990221 0.719438i
\(478\) −7.22859 + 5.25188i −0.330628 + 0.240215i
\(479\) 2.32540 7.15684i 0.106250 0.327005i −0.883772 0.467918i \(-0.845004\pi\)
0.990022 + 0.140914i \(0.0450041\pi\)
\(480\) −26.9703 + 19.5951i −1.23102 + 0.894389i
\(481\) −7.31567 + 5.31515i −0.333566 + 0.242350i
\(482\) −0.256399 + 0.789116i −0.0116787 + 0.0359432i
\(483\) 1.12011 0.813810i 0.0509669 0.0370296i
\(484\) −7.72484 5.61243i −0.351129 0.255110i
\(485\) 3.13566 + 9.65058i 0.142383 + 0.438210i
\(486\) 2.77852 + 2.01871i 0.126036 + 0.0915706i
\(487\) −7.73539 + 23.8071i −0.350524 + 1.07880i 0.608035 + 0.793910i \(0.291958\pi\)
−0.958560 + 0.284892i \(0.908042\pi\)
\(488\) −6.07693 + 18.7029i −0.275090 + 0.846639i
\(489\) 2.79658 + 8.60700i 0.126466 + 0.389222i
\(490\) −6.09066 −0.275148
\(491\) 39.7100 1.79209 0.896044 0.443964i \(-0.146428\pi\)
0.896044 + 0.443964i \(0.146428\pi\)
\(492\) 11.6539 + 35.8670i 0.525399 + 1.61701i
\(493\) −4.66372 + 3.38839i −0.210044 + 0.152606i
\(494\) 1.73068 + 1.25741i 0.0778668 + 0.0565735i
\(495\) 38.8281 1.74519
\(496\) 0 0
\(497\) −1.81567 −0.0814440
\(498\) 10.5735 + 7.68207i 0.473808 + 0.344242i
\(499\) −19.1366 + 13.9035i −0.856670 + 0.622407i −0.926977 0.375118i \(-0.877602\pi\)
0.0703072 + 0.997525i \(0.477602\pi\)
\(500\) 1.99977 + 6.15467i 0.0894325 + 0.275245i
\(501\) 38.6397 1.72630
\(502\) −0.828199 −0.0369643
\(503\) −6.23795 19.1984i −0.278136 0.856016i −0.988372 0.152052i \(-0.951412\pi\)
0.710236 0.703964i \(-0.248588\pi\)
\(504\) 2.44685 7.53063i 0.108991 0.335441i
\(505\) 16.2783 50.0994i 0.724374 2.22939i
\(506\) −0.305693 0.222099i −0.0135897 0.00987349i
\(507\) −4.23982 13.0488i −0.188297 0.579519i
\(508\) −0.178843 0.129937i −0.00793490 0.00576504i
\(509\) 9.57796 6.95880i 0.424536 0.308443i −0.354925 0.934895i \(-0.615493\pi\)
0.779460 + 0.626452i \(0.215493\pi\)
\(510\) 1.70472 5.24658i 0.0754861 0.232322i
\(511\) −12.5717 + 9.13389i −0.556140 + 0.404060i
\(512\) −17.4827 + 12.7019i −0.772633 + 0.561351i
\(513\) 4.49070 13.8209i 0.198269 0.610209i
\(514\) 7.39617 5.37363i 0.326231 0.237021i
\(515\) −19.4208 14.1100i −0.855782 0.621762i
\(516\) −14.1137 43.4375i −0.621321 1.91223i
\(517\) 15.6615 + 11.3788i 0.688793 + 0.500437i
\(518\) 0.369798 1.13812i 0.0162480 0.0500062i
\(519\) 17.0275 52.4051i 0.747422 2.30033i
\(520\) 3.59688 + 11.0701i 0.157734 + 0.485454i
\(521\) −32.7484 −1.43474 −0.717368 0.696695i \(-0.754653\pi\)
−0.717368 + 0.696695i \(0.754653\pi\)
\(522\) 5.96316 0.261000
\(523\) 9.11682 + 28.0587i 0.398651 + 1.22692i 0.926082 + 0.377323i \(0.123155\pi\)
−0.527431 + 0.849598i \(0.676845\pi\)
\(524\) 8.78071 6.37956i 0.383587 0.278692i
\(525\) 9.72679 + 7.06693i 0.424512 + 0.308426i
\(526\) −8.06030 −0.351446
\(527\) 0 0
\(528\) 23.0331 1.00239
\(529\) 18.4492 + 13.4041i 0.802138 + 0.582788i
\(530\) −4.20722 + 3.05673i −0.182750 + 0.132776i
\(531\) −19.9404 61.3703i −0.865340 2.66324i
\(532\) 4.30138 0.186488
\(533\) 19.9611 0.864610
\(534\) −0.709916 2.18490i −0.0307211 0.0945497i
\(535\) −11.1643 + 34.3600i −0.482673 + 1.48551i
\(536\) 2.71011 8.34085i 0.117059 0.360270i
\(537\) −0.185689 0.134911i −0.00801309 0.00582185i
\(538\) 1.85132 + 5.69777i 0.0798159 + 0.245648i
\(539\) 11.4658 + 8.33037i 0.493866 + 0.358814i
\(540\) 30.9658 22.4980i 1.33256 0.968160i
\(541\) 4.09937 12.6165i 0.176245 0.542428i −0.823443 0.567399i \(-0.807950\pi\)
0.999688 + 0.0249716i \(0.00794955\pi\)
\(542\) 2.06029 1.49689i 0.0884970 0.0642968i
\(543\) 5.06264 3.67822i 0.217258 0.157848i
\(544\) 2.18523 6.72544i 0.0936909 0.288351i
\(545\) 1.52045 1.10467i 0.0651291 0.0473191i
\(546\) −2.55802 1.85851i −0.109473 0.0795369i
\(547\) 11.6697 + 35.9156i 0.498959 + 1.53564i 0.810695 + 0.585469i \(0.199090\pi\)
−0.311735 + 0.950169i \(0.600910\pi\)
\(548\) −17.9220 13.0211i −0.765590 0.556234i
\(549\) 23.9590 73.7384i 1.02255 3.14708i
\(550\) 1.01395 3.12062i 0.0432351 0.133064i
\(551\) 2.06792 + 6.36439i 0.0880961 + 0.271132i
\(552\) −1.74304 −0.0741887
\(553\) −3.73078 −0.158649
\(554\) −1.64019 5.04800i −0.0696852 0.214469i
\(555\) 21.8998 15.9112i 0.929596 0.675391i
\(556\) 23.4124 + 17.0101i 0.992907 + 0.721389i
\(557\) 11.3637 0.481496 0.240748 0.970588i \(-0.422607\pi\)
0.240748 + 0.970588i \(0.422607\pi\)
\(558\) 0 0
\(559\) −24.1743 −1.02246
\(560\) 8.52261 + 6.19204i 0.360146 + 0.261661i
\(561\) −10.3850 + 7.54517i −0.438457 + 0.318557i
\(562\) −0.270094 0.831262i −0.0113932 0.0350647i
\(563\) −20.1865 −0.850762 −0.425381 0.905014i \(-0.639860\pi\)
−0.425381 + 0.905014i \(0.639860\pi\)
\(564\) 43.2280 1.82023
\(565\) −10.3825 31.9541i −0.436796 1.34432i
\(566\) −0.513276 + 1.57970i −0.0215746 + 0.0663998i
\(567\) −1.24920 + 3.84466i −0.0524617 + 0.161460i
\(568\) 1.84926 + 1.34357i 0.0775933 + 0.0563748i
\(569\) 9.57633 + 29.4729i 0.401461 + 1.23557i 0.923815 + 0.382840i \(0.125054\pi\)
−0.522354 + 0.852729i \(0.674946\pi\)
\(570\) −5.18087 3.76412i −0.217003 0.157662i
\(571\) −8.41353 + 6.11279i −0.352095 + 0.255812i −0.749748 0.661724i \(-0.769825\pi\)
0.397652 + 0.917536i \(0.369825\pi\)
\(572\) 4.05149 12.4692i 0.169401 0.521364i
\(573\) 12.5034 9.08427i 0.522338 0.379501i
\(574\) −2.13711 + 1.55270i −0.0892012 + 0.0648085i
\(575\) 0.524757 1.61504i 0.0218839 0.0673517i
\(576\) 22.5373 16.3743i 0.939053 0.682262i
\(577\) −4.37990 3.18219i −0.182338 0.132476i 0.492872 0.870102i \(-0.335947\pi\)
−0.675210 + 0.737626i \(0.735947\pi\)
\(578\) −1.48457 4.56903i −0.0617499 0.190047i
\(579\) 4.99434 + 3.62860i 0.207558 + 0.150800i
\(580\) −5.44661 + 16.7630i −0.226158 + 0.696044i
\(581\) 4.29819 13.2285i 0.178319 0.548809i
\(582\) 1.07235 + 3.30034i 0.0444502 + 0.136804i
\(583\) 12.1009 0.501169
\(584\) 19.5632 0.809532
\(585\) −14.1811 43.6451i −0.586318 1.80450i
\(586\) 2.99921 2.17905i 0.123896 0.0900158i
\(587\) −10.1635 7.38424i −0.419494 0.304780i 0.357940 0.933744i \(-0.383479\pi\)
−0.777434 + 0.628964i \(0.783479\pi\)
\(588\) 31.6471 1.30510
\(589\) 0 0
\(590\) −12.5532 −0.516809
\(591\) −13.7535 9.99247i −0.565741 0.411035i
\(592\) 8.33544 6.05605i 0.342584 0.248902i
\(593\) 8.36510 + 25.7451i 0.343513 + 1.05723i 0.962375 + 0.271726i \(0.0875943\pi\)
−0.618861 + 0.785500i \(0.712406\pi\)
\(594\) 5.86195 0.240519
\(595\) −5.87102 −0.240688
\(596\) 6.92957 + 21.3270i 0.283846 + 0.873588i
\(597\) −6.19413 + 19.0636i −0.253509 + 0.780220i
\(598\) −0.138004 + 0.424734i −0.00564342 + 0.0173686i
\(599\) 11.6135 + 8.43770i 0.474515 + 0.344755i 0.799198 0.601068i \(-0.205258\pi\)
−0.324683 + 0.945823i \(0.605258\pi\)
\(600\) −4.67733 14.3953i −0.190951 0.587687i
\(601\) 0.517784 + 0.376192i 0.0211209 + 0.0153452i 0.598296 0.801275i \(-0.295845\pi\)
−0.577175 + 0.816621i \(0.695845\pi\)
\(602\) 2.58819 1.88043i 0.105487 0.0766406i
\(603\) −10.6849 + 32.8848i −0.435124 + 1.33917i
\(604\) 6.56150 4.76721i 0.266984 0.193975i
\(605\) 12.2397 8.89266i 0.497614 0.361538i
\(606\) 5.56691 17.1332i 0.226140 0.695988i
\(607\) 5.27303 3.83108i 0.214026 0.155499i −0.475608 0.879658i \(-0.657772\pi\)
0.689633 + 0.724159i \(0.257772\pi\)
\(608\) −6.64121 4.82512i −0.269337 0.195685i
\(609\) −3.05647 9.40686i −0.123855 0.381185i
\(610\) −12.2025 8.86563i −0.494065 0.358959i
\(611\) 7.07036 21.7603i 0.286036 0.880329i
\(612\) −5.68333 + 17.4915i −0.229735 + 0.707052i
\(613\) −3.22778 9.93409i −0.130369 0.401234i 0.864472 0.502681i \(-0.167653\pi\)
−0.994841 + 0.101447i \(0.967653\pi\)
\(614\) 0.930770 0.0375628
\(615\) −59.7545 −2.40953
\(616\) 1.10762 + 3.40892i 0.0446274 + 0.137349i
\(617\) −17.5584 + 12.7569i −0.706874 + 0.513574i −0.882164 0.470943i \(-0.843914\pi\)
0.175290 + 0.984517i \(0.443914\pi\)
\(618\) −6.64159 4.82540i −0.267164 0.194106i
\(619\) −28.5478 −1.14743 −0.573716 0.819054i \(-0.694499\pi\)
−0.573716 + 0.819054i \(0.694499\pi\)
\(620\) 0 0
\(621\) 3.03377 0.121741
\(622\) −1.56738 1.13877i −0.0628462 0.0456604i
\(623\) −1.97800 + 1.43710i −0.0792468 + 0.0575762i
\(624\) −8.41235 25.8906i −0.336764 1.03645i
\(625\) −29.4541 −1.17817
\(626\) 9.37462 0.374685
\(627\) 4.60477 + 14.1720i 0.183897 + 0.565976i
\(628\) 5.04743 15.5344i 0.201414 0.619890i
\(629\) −1.77440 + 5.46104i −0.0707500 + 0.217746i
\(630\) 4.91329 + 3.56971i 0.195750 + 0.142221i
\(631\) −8.41778 25.9073i −0.335107 1.03135i −0.966670 0.256027i \(-0.917586\pi\)
0.631563 0.775325i \(-0.282414\pi\)
\(632\) 3.79980 + 2.76072i 0.151148 + 0.109816i
\(633\) −39.1105 + 28.4155i −1.55450 + 1.12941i
\(634\) 1.16637 3.58973i 0.0463226 0.142566i
\(635\) 0.283370 0.205880i 0.0112452 0.00817012i
\(636\) 21.8607 15.8828i 0.866835 0.629792i
\(637\) 5.17620 15.9307i 0.205088 0.631197i
\(638\) −2.18383 + 1.58665i −0.0864587 + 0.0628159i
\(639\) −7.29094 5.29718i −0.288425 0.209553i
\(640\) −8.79580 27.0707i −0.347684 1.07006i
\(641\) 33.3380 + 24.2215i 1.31677 + 0.956692i 0.999966 + 0.00820217i \(0.00261086\pi\)
0.316807 + 0.948490i \(0.397389\pi\)
\(642\) −3.81800 + 11.7506i −0.150684 + 0.463759i
\(643\) 9.52156 29.3044i 0.375494 1.15565i −0.567651 0.823269i \(-0.692148\pi\)
0.943145 0.332382i \(-0.107852\pi\)
\(644\) 0.277486 + 0.854015i 0.0109345 + 0.0336529i
\(645\) 72.3668 2.84944
\(646\) 1.35841 0.0534459
\(647\) −2.75525 8.47978i −0.108320 0.333375i 0.882175 0.470921i \(-0.156078\pi\)
−0.990495 + 0.137547i \(0.956078\pi\)
\(648\) 4.11730 2.99139i 0.161743 0.117513i
\(649\) 23.6317 + 17.1694i 0.927623 + 0.673958i
\(650\) −3.87809 −0.152111
\(651\) 0 0
\(652\) −5.86949 −0.229867
\(653\) −31.7469 23.0655i −1.24235 0.902623i −0.244601 0.969624i \(-0.578657\pi\)
−0.997753 + 0.0670010i \(0.978657\pi\)
\(654\) 0.519971 0.377781i 0.0203325 0.0147724i
\(655\) 5.31417 + 16.3553i 0.207642 + 0.639056i
\(656\) −22.7435 −0.887986
\(657\) −77.1304 −3.00914
\(658\) 0.935679 + 2.87973i 0.0364766 + 0.112263i
\(659\) 10.1832 31.3407i 0.396681 1.22086i −0.530963 0.847395i \(-0.678170\pi\)
0.927644 0.373465i \(-0.121830\pi\)
\(660\) −12.1283 + 37.3272i −0.472095 + 1.45296i
\(661\) 0.137270 + 0.0997326i 0.00533919 + 0.00387915i 0.590452 0.807073i \(-0.298950\pi\)
−0.585112 + 0.810952i \(0.698950\pi\)
\(662\) −2.13370 6.56686i −0.0829287 0.255228i
\(663\) 12.2741 + 8.91768i 0.476688 + 0.346334i
\(664\) −14.1665 + 10.2926i −0.549769 + 0.399430i
\(665\) −2.10606 + 6.48179i −0.0816695 + 0.251353i
\(666\) 4.80539 3.49132i 0.186205 0.135286i
\(667\) −1.13021 + 0.821147i −0.0437620 + 0.0317950i
\(668\) −7.74411 + 23.8339i −0.299629 + 0.922162i
\(669\) −14.6566 + 10.6486i −0.566656 + 0.411700i
\(670\) 5.44191 + 3.95378i 0.210239 + 0.152748i
\(671\) 10.8456 + 33.3794i 0.418690 + 1.28860i
\(672\) 9.81602 + 7.13176i 0.378661 + 0.275113i
\(673\) 4.50743 13.8724i 0.173749 0.534743i −0.825825 0.563926i \(-0.809290\pi\)
0.999574 + 0.0291825i \(0.00929039\pi\)
\(674\) −2.08278 + 6.41015i −0.0802258 + 0.246910i
\(675\) 8.14092 + 25.0552i 0.313344 + 0.964374i
\(676\) 8.89857 0.342253
\(677\) −15.7668 −0.605968 −0.302984 0.952996i \(-0.597983\pi\)
−0.302984 + 0.952996i \(0.597983\pi\)
\(678\) −3.55065 10.9278i −0.136362 0.419679i
\(679\) 2.98782 2.17078i 0.114662 0.0833067i
\(680\) 5.97963 + 4.34445i 0.229308 + 0.166602i
\(681\) −22.7051 −0.870063
\(682\) 0 0
\(683\) 20.5935 0.787988 0.393994 0.919113i \(-0.371093\pi\)
0.393994 + 0.919113i \(0.371093\pi\)
\(684\) 17.2724 + 12.5492i 0.660428 + 0.479829i
\(685\) 28.3967 20.6314i 1.08498 0.788285i
\(686\) 1.50763 + 4.64001i 0.0575616 + 0.177156i
\(687\) −36.9560 −1.40996
\(688\) 27.5440 1.05011
\(689\) −4.41961 13.6022i −0.168374 0.518201i
\(690\) 0.413123 1.27146i 0.0157273 0.0484037i
\(691\) −1.83918 + 5.66041i −0.0699657 + 0.215332i −0.979925 0.199364i \(-0.936112\pi\)
0.909960 + 0.414697i \(0.136112\pi\)
\(692\) 28.9121 + 21.0059i 1.09907 + 0.798524i
\(693\) −4.36694 13.4401i −0.165886 0.510546i
\(694\) 3.03078 + 2.20199i 0.115047 + 0.0835866i
\(695\) −37.0960 + 26.9518i −1.40713 + 1.02234i
\(696\) −3.84790 + 11.8426i −0.145854 + 0.448894i
\(697\) 10.2545 7.45032i 0.388417 0.282201i
\(698\) 5.31713 3.86312i 0.201256 0.146221i
\(699\) 11.3704 34.9945i 0.430068 1.32361i
\(700\) −6.30848 + 4.58338i −0.238438 + 0.173236i
\(701\) 21.5445 + 15.6530i 0.813723 + 0.591204i 0.914908 0.403663i \(-0.132263\pi\)
−0.101185 + 0.994868i \(0.532263\pi\)
\(702\) −2.14096 6.58918i −0.0808052 0.248693i
\(703\) 5.39265 + 3.91799i 0.203388 + 0.147770i
\(704\) −3.89682 + 11.9932i −0.146867 + 0.452010i
\(705\) −21.1655 + 65.1407i −0.797138 + 2.45334i
\(706\) 1.37510 + 4.23213i 0.0517526 + 0.159278i
\(707\) −19.1723 −0.721050
\(708\) 65.2266 2.45137
\(709\) 0.816662 + 2.51343i 0.0306704 + 0.0943938i 0.965220 0.261439i \(-0.0841971\pi\)
−0.934550 + 0.355833i \(0.884197\pi\)
\(710\) −1.41836 + 1.03050i −0.0532302 + 0.0386740i
\(711\) −14.9812 10.8845i −0.561839 0.408200i
\(712\) 3.07802 0.115354
\(713\) 0 0
\(714\) −2.00779 −0.0751398
\(715\) 16.8063 + 12.2105i 0.628519 + 0.456646i
\(716\) 0.120432 0.0874991i 0.00450076 0.00326999i
\(717\) 22.7315 + 69.9605i 0.848925 + 2.61272i
\(718\) −7.96983 −0.297431
\(719\) −5.19824 −0.193862 −0.0969308 0.995291i \(-0.530903\pi\)
−0.0969308 + 0.995291i \(0.530903\pi\)
\(720\) 16.1579 + 49.7290i 0.602170 + 1.85329i
\(721\) −2.69986 + 8.30930i −0.100548 + 0.309455i
\(722\) −1.57608 + 4.85068i −0.0586557 + 0.180524i
\(723\) 5.52640 + 4.01517i 0.205529 + 0.149326i
\(724\) 1.25417 + 3.85994i 0.0466109 + 0.143454i
\(725\) −9.81449 7.13065i −0.364501 0.264826i
\(726\) 4.18578 3.04115i 0.155349 0.112868i
\(727\) 7.48020 23.0217i 0.277425 0.853827i −0.711142 0.703048i \(-0.751822\pi\)
0.988567 0.150779i \(-0.0481782\pi\)
\(728\) 3.42729 2.49007i 0.127024 0.0922882i
\(729\) 31.9419 23.2071i 1.18303 0.859524i
\(730\) −4.63673 + 14.2704i −0.171613 + 0.528171i
\(731\) −12.4189 + 9.02287i −0.459330 + 0.333723i
\(732\) 63.4042 + 46.0659i 2.34349 + 1.70264i
\(733\) 12.4728 + 38.3873i 0.460693 + 1.41787i 0.864320 + 0.502942i \(0.167749\pi\)
−0.403627 + 0.914923i \(0.632251\pi\)
\(734\) 2.47914 + 1.80120i 0.0915066 + 0.0664834i
\(735\) −15.4952 + 47.6893i −0.571549 + 1.75905i
\(736\) 0.529571 1.62985i 0.0195202 0.0600771i
\(737\) −4.83678 14.8861i −0.178165 0.548336i
\(738\) −13.1117 −0.482647
\(739\) −6.09785 −0.224313 −0.112157 0.993691i \(-0.535776\pi\)
−0.112157 + 0.993691i \(0.535776\pi\)
\(740\) 5.42526 + 16.6972i 0.199437 + 0.613803i
\(741\) 14.2484 10.3521i 0.523428 0.380293i
\(742\) 1.53125 + 1.11251i 0.0562138 + 0.0408417i
\(743\) −16.2263 −0.595284 −0.297642 0.954678i \(-0.596200\pi\)
−0.297642 + 0.954678i \(0.596200\pi\)
\(744\) 0 0
\(745\) −35.5308 −1.30175
\(746\) −7.22540 5.24956i −0.264541 0.192200i
\(747\) 55.8534 40.5798i 2.04357 1.48474i
\(748\) −2.57269 7.91793i −0.0940670 0.289508i
\(749\) 13.1491 0.480458
\(750\) −3.50659 −0.128043
\(751\) 11.2620 + 34.6607i 0.410955 + 1.26479i 0.915820 + 0.401590i \(0.131542\pi\)
−0.504865 + 0.863198i \(0.668458\pi\)
\(752\) −8.05593 + 24.7936i −0.293770 + 0.904130i
\(753\) −2.10701 + 6.48472i −0.0767838 + 0.236316i
\(754\) 2.58108 + 1.87527i 0.0939975 + 0.0682932i
\(755\) 3.97108 + 12.2217i 0.144522 + 0.444794i
\(756\) −11.2702 8.18829i −0.409894 0.297805i
\(757\) 35.2426 25.6052i 1.28091 0.930637i 0.281332 0.959610i \(-0.409224\pi\)
0.999580 + 0.0289730i \(0.00922370\pi\)
\(758\) 2.39980 7.38582i 0.0871646 0.268265i
\(759\) −2.51672 + 1.82851i −0.0913512 + 0.0663705i
\(760\) 6.94144 5.04325i 0.251792 0.182938i
\(761\) −1.01953 + 3.13780i −0.0369580 + 0.113745i −0.967834 0.251591i \(-0.919046\pi\)
0.930875 + 0.365337i \(0.119046\pi\)
\(762\) 0.0969080 0.0704078i 0.00351061 0.00255061i
\(763\) −0.553379 0.402053i −0.0200337 0.0145553i
\(764\) 3.09748 + 9.53307i 0.112063 + 0.344894i
\(765\) −23.5754 17.1285i −0.852371 0.619284i
\(766\) 2.89335 8.90482i 0.104541 0.321744i
\(767\) 10.6685 32.8342i 0.385216 1.18557i
\(768\) 6.26630 + 19.2857i 0.226116 + 0.695912i
\(769\) −45.7136 −1.64847 −0.824237 0.566244i \(-0.808396\pi\)
−0.824237 + 0.566244i \(0.808396\pi\)
\(770\) −2.74916 −0.0990727
\(771\) −23.2585 71.5823i −0.837635 2.57798i
\(772\) −3.23917 + 2.35339i −0.116580 + 0.0847005i
\(773\) 24.2710 + 17.6339i 0.872969 + 0.634249i 0.931382 0.364044i \(-0.118604\pi\)
−0.0584131 + 0.998292i \(0.518604\pi\)
\(774\) 15.8791 0.570764
\(775\) 0 0
\(776\) −4.64943 −0.166905
\(777\) −7.97058 5.79097i −0.285943 0.207750i
\(778\) −3.68331 + 2.67608i −0.132053 + 0.0959423i
\(779\) −4.54689 13.9939i −0.162909 0.501383i
\(780\) 46.3877 1.66094
\(781\) 4.07953 0.145977
\(782\) 0.0876325 + 0.269705i 0.00313373 + 0.00964464i
\(783\) 6.69730 20.6122i 0.239342 0.736619i
\(784\) −5.89773 + 18.1514i −0.210633 + 0.648263i
\(785\) 20.9376 + 15.2121i 0.747295 + 0.542941i
\(786\) 1.81736 + 5.59326i 0.0648231 + 0.199505i
\(787\) −34.9754 25.4111i −1.24674 0.905809i −0.248710 0.968578i \(-0.580007\pi\)
−0.998028 + 0.0627693i \(0.980007\pi\)
\(788\) 8.92004 6.48079i 0.317763 0.230869i
\(789\) −20.5061 + 63.1114i −0.730038 + 2.24682i
\(790\) −2.91441 + 2.11744i −0.103690 + 0.0753352i
\(791\) −9.89298 + 7.18767i −0.351754 + 0.255564i
\(792\) −5.49770 + 16.9202i −0.195352 + 0.601232i
\(793\) 33.5593 24.3822i 1.19172 0.865839i
\(794\) 0.832262 + 0.604674i 0.0295359 + 0.0214591i
\(795\) 13.2303 + 40.7188i 0.469231 + 1.44415i
\(796\) −10.5175 7.64138i −0.372781 0.270841i
\(797\) −7.05292 + 21.7067i −0.249827 + 0.768890i 0.744977 + 0.667090i \(0.232460\pi\)
−0.994805 + 0.101800i \(0.967540\pi\)
\(798\) −0.720239 + 2.21667i −0.0254962 + 0.0784691i
\(799\) −4.48967 13.8178i −0.158833 0.488838i
\(800\) 14.8816 0.526144
\(801\) −12.1355 −0.428786
\(802\) 1.33299 + 4.10252i 0.0470695 + 0.144865i
\(803\) 28.2467 20.5225i 0.996805 0.724222i
\(804\) −28.2762 20.5438i −0.997223 0.724525i
\(805\) −1.42279 −0.0501467
\(806\) 0 0
\(807\) 49.3229 1.73625
\(808\) 19.5270 + 14.1872i 0.686959 + 0.499105i
\(809\) −17.1822 + 12.4836i −0.604095 + 0.438901i −0.847330 0.531066i \(-0.821791\pi\)
0.243235 + 0.969967i \(0.421791\pi\)
\(810\) 1.20622 + 3.71236i 0.0423822 + 0.130439i
\(811\) 2.12314 0.0745534 0.0372767 0.999305i \(-0.488132\pi\)
0.0372767 + 0.999305i \(0.488132\pi\)
\(812\) 6.41495 0.225121
\(813\) −6.47893 19.9401i −0.227226 0.699330i
\(814\) −0.830879 + 2.55718i −0.0291223 + 0.0896292i
\(815\) 2.87385 8.84480i 0.100667 0.309820i
\(816\) −13.9851 10.1608i −0.489576 0.355698i
\(817\) 5.50660 + 16.9476i 0.192651 + 0.592920i
\(818\) −4.88943 3.55238i −0.170955 0.124206i
\(819\) −13.5125 + 9.81741i −0.472165 + 0.343048i
\(820\) 11.9759 36.8580i 0.418216 1.28714i
\(821\) 33.8104 24.5647i 1.17999 0.857313i 0.187819 0.982204i \(-0.439858\pi\)
0.992171 + 0.124891i \(0.0398580\pi\)
\(822\) 9.71121 7.05561i 0.338717 0.246093i
\(823\) −5.03651 + 15.5008i −0.175562 + 0.540324i −0.999659 0.0261251i \(-0.991683\pi\)
0.824097 + 0.566449i \(0.191683\pi\)
\(824\) 8.89855 6.46518i 0.309996 0.225225i
\(825\) −21.8546 15.8783i −0.760880 0.552812i
\(826\) 1.41185 + 4.34522i 0.0491244 + 0.151189i
\(827\) −25.1519 18.2740i −0.874619 0.635448i 0.0572034 0.998363i \(-0.481782\pi\)
−0.931822 + 0.362915i \(0.881782\pi\)
\(828\) −1.37731 + 4.23891i −0.0478647 + 0.147312i
\(829\) 8.66756 26.6760i 0.301037 0.926496i −0.680090 0.733129i \(-0.738059\pi\)
0.981126 0.193367i \(-0.0619409\pi\)
\(830\) −4.15029 12.7733i −0.144059 0.443367i
\(831\) −43.6982 −1.51587
\(832\) 14.9043 0.516714
\(833\) −3.28688 10.1160i −0.113884 0.350498i
\(834\) −12.6862 + 9.21708i −0.439288 + 0.319162i
\(835\) −32.1239 23.3394i −1.11169 0.807692i
\(836\) −9.66453 −0.334255
\(837\) 0 0
\(838\) 8.13409 0.280987
\(839\) 18.6621 + 13.5588i 0.644287 + 0.468102i 0.861320 0.508062i \(-0.169638\pi\)
−0.217034 + 0.976164i \(0.569638\pi\)
\(840\) −10.2598 + 7.45415i −0.353995 + 0.257193i
\(841\) −5.87746 18.0890i −0.202671 0.623757i
\(842\) 10.2556 0.353431
\(843\) −7.19585 −0.247838
\(844\) −9.68888 29.8193i −0.333505 1.02642i
\(845\) −4.35696 + 13.4093i −0.149884 + 0.461296i
\(846\) −4.64425 + 14.2935i −0.159673 + 0.491422i
\(847\) −4.45472 3.23654i −0.153066 0.111209i
\(848\) 5.03568 + 15.4982i 0.172926 + 0.532212i
\(849\) 11.0631 + 8.03781i 0.379684 + 0.275857i
\(850\) −1.99227 + 1.44747i −0.0683343 + 0.0496478i
\(851\) −0.430010 + 1.32344i −0.0147406 + 0.0453668i
\(852\) 7.36982 5.35449i 0.252486 0.183442i
\(853\) −24.2874 + 17.6458i −0.831585 + 0.604182i −0.920007 0.391901i \(-0.871818\pi\)
0.0884221 + 0.996083i \(0.471818\pi\)
\(854\) −1.69638 + 5.22092i −0.0580489 + 0.178656i
\(855\) −27.3675 + 19.8836i −0.935947 + 0.680006i
\(856\) −13.3924 9.73013i −0.457742 0.332569i
\(857\) −16.8684 51.9157i −0.576215 1.77341i −0.632006 0.774964i \(-0.717768\pi\)
0.0557914 0.998442i \(-0.482232\pi\)
\(858\) 5.74748 + 4.17579i 0.196216 + 0.142559i
\(859\) −2.88511 + 8.87945i −0.0984386 + 0.302963i −0.988135 0.153591i \(-0.950916\pi\)
0.889696 + 0.456554i \(0.150916\pi\)
\(860\) −14.5036 + 44.6376i −0.494570 + 1.52213i
\(861\) 6.72051 + 20.6836i 0.229034 + 0.704895i
\(862\) 10.6668 0.363311
\(863\) −13.3167 −0.453307 −0.226653 0.973975i \(-0.572778\pi\)
−0.226653 + 0.973975i \(0.572778\pi\)
\(864\) 8.21560 + 25.2850i 0.279500 + 0.860214i
\(865\) −45.8101 + 33.2830i −1.55759 + 1.13166i
\(866\) −3.93491 2.85888i −0.133714 0.0971487i
\(867\) −39.5520 −1.34326
\(868\) 0 0
\(869\) 8.38250 0.284357
\(870\) −7.72660 5.61370i −0.261956 0.190322i
\(871\) −14.9663 + 10.8737i −0.507114 + 0.368440i
\(872\) 0.266104 + 0.818983i 0.00901141 + 0.0277343i
\(873\) 18.3309 0.620409
\(874\) 0.329199 0.0111353
\(875\) 1.15322 + 3.54924i 0.0389858 + 0.119986i
\(876\) 24.0925 74.1490i 0.814010 2.50526i
\(877\) −13.1536 + 40.4827i −0.444167 + 1.36700i 0.439228 + 0.898375i \(0.355252\pi\)
−0.883395 + 0.468629i \(0.844748\pi\)
\(878\) −3.67338 2.66887i −0.123971 0.0900700i
\(879\) −9.43151 29.0272i −0.318117 0.979064i
\(880\) −19.1490 13.9126i −0.645512 0.468992i
\(881\) −4.67056 + 3.39336i −0.157355 + 0.114325i −0.663677 0.748020i \(-0.731005\pi\)
0.506321 + 0.862345i \(0.331005\pi\)
\(882\) −3.40005 + 10.4643i −0.114486 + 0.352350i
\(883\) 22.0029 15.9860i 0.740457 0.537973i −0.152397 0.988319i \(-0.548699\pi\)
0.892854 + 0.450346i \(0.148699\pi\)
\(884\) −7.96061 + 5.78372i −0.267744 + 0.194528i
\(885\) −31.9366 + 98.2907i −1.07354 + 3.30401i
\(886\) −6.75483 + 4.90767i −0.226933 + 0.164876i
\(887\) 5.96382 + 4.33297i 0.200246 + 0.145487i 0.683389 0.730054i \(-0.260505\pi\)
−0.483144 + 0.875541i \(0.660505\pi\)
\(888\) 3.83282 + 11.7962i 0.128621 + 0.395855i
\(889\) −0.103134 0.0749315i −0.00345902 0.00251312i
\(890\) −0.729530 + 2.24526i −0.0244539 + 0.0752613i
\(891\) 2.80677 8.63835i 0.0940304 0.289396i
\(892\) −3.63089 11.1747i −0.121571 0.374157i
\(893\) −16.8658 −0.564393
\(894\) −12.1510 −0.406389
\(895\) 0.0728867 + 0.224322i 0.00243633 + 0.00749826i
\(896\) −8.38108 + 6.08921i −0.279992 + 0.203426i
\(897\) 2.97453 + 2.16112i 0.0993166 + 0.0721578i
\(898\) 6.82232 0.227664
\(899\) 0 0
\(900\) −38.7040 −1.29013
\(901\) −7.34737 5.33818i −0.244776 0.177841i
\(902\) 4.80176 3.48868i 0.159881 0.116160i
\(903\) −8.13900 25.0493i −0.270849 0.833588i
\(904\) 15.3948 0.512022
\(905\) −6.43065 −0.213762
\(906\) 1.35805 + 4.17963i 0.0451180 + 0.138859i
\(907\) 5.09354 15.6763i 0.169128 0.520523i −0.830189 0.557482i \(-0.811767\pi\)
0.999317 + 0.0369599i \(0.0117674\pi\)
\(908\) 4.55053 14.0051i 0.151015 0.464775i
\(909\) −76.9877 55.9349i −2.55352 1.85524i
\(910\) 1.00407 + 3.09021i 0.0332847 + 0.102440i
\(911\) 36.2496 + 26.3369i 1.20100 + 0.872581i 0.994383 0.105840i \(-0.0337532\pi\)
0.206621 + 0.978421i \(0.433753\pi\)
\(912\) −16.2346 + 11.7951i −0.537580 + 0.390575i
\(913\) −9.65737 + 29.7223i −0.319612 + 0.983665i
\(914\) 6.92078 5.02824i 0.228919 0.166319i
\(915\) −100.461 + 72.9895i −3.32115 + 2.41296i
\(916\) 7.40666 22.7953i 0.244723 0.753179i
\(917\) 5.06361 3.67893i 0.167215 0.121489i
\(918\) −3.55923 2.58593i −0.117472 0.0853484i
\(919\) −3.20043 9.84992i −0.105573 0.324919i 0.884292 0.466935i \(-0.154642\pi\)
−0.989864 + 0.142016i \(0.954642\pi\)
\(920\) 1.44911 + 1.05284i 0.0477757 + 0.0347111i
\(921\) 2.36796 7.28784i 0.0780270 0.240143i
\(922\) 4.16401 12.8155i 0.137134 0.422056i
\(923\) −1.48997 4.58564i −0.0490428 0.150938i
\(924\) 14.2846 0.469929
\(925\) −12.0838 −0.397314
\(926\) 0.716131 + 2.20402i 0.0235335 + 0.0724287i
\(927\) −35.0836 + 25.4897i −1.15230 + 0.837193i
\(928\) −9.90452 7.19606i −0.325132 0.236222i
\(929\) −44.0624 −1.44564 −0.722820 0.691037i \(-0.757154\pi\)
−0.722820 + 0.691037i \(0.757154\pi\)
\(930\) 0 0
\(931\) −12.3474 −0.404671
\(932\) 19.3066 + 14.0271i 0.632409 + 0.459472i
\(933\) −12.9040 + 9.37531i −0.422458 + 0.306934i
\(934\) 4.17034 + 12.8350i 0.136458 + 0.419974i
\(935\) 13.1913 0.431401
\(936\) 21.0272 0.687296
\(937\) −10.6818 32.8751i −0.348958 1.07398i −0.959430 0.281945i \(-0.909020\pi\)
0.610472 0.792038i \(-0.290980\pi\)
\(938\) 0.756528 2.32835i 0.0247015 0.0760235i
\(939\) 23.8499 73.4024i 0.778312 2.39540i
\(940\) −35.9384 26.1108i −1.17218 0.851639i
\(941\) 6.84444 + 21.0650i 0.223122 + 0.686700i 0.998477 + 0.0551736i \(0.0175712\pi\)
−0.775354 + 0.631526i \(0.782429\pi\)
\(942\) 7.16032 + 5.20228i 0.233296 + 0.169499i
\(943\) 2.48509 1.80552i 0.0809255 0.0587958i
\(944\) −12.1556 + 37.4111i −0.395631 + 1.21763i
\(945\) 17.8572 12.9740i 0.580894 0.422044i
\(946\) −5.81526 + 4.22504i −0.189071 + 0.137368i
\(947\) 8.67799 26.7081i 0.281997 0.867897i −0.705286 0.708923i \(-0.749181\pi\)
0.987283 0.158974i \(-0.0508185\pi\)
\(948\) 15.1433 11.0022i 0.491831 0.357336i
\(949\) −33.3850 24.2556i −1.08372 0.787371i
\(950\) 0.883382 + 2.71877i 0.0286607 + 0.0882085i
\(951\) −25.1399 18.2652i −0.815217 0.592290i
\(952\) 0.831282 2.55842i 0.0269420 0.0829189i
\(953\) −2.36916 + 7.29152i −0.0767446 + 0.236196i −0.982068 0.188527i \(-0.939629\pi\)
0.905323 + 0.424723i \(0.139629\pi\)
\(954\) 2.90307 + 8.93474i 0.0939905 + 0.289273i
\(955\) −15.8821 −0.513932
\(956\) −47.7092 −1.54302
\(957\) 6.86743 + 21.1358i 0.221992 + 0.683222i
\(958\) −2.13951 + 1.55445i −0.0691245 + 0.0502219i
\(959\) −10.3352 7.50893i −0.333740 0.242476i
\(960\) −44.6168 −1.44000
\(961\) 0 0
\(962\) 3.17789 0.102459
\(963\) 52.8011 + 38.3622i 1.70149 + 1.23621i
\(964\) −3.58424 + 2.60411i −0.115441 + 0.0838726i
\(965\) −1.96038 6.03342i −0.0631067 0.194223i
\(966\) −0.486571 −0.0156552
\(967\) 1.85036 0.0595037 0.0297518 0.999557i \(-0.490528\pi\)
0.0297518 + 0.999557i \(0.490528\pi\)
\(968\) 2.14214 + 6.59283i 0.0688510 + 0.211902i
\(969\) 3.45592 10.6362i 0.111020 0.341685i
\(970\) 1.10197 3.39153i 0.0353822 0.108895i
\(971\) −39.9423 29.0198i −1.28181 0.931290i −0.282205 0.959354i \(-0.591066\pi\)
−0.999606 + 0.0280640i \(0.991066\pi\)
\(972\) 5.66687 + 17.4408i 0.181765 + 0.559415i
\(973\) 13.5013 + 9.80928i 0.432832 + 0.314471i
\(974\) 7.11704 5.17083i 0.228045 0.165684i
\(975\) −9.86622 + 30.3651i −0.315972 + 0.972462i
\(976\) −38.2373 + 27.7810i −1.22395 + 0.889248i
\(977\) 28.8192 20.9383i 0.922007 0.669877i −0.0220160 0.999758i \(-0.507008\pi\)
0.944023 + 0.329881i \(0.107008\pi\)
\(978\) 0.982810 3.02478i 0.0314268 0.0967218i
\(979\) 4.44426 3.22894i 0.142039 0.103197i
\(980\) −26.3104 19.1156i −0.840456 0.610627i
\(981\) −1.04915 3.22894i −0.0334967 0.103092i
\(982\) −11.2902 8.20278i −0.360283 0.261761i
\(983\) 1.97264 6.07116i 0.0629174 0.193640i −0.914657 0.404231i \(-0.867539\pi\)
0.977574 + 0.210592i \(0.0675390\pi\)
\(984\) 8.46068 26.0393i 0.269717 0.830103i
\(985\) 5.39849 + 16.6149i 0.172010 + 0.529393i
\(986\) 2.02590 0.0645177
\(987\) 24.9284 0.793481
\(988\) 3.52977 + 10.8635i 0.112297 + 0.345614i
\(989\) −3.00961 + 2.18661i −0.0957001 + 0.0695302i
\(990\) −11.0394 8.02059i −0.350855 0.254911i
\(991\) 44.2919 1.40698 0.703489 0.710706i \(-0.251624\pi\)
0.703489 + 0.710706i \(0.251624\pi\)
\(992\) 0 0
\(993\) −56.8463 −1.80396
\(994\) 0.516222 + 0.375058i 0.0163736 + 0.0118961i
\(995\) 16.6645 12.1075i 0.528299 0.383832i
\(996\) 21.5649 + 66.3699i 0.683310 + 2.10301i
\(997\) 5.32316 0.168586 0.0842931 0.996441i \(-0.473137\pi\)
0.0842931 + 0.996441i \(0.473137\pi\)
\(998\) 8.31281 0.263137
\(999\) −6.67105 20.5314i −0.211063 0.649584i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.n.374.3 16
31.2 even 5 961.2.d.q.628.2 16
31.3 odd 30 961.2.g.k.235.2 16
31.4 even 5 961.2.a.j.1.4 8
31.5 even 3 961.2.g.j.732.2 16
31.6 odd 6 31.2.g.a.10.2 16
31.7 even 15 961.2.c.i.439.4 16
31.8 even 5 961.2.d.q.531.2 16
31.9 even 15 961.2.g.n.844.1 16
31.10 even 15 961.2.g.m.448.1 16
31.11 odd 30 961.2.c.j.521.4 16
31.12 odd 30 961.2.g.t.846.1 16
31.13 odd 30 31.2.g.a.28.2 yes 16
31.14 even 15 961.2.g.m.547.1 16
31.15 odd 10 961.2.d.o.388.3 16
31.16 even 5 inner 961.2.d.n.388.3 16
31.17 odd 30 961.2.g.s.547.1 16
31.18 even 15 961.2.g.l.338.2 16
31.19 even 15 961.2.g.n.846.1 16
31.20 even 15 961.2.c.i.521.4 16
31.21 odd 30 961.2.g.s.448.1 16
31.22 odd 30 961.2.g.t.844.1 16
31.23 odd 10 961.2.d.p.531.2 16
31.24 odd 30 961.2.c.j.439.4 16
31.25 even 3 961.2.g.l.816.2 16
31.26 odd 6 961.2.g.k.732.2 16
31.27 odd 10 961.2.a.i.1.4 8
31.28 even 15 961.2.g.j.235.2 16
31.29 odd 10 961.2.d.p.628.2 16
31.30 odd 2 961.2.d.o.374.3 16
93.35 odd 10 8649.2.a.be.1.5 8
93.44 even 30 279.2.y.c.28.1 16
93.68 even 6 279.2.y.c.10.1 16
93.89 even 10 8649.2.a.bf.1.5 8
124.75 even 30 496.2.bg.c.369.1 16
124.99 even 6 496.2.bg.c.289.1 16
155.13 even 60 775.2.ck.a.524.3 32
155.37 even 12 775.2.ck.a.599.3 32
155.44 odd 30 775.2.bl.a.276.1 16
155.68 even 12 775.2.ck.a.599.2 32
155.99 odd 6 775.2.bl.a.351.1 16
155.137 even 60 775.2.ck.a.524.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.10.2 16 31.6 odd 6
31.2.g.a.28.2 yes 16 31.13 odd 30
279.2.y.c.10.1 16 93.68 even 6
279.2.y.c.28.1 16 93.44 even 30
496.2.bg.c.289.1 16 124.99 even 6
496.2.bg.c.369.1 16 124.75 even 30
775.2.bl.a.276.1 16 155.44 odd 30
775.2.bl.a.351.1 16 155.99 odd 6
775.2.ck.a.524.2 32 155.137 even 60
775.2.ck.a.524.3 32 155.13 even 60
775.2.ck.a.599.2 32 155.68 even 12
775.2.ck.a.599.3 32 155.37 even 12
961.2.a.i.1.4 8 31.27 odd 10
961.2.a.j.1.4 8 31.4 even 5
961.2.c.i.439.4 16 31.7 even 15
961.2.c.i.521.4 16 31.20 even 15
961.2.c.j.439.4 16 31.24 odd 30
961.2.c.j.521.4 16 31.11 odd 30
961.2.d.n.374.3 16 1.1 even 1 trivial
961.2.d.n.388.3 16 31.16 even 5 inner
961.2.d.o.374.3 16 31.30 odd 2
961.2.d.o.388.3 16 31.15 odd 10
961.2.d.p.531.2 16 31.23 odd 10
961.2.d.p.628.2 16 31.29 odd 10
961.2.d.q.531.2 16 31.8 even 5
961.2.d.q.628.2 16 31.2 even 5
961.2.g.j.235.2 16 31.28 even 15
961.2.g.j.732.2 16 31.5 even 3
961.2.g.k.235.2 16 31.3 odd 30
961.2.g.k.732.2 16 31.26 odd 6
961.2.g.l.338.2 16 31.18 even 15
961.2.g.l.816.2 16 31.25 even 3
961.2.g.m.448.1 16 31.10 even 15
961.2.g.m.547.1 16 31.14 even 15
961.2.g.n.844.1 16 31.9 even 15
961.2.g.n.846.1 16 31.19 even 15
961.2.g.s.448.1 16 31.21 odd 30
961.2.g.s.547.1 16 31.17 odd 30
961.2.g.t.844.1 16 31.22 odd 30
961.2.g.t.846.1 16 31.12 odd 30
8649.2.a.be.1.5 8 93.35 odd 10
8649.2.a.bf.1.5 8 93.89 even 10