Properties

Label 936.2.w.j.307.1
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.j.811.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41280 - 0.0632999i) q^{2} +(1.99199 + 0.178860i) q^{4} +(1.61967 - 1.61967i) q^{5} +(2.08158 + 2.08158i) q^{7} +(-2.80295 - 0.378785i) q^{8} +(-2.39080 + 2.18574i) q^{10} +(0.0673682 - 0.0673682i) q^{11} +(-1.04130 + 3.45191i) q^{13} +(-2.80909 - 3.07262i) q^{14} +(3.93602 + 0.712572i) q^{16} +7.18195i q^{17} +(2.30579 + 2.30579i) q^{19} +(3.51606 - 2.93668i) q^{20} +(-0.0994420 + 0.0909132i) q^{22} -2.00453 q^{23} -0.246692i q^{25} +(1.68965 - 4.81093i) q^{26} +(3.77418 + 4.51880i) q^{28} +4.37007i q^{29} +(-2.08158 + 2.08158i) q^{31} +(-5.51569 - 1.25587i) q^{32} +(0.454617 - 10.1466i) q^{34} +6.74298 q^{35} +(-6.43362 - 6.43362i) q^{37} +(-3.11165 - 3.40356i) q^{38} +(-5.15337 + 3.92636i) q^{40} +(7.94353 + 7.94353i) q^{41} -10.4665i q^{43} +(0.146246 - 0.122147i) q^{44} +(2.83200 + 0.126887i) q^{46} +(-5.31365 - 5.31365i) q^{47} +1.66599i q^{49} +(-0.0156156 + 0.348525i) q^{50} +(-2.69166 + 6.68991i) q^{52} +1.41118i q^{53} -0.218229i q^{55} +(-5.04610 - 6.62305i) q^{56} +(0.276625 - 6.17401i) q^{58} +(3.96350 - 3.96350i) q^{59} +1.94041i q^{61} +(3.07262 - 2.80909i) q^{62} +(7.71304 + 2.12343i) q^{64} +(3.90441 + 7.27754i) q^{65} +(8.16072 + 8.16072i) q^{67} +(-1.28456 + 14.3063i) q^{68} +(-9.52646 - 0.426830i) q^{70} +(-0.00829610 + 0.00829610i) q^{71} +(0.419298 - 0.419298i) q^{73} +(8.68214 + 9.49664i) q^{74} +(4.18068 + 5.00551i) q^{76} +0.280465 q^{77} -8.46664i q^{79} +(7.52920 - 5.22093i) q^{80} +(-10.7198 - 11.7254i) q^{82} +(3.35193 + 3.35193i) q^{83} +(11.6324 + 11.6324i) q^{85} +(-0.662529 + 14.7870i) q^{86} +(-0.214348 + 0.163312i) q^{88} +(-1.90441 + 1.90441i) q^{89} +(-9.35300 + 5.01789i) q^{91} +(-3.99300 - 0.358530i) q^{92} +(7.17075 + 7.84346i) q^{94} +7.46925 q^{95} +(8.76265 + 8.76265i) q^{97} +(0.105457 - 2.35370i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{8} - 8 q^{11} - 36 q^{14} + 28 q^{16} + 20 q^{19} + 20 q^{20} + 20 q^{22} - 12 q^{26} - 16 q^{28} + 30 q^{32} + 16 q^{34} - 16 q^{35} + 36 q^{40} + 12 q^{41} + 32 q^{44} - 44 q^{46} + 36 q^{50}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41280 0.0632999i −0.998998 0.0447598i
\(3\) 0 0
\(4\) 1.99199 + 0.178860i 0.995993 + 0.0894299i
\(5\) 1.61967 1.61967i 0.724341 0.724341i −0.245146 0.969486i \(-0.578836\pi\)
0.969486 + 0.245146i \(0.0788358\pi\)
\(6\) 0 0
\(7\) 2.08158 + 2.08158i 0.786765 + 0.786765i 0.980962 0.194197i \(-0.0622102\pi\)
−0.194197 + 0.980962i \(0.562210\pi\)
\(8\) −2.80295 0.378785i −0.990992 0.133921i
\(9\) 0 0
\(10\) −2.39080 + 2.18574i −0.756036 + 0.691193i
\(11\) 0.0673682 0.0673682i 0.0203123 0.0203123i −0.696878 0.717190i \(-0.745428\pi\)
0.717190 + 0.696878i \(0.245428\pi\)
\(12\) 0 0
\(13\) −1.04130 + 3.45191i −0.288804 + 0.957388i
\(14\) −2.80909 3.07262i −0.750761 0.821192i
\(15\) 0 0
\(16\) 3.93602 + 0.712572i 0.984005 + 0.178143i
\(17\) 7.18195i 1.74188i 0.491391 + 0.870939i \(0.336489\pi\)
−0.491391 + 0.870939i \(0.663511\pi\)
\(18\) 0 0
\(19\) 2.30579 + 2.30579i 0.528984 + 0.528984i 0.920269 0.391285i \(-0.127969\pi\)
−0.391285 + 0.920269i \(0.627969\pi\)
\(20\) 3.51606 2.93668i 0.786216 0.656661i
\(21\) 0 0
\(22\) −0.0994420 + 0.0909132i −0.0212011 + 0.0193828i
\(23\) −2.00453 −0.417974 −0.208987 0.977918i \(-0.567017\pi\)
−0.208987 + 0.977918i \(0.567017\pi\)
\(24\) 0 0
\(25\) 0.246692i 0.0493384i
\(26\) 1.68965 4.81093i 0.331367 0.943502i
\(27\) 0 0
\(28\) 3.77418 + 4.51880i 0.713252 + 0.853973i
\(29\) 4.37007i 0.811501i 0.913984 + 0.405750i \(0.132990\pi\)
−0.913984 + 0.405750i \(0.867010\pi\)
\(30\) 0 0
\(31\) −2.08158 + 2.08158i −0.373864 + 0.373864i −0.868882 0.495019i \(-0.835161\pi\)
0.495019 + 0.868882i \(0.335161\pi\)
\(32\) −5.51569 1.25587i −0.975045 0.222008i
\(33\) 0 0
\(34\) 0.454617 10.1466i 0.0779661 1.74013i
\(35\) 6.74298 1.13977
\(36\) 0 0
\(37\) −6.43362 6.43362i −1.05768 1.05768i −0.998231 0.0594489i \(-0.981066\pi\)
−0.0594489 0.998231i \(-0.518934\pi\)
\(38\) −3.11165 3.40356i −0.504777 0.552131i
\(39\) 0 0
\(40\) −5.15337 + 3.92636i −0.814820 + 0.620812i
\(41\) 7.94353 + 7.94353i 1.24057 + 1.24057i 0.959764 + 0.280806i \(0.0906019\pi\)
0.280806 + 0.959764i \(0.409398\pi\)
\(42\) 0 0
\(43\) 10.4665i 1.59613i −0.602573 0.798064i \(-0.705858\pi\)
0.602573 0.798064i \(-0.294142\pi\)
\(44\) 0.146246 0.122147i 0.0220474 0.0184144i
\(45\) 0 0
\(46\) 2.83200 + 0.126887i 0.417555 + 0.0187084i
\(47\) −5.31365 5.31365i −0.775076 0.775076i 0.203913 0.978989i \(-0.434634\pi\)
−0.978989 + 0.203913i \(0.934634\pi\)
\(48\) 0 0
\(49\) 1.66599i 0.237998i
\(50\) −0.0156156 + 0.348525i −0.00220837 + 0.0492889i
\(51\) 0 0
\(52\) −2.69166 + 6.68991i −0.373266 + 0.927724i
\(53\) 1.41118i 0.193841i 0.995292 + 0.0969204i \(0.0308992\pi\)
−0.995292 + 0.0969204i \(0.969101\pi\)
\(54\) 0 0
\(55\) 0.218229i 0.0294260i
\(56\) −5.04610 6.62305i −0.674314 0.885042i
\(57\) 0 0
\(58\) 0.276625 6.17401i 0.0363226 0.810687i
\(59\) 3.96350 3.96350i 0.516004 0.516004i −0.400356 0.916360i \(-0.631113\pi\)
0.916360 + 0.400356i \(0.131113\pi\)
\(60\) 0 0
\(61\) 1.94041i 0.248444i 0.992254 + 0.124222i \(0.0396434\pi\)
−0.992254 + 0.124222i \(0.960357\pi\)
\(62\) 3.07262 2.80909i 0.390223 0.356755i
\(63\) 0 0
\(64\) 7.71304 + 2.12343i 0.964131 + 0.265429i
\(65\) 3.90441 + 7.27754i 0.484282 + 0.902668i
\(66\) 0 0
\(67\) 8.16072 + 8.16072i 0.996991 + 0.996991i 0.999995 0.00300457i \(-0.000956387\pi\)
−0.00300457 + 0.999995i \(0.500956\pi\)
\(68\) −1.28456 + 14.3063i −0.155776 + 1.73490i
\(69\) 0 0
\(70\) −9.52646 0.426830i −1.13863 0.0510159i
\(71\) −0.00829610 + 0.00829610i −0.000984566 + 0.000984566i −0.707599 0.706614i \(-0.750222\pi\)
0.706614 + 0.707599i \(0.250222\pi\)
\(72\) 0 0
\(73\) 0.419298 0.419298i 0.0490751 0.0490751i −0.682143 0.731218i \(-0.738952\pi\)
0.731218 + 0.682143i \(0.238952\pi\)
\(74\) 8.68214 + 9.49664i 1.00928 + 1.10396i
\(75\) 0 0
\(76\) 4.18068 + 5.00551i 0.479557 + 0.574171i
\(77\) 0.280465 0.0319620
\(78\) 0 0
\(79\) 8.46664i 0.952571i −0.879291 0.476286i \(-0.841983\pi\)
0.879291 0.476286i \(-0.158017\pi\)
\(80\) 7.52920 5.22093i 0.841791 0.583718i
\(81\) 0 0
\(82\) −10.7198 11.7254i −1.18380 1.29486i
\(83\) 3.35193 + 3.35193i 0.367922 + 0.367922i 0.866719 0.498797i \(-0.166225\pi\)
−0.498797 + 0.866719i \(0.666225\pi\)
\(84\) 0 0
\(85\) 11.6324 + 11.6324i 1.26171 + 1.26171i
\(86\) −0.662529 + 14.7870i −0.0714423 + 1.59453i
\(87\) 0 0
\(88\) −0.214348 + 0.163312i −0.0228496 + 0.0174091i
\(89\) −1.90441 + 1.90441i −0.201867 + 0.201867i −0.800799 0.598933i \(-0.795592\pi\)
0.598933 + 0.800799i \(0.295592\pi\)
\(90\) 0 0
\(91\) −9.35300 + 5.01789i −0.980461 + 0.526018i
\(92\) −3.99300 0.358530i −0.416299 0.0373794i
\(93\) 0 0
\(94\) 7.17075 + 7.84346i 0.739607 + 0.808991i
\(95\) 7.46925 0.766329
\(96\) 0 0
\(97\) 8.76265 + 8.76265i 0.889712 + 0.889712i 0.994495 0.104783i \(-0.0334147\pi\)
−0.104783 + 0.994495i \(0.533415\pi\)
\(98\) 0.105457 2.35370i 0.0106528 0.237760i
\(99\) 0 0
\(100\) 0.0441232 0.491407i 0.00441232 0.0491407i
\(101\) 10.5683 1.05159 0.525793 0.850613i \(-0.323769\pi\)
0.525793 + 0.850613i \(0.323769\pi\)
\(102\) 0 0
\(103\) 3.52228 0.347061 0.173530 0.984829i \(-0.444482\pi\)
0.173530 + 0.984829i \(0.444482\pi\)
\(104\) 4.22624 9.28110i 0.414417 0.910087i
\(105\) 0 0
\(106\) 0.0893277 1.99371i 0.00867627 0.193646i
\(107\) −11.8314 −1.14378 −0.571892 0.820329i \(-0.693790\pi\)
−0.571892 + 0.820329i \(0.693790\pi\)
\(108\) 0 0
\(109\) 12.9904 12.9904i 1.24425 1.24425i 0.286033 0.958220i \(-0.407663\pi\)
0.958220 0.286033i \(-0.0923367\pi\)
\(110\) −0.0138139 + 0.308313i −0.00131710 + 0.0293965i
\(111\) 0 0
\(112\) 6.70988 + 9.67643i 0.634024 + 0.914337i
\(113\) −12.7051 −1.19520 −0.597598 0.801796i \(-0.703878\pi\)
−0.597598 + 0.801796i \(0.703878\pi\)
\(114\) 0 0
\(115\) −3.24669 + 3.24669i −0.302756 + 0.302756i
\(116\) −0.781629 + 8.70511i −0.0725724 + 0.808249i
\(117\) 0 0
\(118\) −5.85051 + 5.34873i −0.538583 + 0.492391i
\(119\) −14.9498 + 14.9498i −1.37045 + 1.37045i
\(120\) 0 0
\(121\) 10.9909i 0.999175i
\(122\) 0.122828 2.74140i 0.0111203 0.248195i
\(123\) 0 0
\(124\) −4.51880 + 3.77418i −0.405800 + 0.338931i
\(125\) 7.69881 + 7.69881i 0.688603 + 0.688603i
\(126\) 0 0
\(127\) −18.5476 −1.64583 −0.822916 0.568164i \(-0.807654\pi\)
−0.822916 + 0.568164i \(0.807654\pi\)
\(128\) −10.7625 3.48821i −0.951284 0.308317i
\(129\) 0 0
\(130\) −5.05547 10.5288i −0.443394 0.923439i
\(131\) 5.20053 0.454372 0.227186 0.973851i \(-0.427047\pi\)
0.227186 + 0.973851i \(0.427047\pi\)
\(132\) 0 0
\(133\) 9.59938i 0.832372i
\(134\) −11.0129 12.0460i −0.951367 1.04062i
\(135\) 0 0
\(136\) 2.72041 20.1306i 0.233274 1.72619i
\(137\) 15.0286 15.0286i 1.28398 1.28398i 0.345598 0.938383i \(-0.387676\pi\)
0.938383 0.345598i \(-0.112324\pi\)
\(138\) 0 0
\(139\) 6.12441 0.519466 0.259733 0.965681i \(-0.416366\pi\)
0.259733 + 0.965681i \(0.416366\pi\)
\(140\) 13.4319 + 1.20605i 1.13520 + 0.101930i
\(141\) 0 0
\(142\) 0.0122458 0.0111956i 0.00102765 0.000939510i
\(143\) 0.162399 + 0.302700i 0.0135805 + 0.0253130i
\(144\) 0 0
\(145\) 7.07808 + 7.07808i 0.587803 + 0.587803i
\(146\) −0.618924 + 0.565841i −0.0512225 + 0.0468293i
\(147\) 0 0
\(148\) −11.6650 13.9664i −0.958854 1.14803i
\(149\) 13.2521 13.2521i 1.08565 1.08565i 0.0896836 0.995970i \(-0.471414\pi\)
0.995970 0.0896836i \(-0.0285856\pi\)
\(150\) 0 0
\(151\) 2.61081 + 2.61081i 0.212465 + 0.212465i 0.805314 0.592849i \(-0.201997\pi\)
−0.592849 + 0.805314i \(0.701997\pi\)
\(152\) −5.58961 7.33640i −0.453377 0.595061i
\(153\) 0 0
\(154\) −0.396240 0.0177534i −0.0319300 0.00143061i
\(155\) 6.74298i 0.541609i
\(156\) 0 0
\(157\) 1.36321i 0.108796i −0.998519 0.0543978i \(-0.982676\pi\)
0.998519 0.0543978i \(-0.0173239\pi\)
\(158\) −0.535937 + 11.9616i −0.0426369 + 0.951617i
\(159\) 0 0
\(160\) −10.9677 + 6.89952i −0.867074 + 0.545455i
\(161\) −4.17261 4.17261i −0.328847 0.328847i
\(162\) 0 0
\(163\) 13.7263 13.7263i 1.07513 1.07513i 0.0781913 0.996938i \(-0.475086\pi\)
0.996938 0.0781913i \(-0.0249145\pi\)
\(164\) 14.4026 + 17.2442i 1.12466 + 1.34654i
\(165\) 0 0
\(166\) −4.52342 4.94777i −0.351085 0.384021i
\(167\) 3.15502 + 3.15502i 0.244142 + 0.244142i 0.818561 0.574419i \(-0.194772\pi\)
−0.574419 + 0.818561i \(0.694772\pi\)
\(168\) 0 0
\(169\) −10.8314 7.18895i −0.833184 0.552996i
\(170\) −15.6979 17.1706i −1.20397 1.31692i
\(171\) 0 0
\(172\) 1.87204 20.8491i 0.142741 1.58973i
\(173\) −2.52229 −0.191766 −0.0958830 0.995393i \(-0.530567\pi\)
−0.0958830 + 0.995393i \(0.530567\pi\)
\(174\) 0 0
\(175\) 0.513510 0.513510i 0.0388177 0.0388177i
\(176\) 0.313167 0.217158i 0.0236059 0.0163689i
\(177\) 0 0
\(178\) 2.81109 2.56999i 0.210700 0.192629i
\(179\) 12.1739i 0.909917i −0.890513 0.454958i \(-0.849654\pi\)
0.890513 0.454958i \(-0.150346\pi\)
\(180\) 0 0
\(181\) 1.13958 0.0847044 0.0423522 0.999103i \(-0.486515\pi\)
0.0423522 + 0.999103i \(0.486515\pi\)
\(182\) 13.5315 6.49722i 1.00302 0.481606i
\(183\) 0 0
\(184\) 5.61860 + 0.759287i 0.414209 + 0.0559754i
\(185\) −20.8407 −1.53224
\(186\) 0 0
\(187\) 0.483835 + 0.483835i 0.0353815 + 0.0353815i
\(188\) −9.63432 11.5351i −0.702655 0.841285i
\(189\) 0 0
\(190\) −10.5525 0.472803i −0.765561 0.0343007i
\(191\) 22.4304i 1.62301i −0.584347 0.811504i \(-0.698649\pi\)
0.584347 0.811504i \(-0.301351\pi\)
\(192\) 0 0
\(193\) −3.57371 + 3.57371i −0.257241 + 0.257241i −0.823931 0.566690i \(-0.808224\pi\)
0.566690 + 0.823931i \(0.308224\pi\)
\(194\) −11.8252 12.9345i −0.848997 0.928644i
\(195\) 0 0
\(196\) −0.297978 + 3.31863i −0.0212842 + 0.237045i
\(197\) −2.26114 + 2.26114i −0.161099 + 0.161099i −0.783054 0.621954i \(-0.786339\pi\)
0.621954 + 0.783054i \(0.286339\pi\)
\(198\) 0 0
\(199\) −26.4375 −1.87410 −0.937051 0.349193i \(-0.886456\pi\)
−0.937051 + 0.349193i \(0.886456\pi\)
\(200\) −0.0934431 + 0.691464i −0.00660743 + 0.0488939i
\(201\) 0 0
\(202\) −14.9309 0.668972i −1.05053 0.0470687i
\(203\) −9.09666 + 9.09666i −0.638460 + 0.638460i
\(204\) 0 0
\(205\) 25.7319 1.79719
\(206\) −4.97627 0.222960i −0.346713 0.0155344i
\(207\) 0 0
\(208\) −6.55831 + 12.8448i −0.454737 + 0.890626i
\(209\) 0.310674 0.0214897
\(210\) 0 0
\(211\) −2.28566 −0.157351 −0.0786755 0.996900i \(-0.525069\pi\)
−0.0786755 + 0.996900i \(0.525069\pi\)
\(212\) −0.252404 + 2.81105i −0.0173351 + 0.193064i
\(213\) 0 0
\(214\) 16.7153 + 0.748926i 1.14264 + 0.0511955i
\(215\) −16.9523 16.9523i −1.15614 1.15614i
\(216\) 0 0
\(217\) −8.66599 −0.588286
\(218\) −19.1751 + 17.5305i −1.29870 + 1.18731i
\(219\) 0 0
\(220\) 0.0390324 0.434710i 0.00263157 0.0293081i
\(221\) −24.7915 7.47856i −1.66765 0.503062i
\(222\) 0 0
\(223\) 6.65855 6.65855i 0.445889 0.445889i −0.448096 0.893985i \(-0.647898\pi\)
0.893985 + 0.448096i \(0.147898\pi\)
\(224\) −8.86717 14.0956i −0.592463 0.941800i
\(225\) 0 0
\(226\) 17.9497 + 0.804232i 1.19400 + 0.0534967i
\(227\) 7.86789 + 7.86789i 0.522210 + 0.522210i 0.918238 0.396028i \(-0.129612\pi\)
−0.396028 + 0.918238i \(0.629612\pi\)
\(228\) 0 0
\(229\) −3.64543 3.64543i −0.240897 0.240897i 0.576324 0.817221i \(-0.304487\pi\)
−0.817221 + 0.576324i \(0.804487\pi\)
\(230\) 4.79243 4.38140i 0.316003 0.288901i
\(231\) 0 0
\(232\) 1.65531 12.2491i 0.108677 0.804191i
\(233\) 3.31543i 0.217201i 0.994085 + 0.108601i \(0.0346370\pi\)
−0.994085 + 0.108601i \(0.965363\pi\)
\(234\) 0 0
\(235\) −17.2128 −1.12284
\(236\) 8.60416 7.18633i 0.560083 0.467791i
\(237\) 0 0
\(238\) 22.0674 20.1747i 1.43042 1.30773i
\(239\) 7.48888 7.48888i 0.484415 0.484415i −0.422123 0.906538i \(-0.638715\pi\)
0.906538 + 0.422123i \(0.138715\pi\)
\(240\) 0 0
\(241\) −9.02754 + 9.02754i −0.581515 + 0.581515i −0.935319 0.353804i \(-0.884888\pi\)
0.353804 + 0.935319i \(0.384888\pi\)
\(242\) 0.695724 15.5279i 0.0447229 0.998173i
\(243\) 0 0
\(244\) −0.347061 + 3.86526i −0.0222183 + 0.247448i
\(245\) 2.69836 + 2.69836i 0.172392 + 0.172392i
\(246\) 0 0
\(247\) −10.3604 + 5.55836i −0.659216 + 0.353670i
\(248\) 6.62305 5.04610i 0.420564 0.320428i
\(249\) 0 0
\(250\) −10.3895 11.3642i −0.657091 0.718734i
\(251\) 18.4986i 1.16762i −0.811889 0.583812i \(-0.801561\pi\)
0.811889 0.583812i \(-0.198439\pi\)
\(252\) 0 0
\(253\) −0.135042 + 0.135042i −0.00849001 + 0.00849001i
\(254\) 26.2039 + 1.17406i 1.64418 + 0.0736671i
\(255\) 0 0
\(256\) 14.9845 + 5.60939i 0.936530 + 0.350587i
\(257\) 17.6933i 1.10368i 0.833950 + 0.551840i \(0.186074\pi\)
−0.833950 + 0.551840i \(0.813926\pi\)
\(258\) 0 0
\(259\) 26.7842i 1.66429i
\(260\) 6.47587 + 15.1951i 0.401616 + 0.942360i
\(261\) 0 0
\(262\) −7.34728 0.329193i −0.453917 0.0203376i
\(263\) 18.2366i 1.12452i 0.826962 + 0.562258i \(0.190067\pi\)
−0.826962 + 0.562258i \(0.809933\pi\)
\(264\) 0 0
\(265\) 2.28566 + 2.28566i 0.140407 + 0.140407i
\(266\) 0.607640 13.5620i 0.0372568 0.831538i
\(267\) 0 0
\(268\) 14.7964 + 17.7157i 0.903835 + 1.08216i
\(269\) 6.68357i 0.407504i −0.979023 0.203752i \(-0.934686\pi\)
0.979023 0.203752i \(-0.0653137\pi\)
\(270\) 0 0
\(271\) −5.65140 5.65140i −0.343298 0.343298i 0.514308 0.857606i \(-0.328049\pi\)
−0.857606 + 0.514308i \(0.828049\pi\)
\(272\) −5.11766 + 28.2683i −0.310303 + 1.71402i
\(273\) 0 0
\(274\) −22.1837 + 20.2811i −1.34016 + 1.22522i
\(275\) −0.0166192 0.0166192i −0.00100218 0.00100218i
\(276\) 0 0
\(277\) −24.3573 −1.46349 −0.731745 0.681579i \(-0.761294\pi\)
−0.731745 + 0.681579i \(0.761294\pi\)
\(278\) −8.65254 0.387674i −0.518945 0.0232512i
\(279\) 0 0
\(280\) −18.9002 2.55414i −1.12950 0.152639i
\(281\) 7.19722 7.19722i 0.429350 0.429350i −0.459057 0.888407i \(-0.651813\pi\)
0.888407 + 0.459057i \(0.151813\pi\)
\(282\) 0 0
\(283\) 14.0053i 0.832529i −0.909244 0.416264i \(-0.863339\pi\)
0.909244 0.416264i \(-0.136661\pi\)
\(284\) −0.0180096 + 0.0150419i −0.00106867 + 0.000892571i
\(285\) 0 0
\(286\) −0.210275 0.437933i −0.0124338 0.0258955i
\(287\) 33.0703i 1.95208i
\(288\) 0 0
\(289\) −34.5804 −2.03414
\(290\) −9.55185 10.4479i −0.560904 0.613524i
\(291\) 0 0
\(292\) 0.910231 0.760240i 0.0532672 0.0444897i
\(293\) −10.4354 10.4354i −0.609643 0.609643i 0.333210 0.942853i \(-0.391868\pi\)
−0.942853 + 0.333210i \(0.891868\pi\)
\(294\) 0 0
\(295\) 12.8392i 0.747526i
\(296\) 15.5961 + 20.4701i 0.906507 + 1.18980i
\(297\) 0 0
\(298\) −19.5614 + 17.8837i −1.13316 + 1.03597i
\(299\) 2.08732 6.91947i 0.120713 0.400163i
\(300\) 0 0
\(301\) 21.7869 21.7869i 1.25578 1.25578i
\(302\) −3.52328 3.85381i −0.202742 0.221762i
\(303\) 0 0
\(304\) 7.43258 + 10.7187i 0.426288 + 0.614757i
\(305\) 3.14283 + 3.14283i 0.179958 + 0.179958i
\(306\) 0 0
\(307\) 9.49598 9.49598i 0.541964 0.541964i −0.382140 0.924104i \(-0.624813\pi\)
0.924104 + 0.382140i \(0.124813\pi\)
\(308\) 0.558683 + 0.0501640i 0.0318339 + 0.00285836i
\(309\) 0 0
\(310\) 0.426830 9.52646i 0.0242423 0.541066i
\(311\) 19.3516 1.09733 0.548664 0.836043i \(-0.315136\pi\)
0.548664 + 0.836043i \(0.315136\pi\)
\(312\) 0 0
\(313\) 10.1200 0.572016 0.286008 0.958227i \(-0.407672\pi\)
0.286008 + 0.958227i \(0.407672\pi\)
\(314\) −0.0862908 + 1.92593i −0.00486967 + 0.108687i
\(315\) 0 0
\(316\) 1.51434 16.8654i 0.0851883 0.948755i
\(317\) −18.1488 + 18.1488i −1.01934 + 1.01934i −0.0195277 + 0.999809i \(0.506216\pi\)
−0.999809 + 0.0195277i \(0.993784\pi\)
\(318\) 0 0
\(319\) 0.294404 + 0.294404i 0.0164834 + 0.0164834i
\(320\) 15.9319 9.05336i 0.890619 0.506098i
\(321\) 0 0
\(322\) 5.63092 + 6.15917i 0.313799 + 0.343237i
\(323\) −16.5600 + 16.5600i −0.921426 + 0.921426i
\(324\) 0 0
\(325\) 0.851558 + 0.256880i 0.0472360 + 0.0142491i
\(326\) −20.2614 + 18.5236i −1.12217 + 1.02593i
\(327\) 0 0
\(328\) −19.2564 25.2742i −1.06326 1.39553i
\(329\) 22.1216i 1.21960i
\(330\) 0 0
\(331\) −22.5976 22.5976i −1.24208 1.24208i −0.959138 0.282939i \(-0.908691\pi\)
−0.282939 0.959138i \(-0.591309\pi\)
\(332\) 6.07747 + 7.27652i 0.333545 + 0.399351i
\(333\) 0 0
\(334\) −4.25768 4.65711i −0.232970 0.254825i
\(335\) 26.4354 1.44432
\(336\) 0 0
\(337\) 8.65894i 0.471683i 0.971792 + 0.235841i \(0.0757846\pi\)
−0.971792 + 0.235841i \(0.924215\pi\)
\(338\) 14.8475 + 10.8421i 0.807597 + 0.589735i
\(339\) 0 0
\(340\) 21.0910 + 25.2522i 1.14382 + 1.36949i
\(341\) 0.280465i 0.0151881i
\(342\) 0 0
\(343\) 11.1032 11.1032i 0.599516 0.599516i
\(344\) −3.96456 + 29.3371i −0.213754 + 1.58175i
\(345\) 0 0
\(346\) 3.56348 + 0.159661i 0.191574 + 0.00858341i
\(347\) 16.6635 0.894546 0.447273 0.894397i \(-0.352395\pi\)
0.447273 + 0.894397i \(0.352395\pi\)
\(348\) 0 0
\(349\) 3.99002 + 3.99002i 0.213581 + 0.213581i 0.805787 0.592206i \(-0.201743\pi\)
−0.592206 + 0.805787i \(0.701743\pi\)
\(350\) −0.757990 + 0.692980i −0.0405163 + 0.0370413i
\(351\) 0 0
\(352\) −0.456188 + 0.286976i −0.0243149 + 0.0152959i
\(353\) 6.09559 + 6.09559i 0.324436 + 0.324436i 0.850466 0.526030i \(-0.176320\pi\)
−0.526030 + 0.850466i \(0.676320\pi\)
\(354\) 0 0
\(355\) 0.0268740i 0.00142632i
\(356\) −4.13418 + 3.45293i −0.219111 + 0.183005i
\(357\) 0 0
\(358\) −0.770604 + 17.1992i −0.0407277 + 0.909005i
\(359\) −20.6821 20.6821i −1.09156 1.09156i −0.995362 0.0961965i \(-0.969332\pi\)
−0.0961965 0.995362i \(-0.530668\pi\)
\(360\) 0 0
\(361\) 8.36669i 0.440352i
\(362\) −1.61000 0.0721353i −0.0846195 0.00379135i
\(363\) 0 0
\(364\) −19.5285 + 8.32270i −1.02357 + 0.436228i
\(365\) 1.35825i 0.0710941i
\(366\) 0 0
\(367\) 30.1227i 1.57239i 0.617977 + 0.786196i \(0.287953\pi\)
−0.617977 + 0.786196i \(0.712047\pi\)
\(368\) −7.88988 1.42837i −0.411288 0.0744592i
\(369\) 0 0
\(370\) 29.4437 + 1.31922i 1.53071 + 0.0685828i
\(371\) −2.93749 + 2.93749i −0.152507 + 0.152507i
\(372\) 0 0
\(373\) 8.59939i 0.445259i 0.974903 + 0.222630i \(0.0714641\pi\)
−0.974903 + 0.222630i \(0.928536\pi\)
\(374\) −0.652934 0.714187i −0.0337624 0.0369297i
\(375\) 0 0
\(376\) 12.8812 + 16.9066i 0.664295 + 0.871893i
\(377\) −15.0851 4.55055i −0.776921 0.234365i
\(378\) 0 0
\(379\) 11.5751 + 11.5751i 0.594571 + 0.594571i 0.938863 0.344292i \(-0.111881\pi\)
−0.344292 + 0.938863i \(0.611881\pi\)
\(380\) 14.8786 + 1.33595i 0.763258 + 0.0685327i
\(381\) 0 0
\(382\) −1.41984 + 31.6896i −0.0726455 + 1.62138i
\(383\) 2.01486 2.01486i 0.102954 0.102954i −0.653753 0.756708i \(-0.726807\pi\)
0.756708 + 0.653753i \(0.226807\pi\)
\(384\) 0 0
\(385\) 0.454263 0.454263i 0.0231514 0.0231514i
\(386\) 5.27513 4.82270i 0.268497 0.245469i
\(387\) 0 0
\(388\) 15.8878 + 19.0224i 0.806581 + 0.965714i
\(389\) 25.8294 1.30960 0.654801 0.755801i \(-0.272752\pi\)
0.654801 + 0.755801i \(0.272752\pi\)
\(390\) 0 0
\(391\) 14.3965i 0.728060i
\(392\) 0.631052 4.66968i 0.0318729 0.235855i
\(393\) 0 0
\(394\) 3.33766 3.05140i 0.168149 0.153727i
\(395\) −13.7132 13.7132i −0.689986 0.689986i
\(396\) 0 0
\(397\) 11.0841 + 11.0841i 0.556297 + 0.556297i 0.928251 0.371954i \(-0.121312\pi\)
−0.371954 + 0.928251i \(0.621312\pi\)
\(398\) 37.3507 + 1.67349i 1.87222 + 0.0838844i
\(399\) 0 0
\(400\) 0.175786 0.970983i 0.00878928 0.0485492i
\(401\) 25.0265 25.0265i 1.24977 1.24977i 0.293942 0.955823i \(-0.405033\pi\)
0.955823 0.293942i \(-0.0949673\pi\)
\(402\) 0 0
\(403\) −5.01789 9.35300i −0.249959 0.465906i
\(404\) 21.0519 + 1.89024i 1.04737 + 0.0940431i
\(405\) 0 0
\(406\) 13.4275 12.2759i 0.666398 0.609243i
\(407\) −0.866843 −0.0429678
\(408\) 0 0
\(409\) 24.7440 + 24.7440i 1.22351 + 1.22351i 0.966374 + 0.257139i \(0.0827798\pi\)
0.257139 + 0.966374i \(0.417220\pi\)
\(410\) −36.3539 1.62882i −1.79539 0.0804419i
\(411\) 0 0
\(412\) 7.01634 + 0.629995i 0.345670 + 0.0310376i
\(413\) 16.5007 0.811948
\(414\) 0 0
\(415\) 10.8581 0.533002
\(416\) 10.0786 17.7319i 0.494145 0.869379i
\(417\) 0 0
\(418\) −0.438919 0.0196656i −0.0214682 0.000961876i
\(419\) −15.6568 −0.764883 −0.382441 0.923980i \(-0.624917\pi\)
−0.382441 + 0.923980i \(0.624917\pi\)
\(420\) 0 0
\(421\) 5.24431 5.24431i 0.255592 0.255592i −0.567667 0.823259i \(-0.692154\pi\)
0.823259 + 0.567667i \(0.192154\pi\)
\(422\) 3.22916 + 0.144682i 0.157193 + 0.00704300i
\(423\) 0 0
\(424\) 0.534534 3.95547i 0.0259593 0.192095i
\(425\) 1.77173 0.0859414
\(426\) 0 0
\(427\) −4.03912 + 4.03912i −0.195467 + 0.195467i
\(428\) −23.5680 2.11616i −1.13920 0.102288i
\(429\) 0 0
\(430\) 22.8771 + 25.0233i 1.10323 + 1.20673i
\(431\) 16.9631 16.9631i 0.817084 0.817084i −0.168600 0.985684i \(-0.553925\pi\)
0.985684 + 0.168600i \(0.0539248\pi\)
\(432\) 0 0
\(433\) 21.6657i 1.04119i −0.853805 0.520593i \(-0.825711\pi\)
0.853805 0.520593i \(-0.174289\pi\)
\(434\) 12.2433 + 0.548556i 0.587696 + 0.0263315i
\(435\) 0 0
\(436\) 28.2001 23.5532i 1.35054 1.12799i
\(437\) −4.62203 4.62203i −0.221102 0.221102i
\(438\) 0 0
\(439\) −26.9953 −1.28842 −0.644208 0.764850i \(-0.722813\pi\)
−0.644208 + 0.764850i \(0.722813\pi\)
\(440\) −0.0826619 + 0.611685i −0.00394075 + 0.0291610i
\(441\) 0 0
\(442\) 34.5519 + 12.1350i 1.64347 + 0.577202i
\(443\) 3.69391 0.175503 0.0877515 0.996142i \(-0.472032\pi\)
0.0877515 + 0.996142i \(0.472032\pi\)
\(444\) 0 0
\(445\) 6.16904i 0.292441i
\(446\) −9.82865 + 8.98568i −0.465400 + 0.425484i
\(447\) 0 0
\(448\) 11.6353 + 20.4755i 0.549714 + 0.967374i
\(449\) −15.9641 + 15.9641i −0.753391 + 0.753391i −0.975111 0.221719i \(-0.928833\pi\)
0.221719 + 0.975111i \(0.428833\pi\)
\(450\) 0 0
\(451\) 1.07028 0.0503977
\(452\) −25.3084 2.27243i −1.19041 0.106886i
\(453\) 0 0
\(454\) −10.6177 11.6138i −0.498313 0.545061i
\(455\) −7.02146 + 23.2762i −0.329171 + 1.09120i
\(456\) 0 0
\(457\) −9.99072 9.99072i −0.467346 0.467346i 0.433708 0.901054i \(-0.357205\pi\)
−0.901054 + 0.433708i \(0.857205\pi\)
\(458\) 4.91949 + 5.38100i 0.229873 + 0.251438i
\(459\) 0 0
\(460\) −7.04807 + 5.88666i −0.328618 + 0.274467i
\(461\) −9.80788 + 9.80788i −0.456798 + 0.456798i −0.897603 0.440805i \(-0.854693\pi\)
0.440805 + 0.897603i \(0.354693\pi\)
\(462\) 0 0
\(463\) 16.5192 + 16.5192i 0.767714 + 0.767714i 0.977704 0.209990i \(-0.0673431\pi\)
−0.209990 + 0.977704i \(0.567343\pi\)
\(464\) −3.11399 + 17.2007i −0.144563 + 0.798521i
\(465\) 0 0
\(466\) 0.209867 4.68403i 0.00972188 0.216984i
\(467\) 13.7056i 0.634220i −0.948389 0.317110i \(-0.897288\pi\)
0.948389 0.317110i \(-0.102712\pi\)
\(468\) 0 0
\(469\) 33.9745i 1.56880i
\(470\) 24.3181 + 1.08957i 1.12171 + 0.0502580i
\(471\) 0 0
\(472\) −12.6108 + 9.60818i −0.580460 + 0.442252i
\(473\) −0.705110 0.705110i −0.0324210 0.0324210i
\(474\) 0 0
\(475\) 0.568819 0.568819i 0.0260992 0.0260992i
\(476\) −32.4538 + 27.1059i −1.48752 + 1.24240i
\(477\) 0 0
\(478\) −11.0543 + 10.1062i −0.505612 + 0.462248i
\(479\) 7.17788 + 7.17788i 0.327966 + 0.327966i 0.851813 0.523847i \(-0.175504\pi\)
−0.523847 + 0.851813i \(0.675504\pi\)
\(480\) 0 0
\(481\) 28.9076 15.5090i 1.31807 0.707148i
\(482\) 13.3255 12.1826i 0.606961 0.554904i
\(483\) 0 0
\(484\) −1.96583 + 21.8938i −0.0893561 + 0.995171i
\(485\) 28.3853 1.28891
\(486\) 0 0
\(487\) −0.384275 + 0.384275i −0.0174132 + 0.0174132i −0.715760 0.698347i \(-0.753919\pi\)
0.698347 + 0.715760i \(0.253919\pi\)
\(488\) 0.734997 5.43886i 0.0332717 0.246206i
\(489\) 0 0
\(490\) −3.64143 3.98304i −0.164503 0.179935i
\(491\) 2.72036i 0.122768i −0.998114 0.0613840i \(-0.980449\pi\)
0.998114 0.0613840i \(-0.0195514\pi\)
\(492\) 0 0
\(493\) −31.3856 −1.41354
\(494\) 14.9890 7.19702i 0.674385 0.323809i
\(495\) 0 0
\(496\) −9.67643 + 6.70988i −0.434485 + 0.301282i
\(497\) −0.0345381 −0.00154924
\(498\) 0 0
\(499\) 29.4023 + 29.4023i 1.31623 + 1.31623i 0.916736 + 0.399493i \(0.130814\pi\)
0.399493 + 0.916736i \(0.369186\pi\)
\(500\) 13.9589 + 16.7129i 0.624262 + 0.747425i
\(501\) 0 0
\(502\) −1.17096 + 26.1348i −0.0522626 + 1.16645i
\(503\) 8.72354i 0.388963i −0.980906 0.194482i \(-0.937698\pi\)
0.980906 0.194482i \(-0.0623025\pi\)
\(504\) 0 0
\(505\) 17.1172 17.1172i 0.761706 0.761706i
\(506\) 0.199335 0.182239i 0.00886151 0.00810149i
\(507\) 0 0
\(508\) −36.9465 3.31741i −1.63924 0.147186i
\(509\) −29.8098 + 29.8098i −1.32130 + 1.32130i −0.408572 + 0.912726i \(0.633973\pi\)
−0.912726 + 0.408572i \(0.866027\pi\)
\(510\) 0 0
\(511\) 1.74561 0.0772211
\(512\) −20.8149 8.87345i −0.919899 0.392155i
\(513\) 0 0
\(514\) 1.11999 24.9971i 0.0494004 1.10257i
\(515\) 5.70495 5.70495i 0.251390 0.251390i
\(516\) 0 0
\(517\) −0.715943 −0.0314871
\(518\) −1.69544 + 37.8407i −0.0744933 + 1.66262i
\(519\) 0 0
\(520\) −8.18724 21.8775i −0.359034 0.959392i
\(521\) −23.2436 −1.01832 −0.509161 0.860671i \(-0.670044\pi\)
−0.509161 + 0.860671i \(0.670044\pi\)
\(522\) 0 0
\(523\) 15.0188 0.656728 0.328364 0.944551i \(-0.393503\pi\)
0.328364 + 0.944551i \(0.393503\pi\)
\(524\) 10.3594 + 0.930164i 0.452551 + 0.0406344i
\(525\) 0 0
\(526\) 1.15437 25.7646i 0.0503331 1.12339i
\(527\) −14.9498 14.9498i −0.651225 0.651225i
\(528\) 0 0
\(529\) −18.9818 −0.825298
\(530\) −3.08448 3.37385i −0.133981 0.146551i
\(531\) 0 0
\(532\) −1.71694 + 19.1218i −0.0744389 + 0.829037i
\(533\) −35.6920 + 19.1488i −1.54599 + 0.829425i
\(534\) 0 0
\(535\) −19.1630 + 19.1630i −0.828489 + 0.828489i
\(536\) −19.7829 25.9652i −0.854492 1.12153i
\(537\) 0 0
\(538\) −0.423069 + 9.44252i −0.0182398 + 0.407096i
\(539\) 0.112235 + 0.112235i 0.00483429 + 0.00483429i
\(540\) 0 0
\(541\) −7.84233 7.84233i −0.337168 0.337168i 0.518132 0.855300i \(-0.326627\pi\)
−0.855300 + 0.518132i \(0.826627\pi\)
\(542\) 7.62655 + 8.34201i 0.327588 + 0.358320i
\(543\) 0 0
\(544\) 9.01958 39.6134i 0.386712 1.69841i
\(545\) 42.0804i 1.80253i
\(546\) 0 0
\(547\) −24.3317 −1.04035 −0.520175 0.854060i \(-0.674133\pi\)
−0.520175 + 0.854060i \(0.674133\pi\)
\(548\) 32.6248 27.2488i 1.39366 1.16401i
\(549\) 0 0
\(550\) 0.0224275 + 0.0245315i 0.000956313 + 0.00104603i
\(551\) −10.0764 + 10.0764i −0.429271 + 0.429271i
\(552\) 0 0
\(553\) 17.6240 17.6240i 0.749450 0.749450i
\(554\) 34.4119 + 1.54182i 1.46202 + 0.0655055i
\(555\) 0 0
\(556\) 12.1997 + 1.09541i 0.517384 + 0.0464557i
\(557\) −14.8145 14.8145i −0.627710 0.627710i 0.319781 0.947491i \(-0.396391\pi\)
−0.947491 + 0.319781i \(0.896391\pi\)
\(558\) 0 0
\(559\) 36.1295 + 10.8988i 1.52811 + 0.460969i
\(560\) 26.5405 + 4.80486i 1.12154 + 0.203042i
\(561\) 0 0
\(562\) −10.6238 + 9.71262i −0.448137 + 0.409702i
\(563\) 35.1602i 1.48183i −0.671601 0.740913i \(-0.734393\pi\)
0.671601 0.740913i \(-0.265607\pi\)
\(564\) 0 0
\(565\) −20.5781 + 20.5781i −0.865729 + 0.865729i
\(566\) −0.886534 + 19.7866i −0.0372638 + 0.831694i
\(567\) 0 0
\(568\) 0.0263960 0.0201111i 0.00110755 0.000843843i
\(569\) 18.2323i 0.764337i 0.924093 + 0.382168i \(0.124823\pi\)
−0.924093 + 0.382168i \(0.875177\pi\)
\(570\) 0 0
\(571\) 33.5099i 1.40235i 0.712990 + 0.701174i \(0.247340\pi\)
−0.712990 + 0.701174i \(0.752660\pi\)
\(572\) 0.269355 + 0.632020i 0.0112623 + 0.0264261i
\(573\) 0 0
\(574\) 2.09334 46.7215i 0.0873745 1.95012i
\(575\) 0.494502i 0.0206222i
\(576\) 0 0
\(577\) −4.19353 4.19353i −0.174579 0.174579i 0.614409 0.788988i \(-0.289395\pi\)
−0.788988 + 0.614409i \(0.789395\pi\)
\(578\) 48.8550 + 2.18893i 2.03210 + 0.0910477i
\(579\) 0 0
\(580\) 12.8335 + 15.3654i 0.532881 + 0.638015i
\(581\) 13.9546i 0.578936i
\(582\) 0 0
\(583\) 0.0950688 + 0.0950688i 0.00393735 + 0.00393735i
\(584\) −1.33409 + 1.01645i −0.0552052 + 0.0420608i
\(585\) 0 0
\(586\) 14.0825 + 15.4037i 0.581744 + 0.636319i
\(587\) −13.2081 13.2081i −0.545157 0.545157i 0.379879 0.925036i \(-0.375966\pi\)
−0.925036 + 0.379879i \(0.875966\pi\)
\(588\) 0 0
\(589\) −9.59938 −0.395536
\(590\) −0.812718 + 18.1391i −0.0334591 + 0.746776i
\(591\) 0 0
\(592\) −20.7384 29.9073i −0.852344 1.22918i
\(593\) 0.911200 0.911200i 0.0374185 0.0374185i −0.688150 0.725568i \(-0.741577\pi\)
0.725568 + 0.688150i \(0.241577\pi\)
\(594\) 0 0
\(595\) 48.4277i 1.98534i
\(596\) 28.7683 24.0277i 1.17839 0.984214i
\(597\) 0 0
\(598\) −3.38696 + 9.64368i −0.138503 + 0.394359i
\(599\) 25.5885i 1.04552i 0.852481 + 0.522758i \(0.175097\pi\)
−0.852481 + 0.522758i \(0.824903\pi\)
\(600\) 0 0
\(601\) 9.95824 0.406205 0.203103 0.979157i \(-0.434897\pi\)
0.203103 + 0.979157i \(0.434897\pi\)
\(602\) −32.1596 + 29.4014i −1.31073 + 1.19831i
\(603\) 0 0
\(604\) 4.73373 + 5.66767i 0.192613 + 0.230614i
\(605\) 17.8017 + 17.8017i 0.723743 + 0.723743i
\(606\) 0 0
\(607\) 41.0894i 1.66777i −0.551941 0.833883i \(-0.686113\pi\)
0.551941 0.833883i \(-0.313887\pi\)
\(608\) −9.82223 15.6138i −0.398344 0.633222i
\(609\) 0 0
\(610\) −4.24123 4.63912i −0.171723 0.187832i
\(611\) 23.8754 12.8092i 0.965894 0.518203i
\(612\) 0 0
\(613\) −7.07976 + 7.07976i −0.285949 + 0.285949i −0.835476 0.549527i \(-0.814808\pi\)
0.549527 + 0.835476i \(0.314808\pi\)
\(614\) −14.0170 + 12.8148i −0.565679 + 0.517163i
\(615\) 0 0
\(616\) −0.786130 0.106236i −0.0316741 0.00428037i
\(617\) −2.05439 2.05439i −0.0827067 0.0827067i 0.664543 0.747250i \(-0.268626\pi\)
−0.747250 + 0.664543i \(0.768626\pi\)
\(618\) 0 0
\(619\) −16.6627 + 16.6627i −0.669730 + 0.669730i −0.957653 0.287923i \(-0.907035\pi\)
0.287923 + 0.957653i \(0.407035\pi\)
\(620\) −1.20605 + 13.4319i −0.0484360 + 0.539439i
\(621\) 0 0
\(622\) −27.3399 1.22495i −1.09623 0.0491162i
\(623\) −7.92838 −0.317644
\(624\) 0 0
\(625\) 26.1726 1.04690
\(626\) −14.2975 0.640595i −0.571443 0.0256033i
\(627\) 0 0
\(628\) 0.243823 2.71549i 0.00972958 0.108360i
\(629\) 46.2059 46.2059i 1.84235 1.84235i
\(630\) 0 0
\(631\) 32.6063 + 32.6063i 1.29804 + 1.29804i 0.929688 + 0.368349i \(0.120077\pi\)
0.368349 + 0.929688i \(0.379923\pi\)
\(632\) −3.20703 + 23.7316i −0.127569 + 0.943991i
\(633\) 0 0
\(634\) 26.7893 24.4917i 1.06394 0.972690i
\(635\) −30.0410 + 30.0410i −1.19214 + 1.19214i
\(636\) 0 0
\(637\) −5.75085 1.73479i −0.227857 0.0687350i
\(638\) −0.397297 0.434568i −0.0157291 0.0172047i
\(639\) 0 0
\(640\) −23.0816 + 11.7821i −0.912380 + 0.465727i
\(641\) 2.93313i 0.115852i 0.998321 + 0.0579259i \(0.0184487\pi\)
−0.998321 + 0.0579259i \(0.981551\pi\)
\(642\) 0 0
\(643\) 19.2248 + 19.2248i 0.758153 + 0.758153i 0.975986 0.217833i \(-0.0698989\pi\)
−0.217833 + 0.975986i \(0.569899\pi\)
\(644\) −7.56546 9.05808i −0.298121 0.356939i
\(645\) 0 0
\(646\) 24.4442 22.3477i 0.961745 0.879259i
\(647\) −45.3264 −1.78197 −0.890983 0.454037i \(-0.849983\pi\)
−0.890983 + 0.454037i \(0.849983\pi\)
\(648\) 0 0
\(649\) 0.534029i 0.0209625i
\(650\) −1.18682 0.416823i −0.0465508 0.0163491i
\(651\) 0 0
\(652\) 29.7978 24.8876i 1.16697 0.974673i
\(653\) 2.67450i 0.104661i −0.998630 0.0523307i \(-0.983335\pi\)
0.998630 0.0523307i \(-0.0166650\pi\)
\(654\) 0 0
\(655\) 8.42316 8.42316i 0.329120 0.329120i
\(656\) 25.6055 + 36.9262i 0.999728 + 1.44173i
\(657\) 0 0
\(658\) −1.40030 + 31.2534i −0.0545893 + 1.21838i
\(659\) −37.5991 −1.46465 −0.732326 0.680954i \(-0.761565\pi\)
−0.732326 + 0.680954i \(0.761565\pi\)
\(660\) 0 0
\(661\) −29.7860 29.7860i −1.15854 1.15854i −0.984789 0.173752i \(-0.944411\pi\)
−0.173752 0.984789i \(-0.555589\pi\)
\(662\) 30.4954 + 33.3562i 1.18524 + 1.29643i
\(663\) 0 0
\(664\) −8.12563 10.6649i −0.315335 0.413880i
\(665\) 15.5479 + 15.5479i 0.602921 + 0.602921i
\(666\) 0 0
\(667\) 8.75994i 0.339186i
\(668\) 5.72044 + 6.84905i 0.221331 + 0.264998i
\(669\) 0 0
\(670\) −37.3479 1.67336i −1.44287 0.0646475i
\(671\) 0.130722 + 0.130722i 0.00504646 + 0.00504646i
\(672\) 0 0
\(673\) 26.8225i 1.03393i −0.856006 0.516965i \(-0.827062\pi\)
0.856006 0.516965i \(-0.172938\pi\)
\(674\) 0.548110 12.2333i 0.0211124 0.471210i
\(675\) 0 0
\(676\) −20.2902 16.2576i −0.780391 0.625292i
\(677\) 27.6382i 1.06222i −0.847302 0.531112i \(-0.821774\pi\)
0.847302 0.531112i \(-0.178226\pi\)
\(678\) 0 0
\(679\) 36.4804i 1.39999i
\(680\) −28.1989 37.0113i −1.08138 1.41932i
\(681\) 0 0
\(682\) 0.0177534 0.396240i 0.000679814 0.0151728i
\(683\) 0.401585 0.401585i 0.0153662 0.0153662i −0.699382 0.714748i \(-0.746541\pi\)
0.714748 + 0.699382i \(0.246541\pi\)
\(684\) 0 0
\(685\) 48.6829i 1.86008i
\(686\) −16.3894 + 14.9837i −0.625750 + 0.572081i
\(687\) 0 0
\(688\) 7.45814 41.1964i 0.284339 1.57060i
\(689\) −4.87127 1.46946i −0.185581 0.0559820i
\(690\) 0 0
\(691\) −25.8040 25.8040i −0.981632 0.981632i 0.0182023 0.999834i \(-0.494206\pi\)
−0.999834 + 0.0182023i \(0.994206\pi\)
\(692\) −5.02436 0.451136i −0.190998 0.0171496i
\(693\) 0 0
\(694\) −23.5422 1.05480i −0.893650 0.0400397i
\(695\) 9.91955 9.91955i 0.376270 0.376270i
\(696\) 0 0
\(697\) −57.0500 + 57.0500i −2.16092 + 2.16092i
\(698\) −5.38452 5.88965i −0.203807 0.222927i
\(699\) 0 0
\(700\) 1.11475 0.931058i 0.0421336 0.0351907i
\(701\) 42.4434 1.60307 0.801533 0.597951i \(-0.204018\pi\)
0.801533 + 0.597951i \(0.204018\pi\)
\(702\) 0 0
\(703\) 29.6691i 1.11899i
\(704\) 0.662666 0.376563i 0.0249752 0.0141922i
\(705\) 0 0
\(706\) −8.22598 8.99768i −0.309589 0.338632i
\(707\) 21.9988 + 21.9988i 0.827350 + 0.827350i
\(708\) 0 0
\(709\) −21.9848 21.9848i −0.825657 0.825657i 0.161256 0.986913i \(-0.448446\pi\)
−0.986913 + 0.161256i \(0.948446\pi\)
\(710\) 0.00170112 0.0379674i 6.38419e−5 0.00142489i
\(711\) 0 0
\(712\) 6.05932 4.61660i 0.227083 0.173014i
\(713\) 4.17261 4.17261i 0.156265 0.156265i
\(714\) 0 0
\(715\) 0.753308 + 0.227242i 0.0281721 + 0.00849837i
\(716\) 2.17741 24.2502i 0.0813737 0.906271i
\(717\) 0 0
\(718\) 27.9104 + 30.5287i 1.04161 + 1.13932i
\(719\) −4.55035 −0.169699 −0.0848497 0.996394i \(-0.527041\pi\)
−0.0848497 + 0.996394i \(0.527041\pi\)
\(720\) 0 0
\(721\) 7.33193 + 7.33193i 0.273055 + 0.273055i
\(722\) −0.529611 + 11.8204i −0.0197101 + 0.439911i
\(723\) 0 0
\(724\) 2.27003 + 0.203825i 0.0843650 + 0.00757510i
\(725\) 1.07806 0.0400381
\(726\) 0 0
\(727\) 35.3567 1.31131 0.655653 0.755062i \(-0.272393\pi\)
0.655653 + 0.755062i \(0.272393\pi\)
\(728\) 28.1167 10.5221i 1.04207 0.389976i
\(729\) 0 0
\(730\) −0.0859772 + 1.91893i −0.00318216 + 0.0710229i
\(731\) 75.1699 2.78026
\(732\) 0 0
\(733\) 10.2364 10.2364i 0.378089 0.378089i −0.492323 0.870412i \(-0.663852\pi\)
0.870412 + 0.492323i \(0.163852\pi\)
\(734\) 1.90676 42.5572i 0.0703800 1.57082i
\(735\) 0 0
\(736\) 11.0564 + 2.51743i 0.407543 + 0.0927937i
\(737\) 1.09955 0.0405023
\(738\) 0 0
\(739\) −15.9995 + 15.9995i −0.588550 + 0.588550i −0.937239 0.348688i \(-0.886627\pi\)
0.348688 + 0.937239i \(0.386627\pi\)
\(740\) −41.5145 3.72757i −1.52610 0.137028i
\(741\) 0 0
\(742\) 4.33602 3.96414i 0.159180 0.145528i
\(743\) 4.22277 4.22277i 0.154918 0.154918i −0.625392 0.780311i \(-0.715061\pi\)
0.780311 + 0.625392i \(0.215061\pi\)
\(744\) 0 0
\(745\) 42.9282i 1.57277i
\(746\) 0.544340 12.1492i 0.0199297 0.444813i
\(747\) 0 0
\(748\) 0.877255 + 1.05033i 0.0320756 + 0.0384039i
\(749\) −24.6280 24.6280i −0.899889 0.899889i
\(750\) 0 0
\(751\) 39.7818 1.45166 0.725828 0.687876i \(-0.241457\pi\)
0.725828 + 0.687876i \(0.241457\pi\)
\(752\) −17.1283 24.7010i −0.624604 0.900752i
\(753\) 0 0
\(754\) 21.0241 + 7.38388i 0.765652 + 0.268905i
\(755\) 8.45732 0.307794
\(756\) 0 0
\(757\) 0.790942i 0.0287473i 0.999897 + 0.0143736i \(0.00457543\pi\)
−0.999897 + 0.0143736i \(0.995425\pi\)
\(758\) −15.6205 17.0859i −0.567362 0.620588i
\(759\) 0 0
\(760\) −20.9359 2.82924i −0.759426 0.102627i
\(761\) −2.96895 + 2.96895i −0.107624 + 0.107624i −0.758868 0.651244i \(-0.774247\pi\)
0.651244 + 0.758868i \(0.274247\pi\)
\(762\) 0 0
\(763\) 54.0812 1.95787
\(764\) 4.01190 44.6811i 0.145145 1.61650i
\(765\) 0 0
\(766\) −2.97412 + 2.71904i −0.107459 + 0.0982430i
\(767\) 9.55447 + 17.8089i 0.344992 + 0.643041i
\(768\) 0 0
\(769\) −20.0249 20.0249i −0.722117 0.722117i 0.246919 0.969036i \(-0.420582\pi\)
−0.969036 + 0.246919i \(0.920582\pi\)
\(770\) −0.670535 + 0.613026i −0.0241644 + 0.0220919i
\(771\) 0 0
\(772\) −7.75796 + 6.47958i −0.279215 + 0.233205i
\(773\) −12.6302 + 12.6302i −0.454278 + 0.454278i −0.896772 0.442494i \(-0.854094\pi\)
0.442494 + 0.896772i \(0.354094\pi\)
\(774\) 0 0
\(775\) 0.513510 + 0.513510i 0.0184458 + 0.0184458i
\(776\) −21.2421 27.8804i −0.762547 1.00085i
\(777\) 0 0
\(778\) −36.4917 1.63500i −1.30829 0.0586175i
\(779\) 36.6322i 1.31248i
\(780\) 0 0
\(781\) 0.00111779i 3.99976e-5i
\(782\) −0.911294 + 20.3393i −0.0325878 + 0.727330i
\(783\) 0 0
\(784\) −1.18714 + 6.55737i −0.0423978 + 0.234192i
\(785\) −2.20795 2.20795i −0.0788051 0.0788051i
\(786\) 0 0
\(787\) −26.5637 + 26.5637i −0.946895 + 0.946895i −0.998659 0.0517643i \(-0.983516\pi\)
0.0517643 + 0.998659i \(0.483516\pi\)
\(788\) −4.90858 + 4.09973i −0.174861 + 0.146047i
\(789\) 0 0
\(790\) 18.5059 + 20.2420i 0.658411 + 0.720178i
\(791\) −26.4468 26.4468i −0.940339 0.940339i
\(792\) 0 0
\(793\) −6.69811 2.02054i −0.237857 0.0717516i
\(794\) −14.9580 16.3613i −0.530840 0.580640i
\(795\) 0 0
\(796\) −52.6631 4.72860i −1.86659 0.167601i
\(797\) −10.2872 −0.364393 −0.182196 0.983262i \(-0.558321\pi\)
−0.182196 + 0.983262i \(0.558321\pi\)
\(798\) 0 0
\(799\) 38.1624 38.1624i 1.35009 1.35009i
\(800\) −0.309813 + 1.36067i −0.0109535 + 0.0481071i
\(801\) 0 0
\(802\) −36.9416 + 33.7732i −1.30445 + 1.19257i
\(803\) 0.0564947i 0.00199365i
\(804\) 0 0
\(805\) −13.5165 −0.476395
\(806\) 6.49722 + 13.5315i 0.228855 + 0.476627i
\(807\) 0 0
\(808\) −29.6224 4.00311i −1.04211 0.140829i
\(809\) 1.64479 0.0578278 0.0289139 0.999582i \(-0.490795\pi\)
0.0289139 + 0.999582i \(0.490795\pi\)
\(810\) 0 0
\(811\) −13.0418 13.0418i −0.457958 0.457958i 0.440026 0.897985i \(-0.354969\pi\)
−0.897985 + 0.440026i \(0.854969\pi\)
\(812\) −19.7475 + 16.4934i −0.693000 + 0.578805i
\(813\) 0 0
\(814\) 1.22467 + 0.0548711i 0.0429248 + 0.00192323i
\(815\) 44.4644i 1.55752i
\(816\) 0 0
\(817\) 24.1335 24.1335i 0.844326 0.844326i
\(818\) −33.3920 36.5246i −1.16752 1.27705i
\(819\) 0 0
\(820\) 51.2575 + 4.60239i 1.78999 + 0.160723i
\(821\) 9.46652 9.46652i 0.330384 0.330384i −0.522348 0.852732i \(-0.674944\pi\)
0.852732 + 0.522348i \(0.174944\pi\)
\(822\) 0 0
\(823\) −9.44005 −0.329059 −0.164530 0.986372i \(-0.552611\pi\)
−0.164530 + 0.986372i \(0.552611\pi\)
\(824\) −9.87278 1.33419i −0.343935 0.0464786i
\(825\) 0 0
\(826\) −23.3122 1.04450i −0.811134 0.0363426i
\(827\) −15.1241 + 15.1241i −0.525916 + 0.525916i −0.919352 0.393436i \(-0.871286\pi\)
0.393436 + 0.919352i \(0.371286\pi\)
\(828\) 0 0
\(829\) 30.8994 1.07318 0.536590 0.843843i \(-0.319712\pi\)
0.536590 + 0.843843i \(0.319712\pi\)
\(830\) −15.3402 0.687315i −0.532468 0.0238570i
\(831\) 0 0
\(832\) −15.3615 + 24.4136i −0.532563 + 0.846390i
\(833\) −11.9651 −0.414564
\(834\) 0 0
\(835\) 10.2202 0.353684
\(836\) 0.618858 + 0.0555670i 0.0214036 + 0.00192182i
\(837\) 0 0
\(838\) 22.1198 + 0.991071i 0.764116 + 0.0342360i
\(839\) 39.8024 + 39.8024i 1.37413 + 1.37413i 0.854222 + 0.519909i \(0.174034\pi\)
0.519909 + 0.854222i \(0.325966\pi\)
\(840\) 0 0
\(841\) 9.90253 0.341466
\(842\) −7.74110 + 7.07718i −0.266776 + 0.243896i
\(843\) 0 0
\(844\) −4.55299 0.408812i −0.156720 0.0140719i
\(845\) −29.1871 + 5.89958i −1.00407 + 0.202952i
\(846\) 0 0
\(847\) −22.8785 + 22.8785i −0.786116 + 0.786116i
\(848\) −1.00557 + 5.55444i −0.0345314 + 0.190740i
\(849\) 0 0
\(850\) −2.50309 0.112150i −0.0858553 0.00384672i
\(851\) 12.8964 + 12.8964i 0.442083 + 0.442083i
\(852\) 0 0
\(853\) −5.81918 5.81918i −0.199245 0.199245i 0.600431 0.799676i \(-0.294996\pi\)
−0.799676 + 0.600431i \(0.794996\pi\)
\(854\) 5.96213 5.45078i 0.204020 0.186522i
\(855\) 0 0
\(856\) 33.1628 + 4.48155i 1.13348 + 0.153176i
\(857\) 27.8183i 0.950256i 0.879917 + 0.475128i \(0.157598\pi\)
−0.879917 + 0.475128i \(0.842402\pi\)
\(858\) 0 0
\(859\) −10.0327 −0.342311 −0.171155 0.985244i \(-0.554750\pi\)
−0.171155 + 0.985244i \(0.554750\pi\)
\(860\) −30.7367 36.8009i −1.04811 1.25490i
\(861\) 0 0
\(862\) −25.0392 + 22.8916i −0.852838 + 0.779693i
\(863\) 32.0055 32.0055i 1.08948 1.08948i 0.0938995 0.995582i \(-0.470067\pi\)
0.995582 0.0938995i \(-0.0299332\pi\)
\(864\) 0 0
\(865\) −4.08529 + 4.08529i −0.138904 + 0.138904i
\(866\) −1.37143 + 30.6092i −0.0466032 + 1.04014i
\(867\) 0 0
\(868\) −17.2625 1.55000i −0.585929 0.0526103i
\(869\) −0.570383 0.570383i −0.0193489 0.0193489i
\(870\) 0 0
\(871\) −36.6678 + 19.6723i −1.24244 + 0.666572i
\(872\) −41.3319 + 31.4908i −1.39968 + 1.06641i
\(873\) 0 0
\(874\) 6.23741 + 6.82256i 0.210984 + 0.230776i
\(875\) 32.0515i 1.08354i
\(876\) 0 0
\(877\) −20.8160 + 20.8160i −0.702906 + 0.702906i −0.965033 0.262127i \(-0.915576\pi\)
0.262127 + 0.965033i \(0.415576\pi\)
\(878\) 38.1389 + 1.70880i 1.28713 + 0.0576692i
\(879\) 0 0
\(880\) 0.155504 0.858954i 0.00524204 0.0289553i
\(881\) 13.7757i 0.464116i −0.972702 0.232058i \(-0.925454\pi\)
0.972702 0.232058i \(-0.0745459\pi\)
\(882\) 0 0
\(883\) 38.8765i 1.30830i −0.756366 0.654149i \(-0.773027\pi\)
0.756366 0.654149i \(-0.226973\pi\)
\(884\) −48.0466 19.3314i −1.61598 0.650184i
\(885\) 0 0
\(886\) −5.21874 0.233824i −0.175327 0.00785547i
\(887\) 51.7991i 1.73924i 0.493718 + 0.869622i \(0.335637\pi\)
−0.493718 + 0.869622i \(0.664363\pi\)
\(888\) 0 0
\(889\) −38.6084 38.6084i −1.29488 1.29488i
\(890\) 0.390500 8.71560i 0.0130896 0.292148i
\(891\) 0 0
\(892\) 14.4547 12.0728i 0.483978 0.404227i
\(893\) 24.5043i 0.820005i
\(894\) 0 0
\(895\) −19.7177 19.7177i −0.659090 0.659090i
\(896\) −15.1422 29.6642i −0.505864 0.991010i
\(897\) 0 0
\(898\) 23.5645 21.5435i 0.786358 0.718914i
\(899\) −9.09666 9.09666i −0.303391 0.303391i
\(900\) 0 0
\(901\) −10.1350 −0.337647
\(902\) −1.51209 0.0677488i −0.0503472 0.00225579i
\(903\) 0 0
\(904\) 35.6118 + 4.81250i 1.18443 + 0.160061i
\(905\) 1.84575 1.84575i 0.0613548 0.0613548i
\(906\) 0 0
\(907\) 53.4908i 1.77613i 0.459714 + 0.888067i \(0.347952\pi\)
−0.459714 + 0.888067i \(0.652048\pi\)
\(908\) 14.2655 + 17.0800i 0.473416 + 0.566819i
\(909\) 0 0
\(910\) 11.3933 32.4400i 0.377683 1.07538i
\(911\) 8.34775i 0.276573i −0.990392 0.138287i \(-0.955840\pi\)
0.990392 0.138287i \(-0.0441595\pi\)
\(912\) 0 0
\(913\) 0.451627 0.0149467
\(914\) 13.4824 + 14.7473i 0.445959 + 0.487796i
\(915\) 0 0
\(916\) −6.60962 7.91366i −0.218388 0.261475i
\(917\) 10.8253 + 10.8253i 0.357484 + 0.357484i
\(918\) 0 0
\(919\) 0.682347i 0.0225085i −0.999937 0.0112543i \(-0.996418\pi\)
0.999937 0.0112543i \(-0.00358242\pi\)
\(920\) 10.3301 7.87051i 0.340574 0.259483i
\(921\) 0 0
\(922\) 14.4774 13.2357i 0.476787 0.435894i
\(923\) −0.0199987 0.0372761i −0.000658265 0.00122696i
\(924\) 0 0
\(925\) −1.58712 + 1.58712i −0.0521842 + 0.0521842i
\(926\) −22.2926 24.3840i −0.732581 0.801307i
\(927\) 0 0
\(928\) 5.48823 24.1039i 0.180160 0.791250i
\(929\) −11.6044 11.6044i −0.380728 0.380728i 0.490636 0.871364i \(-0.336764\pi\)
−0.871364 + 0.490636i \(0.836764\pi\)
\(930\) 0 0
\(931\) −3.84142 + 3.84142i −0.125897 + 0.125897i
\(932\) −0.592997 + 6.60430i −0.0194243 + 0.216331i
\(933\) 0 0
\(934\) −0.867563 + 19.3632i −0.0283875 + 0.633584i
\(935\) 1.56731 0.0512566
\(936\) 0 0
\(937\) −5.73855 −0.187470 −0.0937352 0.995597i \(-0.529881\pi\)
−0.0937352 + 0.995597i \(0.529881\pi\)
\(938\) 2.15058 47.9990i 0.0702189 1.56722i
\(939\) 0 0
\(940\) −34.2876 3.07867i −1.11834 0.100415i
\(941\) −0.617212 + 0.617212i −0.0201205 + 0.0201205i −0.717095 0.696975i \(-0.754529\pi\)
0.696975 + 0.717095i \(0.254529\pi\)
\(942\) 0 0
\(943\) −15.9231 15.9231i −0.518526 0.518526i
\(944\) 18.4247 12.7761i 0.599673 0.415828i
\(945\) 0 0
\(946\) 0.951544 + 1.04081i 0.0309374 + 0.0338397i
\(947\) 2.57671 2.57671i 0.0837319 0.0837319i −0.664000 0.747732i \(-0.731143\pi\)
0.747732 + 0.664000i \(0.231143\pi\)
\(948\) 0 0
\(949\) 1.01076 + 1.88399i 0.0328108 + 0.0611570i
\(950\) −0.839631 + 0.767619i −0.0272412 + 0.0249048i
\(951\) 0 0
\(952\) 47.5664 36.2408i 1.54164 1.17457i
\(953\) 44.1686i 1.43076i 0.698736 + 0.715380i \(0.253746\pi\)
−0.698736 + 0.715380i \(0.746254\pi\)
\(954\) 0 0
\(955\) −36.3300 36.3300i −1.17561 1.17561i
\(956\) 16.2572 13.5783i 0.525796 0.439153i
\(957\) 0 0
\(958\) −9.68653 10.5952i −0.312958 0.342317i
\(959\) 62.5667 2.02038
\(960\) 0 0
\(961\) 22.3340i 0.720452i
\(962\) −41.8223 + 20.0812i −1.34840 + 0.647442i
\(963\) 0 0
\(964\) −19.5974 + 16.3681i −0.631190 + 0.527180i
\(965\) 11.5765i 0.372660i
\(966\) 0 0
\(967\) 23.3487 23.3487i 0.750844 0.750844i −0.223792 0.974637i \(-0.571844\pi\)
0.974637 + 0.223792i \(0.0718438\pi\)
\(968\) 4.16319 30.8070i 0.133810 0.990174i
\(969\) 0 0
\(970\) −40.1026 1.79679i −1.28762 0.0576913i
\(971\) −15.8294 −0.507990 −0.253995 0.967205i \(-0.581745\pi\)
−0.253995 + 0.967205i \(0.581745\pi\)
\(972\) 0 0
\(973\) 12.7485 + 12.7485i 0.408697 + 0.408697i
\(974\) 0.567227 0.518578i 0.0181751 0.0166163i
\(975\) 0 0
\(976\) −1.38268 + 7.63748i −0.0442585 + 0.244470i
\(977\) 19.1168 + 19.1168i 0.611602 + 0.611602i 0.943363 0.331761i \(-0.107643\pi\)
−0.331761 + 0.943363i \(0.607643\pi\)
\(978\) 0 0
\(979\) 0.256593i 0.00820076i
\(980\) 4.89247 + 5.85773i 0.156284 + 0.187118i
\(981\) 0 0
\(982\) −0.172198 + 3.84331i −0.00549507 + 0.122645i
\(983\) −20.0123 20.0123i −0.638293 0.638293i 0.311841 0.950134i \(-0.399054\pi\)
−0.950134 + 0.311841i \(0.899054\pi\)
\(984\) 0 0
\(985\) 7.32462i 0.233382i
\(986\) 44.3414 + 1.98670i 1.41212 + 0.0632696i
\(987\) 0 0
\(988\) −21.6319 + 9.21912i −0.688203 + 0.293299i
\(989\) 20.9805i 0.667140i
\(990\) 0 0
\(991\) 36.3170i 1.15365i 0.816868 + 0.576824i \(0.195708\pi\)
−0.816868 + 0.576824i \(0.804292\pi\)
\(992\) 14.0956 8.86717i 0.447535 0.281533i
\(993\) 0 0
\(994\) 0.0487953 + 0.00218626i 0.00154769 + 6.93438e-5i
\(995\) −42.8201 + 42.8201i −1.35749 + 1.35749i
\(996\) 0 0
\(997\) 27.1788i 0.860762i −0.902647 0.430381i \(-0.858379\pi\)
0.902647 0.430381i \(-0.141621\pi\)
\(998\) −39.6783 43.4007i −1.25600 1.37382i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.j.307.1 24
3.2 odd 2 312.2.t.e.307.12 yes 24
8.3 odd 2 inner 936.2.w.j.307.6 24
12.11 even 2 1248.2.bb.f.463.4 24
13.5 odd 4 inner 936.2.w.j.811.6 24
24.5 odd 2 1248.2.bb.f.463.9 24
24.11 even 2 312.2.t.e.307.7 yes 24
39.5 even 4 312.2.t.e.187.7 24
104.83 even 4 inner 936.2.w.j.811.1 24
156.83 odd 4 1248.2.bb.f.655.9 24
312.5 even 4 1248.2.bb.f.655.4 24
312.83 odd 4 312.2.t.e.187.12 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.7 24 39.5 even 4
312.2.t.e.187.12 yes 24 312.83 odd 4
312.2.t.e.307.7 yes 24 24.11 even 2
312.2.t.e.307.12 yes 24 3.2 odd 2
936.2.w.j.307.1 24 1.1 even 1 trivial
936.2.w.j.307.6 24 8.3 odd 2 inner
936.2.w.j.811.1 24 104.83 even 4 inner
936.2.w.j.811.6 24 13.5 odd 4 inner
1248.2.bb.f.463.4 24 12.11 even 2
1248.2.bb.f.463.9 24 24.5 odd 2
1248.2.bb.f.655.4 24 312.5 even 4
1248.2.bb.f.655.9 24 156.83 odd 4