Properties

Label 312.2.t.e.187.12
Level $312$
Weight $2$
Character 312.187
Analytic conductor $2.491$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,2,Mod(187,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.187"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.12
Character \(\chi\) \(=\) 312.187
Dual form 312.2.t.e.307.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41280 - 0.0632999i) q^{2} -1.00000 q^{3} +(1.99199 - 0.178860i) q^{4} +(-1.61967 - 1.61967i) q^{5} +(-1.41280 + 0.0632999i) q^{6} +(2.08158 - 2.08158i) q^{7} +(2.80295 - 0.378785i) q^{8} +1.00000 q^{9} +(-2.39080 - 2.18574i) q^{10} +(-0.0673682 - 0.0673682i) q^{11} +(-1.99199 + 0.178860i) q^{12} +(-1.04130 - 3.45191i) q^{13} +(2.80909 - 3.07262i) q^{14} +(1.61967 + 1.61967i) q^{15} +(3.93602 - 0.712572i) q^{16} +7.18195i q^{17} +(1.41280 - 0.0632999i) q^{18} +(2.30579 - 2.30579i) q^{19} +(-3.51606 - 2.93668i) q^{20} +(-2.08158 + 2.08158i) q^{21} +(-0.0994420 - 0.0909132i) q^{22} +2.00453 q^{23} +(-2.80295 + 0.378785i) q^{24} +0.246692i q^{25} +(-1.68965 - 4.81093i) q^{26} -1.00000 q^{27} +(3.77418 - 4.51880i) q^{28} +4.37007i q^{29} +(2.39080 + 2.18574i) q^{30} +(-2.08158 - 2.08158i) q^{31} +(5.51569 - 1.25587i) q^{32} +(0.0673682 + 0.0673682i) q^{33} +(0.454617 + 10.1466i) q^{34} -6.74298 q^{35} +(1.99199 - 0.178860i) q^{36} +(-6.43362 + 6.43362i) q^{37} +(3.11165 - 3.40356i) q^{38} +(1.04130 + 3.45191i) q^{39} +(-5.15337 - 3.92636i) q^{40} +(-7.94353 + 7.94353i) q^{41} +(-2.80909 + 3.07262i) q^{42} +10.4665i q^{43} +(-0.146246 - 0.122147i) q^{44} +(-1.61967 - 1.61967i) q^{45} +(2.83200 - 0.126887i) q^{46} +(5.31365 - 5.31365i) q^{47} +(-3.93602 + 0.712572i) q^{48} -1.66599i q^{49} +(0.0156156 + 0.348525i) q^{50} -7.18195i q^{51} +(-2.69166 - 6.68991i) q^{52} +1.41118i q^{53} +(-1.41280 + 0.0632999i) q^{54} +0.218229i q^{55} +(5.04610 - 6.62305i) q^{56} +(-2.30579 + 2.30579i) q^{57} +(0.276625 + 6.17401i) q^{58} +(-3.96350 - 3.96350i) q^{59} +(3.51606 + 2.93668i) q^{60} -1.94041i q^{61} +(-3.07262 - 2.80909i) q^{62} +(2.08158 - 2.08158i) q^{63} +(7.71304 - 2.12343i) q^{64} +(-3.90441 + 7.27754i) q^{65} +(0.0994420 + 0.0909132i) q^{66} +(8.16072 - 8.16072i) q^{67} +(1.28456 + 14.3063i) q^{68} -2.00453 q^{69} +(-9.52646 + 0.426830i) q^{70} +(0.00829610 + 0.00829610i) q^{71} +(2.80295 - 0.378785i) q^{72} +(0.419298 + 0.419298i) q^{73} +(-8.68214 + 9.49664i) q^{74} -0.246692i q^{75} +(4.18068 - 5.00551i) q^{76} -0.280465 q^{77} +(1.68965 + 4.81093i) q^{78} +8.46664i q^{79} +(-7.52920 - 5.22093i) q^{80} +1.00000 q^{81} +(-10.7198 + 11.7254i) q^{82} +(-3.35193 + 3.35193i) q^{83} +(-3.77418 + 4.51880i) q^{84} +(11.6324 - 11.6324i) q^{85} +(0.662529 + 14.7870i) q^{86} -4.37007i q^{87} +(-0.214348 - 0.163312i) q^{88} +(1.90441 + 1.90441i) q^{89} +(-2.39080 - 2.18574i) q^{90} +(-9.35300 - 5.01789i) q^{91} +(3.99300 - 0.358530i) q^{92} +(2.08158 + 2.08158i) q^{93} +(7.17075 - 7.84346i) q^{94} -7.46925 q^{95} +(-5.51569 + 1.25587i) q^{96} +(8.76265 - 8.76265i) q^{97} +(-0.105457 - 2.35370i) q^{98} +(-0.0673682 - 0.0673682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{3} - 6 q^{8} + 24 q^{9} + 8 q^{11} + 36 q^{14} + 28 q^{16} + 20 q^{19} - 20 q^{20} + 20 q^{22} + 6 q^{24} + 12 q^{26} - 24 q^{27} - 16 q^{28} - 30 q^{32} - 8 q^{33} + 16 q^{34} + 16 q^{35}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41280 0.0632999i 0.998998 0.0447598i
\(3\) −1.00000 −0.577350
\(4\) 1.99199 0.178860i 0.995993 0.0894299i
\(5\) −1.61967 1.61967i −0.724341 0.724341i 0.245146 0.969486i \(-0.421164\pi\)
−0.969486 + 0.245146i \(0.921164\pi\)
\(6\) −1.41280 + 0.0632999i −0.576772 + 0.0258421i
\(7\) 2.08158 2.08158i 0.786765 0.786765i −0.194197 0.980962i \(-0.562210\pi\)
0.980962 + 0.194197i \(0.0622102\pi\)
\(8\) 2.80295 0.378785i 0.990992 0.133921i
\(9\) 1.00000 0.333333
\(10\) −2.39080 2.18574i −0.756036 0.691193i
\(11\) −0.0673682 0.0673682i −0.0203123 0.0203123i 0.696878 0.717190i \(-0.254572\pi\)
−0.717190 + 0.696878i \(0.754572\pi\)
\(12\) −1.99199 + 0.178860i −0.575037 + 0.0516323i
\(13\) −1.04130 3.45191i −0.288804 0.957388i
\(14\) 2.80909 3.07262i 0.750761 0.821192i
\(15\) 1.61967 + 1.61967i 0.418198 + 0.418198i
\(16\) 3.93602 0.712572i 0.984005 0.178143i
\(17\) 7.18195i 1.74188i 0.491391 + 0.870939i \(0.336489\pi\)
−0.491391 + 0.870939i \(0.663511\pi\)
\(18\) 1.41280 0.0632999i 0.332999 0.0149199i
\(19\) 2.30579 2.30579i 0.528984 0.528984i −0.391285 0.920269i \(-0.627969\pi\)
0.920269 + 0.391285i \(0.127969\pi\)
\(20\) −3.51606 2.93668i −0.786216 0.656661i
\(21\) −2.08158 + 2.08158i −0.454239 + 0.454239i
\(22\) −0.0994420 0.0909132i −0.0212011 0.0193828i
\(23\) 2.00453 0.417974 0.208987 0.977918i \(-0.432983\pi\)
0.208987 + 0.977918i \(0.432983\pi\)
\(24\) −2.80295 + 0.378785i −0.572150 + 0.0773191i
\(25\) 0.246692i 0.0493384i
\(26\) −1.68965 4.81093i −0.331367 0.943502i
\(27\) −1.00000 −0.192450
\(28\) 3.77418 4.51880i 0.713252 0.853973i
\(29\) 4.37007i 0.811501i 0.913984 + 0.405750i \(0.132990\pi\)
−0.913984 + 0.405750i \(0.867010\pi\)
\(30\) 2.39080 + 2.18574i 0.436498 + 0.399061i
\(31\) −2.08158 2.08158i −0.373864 0.373864i 0.495019 0.868882i \(-0.335161\pi\)
−0.868882 + 0.495019i \(0.835161\pi\)
\(32\) 5.51569 1.25587i 0.975045 0.222008i
\(33\) 0.0673682 + 0.0673682i 0.0117273 + 0.0117273i
\(34\) 0.454617 + 10.1466i 0.0779661 + 1.74013i
\(35\) −6.74298 −1.13977
\(36\) 1.99199 0.178860i 0.331998 0.0298100i
\(37\) −6.43362 + 6.43362i −1.05768 + 1.05768i −0.0594489 + 0.998231i \(0.518934\pi\)
−0.998231 + 0.0594489i \(0.981066\pi\)
\(38\) 3.11165 3.40356i 0.504777 0.552131i
\(39\) 1.04130 + 3.45191i 0.166741 + 0.552748i
\(40\) −5.15337 3.92636i −0.814820 0.620812i
\(41\) −7.94353 + 7.94353i −1.24057 + 1.24057i −0.280806 + 0.959764i \(0.590602\pi\)
−0.959764 + 0.280806i \(0.909398\pi\)
\(42\) −2.80909 + 3.07262i −0.433452 + 0.474115i
\(43\) 10.4665i 1.59613i 0.602573 + 0.798064i \(0.294142\pi\)
−0.602573 + 0.798064i \(0.705858\pi\)
\(44\) −0.146246 0.122147i −0.0220474 0.0184144i
\(45\) −1.61967 1.61967i −0.241447 0.241447i
\(46\) 2.83200 0.126887i 0.417555 0.0187084i
\(47\) 5.31365 5.31365i 0.775076 0.775076i −0.203913 0.978989i \(-0.565366\pi\)
0.978989 + 0.203913i \(0.0653661\pi\)
\(48\) −3.93602 + 0.712572i −0.568115 + 0.102851i
\(49\) 1.66599i 0.237998i
\(50\) 0.0156156 + 0.348525i 0.00220837 + 0.0492889i
\(51\) 7.18195i 1.00567i
\(52\) −2.69166 6.68991i −0.373266 0.927724i
\(53\) 1.41118i 0.193841i 0.995292 + 0.0969204i \(0.0308992\pi\)
−0.995292 + 0.0969204i \(0.969101\pi\)
\(54\) −1.41280 + 0.0632999i −0.192257 + 0.00861402i
\(55\) 0.218229i 0.0294260i
\(56\) 5.04610 6.62305i 0.674314 0.885042i
\(57\) −2.30579 + 2.30579i −0.305409 + 0.305409i
\(58\) 0.276625 + 6.17401i 0.0363226 + 0.810687i
\(59\) −3.96350 3.96350i −0.516004 0.516004i 0.400356 0.916360i \(-0.368887\pi\)
−0.916360 + 0.400356i \(0.868887\pi\)
\(60\) 3.51606 + 2.93668i 0.453922 + 0.379123i
\(61\) 1.94041i 0.248444i −0.992254 0.124222i \(-0.960357\pi\)
0.992254 0.124222i \(-0.0396434\pi\)
\(62\) −3.07262 2.80909i −0.390223 0.356755i
\(63\) 2.08158 2.08158i 0.262255 0.262255i
\(64\) 7.71304 2.12343i 0.964131 0.265429i
\(65\) −3.90441 + 7.27754i −0.484282 + 0.902668i
\(66\) 0.0994420 + 0.0909132i 0.0122405 + 0.0111906i
\(67\) 8.16072 8.16072i 0.996991 0.996991i −0.00300457 0.999995i \(-0.500956\pi\)
0.999995 + 0.00300457i \(0.000956387\pi\)
\(68\) 1.28456 + 14.3063i 0.155776 + 1.73490i
\(69\) −2.00453 −0.241317
\(70\) −9.52646 + 0.426830i −1.13863 + 0.0510159i
\(71\) 0.00829610 + 0.00829610i 0.000984566 + 0.000984566i 0.707599 0.706614i \(-0.249778\pi\)
−0.706614 + 0.707599i \(0.749778\pi\)
\(72\) 2.80295 0.378785i 0.330331 0.0446402i
\(73\) 0.419298 + 0.419298i 0.0490751 + 0.0490751i 0.731218 0.682143i \(-0.238952\pi\)
−0.682143 + 0.731218i \(0.738952\pi\)
\(74\) −8.68214 + 9.49664i −1.00928 + 1.10396i
\(75\) 0.246692i 0.0284855i
\(76\) 4.18068 5.00551i 0.479557 0.574171i
\(77\) −0.280465 −0.0319620
\(78\) 1.68965 + 4.81093i 0.191315 + 0.544731i
\(79\) 8.46664i 0.952571i 0.879291 + 0.476286i \(0.158017\pi\)
−0.879291 + 0.476286i \(0.841983\pi\)
\(80\) −7.52920 5.22093i −0.841791 0.583718i
\(81\) 1.00000 0.111111
\(82\) −10.7198 + 11.7254i −1.18380 + 1.29486i
\(83\) −3.35193 + 3.35193i −0.367922 + 0.367922i −0.866719 0.498797i \(-0.833775\pi\)
0.498797 + 0.866719i \(0.333775\pi\)
\(84\) −3.77418 + 4.51880i −0.411796 + 0.493041i
\(85\) 11.6324 11.6324i 1.26171 1.26171i
\(86\) 0.662529 + 14.7870i 0.0714423 + 1.59453i
\(87\) 4.37007i 0.468520i
\(88\) −0.214348 0.163312i −0.0228496 0.0174091i
\(89\) 1.90441 + 1.90441i 0.201867 + 0.201867i 0.800799 0.598933i \(-0.204408\pi\)
−0.598933 + 0.800799i \(0.704408\pi\)
\(90\) −2.39080 2.18574i −0.252012 0.230398i
\(91\) −9.35300 5.01789i −0.980461 0.526018i
\(92\) 3.99300 0.358530i 0.416299 0.0373794i
\(93\) 2.08158 + 2.08158i 0.215850 + 0.215850i
\(94\) 7.17075 7.84346i 0.739607 0.808991i
\(95\) −7.46925 −0.766329
\(96\) −5.51569 + 1.25587i −0.562942 + 0.128177i
\(97\) 8.76265 8.76265i 0.889712 0.889712i −0.104783 0.994495i \(-0.533415\pi\)
0.994495 + 0.104783i \(0.0334147\pi\)
\(98\) −0.105457 2.35370i −0.0106528 0.237760i
\(99\) −0.0673682 0.0673682i −0.00677076 0.00677076i
\(100\) 0.0441232 + 0.491407i 0.00441232 + 0.0491407i
\(101\) −10.5683 −1.05159 −0.525793 0.850613i \(-0.676231\pi\)
−0.525793 + 0.850613i \(0.676231\pi\)
\(102\) −0.454617 10.1466i −0.0450137 1.00467i
\(103\) 3.52228 0.347061 0.173530 0.984829i \(-0.444482\pi\)
0.173530 + 0.984829i \(0.444482\pi\)
\(104\) −4.22624 9.28110i −0.414417 0.910087i
\(105\) 6.74298 0.658047
\(106\) 0.0893277 + 1.99371i 0.00867627 + 0.193646i
\(107\) 11.8314 1.14378 0.571892 0.820329i \(-0.306210\pi\)
0.571892 + 0.820329i \(0.306210\pi\)
\(108\) −1.99199 + 0.178860i −0.191679 + 0.0172108i
\(109\) 12.9904 + 12.9904i 1.24425 + 1.24425i 0.958220 + 0.286033i \(0.0923367\pi\)
0.286033 + 0.958220i \(0.407663\pi\)
\(110\) 0.0138139 + 0.308313i 0.00131710 + 0.0293965i
\(111\) 6.43362 6.43362i 0.610652 0.610652i
\(112\) 6.70988 9.67643i 0.634024 0.914337i
\(113\) 12.7051 1.19520 0.597598 0.801796i \(-0.296122\pi\)
0.597598 + 0.801796i \(0.296122\pi\)
\(114\) −3.11165 + 3.40356i −0.291433 + 0.318773i
\(115\) −3.24669 3.24669i −0.302756 0.302756i
\(116\) 0.781629 + 8.70511i 0.0725724 + 0.808249i
\(117\) −1.04130 3.45191i −0.0962681 0.319129i
\(118\) −5.85051 5.34873i −0.538583 0.492391i
\(119\) 14.9498 + 14.9498i 1.37045 + 1.37045i
\(120\) 5.15337 + 3.92636i 0.470436 + 0.358426i
\(121\) 10.9909i 0.999175i
\(122\) −0.122828 2.74140i −0.0111203 0.248195i
\(123\) 7.94353 7.94353i 0.716244 0.716244i
\(124\) −4.51880 3.77418i −0.405800 0.338931i
\(125\) −7.69881 + 7.69881i −0.688603 + 0.688603i
\(126\) 2.80909 3.07262i 0.250254 0.273731i
\(127\) −18.5476 −1.64583 −0.822916 0.568164i \(-0.807654\pi\)
−0.822916 + 0.568164i \(0.807654\pi\)
\(128\) 10.7625 3.48821i 0.951284 0.308317i
\(129\) 10.4665i 0.921525i
\(130\) −5.05547 + 10.5288i −0.443394 + 0.923439i
\(131\) −5.20053 −0.454372 −0.227186 0.973851i \(-0.572953\pi\)
−0.227186 + 0.973851i \(0.572953\pi\)
\(132\) 0.146246 + 0.122147i 0.0127291 + 0.0106315i
\(133\) 9.59938i 0.832372i
\(134\) 11.0129 12.0460i 0.951367 1.04062i
\(135\) 1.61967 + 1.61967i 0.139399 + 0.139399i
\(136\) 2.72041 + 20.1306i 0.233274 + 1.72619i
\(137\) −15.0286 15.0286i −1.28398 1.28398i −0.938383 0.345598i \(-0.887676\pi\)
−0.345598 0.938383i \(-0.612324\pi\)
\(138\) −2.83200 + 0.126887i −0.241076 + 0.0108013i
\(139\) 6.12441 0.519466 0.259733 0.965681i \(-0.416366\pi\)
0.259733 + 0.965681i \(0.416366\pi\)
\(140\) −13.4319 + 1.20605i −1.13520 + 0.101930i
\(141\) −5.31365 + 5.31365i −0.447490 + 0.447490i
\(142\) 0.0122458 + 0.0111956i 0.00102765 + 0.000939510i
\(143\) −0.162399 + 0.302700i −0.0135805 + 0.0253130i
\(144\) 3.93602 0.712572i 0.328002 0.0593810i
\(145\) 7.07808 7.07808i 0.587803 0.587803i
\(146\) 0.618924 + 0.565841i 0.0512225 + 0.0468293i
\(147\) 1.66599i 0.137408i
\(148\) −11.6650 + 13.9664i −0.958854 + 1.14803i
\(149\) −13.2521 13.2521i −1.08565 1.08565i −0.995970 0.0896836i \(-0.971414\pi\)
−0.0896836 0.995970i \(-0.528586\pi\)
\(150\) −0.0156156 0.348525i −0.00127501 0.0284570i
\(151\) 2.61081 2.61081i 0.212465 0.212465i −0.592849 0.805314i \(-0.701997\pi\)
0.805314 + 0.592849i \(0.201997\pi\)
\(152\) 5.58961 7.33640i 0.453377 0.595061i
\(153\) 7.18195i 0.580626i
\(154\) −0.396240 + 0.0177534i −0.0319300 + 0.00143061i
\(155\) 6.74298i 0.541609i
\(156\) 2.69166 + 6.68991i 0.215505 + 0.535622i
\(157\) 1.36321i 0.108796i 0.998519 + 0.0543978i \(0.0173239\pi\)
−0.998519 + 0.0543978i \(0.982676\pi\)
\(158\) 0.535937 + 11.9616i 0.0426369 + 0.951617i
\(159\) 1.41118i 0.111914i
\(160\) −10.9677 6.89952i −0.867074 0.545455i
\(161\) 4.17261 4.17261i 0.328847 0.328847i
\(162\) 1.41280 0.0632999i 0.111000 0.00497331i
\(163\) 13.7263 + 13.7263i 1.07513 + 1.07513i 0.996938 + 0.0781913i \(0.0249145\pi\)
0.0781913 + 0.996938i \(0.475086\pi\)
\(164\) −14.4026 + 17.2442i −1.12466 + 1.34654i
\(165\) 0.218229i 0.0169891i
\(166\) −4.52342 + 4.94777i −0.351085 + 0.384021i
\(167\) −3.15502 + 3.15502i −0.244142 + 0.244142i −0.818561 0.574419i \(-0.805228\pi\)
0.574419 + 0.818561i \(0.305228\pi\)
\(168\) −5.04610 + 6.62305i −0.389315 + 0.510979i
\(169\) −10.8314 + 7.18895i −0.833184 + 0.552996i
\(170\) 15.6979 17.1706i 1.20397 1.31692i
\(171\) 2.30579 2.30579i 0.176328 0.176328i
\(172\) 1.87204 + 20.8491i 0.142741 + 1.58973i
\(173\) 2.52229 0.191766 0.0958830 0.995393i \(-0.469433\pi\)
0.0958830 + 0.995393i \(0.469433\pi\)
\(174\) −0.276625 6.17401i −0.0209709 0.468051i
\(175\) 0.513510 + 0.513510i 0.0388177 + 0.0388177i
\(176\) −0.313167 0.217158i −0.0236059 0.0163689i
\(177\) 3.96350 + 3.96350i 0.297915 + 0.297915i
\(178\) 2.81109 + 2.56999i 0.210700 + 0.192629i
\(179\) 12.1739i 0.909917i −0.890513 0.454958i \(-0.849654\pi\)
0.890513 0.454958i \(-0.150346\pi\)
\(180\) −3.51606 2.93668i −0.262072 0.218887i
\(181\) 1.13958 0.0847044 0.0423522 0.999103i \(-0.486515\pi\)
0.0423522 + 0.999103i \(0.486515\pi\)
\(182\) −13.5315 6.49722i −1.00302 0.481606i
\(183\) 1.94041i 0.143439i
\(184\) 5.61860 0.759287i 0.414209 0.0559754i
\(185\) 20.8407 1.53224
\(186\) 3.07262 + 2.80909i 0.225295 + 0.205973i
\(187\) 0.483835 0.483835i 0.0353815 0.0353815i
\(188\) 9.63432 11.5351i 0.702655 0.841285i
\(189\) −2.08158 + 2.08158i −0.151413 + 0.151413i
\(190\) −10.5525 + 0.472803i −0.765561 + 0.0343007i
\(191\) 22.4304i 1.62301i −0.584347 0.811504i \(-0.698649\pi\)
0.584347 0.811504i \(-0.301351\pi\)
\(192\) −7.71304 + 2.12343i −0.556641 + 0.153245i
\(193\) −3.57371 3.57371i −0.257241 0.257241i 0.566690 0.823931i \(-0.308224\pi\)
−0.823931 + 0.566690i \(0.808224\pi\)
\(194\) 11.8252 12.9345i 0.848997 0.928644i
\(195\) 3.90441 7.27754i 0.279601 0.521155i
\(196\) −0.297978 3.31863i −0.0212842 0.237045i
\(197\) 2.26114 + 2.26114i 0.161099 + 0.161099i 0.783054 0.621954i \(-0.213661\pi\)
−0.621954 + 0.783054i \(0.713661\pi\)
\(198\) −0.0994420 0.0909132i −0.00706704 0.00646092i
\(199\) −26.4375 −1.87410 −0.937051 0.349193i \(-0.886456\pi\)
−0.937051 + 0.349193i \(0.886456\pi\)
\(200\) 0.0934431 + 0.691464i 0.00660743 + 0.0488939i
\(201\) −8.16072 + 8.16072i −0.575613 + 0.575613i
\(202\) −14.9309 + 0.668972i −1.05053 + 0.0470687i
\(203\) 9.09666 + 9.09666i 0.638460 + 0.638460i
\(204\) −1.28456 14.3063i −0.0899373 1.00164i
\(205\) 25.7319 1.79719
\(206\) 4.97627 0.222960i 0.346713 0.0155344i
\(207\) 2.00453 0.139325
\(208\) −6.55831 12.8448i −0.454737 0.890626i
\(209\) −0.310674 −0.0214897
\(210\) 9.52646 0.426830i 0.657388 0.0294541i
\(211\) −2.28566 −0.157351 −0.0786755 0.996900i \(-0.525069\pi\)
−0.0786755 + 0.996900i \(0.525069\pi\)
\(212\) 0.252404 + 2.81105i 0.0173351 + 0.193064i
\(213\) −0.00829610 0.00829610i −0.000568439 0.000568439i
\(214\) 16.7153 0.748926i 1.14264 0.0511955i
\(215\) 16.9523 16.9523i 1.15614 1.15614i
\(216\) −2.80295 + 0.378785i −0.190717 + 0.0257730i
\(217\) −8.66599 −0.588286
\(218\) 19.1751 + 17.5305i 1.29870 + 1.18731i
\(219\) −0.419298 0.419298i −0.0283335 0.0283335i
\(220\) 0.0390324 + 0.434710i 0.00263157 + 0.0293081i
\(221\) 24.7915 7.47856i 1.66765 0.503062i
\(222\) 8.68214 9.49664i 0.582707 0.637373i
\(223\) 6.65855 + 6.65855i 0.445889 + 0.445889i 0.893985 0.448096i \(-0.147898\pi\)
−0.448096 + 0.893985i \(0.647898\pi\)
\(224\) 8.86717 14.0956i 0.592463 0.941800i
\(225\) 0.246692i 0.0164461i
\(226\) 17.9497 0.804232i 1.19400 0.0534967i
\(227\) −7.86789 + 7.86789i −0.522210 + 0.522210i −0.918238 0.396028i \(-0.870388\pi\)
0.396028 + 0.918238i \(0.370388\pi\)
\(228\) −4.18068 + 5.00551i −0.276873 + 0.331498i
\(229\) −3.64543 + 3.64543i −0.240897 + 0.240897i −0.817221 0.576324i \(-0.804487\pi\)
0.576324 + 0.817221i \(0.304487\pi\)
\(230\) −4.79243 4.38140i −0.316003 0.288901i
\(231\) 0.280465 0.0184533
\(232\) 1.65531 + 12.2491i 0.108677 + 0.804191i
\(233\) 3.31543i 0.217201i 0.994085 + 0.108601i \(0.0346370\pi\)
−0.994085 + 0.108601i \(0.965363\pi\)
\(234\) −1.68965 4.81093i −0.110456 0.314501i
\(235\) −17.2128 −1.12284
\(236\) −8.60416 7.18633i −0.560083 0.467791i
\(237\) 8.46664i 0.549967i
\(238\) 22.0674 + 20.1747i 1.43042 + 1.30773i
\(239\) −7.48888 7.48888i −0.484415 0.484415i 0.422123 0.906538i \(-0.361285\pi\)
−0.906538 + 0.422123i \(0.861285\pi\)
\(240\) 7.52920 + 5.22093i 0.486008 + 0.337010i
\(241\) −9.02754 9.02754i −0.581515 0.581515i 0.353804 0.935319i \(-0.384888\pi\)
−0.935319 + 0.353804i \(0.884888\pi\)
\(242\) −0.695724 15.5279i −0.0447229 0.998173i
\(243\) −1.00000 −0.0641500
\(244\) −0.347061 3.86526i −0.0222183 0.247448i
\(245\) −2.69836 + 2.69836i −0.172392 + 0.172392i
\(246\) 10.7198 11.7254i 0.683467 0.747585i
\(247\) −10.3604 5.55836i −0.659216 0.353670i
\(248\) −6.62305 5.04610i −0.420564 0.320428i
\(249\) 3.35193 3.35193i 0.212420 0.212420i
\(250\) −10.3895 + 11.3642i −0.657091 + 0.718734i
\(251\) 18.4986i 1.16762i −0.811889 0.583812i \(-0.801561\pi\)
0.811889 0.583812i \(-0.198439\pi\)
\(252\) 3.77418 4.51880i 0.237751 0.284658i
\(253\) −0.135042 0.135042i −0.00849001 0.00849001i
\(254\) −26.2039 + 1.17406i −1.64418 + 0.0736671i
\(255\) −11.6324 + 11.6324i −0.728450 + 0.728450i
\(256\) 14.9845 5.60939i 0.936530 0.350587i
\(257\) 17.6933i 1.10368i 0.833950 + 0.551840i \(0.186074\pi\)
−0.833950 + 0.551840i \(0.813926\pi\)
\(258\) −0.662529 14.7870i −0.0412473 0.920601i
\(259\) 26.7842i 1.66429i
\(260\) −6.47587 + 15.1951i −0.401616 + 0.942360i
\(261\) 4.37007i 0.270500i
\(262\) −7.34728 + 0.329193i −0.453917 + 0.0203376i
\(263\) 18.2366i 1.12452i 0.826962 + 0.562258i \(0.190067\pi\)
−0.826962 + 0.562258i \(0.809933\pi\)
\(264\) 0.214348 + 0.163312i 0.0131922 + 0.0100511i
\(265\) 2.28566 2.28566i 0.140407 0.140407i
\(266\) −0.607640 13.5620i −0.0372568 0.831538i
\(267\) −1.90441 1.90441i −0.116548 0.116548i
\(268\) 14.7964 17.7157i 0.903835 1.08216i
\(269\) 6.68357i 0.407504i −0.979023 0.203752i \(-0.934686\pi\)
0.979023 0.203752i \(-0.0653137\pi\)
\(270\) 2.39080 + 2.18574i 0.145499 + 0.133020i
\(271\) −5.65140 + 5.65140i −0.343298 + 0.343298i −0.857606 0.514308i \(-0.828049\pi\)
0.514308 + 0.857606i \(0.328049\pi\)
\(272\) 5.11766 + 28.2683i 0.310303 + 1.71402i
\(273\) 9.35300 + 5.01789i 0.566069 + 0.303697i
\(274\) −22.1837 20.2811i −1.34016 1.22522i
\(275\) 0.0166192 0.0166192i 0.00100218 0.00100218i
\(276\) −3.99300 + 0.358530i −0.240351 + 0.0215810i
\(277\) −24.3573 −1.46349 −0.731745 0.681579i \(-0.761294\pi\)
−0.731745 + 0.681579i \(0.761294\pi\)
\(278\) 8.65254 0.387674i 0.518945 0.0232512i
\(279\) −2.08158 2.08158i −0.124621 0.124621i
\(280\) −18.9002 + 2.55414i −1.12950 + 0.152639i
\(281\) −7.19722 7.19722i −0.429350 0.429350i 0.459057 0.888407i \(-0.348187\pi\)
−0.888407 + 0.459057i \(0.848187\pi\)
\(282\) −7.17075 + 7.84346i −0.427012 + 0.467071i
\(283\) 14.0053i 0.832529i 0.909244 + 0.416264i \(0.136661\pi\)
−0.909244 + 0.416264i \(0.863339\pi\)
\(284\) 0.0180096 + 0.0150419i 0.00106867 + 0.000892571i
\(285\) 7.46925 0.442440
\(286\) −0.210275 + 0.437933i −0.0124338 + 0.0258955i
\(287\) 33.0703i 1.95208i
\(288\) 5.51569 1.25587i 0.325015 0.0740028i
\(289\) −34.5804 −2.03414
\(290\) 9.55185 10.4479i 0.560904 0.613524i
\(291\) −8.76265 + 8.76265i −0.513676 + 0.513676i
\(292\) 0.910231 + 0.760240i 0.0532672 + 0.0444897i
\(293\) 10.4354 10.4354i 0.609643 0.609643i −0.333210 0.942853i \(-0.608132\pi\)
0.942853 + 0.333210i \(0.108132\pi\)
\(294\) 0.105457 + 2.35370i 0.00615037 + 0.137271i
\(295\) 12.8392i 0.747526i
\(296\) −15.5961 + 20.4701i −0.906507 + 1.18980i
\(297\) 0.0673682 + 0.0673682i 0.00390910 + 0.00390910i
\(298\) −19.5614 17.8837i −1.13316 1.03597i
\(299\) −2.08732 6.91947i −0.120713 0.400163i
\(300\) −0.0441232 0.491407i −0.00254746 0.0283714i
\(301\) 21.7869 + 21.7869i 1.25578 + 1.25578i
\(302\) 3.52328 3.85381i 0.202742 0.221762i
\(303\) 10.5683 0.607133
\(304\) 7.43258 10.7187i 0.426288 0.614757i
\(305\) −3.14283 + 3.14283i −0.179958 + 0.179958i
\(306\) 0.454617 + 10.1466i 0.0259887 + 0.580044i
\(307\) 9.49598 + 9.49598i 0.541964 + 0.541964i 0.924104 0.382140i \(-0.124813\pi\)
−0.382140 + 0.924104i \(0.624813\pi\)
\(308\) −0.558683 + 0.0501640i −0.0318339 + 0.00285836i
\(309\) −3.52228 −0.200376
\(310\) 0.426830 + 9.52646i 0.0242423 + 0.541066i
\(311\) −19.3516 −1.09733 −0.548664 0.836043i \(-0.684864\pi\)
−0.548664 + 0.836043i \(0.684864\pi\)
\(312\) 4.22624 + 9.28110i 0.239264 + 0.525439i
\(313\) 10.1200 0.572016 0.286008 0.958227i \(-0.407672\pi\)
0.286008 + 0.958227i \(0.407672\pi\)
\(314\) 0.0862908 + 1.92593i 0.00486967 + 0.108687i
\(315\) −6.74298 −0.379924
\(316\) 1.51434 + 16.8654i 0.0851883 + 0.948755i
\(317\) 18.1488 + 18.1488i 1.01934 + 1.01934i 0.999809 + 0.0195277i \(0.00621626\pi\)
0.0195277 + 0.999809i \(0.493784\pi\)
\(318\) −0.0893277 1.99371i −0.00500925 0.111802i
\(319\) 0.294404 0.294404i 0.0164834 0.0164834i
\(320\) −15.9319 9.05336i −0.890619 0.506098i
\(321\) −11.8314 −0.660364
\(322\) 5.63092 6.15917i 0.313799 0.343237i
\(323\) 16.5600 + 16.5600i 0.921426 + 0.921426i
\(324\) 1.99199 0.178860i 0.110666 0.00993665i
\(325\) 0.851558 0.256880i 0.0472360 0.0142491i
\(326\) 20.2614 + 18.5236i 1.12217 + 1.02593i
\(327\) −12.9904 12.9904i −0.718370 0.718370i
\(328\) −19.2564 + 25.2742i −1.06326 + 1.39553i
\(329\) 22.1216i 1.21960i
\(330\) −0.0138139 0.308313i −0.000760430 0.0169721i
\(331\) −22.5976 + 22.5976i −1.24208 + 1.24208i −0.282939 + 0.959138i \(0.591309\pi\)
−0.959138 + 0.282939i \(0.908691\pi\)
\(332\) −6.07747 + 7.27652i −0.333545 + 0.399351i
\(333\) −6.43362 + 6.43362i −0.352560 + 0.352560i
\(334\) −4.25768 + 4.65711i −0.232970 + 0.254825i
\(335\) −26.4354 −1.44432
\(336\) −6.70988 + 9.67643i −0.366054 + 0.527893i
\(337\) 8.65894i 0.471683i −0.971792 0.235841i \(-0.924215\pi\)
0.971792 0.235841i \(-0.0757846\pi\)
\(338\) −14.8475 + 10.8421i −0.807597 + 0.589735i
\(339\) −12.7051 −0.690047
\(340\) 21.0910 25.2522i 1.14382 1.36949i
\(341\) 0.280465i 0.0151881i
\(342\) 3.11165 3.40356i 0.168259 0.184044i
\(343\) 11.1032 + 11.1032i 0.599516 + 0.599516i
\(344\) 3.96456 + 29.3371i 0.213754 + 1.58175i
\(345\) 3.24669 + 3.24669i 0.174796 + 0.174796i
\(346\) 3.56348 0.159661i 0.191574 0.00858341i
\(347\) −16.6635 −0.894546 −0.447273 0.894397i \(-0.647605\pi\)
−0.447273 + 0.894397i \(0.647605\pi\)
\(348\) −0.781629 8.70511i −0.0418997 0.466643i
\(349\) 3.99002 3.99002i 0.213581 0.213581i −0.592206 0.805787i \(-0.701743\pi\)
0.805787 + 0.592206i \(0.201743\pi\)
\(350\) 0.757990 + 0.692980i 0.0405163 + 0.0370413i
\(351\) 1.04130 + 3.45191i 0.0555804 + 0.184249i
\(352\) −0.456188 0.286976i −0.0243149 0.0152959i
\(353\) −6.09559 + 6.09559i −0.324436 + 0.324436i −0.850466 0.526030i \(-0.823680\pi\)
0.526030 + 0.850466i \(0.323680\pi\)
\(354\) 5.85051 + 5.34873i 0.310951 + 0.284282i
\(355\) 0.0268740i 0.00142632i
\(356\) 4.13418 + 3.45293i 0.219111 + 0.183005i
\(357\) −14.9498 14.9498i −0.791229 0.791229i
\(358\) −0.770604 17.1992i −0.0407277 0.909005i
\(359\) 20.6821 20.6821i 1.09156 1.09156i 0.0961965 0.995362i \(-0.469332\pi\)
0.995362 0.0961965i \(-0.0306677\pi\)
\(360\) −5.15337 3.92636i −0.271607 0.206937i
\(361\) 8.36669i 0.440352i
\(362\) 1.61000 0.0721353i 0.0846195 0.00379135i
\(363\) 10.9909i 0.576874i
\(364\) −19.5285 8.32270i −1.02357 0.436228i
\(365\) 1.35825i 0.0710941i
\(366\) 0.122828 + 2.74140i 0.00642030 + 0.143295i
\(367\) 30.1227i 1.57239i −0.617977 0.786196i \(-0.712047\pi\)
0.617977 0.786196i \(-0.287953\pi\)
\(368\) 7.88988 1.42837i 0.411288 0.0744592i
\(369\) −7.94353 + 7.94353i −0.413524 + 0.413524i
\(370\) 29.4437 1.31922i 1.53071 0.0685828i
\(371\) 2.93749 + 2.93749i 0.152507 + 0.152507i
\(372\) 4.51880 + 3.77418i 0.234289 + 0.195682i
\(373\) 8.59939i 0.445259i −0.974903 0.222630i \(-0.928536\pi\)
0.974903 0.222630i \(-0.0714641\pi\)
\(374\) 0.652934 0.714187i 0.0337624 0.0369297i
\(375\) 7.69881 7.69881i 0.397565 0.397565i
\(376\) 12.8812 16.9066i 0.664295 0.871893i
\(377\) 15.0851 4.55055i 0.776921 0.234365i
\(378\) −2.80909 + 3.07262i −0.144484 + 0.158038i
\(379\) 11.5751 11.5751i 0.594571 0.594571i −0.344292 0.938863i \(-0.611881\pi\)
0.938863 + 0.344292i \(0.111881\pi\)
\(380\) −14.8786 + 1.33595i −0.763258 + 0.0685327i
\(381\) 18.5476 0.950221
\(382\) −1.41984 31.6896i −0.0726455 1.62138i
\(383\) −2.01486 2.01486i −0.102954 0.102954i 0.653753 0.756708i \(-0.273193\pi\)
−0.756708 + 0.653753i \(0.773193\pi\)
\(384\) −10.7625 + 3.48821i −0.549224 + 0.178007i
\(385\) 0.454263 + 0.454263i 0.0231514 + 0.0231514i
\(386\) −5.27513 4.82270i −0.268497 0.245469i
\(387\) 10.4665i 0.532043i
\(388\) 15.8878 19.0224i 0.806581 0.965714i
\(389\) −25.8294 −1.30960 −0.654801 0.755801i \(-0.727248\pi\)
−0.654801 + 0.755801i \(0.727248\pi\)
\(390\) 5.05547 10.5288i 0.255993 0.533148i
\(391\) 14.3965i 0.728060i
\(392\) −0.631052 4.66968i −0.0318729 0.235855i
\(393\) 5.20053 0.262332
\(394\) 3.33766 + 3.05140i 0.168149 + 0.153727i
\(395\) 13.7132 13.7132i 0.689986 0.689986i
\(396\) −0.146246 0.122147i −0.00734914 0.00613813i
\(397\) 11.0841 11.0841i 0.556297 0.556297i −0.371954 0.928251i \(-0.621312\pi\)
0.928251 + 0.371954i \(0.121312\pi\)
\(398\) −37.3507 + 1.67349i −1.87222 + 0.0838844i
\(399\) 9.59938i 0.480570i
\(400\) 0.175786 + 0.970983i 0.00878928 + 0.0485492i
\(401\) −25.0265 25.0265i −1.24977 1.24977i −0.955823 0.293942i \(-0.905033\pi\)
−0.293942 0.955823i \(-0.594967\pi\)
\(402\) −11.0129 + 12.0460i −0.549272 + 0.600800i
\(403\) −5.01789 + 9.35300i −0.249959 + 0.465906i
\(404\) −21.0519 + 1.89024i −1.04737 + 0.0940431i
\(405\) −1.61967 1.61967i −0.0804823 0.0804823i
\(406\) 13.4275 + 12.2759i 0.666398 + 0.609243i
\(407\) 0.866843 0.0429678
\(408\) −2.72041 20.1306i −0.134681 0.996615i
\(409\) 24.7440 24.7440i 1.22351 1.22351i 0.257139 0.966374i \(-0.417220\pi\)
0.966374 0.257139i \(-0.0827798\pi\)
\(410\) 36.3539 1.62882i 1.79539 0.0804419i
\(411\) 15.0286 + 15.0286i 0.741307 + 0.741307i
\(412\) 7.01634 0.629995i 0.345670 0.0310376i
\(413\) −16.5007 −0.811948
\(414\) 2.83200 0.126887i 0.139185 0.00623614i
\(415\) 10.8581 0.533002
\(416\) −10.0786 17.7319i −0.494145 0.869379i
\(417\) −6.12441 −0.299914
\(418\) −0.438919 + 0.0196656i −0.0214682 + 0.000961876i
\(419\) 15.6568 0.764883 0.382441 0.923980i \(-0.375083\pi\)
0.382441 + 0.923980i \(0.375083\pi\)
\(420\) 13.4319 1.20605i 0.655411 0.0588491i
\(421\) 5.24431 + 5.24431i 0.255592 + 0.255592i 0.823259 0.567667i \(-0.192154\pi\)
−0.567667 + 0.823259i \(0.692154\pi\)
\(422\) −3.22916 + 0.144682i −0.157193 + 0.00704300i
\(423\) 5.31365 5.31365i 0.258359 0.258359i
\(424\) 0.534534 + 3.95547i 0.0259593 + 0.192095i
\(425\) −1.77173 −0.0859414
\(426\) −0.0122458 0.0111956i −0.000593313 0.000542426i
\(427\) −4.03912 4.03912i −0.195467 0.195467i
\(428\) 23.5680 2.11616i 1.13920 0.102288i
\(429\) 0.162399 0.302700i 0.00784069 0.0146145i
\(430\) 22.8771 25.0233i 1.10323 1.20673i
\(431\) −16.9631 16.9631i −0.817084 0.817084i 0.168600 0.985684i \(-0.446075\pi\)
−0.985684 + 0.168600i \(0.946075\pi\)
\(432\) −3.93602 + 0.712572i −0.189372 + 0.0342836i
\(433\) 21.6657i 1.04119i 0.853805 + 0.520593i \(0.174289\pi\)
−0.853805 + 0.520593i \(0.825711\pi\)
\(434\) −12.2433 + 0.548556i −0.587696 + 0.0263315i
\(435\) −7.07808 + 7.07808i −0.339368 + 0.339368i
\(436\) 28.2001 + 23.5532i 1.35054 + 1.12799i
\(437\) 4.62203 4.62203i 0.221102 0.221102i
\(438\) −0.618924 0.565841i −0.0295733 0.0270369i
\(439\) −26.9953 −1.28842 −0.644208 0.764850i \(-0.722813\pi\)
−0.644208 + 0.764850i \(0.722813\pi\)
\(440\) 0.0826619 + 0.611685i 0.00394075 + 0.0291610i
\(441\) 1.66599i 0.0793328i
\(442\) 34.5519 12.1350i 1.64347 0.577202i
\(443\) −3.69391 −0.175503 −0.0877515 0.996142i \(-0.527968\pi\)
−0.0877515 + 0.996142i \(0.527968\pi\)
\(444\) 11.6650 13.9664i 0.553595 0.662816i
\(445\) 6.16904i 0.292441i
\(446\) 9.82865 + 8.98568i 0.465400 + 0.425484i
\(447\) 13.2521 + 13.2521i 0.626803 + 0.626803i
\(448\) 11.6353 20.4755i 0.549714 0.967374i
\(449\) 15.9641 + 15.9641i 0.753391 + 0.753391i 0.975111 0.221719i \(-0.0711669\pi\)
−0.221719 + 0.975111i \(0.571167\pi\)
\(450\) 0.0156156 + 0.348525i 0.000736125 + 0.0164296i
\(451\) 1.07028 0.0503977
\(452\) 25.3084 2.27243i 1.19041 0.106886i
\(453\) −2.61081 + 2.61081i −0.122667 + 0.122667i
\(454\) −10.6177 + 11.6138i −0.498313 + 0.545061i
\(455\) 7.02146 + 23.2762i 0.329171 + 1.09120i
\(456\) −5.58961 + 7.33640i −0.261757 + 0.343558i
\(457\) −9.99072 + 9.99072i −0.467346 + 0.467346i −0.901054 0.433708i \(-0.857205\pi\)
0.433708 + 0.901054i \(0.357205\pi\)
\(458\) −4.91949 + 5.38100i −0.229873 + 0.251438i
\(459\) 7.18195i 0.335225i
\(460\) −7.04807 5.88666i −0.328618 0.274467i
\(461\) 9.80788 + 9.80788i 0.456798 + 0.456798i 0.897603 0.440805i \(-0.145307\pi\)
−0.440805 + 0.897603i \(0.645307\pi\)
\(462\) 0.396240 0.0177534i 0.0184348 0.000825964i
\(463\) 16.5192 16.5192i 0.767714 0.767714i −0.209990 0.977704i \(-0.567343\pi\)
0.977704 + 0.209990i \(0.0673431\pi\)
\(464\) 3.11399 + 17.2007i 0.144563 + 0.798521i
\(465\) 6.74298i 0.312698i
\(466\) 0.209867 + 4.68403i 0.00972188 + 0.216984i
\(467\) 13.7056i 0.634220i −0.948389 0.317110i \(-0.897288\pi\)
0.948389 0.317110i \(-0.102712\pi\)
\(468\) −2.69166 6.68991i −0.124422 0.309241i
\(469\) 33.9745i 1.56880i
\(470\) −24.3181 + 1.08957i −1.12171 + 0.0502580i
\(471\) 1.36321i 0.0628132i
\(472\) −12.6108 9.60818i −0.580460 0.442252i
\(473\) 0.705110 0.705110i 0.0324210 0.0324210i
\(474\) −0.535937 11.9616i −0.0246164 0.549416i
\(475\) 0.568819 + 0.568819i 0.0260992 + 0.0260992i
\(476\) 32.4538 + 27.1059i 1.48752 + 1.24240i
\(477\) 1.41118i 0.0646136i
\(478\) −11.0543 10.1062i −0.505612 0.462248i
\(479\) −7.17788 + 7.17788i −0.327966 + 0.327966i −0.851813 0.523847i \(-0.824496\pi\)
0.523847 + 0.851813i \(0.324496\pi\)
\(480\) 10.9677 + 6.89952i 0.500605 + 0.314918i
\(481\) 28.9076 + 15.5090i 1.31807 + 0.707148i
\(482\) −13.3255 12.1826i −0.606961 0.554904i
\(483\) −4.17261 + 4.17261i −0.189860 + 0.189860i
\(484\) −1.96583 21.8938i −0.0893561 0.995171i
\(485\) −28.3853 −1.28891
\(486\) −1.41280 + 0.0632999i −0.0640857 + 0.00287134i
\(487\) −0.384275 0.384275i −0.0174132 0.0174132i 0.698347 0.715760i \(-0.253919\pi\)
−0.715760 + 0.698347i \(0.753919\pi\)
\(488\) −0.734997 5.43886i −0.0332717 0.246206i
\(489\) −13.7263 13.7263i −0.620726 0.620726i
\(490\) −3.64143 + 3.98304i −0.164503 + 0.179935i
\(491\) 2.72036i 0.122768i −0.998114 0.0613840i \(-0.980449\pi\)
0.998114 0.0613840i \(-0.0195514\pi\)
\(492\) 14.4026 17.2442i 0.649320 0.777428i
\(493\) −31.3856 −1.41354
\(494\) −14.9890 7.19702i −0.674385 0.323809i
\(495\) 0.218229i 0.00980868i
\(496\) −9.67643 6.70988i −0.434485 0.301282i
\(497\) 0.0345381 0.00154924
\(498\) 4.52342 4.94777i 0.202699 0.221715i
\(499\) 29.4023 29.4023i 1.31623 1.31623i 0.399493 0.916736i \(-0.369186\pi\)
0.916736 0.399493i \(-0.130814\pi\)
\(500\) −13.9589 + 16.7129i −0.624262 + 0.747425i
\(501\) 3.15502 3.15502i 0.140956 0.140956i
\(502\) −1.17096 26.1348i −0.0522626 1.16645i
\(503\) 8.72354i 0.388963i −0.980906 0.194482i \(-0.937698\pi\)
0.980906 0.194482i \(-0.0623025\pi\)
\(504\) 5.04610 6.62305i 0.224771 0.295014i
\(505\) 17.1172 + 17.1172i 0.761706 + 0.761706i
\(506\) −0.199335 0.182239i −0.00886151 0.00810149i
\(507\) 10.8314 7.18895i 0.481039 0.319272i
\(508\) −36.9465 + 3.31741i −1.63924 + 0.147186i
\(509\) 29.8098 + 29.8098i 1.32130 + 1.32130i 0.912726 + 0.408572i \(0.133973\pi\)
0.408572 + 0.912726i \(0.366027\pi\)
\(510\) −15.6979 + 17.1706i −0.695115 + 0.760326i
\(511\) 1.74561 0.0772211
\(512\) 20.8149 8.87345i 0.919899 0.392155i
\(513\) −2.30579 + 2.30579i −0.101803 + 0.101803i
\(514\) 1.11999 + 24.9971i 0.0494004 + 1.10257i
\(515\) −5.70495 5.70495i −0.251390 0.251390i
\(516\) −1.87204 20.8491i −0.0824118 0.917832i
\(517\) −0.715943 −0.0314871
\(518\) 1.69544 + 37.8407i 0.0744933 + 1.66262i
\(519\) −2.52229 −0.110716
\(520\) −8.18724 + 21.8775i −0.359034 + 0.959392i
\(521\) 23.2436 1.01832 0.509161 0.860671i \(-0.329956\pi\)
0.509161 + 0.860671i \(0.329956\pi\)
\(522\) 0.276625 + 6.17401i 0.0121075 + 0.270229i
\(523\) 15.0188 0.656728 0.328364 0.944551i \(-0.393503\pi\)
0.328364 + 0.944551i \(0.393503\pi\)
\(524\) −10.3594 + 0.930164i −0.452551 + 0.0406344i
\(525\) −0.513510 0.513510i −0.0224114 0.0224114i
\(526\) 1.15437 + 25.7646i 0.0503331 + 1.12339i
\(527\) 14.9498 14.9498i 0.651225 0.651225i
\(528\) 0.313167 + 0.217158i 0.0136289 + 0.00945058i
\(529\) −18.9818 −0.825298
\(530\) 3.08448 3.37385i 0.133981 0.146551i
\(531\) −3.96350 3.96350i −0.172001 0.172001i
\(532\) −1.71694 19.1218i −0.0744389 0.829037i
\(533\) 35.6920 + 19.1488i 1.54599 + 0.829425i
\(534\) −2.81109 2.56999i −0.121648 0.111214i
\(535\) −19.1630 19.1630i −0.828489 0.828489i
\(536\) 19.7829 25.9652i 0.854492 1.12153i
\(537\) 12.1739i 0.525341i
\(538\) −0.423069 9.44252i −0.0182398 0.407096i
\(539\) −0.112235 + 0.112235i −0.00483429 + 0.00483429i
\(540\) 3.51606 + 2.93668i 0.151307 + 0.126374i
\(541\) −7.84233 + 7.84233i −0.337168 + 0.337168i −0.855300 0.518132i \(-0.826627\pi\)
0.518132 + 0.855300i \(0.326627\pi\)
\(542\) −7.62655 + 8.34201i −0.327588 + 0.358320i
\(543\) −1.13958 −0.0489041
\(544\) 9.01958 + 39.6134i 0.386712 + 1.69841i
\(545\) 42.0804i 1.80253i
\(546\) 13.5315 + 6.49722i 0.579095 + 0.278055i
\(547\) −24.3317 −1.04035 −0.520175 0.854060i \(-0.674133\pi\)
−0.520175 + 0.854060i \(0.674133\pi\)
\(548\) −32.6248 27.2488i −1.39366 1.16401i
\(549\) 1.94041i 0.0828145i
\(550\) 0.0224275 0.0245315i 0.000956313 0.00104603i
\(551\) 10.0764 + 10.0764i 0.429271 + 0.429271i
\(552\) −5.61860 + 0.759287i −0.239144 + 0.0323174i
\(553\) 17.6240 + 17.6240i 0.749450 + 0.749450i
\(554\) −34.4119 + 1.54182i −1.46202 + 0.0655055i
\(555\) −20.8407 −0.884640
\(556\) 12.1997 1.09541i 0.517384 0.0464557i
\(557\) 14.8145 14.8145i 0.627710 0.627710i −0.319781 0.947491i \(-0.603609\pi\)
0.947491 + 0.319781i \(0.103609\pi\)
\(558\) −3.07262 2.80909i −0.130074 0.118918i
\(559\) 36.1295 10.8988i 1.52811 0.460969i
\(560\) −26.5405 + 4.80486i −1.12154 + 0.203042i
\(561\) −0.483835 + 0.483835i −0.0204275 + 0.0204275i
\(562\) −10.6238 9.71262i −0.448137 0.409702i
\(563\) 35.1602i 1.48183i −0.671601 0.740913i \(-0.734393\pi\)
0.671601 0.740913i \(-0.265607\pi\)
\(564\) −9.63432 + 11.5351i −0.405678 + 0.485716i
\(565\) −20.5781 20.5781i −0.865729 0.865729i
\(566\) 0.886534 + 19.7866i 0.0372638 + 0.831694i
\(567\) 2.08158 2.08158i 0.0874183 0.0874183i
\(568\) 0.0263960 + 0.0201111i 0.00110755 + 0.000843843i
\(569\) 18.2323i 0.764337i 0.924093 + 0.382168i \(0.124823\pi\)
−0.924093 + 0.382168i \(0.875177\pi\)
\(570\) 10.5525 0.472803i 0.441997 0.0198035i
\(571\) 33.5099i 1.40235i −0.712990 0.701174i \(-0.752660\pi\)
0.712990 0.701174i \(-0.247340\pi\)
\(572\) −0.269355 + 0.632020i −0.0112623 + 0.0264261i
\(573\) 22.4304i 0.937044i
\(574\) 2.09334 + 46.7215i 0.0873745 + 1.95012i
\(575\) 0.494502i 0.0206222i
\(576\) 7.71304 2.12343i 0.321377 0.0884762i
\(577\) −4.19353 + 4.19353i −0.174579 + 0.174579i −0.788988 0.614409i \(-0.789395\pi\)
0.614409 + 0.788988i \(0.289395\pi\)
\(578\) −48.8550 + 2.18893i −2.03210 + 0.0910477i
\(579\) 3.57371 + 3.57371i 0.148518 + 0.148518i
\(580\) 12.8335 15.3654i 0.532881 0.638015i
\(581\) 13.9546i 0.578936i
\(582\) −11.8252 + 12.9345i −0.490169 + 0.536153i
\(583\) 0.0950688 0.0950688i 0.00393735 0.00393735i
\(584\) 1.33409 + 1.01645i 0.0552052 + 0.0420608i
\(585\) −3.90441 + 7.27754i −0.161427 + 0.300889i
\(586\) 14.0825 15.4037i 0.581744 0.636319i
\(587\) 13.2081 13.2081i 0.545157 0.545157i −0.379879 0.925036i \(-0.624034\pi\)
0.925036 + 0.379879i \(0.124034\pi\)
\(588\) 0.297978 + 3.31863i 0.0122884 + 0.136858i
\(589\) −9.59938 −0.395536
\(590\) 0.812718 + 18.1391i 0.0334591 + 0.746776i
\(591\) −2.26114 2.26114i −0.0930108 0.0930108i
\(592\) −20.7384 + 29.9073i −0.852344 + 1.22918i
\(593\) −0.911200 0.911200i −0.0374185 0.0374185i 0.688150 0.725568i \(-0.258423\pi\)
−0.725568 + 0.688150i \(0.758423\pi\)
\(594\) 0.0994420 + 0.0909132i 0.00408015 + 0.00373021i
\(595\) 48.4277i 1.98534i
\(596\) −28.7683 24.0277i −1.17839 0.984214i
\(597\) 26.4375 1.08201
\(598\) −3.38696 9.64368i −0.138503 0.394359i
\(599\) 25.5885i 1.04552i 0.852481 + 0.522758i \(0.175097\pi\)
−0.852481 + 0.522758i \(0.824903\pi\)
\(600\) −0.0934431 0.691464i −0.00381480 0.0282289i
\(601\) 9.95824 0.406205 0.203103 0.979157i \(-0.434897\pi\)
0.203103 + 0.979157i \(0.434897\pi\)
\(602\) 32.1596 + 29.4014i 1.31073 + 1.19831i
\(603\) 8.16072 8.16072i 0.332330 0.332330i
\(604\) 4.73373 5.66767i 0.192613 0.230614i
\(605\) −17.8017 + 17.8017i −0.723743 + 0.723743i
\(606\) 14.9309 0.668972i 0.606524 0.0271751i
\(607\) 41.0894i 1.66777i 0.551941 + 0.833883i \(0.313887\pi\)
−0.551941 + 0.833883i \(0.686113\pi\)
\(608\) 9.82223 15.6138i 0.398344 0.633222i
\(609\) −9.09666 9.09666i −0.368615 0.368615i
\(610\) −4.24123 + 4.63912i −0.171723 + 0.187832i
\(611\) −23.8754 12.8092i −0.965894 0.518203i
\(612\) 1.28456 + 14.3063i 0.0519253 + 0.578300i
\(613\) −7.07976 7.07976i −0.285949 0.285949i 0.549527 0.835476i \(-0.314808\pi\)
−0.835476 + 0.549527i \(0.814808\pi\)
\(614\) 14.0170 + 12.8148i 0.565679 + 0.517163i
\(615\) −25.7319 −1.03761
\(616\) −0.786130 + 0.106236i −0.0316741 + 0.00428037i
\(617\) 2.05439 2.05439i 0.0827067 0.0827067i −0.664543 0.747250i \(-0.731374\pi\)
0.747250 + 0.664543i \(0.231374\pi\)
\(618\) −4.97627 + 0.222960i −0.200175 + 0.00896877i
\(619\) −16.6627 16.6627i −0.669730 0.669730i 0.287923 0.957653i \(-0.407035\pi\)
−0.957653 + 0.287923i \(0.907035\pi\)
\(620\) 1.20605 + 13.4319i 0.0484360 + 0.539439i
\(621\) −2.00453 −0.0804392
\(622\) −27.3399 + 1.22495i −1.09623 + 0.0491162i
\(623\) 7.92838 0.317644
\(624\) 6.55831 + 12.8448i 0.262542 + 0.514203i
\(625\) 26.1726 1.04690
\(626\) 14.2975 0.640595i 0.571443 0.0256033i
\(627\) 0.310674 0.0124071
\(628\) 0.243823 + 2.71549i 0.00972958 + 0.108360i
\(629\) −46.2059 46.2059i −1.84235 1.84235i
\(630\) −9.52646 + 0.426830i −0.379543 + 0.0170053i
\(631\) 32.6063 32.6063i 1.29804 1.29804i 0.368349 0.929688i \(-0.379923\pi\)
0.929688 0.368349i \(-0.120077\pi\)
\(632\) 3.20703 + 23.7316i 0.127569 + 0.943991i
\(633\) 2.28566 0.0908466
\(634\) 26.7893 + 24.4917i 1.06394 + 0.972690i
\(635\) 30.0410 + 30.0410i 1.19214 + 1.19214i
\(636\) −0.252404 2.81105i −0.0100085 0.111466i
\(637\) −5.75085 + 1.73479i −0.227857 + 0.0687350i
\(638\) 0.397297 0.434568i 0.0157291 0.0172047i
\(639\) 0.00829610 + 0.00829610i 0.000328189 + 0.000328189i
\(640\) −23.0816 11.7821i −0.912380 0.465727i
\(641\) 2.93313i 0.115852i 0.998321 + 0.0579259i \(0.0184487\pi\)
−0.998321 + 0.0579259i \(0.981551\pi\)
\(642\) −16.7153 + 0.748926i −0.659702 + 0.0295577i
\(643\) 19.2248 19.2248i 0.758153 0.758153i −0.217833 0.975986i \(-0.569899\pi\)
0.975986 + 0.217833i \(0.0698989\pi\)
\(644\) 7.56546 9.05808i 0.298121 0.356939i
\(645\) −16.9523 + 16.9523i −0.667498 + 0.667498i
\(646\) 24.4442 + 22.3477i 0.961745 + 0.879259i
\(647\) 45.3264 1.78197 0.890983 0.454037i \(-0.150017\pi\)
0.890983 + 0.454037i \(0.150017\pi\)
\(648\) 2.80295 0.378785i 0.110110 0.0148801i
\(649\) 0.534029i 0.0209625i
\(650\) 1.18682 0.416823i 0.0465508 0.0163491i
\(651\) 8.66599 0.339647
\(652\) 29.7978 + 24.8876i 1.16697 + 0.974673i
\(653\) 2.67450i 0.104661i −0.998630 0.0523307i \(-0.983335\pi\)
0.998630 0.0523307i \(-0.0166650\pi\)
\(654\) −19.1751 17.5305i −0.749804 0.685496i
\(655\) 8.42316 + 8.42316i 0.329120 + 0.329120i
\(656\) −25.6055 + 36.9262i −0.999728 + 1.44173i
\(657\) 0.419298 + 0.419298i 0.0163584 + 0.0163584i
\(658\) −1.40030 31.2534i −0.0545893 1.21838i
\(659\) 37.5991 1.46465 0.732326 0.680954i \(-0.238435\pi\)
0.732326 + 0.680954i \(0.238435\pi\)
\(660\) −0.0390324 0.434710i −0.00151933 0.0169211i
\(661\) −29.7860 + 29.7860i −1.15854 + 1.15854i −0.173752 + 0.984789i \(0.555589\pi\)
−0.984789 + 0.173752i \(0.944411\pi\)
\(662\) −30.4954 + 33.3562i −1.18524 + 1.29643i
\(663\) −24.7915 + 7.47856i −0.962820 + 0.290443i
\(664\) −8.12563 + 10.6649i −0.315335 + 0.413880i
\(665\) −15.5479 + 15.5479i −0.602921 + 0.602921i
\(666\) −8.68214 + 9.49664i −0.336426 + 0.367987i
\(667\) 8.75994i 0.339186i
\(668\) −5.72044 + 6.84905i −0.221331 + 0.264998i
\(669\) −6.65855 6.65855i −0.257434 0.257434i
\(670\) −37.3479 + 1.67336i −1.44287 + 0.0646475i
\(671\) −0.130722 + 0.130722i −0.00504646 + 0.00504646i
\(672\) −8.86717 + 14.0956i −0.342059 + 0.543748i
\(673\) 26.8225i 1.03393i 0.856006 + 0.516965i \(0.172938\pi\)
−0.856006 + 0.516965i \(0.827062\pi\)
\(674\) −0.548110 12.2333i −0.0211124 0.471210i
\(675\) 0.246692i 0.00949517i
\(676\) −20.2902 + 16.2576i −0.780391 + 0.625292i
\(677\) 27.6382i 1.06222i −0.847302 0.531112i \(-0.821774\pi\)
0.847302 0.531112i \(-0.178226\pi\)
\(678\) −17.9497 + 0.804232i −0.689355 + 0.0308864i
\(679\) 36.4804i 1.39999i
\(680\) 28.1989 37.0113i 1.08138 1.41932i
\(681\) 7.86789 7.86789i 0.301498 0.301498i
\(682\) 0.0177534 + 0.396240i 0.000679814 + 0.0151728i
\(683\) −0.401585 0.401585i −0.0153662 0.0153662i 0.699382 0.714748i \(-0.253459\pi\)
−0.714748 + 0.699382i \(0.753459\pi\)
\(684\) 4.18068 5.00551i 0.159852 0.191390i
\(685\) 48.6829i 1.86008i
\(686\) 16.3894 + 14.9837i 0.625750 + 0.572081i
\(687\) 3.64543 3.64543i 0.139082 0.139082i
\(688\) 7.45814 + 41.1964i 0.284339 + 1.57060i
\(689\) 4.87127 1.46946i 0.185581 0.0559820i
\(690\) 4.79243 + 4.38140i 0.182445 + 0.166797i
\(691\) −25.8040 + 25.8040i −0.981632 + 0.981632i −0.999834 0.0182023i \(-0.994206\pi\)
0.0182023 + 0.999834i \(0.494206\pi\)
\(692\) 5.02436 0.451136i 0.190998 0.0171496i
\(693\) −0.280465 −0.0106540
\(694\) −23.5422 + 1.05480i −0.893650 + 0.0400397i
\(695\) −9.91955 9.91955i −0.376270 0.376270i
\(696\) −1.65531 12.2491i −0.0627445 0.464300i
\(697\) −57.0500 57.0500i −2.16092 2.16092i
\(698\) 5.38452 5.88965i 0.203807 0.222927i
\(699\) 3.31543i 0.125401i
\(700\) 1.11475 + 0.931058i 0.0421336 + 0.0351907i
\(701\) −42.4434 −1.60307 −0.801533 0.597951i \(-0.795982\pi\)
−0.801533 + 0.597951i \(0.795982\pi\)
\(702\) 1.68965 + 4.81093i 0.0637717 + 0.181577i
\(703\) 29.6691i 1.11899i
\(704\) −0.662666 0.376563i −0.0249752 0.0141922i
\(705\) 17.2128 0.648271
\(706\) −8.22598 + 8.99768i −0.309589 + 0.338632i
\(707\) −21.9988 + 21.9988i −0.827350 + 0.827350i
\(708\) 8.60416 + 7.18633i 0.323364 + 0.270079i
\(709\) −21.9848 + 21.9848i −0.825657 + 0.825657i −0.986913 0.161256i \(-0.948446\pi\)
0.161256 + 0.986913i \(0.448446\pi\)
\(710\) −0.00170112 0.0379674i −6.38419e−5 0.00142489i
\(711\) 8.46664i 0.317524i
\(712\) 6.05932 + 4.61660i 0.227083 + 0.173014i
\(713\) −4.17261 4.17261i −0.156265 0.156265i
\(714\) −22.0674 20.1747i −0.825851 0.755021i
\(715\) 0.753308 0.227242i 0.0281721 0.00849837i
\(716\) −2.17741 24.2502i −0.0813737 0.906271i
\(717\) 7.48888 + 7.48888i 0.279677 + 0.279677i
\(718\) 27.9104 30.5287i 1.04161 1.13932i
\(719\) 4.55035 0.169699 0.0848497 0.996394i \(-0.472959\pi\)
0.0848497 + 0.996394i \(0.472959\pi\)
\(720\) −7.52920 5.22093i −0.280597 0.194573i
\(721\) 7.33193 7.33193i 0.273055 0.273055i
\(722\) 0.529611 + 11.8204i 0.0197101 + 0.439911i
\(723\) 9.02754 + 9.02754i 0.335738 + 0.335738i
\(724\) 2.27003 0.203825i 0.0843650 0.00757510i
\(725\) −1.07806 −0.0400381
\(726\) 0.695724 + 15.5279i 0.0258207 + 0.576296i
\(727\) 35.3567 1.31131 0.655653 0.755062i \(-0.272393\pi\)
0.655653 + 0.755062i \(0.272393\pi\)
\(728\) −28.1167 10.5221i −1.04207 0.389976i
\(729\) 1.00000 0.0370370
\(730\) −0.0859772 1.91893i −0.00318216 0.0710229i
\(731\) −75.1699 −2.78026
\(732\) 0.347061 + 3.86526i 0.0128277 + 0.142864i
\(733\) 10.2364 + 10.2364i 0.378089 + 0.378089i 0.870412 0.492323i \(-0.163852\pi\)
−0.492323 + 0.870412i \(0.663852\pi\)
\(734\) −1.90676 42.5572i −0.0703800 1.57082i
\(735\) 2.69836 2.69836i 0.0995305 0.0995305i
\(736\) 11.0564 2.51743i 0.407543 0.0927937i
\(737\) −1.09955 −0.0405023
\(738\) −10.7198 + 11.7254i −0.394600 + 0.431618i
\(739\) −15.9995 15.9995i −0.588550 0.588550i 0.348688 0.937239i \(-0.386627\pi\)
−0.937239 + 0.348688i \(0.886627\pi\)
\(740\) 41.5145 3.72757i 1.52610 0.137028i
\(741\) 10.3604 + 5.55836i 0.380598 + 0.204191i
\(742\) 4.33602 + 3.96414i 0.159180 + 0.145528i
\(743\) −4.22277 4.22277i −0.154918 0.154918i 0.625392 0.780311i \(-0.284939\pi\)
−0.780311 + 0.625392i \(0.784939\pi\)
\(744\) 6.62305 + 5.04610i 0.242813 + 0.184999i
\(745\) 42.9282i 1.57277i
\(746\) −0.544340 12.1492i −0.0199297 0.444813i
\(747\) −3.35193 + 3.35193i −0.122641 + 0.122641i
\(748\) 0.877255 1.05033i 0.0320756 0.0384039i
\(749\) 24.6280 24.6280i 0.899889 0.899889i
\(750\) 10.3895 11.3642i 0.379372 0.414961i
\(751\) 39.7818 1.45166 0.725828 0.687876i \(-0.241457\pi\)
0.725828 + 0.687876i \(0.241457\pi\)
\(752\) 17.1283 24.7010i 0.624604 0.900752i
\(753\) 18.4986i 0.674128i
\(754\) 21.0241 7.38388i 0.765652 0.268905i
\(755\) −8.45732 −0.307794
\(756\) −3.77418 + 4.51880i −0.137265 + 0.164347i
\(757\) 0.790942i 0.0287473i −0.999897 0.0143736i \(-0.995425\pi\)
0.999897 0.0143736i \(-0.00457543\pi\)
\(758\) 15.6205 17.0859i 0.567362 0.620588i
\(759\) 0.135042 + 0.135042i 0.00490171 + 0.00490171i
\(760\) −20.9359 + 2.82924i −0.759426 + 0.102627i
\(761\) 2.96895 + 2.96895i 0.107624 + 0.107624i 0.758868 0.651244i \(-0.225753\pi\)
−0.651244 + 0.758868i \(0.725753\pi\)
\(762\) 26.2039 1.17406i 0.949269 0.0425317i
\(763\) 54.0812 1.95787
\(764\) −4.01190 44.6811i −0.145145 1.61650i
\(765\) 11.6324 11.6324i 0.420571 0.420571i
\(766\) −2.97412 2.71904i −0.107459 0.0982430i
\(767\) −9.55447 + 17.8089i −0.344992 + 0.643041i
\(768\) −14.9845 + 5.60939i −0.540706 + 0.202412i
\(769\) −20.0249 + 20.0249i −0.722117 + 0.722117i −0.969036 0.246919i \(-0.920582\pi\)
0.246919 + 0.969036i \(0.420582\pi\)
\(770\) 0.670535 + 0.613026i 0.0241644 + 0.0220919i
\(771\) 17.6933i 0.637210i
\(772\) −7.75796 6.47958i −0.279215 0.233205i
\(773\) 12.6302 + 12.6302i 0.454278 + 0.454278i 0.896772 0.442494i \(-0.145906\pi\)
−0.442494 + 0.896772i \(0.645906\pi\)
\(774\) 0.662529 + 14.7870i 0.0238141 + 0.531509i
\(775\) 0.513510 0.513510i 0.0184458 0.0184458i
\(776\) 21.2421 27.8804i 0.762547 1.00085i
\(777\) 26.7842i 0.960879i
\(778\) −36.4917 + 1.63500i −1.30829 + 0.0586175i
\(779\) 36.6322i 1.31248i
\(780\) 6.47587 15.1951i 0.231873 0.544072i
\(781\) 0.00111779i 3.99976e-5i
\(782\) 0.911294 + 20.3393i 0.0325878 + 0.727330i
\(783\) 4.37007i 0.156173i
\(784\) −1.18714 6.55737i −0.0423978 0.234192i
\(785\) 2.20795 2.20795i 0.0788051 0.0788051i
\(786\) 7.34728 0.329193i 0.262069 0.0117419i
\(787\) −26.5637 26.5637i −0.946895 0.946895i 0.0517643 0.998659i \(-0.483516\pi\)
−0.998659 + 0.0517643i \(0.983516\pi\)
\(788\) 4.90858 + 4.09973i 0.174861 + 0.146047i
\(789\) 18.2366i 0.649239i
\(790\) 18.5059 20.2420i 0.658411 0.720178i
\(791\) 26.4468 26.4468i 0.940339 0.940339i
\(792\) −0.214348 0.163312i −0.00761652 0.00580303i
\(793\) −6.69811 + 2.02054i −0.237857 + 0.0717516i
\(794\) 14.9580 16.3613i 0.530840 0.580640i
\(795\) −2.28566 + 2.28566i −0.0810638 + 0.0810638i
\(796\) −52.6631 + 4.72860i −1.86659 + 0.167601i
\(797\) 10.2872 0.364393 0.182196 0.983262i \(-0.441679\pi\)
0.182196 + 0.983262i \(0.441679\pi\)
\(798\) 0.607640 + 13.5620i 0.0215102 + 0.480089i
\(799\) 38.1624 + 38.1624i 1.35009 + 1.35009i
\(800\) 0.309813 + 1.36067i 0.0109535 + 0.0481071i
\(801\) 1.90441 + 1.90441i 0.0672890 + 0.0672890i
\(802\) −36.9416 33.7732i −1.30445 1.19257i
\(803\) 0.0564947i 0.00199365i
\(804\) −14.7964 + 17.7157i −0.521830 + 0.624784i
\(805\) −13.5165 −0.476395
\(806\) −6.49722 + 13.5315i −0.228855 + 0.476627i
\(807\) 6.68357i 0.235273i
\(808\) −29.6224 + 4.00311i −1.04211 + 0.140829i
\(809\) −1.64479 −0.0578278 −0.0289139 0.999582i \(-0.509205\pi\)
−0.0289139 + 0.999582i \(0.509205\pi\)
\(810\) −2.39080 2.18574i −0.0840040 0.0767992i
\(811\) −13.0418 + 13.0418i −0.457958 + 0.457958i −0.897985 0.440026i \(-0.854969\pi\)
0.440026 + 0.897985i \(0.354969\pi\)
\(812\) 19.7475 + 16.4934i 0.693000 + 0.578805i
\(813\) 5.65140 5.65140i 0.198203 0.198203i
\(814\) 1.22467 0.0548711i 0.0429248 0.00192323i
\(815\) 44.4644i 1.55752i
\(816\) −5.11766 28.2683i −0.179154 0.989588i
\(817\) 24.1335 + 24.1335i 0.844326 + 0.844326i
\(818\) 33.3920 36.5246i 1.16752 1.27705i
\(819\) −9.35300 5.01789i −0.326820 0.175339i
\(820\) 51.2575 4.60239i 1.78999 0.160723i
\(821\) −9.46652 9.46652i −0.330384 0.330384i 0.522348 0.852732i \(-0.325056\pi\)
−0.852732 + 0.522348i \(0.825056\pi\)
\(822\) 22.1837 + 20.2811i 0.773744 + 0.707383i
\(823\) −9.44005 −0.329059 −0.164530 0.986372i \(-0.552611\pi\)
−0.164530 + 0.986372i \(0.552611\pi\)
\(824\) 9.87278 1.33419i 0.343935 0.0464786i
\(825\) −0.0166192 + 0.0166192i −0.000578606 + 0.000578606i
\(826\) −23.3122 + 1.04450i −0.811134 + 0.0363426i
\(827\) 15.1241 + 15.1241i 0.525916 + 0.525916i 0.919352 0.393436i \(-0.128714\pi\)
−0.393436 + 0.919352i \(0.628714\pi\)
\(828\) 3.99300 0.358530i 0.138766 0.0124598i
\(829\) 30.8994 1.07318 0.536590 0.843843i \(-0.319712\pi\)
0.536590 + 0.843843i \(0.319712\pi\)
\(830\) 15.3402 0.687315i 0.532468 0.0238570i
\(831\) 24.3573 0.844946
\(832\) −15.3615 24.4136i −0.532563 0.846390i
\(833\) 11.9651 0.414564
\(834\) −8.65254 + 0.387674i −0.299613 + 0.0134241i
\(835\) 10.2202 0.353684
\(836\) −0.618858 + 0.0555670i −0.0214036 + 0.00192182i
\(837\) 2.08158 + 2.08158i 0.0719501 + 0.0719501i
\(838\) 22.1198 0.991071i 0.764116 0.0342360i
\(839\) −39.8024 + 39.8024i −1.37413 + 1.37413i −0.519909 + 0.854222i \(0.674034\pi\)
−0.854222 + 0.519909i \(0.825966\pi\)
\(840\) 18.9002 2.55414i 0.652120 0.0881261i
\(841\) 9.90253 0.341466
\(842\) 7.74110 + 7.07718i 0.266776 + 0.243896i
\(843\) 7.19722 + 7.19722i 0.247885 + 0.247885i
\(844\) −4.55299 + 0.408812i −0.156720 + 0.0140719i
\(845\) 29.1871 + 5.89958i 1.00407 + 0.202952i
\(846\) 7.17075 7.84346i 0.246536 0.269664i
\(847\) −22.8785 22.8785i −0.786116 0.786116i
\(848\) 1.00557 + 5.55444i 0.0345314 + 0.190740i
\(849\) 14.0053i 0.480661i
\(850\) −2.50309 + 0.112150i −0.0858553 + 0.00384672i
\(851\) −12.8964 + 12.8964i −0.442083 + 0.442083i
\(852\) −0.0180096 0.0150419i −0.000616997 0.000515326i
\(853\) −5.81918 + 5.81918i −0.199245 + 0.199245i −0.799676 0.600431i \(-0.794996\pi\)
0.600431 + 0.799676i \(0.294996\pi\)
\(854\) −5.96213 5.45078i −0.204020 0.186522i
\(855\) −7.46925 −0.255443
\(856\) 33.1628 4.48155i 1.13348 0.153176i
\(857\) 27.8183i 0.950256i 0.879917 + 0.475128i \(0.157598\pi\)
−0.879917 + 0.475128i \(0.842402\pi\)
\(858\) 0.210275 0.437933i 0.00717869 0.0149508i
\(859\) −10.0327 −0.342311 −0.171155 0.985244i \(-0.554750\pi\)
−0.171155 + 0.985244i \(0.554750\pi\)
\(860\) 30.7367 36.8009i 1.04811 1.25490i
\(861\) 33.0703i 1.12703i
\(862\) −25.0392 22.8916i −0.852838 0.779693i
\(863\) −32.0055 32.0055i −1.08948 1.08948i −0.995582 0.0938995i \(-0.970067\pi\)
−0.0938995 0.995582i \(-0.529933\pi\)
\(864\) −5.51569 + 1.25587i −0.187647 + 0.0427255i
\(865\) −4.08529 4.08529i −0.138904 0.138904i
\(866\) 1.37143 + 30.6092i 0.0466032 + 1.04014i
\(867\) 34.5804 1.17441
\(868\) −17.2625 + 1.55000i −0.585929 + 0.0526103i
\(869\) 0.570383 0.570383i 0.0193489 0.0193489i
\(870\) −9.55185 + 10.4479i −0.323838 + 0.354218i
\(871\) −36.6678 19.6723i −1.24244 0.666572i
\(872\) 41.3319 + 31.4908i 1.39968 + 1.06641i
\(873\) 8.76265 8.76265i 0.296571 0.296571i
\(874\) 6.23741 6.82256i 0.210984 0.230776i
\(875\) 32.0515i 1.08354i
\(876\) −0.910231 0.760240i −0.0307538 0.0256861i
\(877\) −20.8160 20.8160i −0.702906 0.702906i 0.262127 0.965033i \(-0.415576\pi\)
−0.965033 + 0.262127i \(0.915576\pi\)
\(878\) −38.1389 + 1.70880i −1.28713 + 0.0576692i
\(879\) −10.4354 + 10.4354i −0.351977 + 0.351977i
\(880\) 0.155504 + 0.858954i 0.00524204 + 0.0289553i
\(881\) 13.7757i 0.464116i −0.972702 0.232058i \(-0.925454\pi\)
0.972702 0.232058i \(-0.0745459\pi\)
\(882\) −0.105457 2.35370i −0.00355092 0.0792533i
\(883\) 38.8765i 1.30830i 0.756366 + 0.654149i \(0.226973\pi\)
−0.756366 + 0.654149i \(0.773027\pi\)
\(884\) 48.0466 19.3314i 1.61598 0.650184i
\(885\) 12.8392i 0.431584i
\(886\) −5.21874 + 0.233824i −0.175327 + 0.00785547i
\(887\) 51.7991i 1.73924i 0.493718 + 0.869622i \(0.335637\pi\)
−0.493718 + 0.869622i \(0.664363\pi\)
\(888\) 15.5961 20.4701i 0.523372 0.686930i
\(889\) −38.6084 + 38.6084i −1.29488 + 1.29488i
\(890\) −0.390500 8.71560i −0.0130896 0.292148i
\(891\) −0.0673682 0.0673682i −0.00225692 0.00225692i
\(892\) 14.4547 + 12.0728i 0.483978 + 0.404227i
\(893\) 24.5043i 0.820005i
\(894\) 19.5614 + 17.8837i 0.654230 + 0.598119i
\(895\) −19.7177 + 19.7177i −0.659090 + 0.659090i
\(896\) 15.1422 29.6642i 0.505864 0.991010i
\(897\) 2.08732 + 6.91947i 0.0696935 + 0.231034i
\(898\) 23.5645 + 21.5435i 0.786358 + 0.718914i
\(899\) 9.09666 9.09666i 0.303391 0.303391i
\(900\) 0.0441232 + 0.491407i 0.00147077 + 0.0163802i
\(901\) −10.1350 −0.337647
\(902\) 1.51209 0.0677488i 0.0503472 0.00225579i
\(903\) −21.7869 21.7869i −0.725023 0.725023i
\(904\) 35.6118 4.81250i 1.18443 0.160061i
\(905\) −1.84575 1.84575i −0.0613548 0.0613548i
\(906\) −3.52328 + 3.85381i −0.117053 + 0.128034i
\(907\) 53.4908i 1.77613i −0.459714 0.888067i \(-0.652048\pi\)
0.459714 0.888067i \(-0.347952\pi\)
\(908\) −14.2655 + 17.0800i −0.473416 + 0.566819i
\(909\) −10.5683 −0.350528
\(910\) 11.3933 + 32.4400i 0.377683 + 1.07538i
\(911\) 8.34775i 0.276573i −0.990392 0.138287i \(-0.955840\pi\)
0.990392 0.138287i \(-0.0441595\pi\)
\(912\) −7.43258 + 10.7187i −0.246117 + 0.354930i
\(913\) 0.451627 0.0149467
\(914\) −13.4824 + 14.7473i −0.445959 + 0.487796i
\(915\) 3.14283 3.14283i 0.103899 0.103899i
\(916\) −6.60962 + 7.91366i −0.218388 + 0.261475i
\(917\) −10.8253 + 10.8253i −0.357484 + 0.357484i
\(918\) −0.454617 10.1466i −0.0150046 0.334889i
\(919\) 0.682347i 0.0225085i 0.999937 + 0.0112543i \(0.00358242\pi\)
−0.999937 + 0.0112543i \(0.996418\pi\)
\(920\) −10.3301 7.87051i −0.340574 0.259483i
\(921\) −9.49598 9.49598i −0.312903 0.312903i
\(922\) 14.4774 + 13.2357i 0.476787 + 0.435894i
\(923\) 0.0199987 0.0372761i 0.000658265 0.00122696i
\(924\) 0.558683 0.0501640i 0.0183793 0.00165027i
\(925\) −1.58712 1.58712i −0.0521842 0.0521842i
\(926\) 22.2926 24.3840i 0.732581 0.801307i
\(927\) 3.52228 0.115687
\(928\) 5.48823 + 24.1039i 0.180160 + 0.791250i
\(929\) 11.6044 11.6044i 0.380728 0.380728i −0.490636 0.871364i \(-0.663236\pi\)
0.871364 + 0.490636i \(0.163236\pi\)
\(930\) −0.426830 9.52646i −0.0139963 0.312385i
\(931\) −3.84142 3.84142i −0.125897 0.125897i
\(932\) 0.592997 + 6.60430i 0.0194243 + 0.216331i
\(933\) 19.3516 0.633543
\(934\) −0.867563 19.3632i −0.0283875 0.633584i
\(935\) −1.56731 −0.0512566
\(936\) −4.22624 9.28110i −0.138139 0.303362i
\(937\) −5.73855 −0.187470 −0.0937352 0.995597i \(-0.529881\pi\)
−0.0937352 + 0.995597i \(0.529881\pi\)
\(938\) −2.15058 47.9990i −0.0702189 1.56722i
\(939\) −10.1200 −0.330254
\(940\) −34.2876 + 3.07867i −1.11834 + 0.100415i
\(941\) 0.617212 + 0.617212i 0.0201205 + 0.0201205i 0.717095 0.696975i \(-0.245471\pi\)
−0.696975 + 0.717095i \(0.745471\pi\)
\(942\) −0.0862908 1.92593i −0.00281151 0.0627503i
\(943\) −15.9231 + 15.9231i −0.518526 + 0.518526i
\(944\) −18.4247 12.7761i −0.599673 0.415828i
\(945\) 6.74298 0.219349
\(946\) 0.951544 1.04081i 0.0309374 0.0338397i
\(947\) −2.57671 2.57671i −0.0837319 0.0837319i 0.664000 0.747732i \(-0.268857\pi\)
−0.747732 + 0.664000i \(0.768857\pi\)
\(948\) −1.51434 16.8654i −0.0491835 0.547764i
\(949\) 1.01076 1.88399i 0.0328108 0.0611570i
\(950\) 0.839631 + 0.767619i 0.0272412 + 0.0249048i
\(951\) −18.1488 18.1488i −0.588515 0.588515i
\(952\) 47.5664 + 36.2408i 1.54164 + 1.17457i
\(953\) 44.1686i 1.43076i 0.698736 + 0.715380i \(0.253746\pi\)
−0.698736 + 0.715380i \(0.746254\pi\)
\(954\) 0.0893277 + 1.99371i 0.00289209 + 0.0645488i
\(955\) −36.3300 + 36.3300i −1.17561 + 1.17561i
\(956\) −16.2572 13.5783i −0.525796 0.439153i
\(957\) −0.294404 + 0.294404i −0.00951672 + 0.00951672i
\(958\) −9.68653 + 10.5952i −0.312958 + 0.342317i
\(959\) −62.5667 −2.02038
\(960\) 15.9319 + 9.05336i 0.514199 + 0.292196i
\(961\) 22.3340i 0.720452i
\(962\) 41.8223 + 20.0812i 1.34840 + 0.647442i
\(963\) 11.8314 0.381261
\(964\) −19.5974 16.3681i −0.631190 0.527180i
\(965\) 11.5765i 0.372660i
\(966\) −5.63092 + 6.15917i −0.181172 + 0.198168i
\(967\) 23.3487 + 23.3487i 0.750844 + 0.750844i 0.974637 0.223792i \(-0.0718438\pi\)
−0.223792 + 0.974637i \(0.571844\pi\)
\(968\) −4.16319 30.8070i −0.133810 0.990174i
\(969\) −16.5600 16.5600i −0.531985 0.531985i
\(970\) −40.1026 + 1.79679i −1.28762 + 0.0576913i
\(971\) 15.8294 0.507990 0.253995 0.967205i \(-0.418255\pi\)
0.253995 + 0.967205i \(0.418255\pi\)
\(972\) −1.99199 + 0.178860i −0.0638930 + 0.00573693i
\(973\) 12.7485 12.7485i 0.408697 0.408697i
\(974\) −0.567227 0.518578i −0.0181751 0.0166163i
\(975\) −0.851558 + 0.256880i −0.0272717 + 0.00822674i
\(976\) −1.38268 7.63748i −0.0442585 0.244470i
\(977\) −19.1168 + 19.1168i −0.611602 + 0.611602i −0.943363 0.331761i \(-0.892357\pi\)
0.331761 + 0.943363i \(0.392357\pi\)
\(978\) −20.2614 18.5236i −0.647888 0.592321i
\(979\) 0.256593i 0.00820076i
\(980\) −4.89247 + 5.85773i −0.156284 + 0.187118i
\(981\) 12.9904 + 12.9904i 0.414751 + 0.414751i
\(982\) −0.172198 3.84331i −0.00549507 0.122645i
\(983\) 20.0123 20.0123i 0.638293 0.638293i −0.311841 0.950134i \(-0.600946\pi\)
0.950134 + 0.311841i \(0.100946\pi\)
\(984\) 19.2564 25.2742i 0.613872 0.805712i
\(985\) 7.32462i 0.233382i
\(986\) −44.3414 + 1.98670i −1.41212 + 0.0632696i
\(987\) 22.1216i 0.704139i
\(988\) −21.6319 9.21912i −0.688203 0.293299i
\(989\) 20.9805i 0.667140i
\(990\) 0.0138139 + 0.308313i 0.000439034 + 0.00979885i
\(991\) 36.3170i 1.15365i −0.816868 0.576824i \(-0.804292\pi\)
0.816868 0.576824i \(-0.195708\pi\)
\(992\) −14.0956 8.86717i −0.447535 0.281533i
\(993\) 22.5976 22.5976i 0.717114 0.717114i
\(994\) 0.0487953 0.00218626i 0.00154769 6.93438e-5i
\(995\) 42.8201 + 42.8201i 1.35749 + 1.35749i
\(996\) 6.07747 7.27652i 0.192572 0.230565i
\(997\) 27.1788i 0.860762i 0.902647 + 0.430381i \(0.141621\pi\)
−0.902647 + 0.430381i \(0.858379\pi\)
\(998\) 39.6783 43.4007i 1.25600 1.37382i
\(999\) 6.43362 6.43362i 0.203551 0.203551i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.t.e.187.12 yes 24
3.2 odd 2 936.2.w.j.811.1 24
4.3 odd 2 1248.2.bb.f.655.4 24
8.3 odd 2 inner 312.2.t.e.187.7 24
8.5 even 2 1248.2.bb.f.655.9 24
13.8 odd 4 inner 312.2.t.e.307.7 yes 24
24.11 even 2 936.2.w.j.811.6 24
39.8 even 4 936.2.w.j.307.6 24
52.47 even 4 1248.2.bb.f.463.9 24
104.21 odd 4 1248.2.bb.f.463.4 24
104.99 even 4 inner 312.2.t.e.307.12 yes 24
312.203 odd 4 936.2.w.j.307.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.7 24 8.3 odd 2 inner
312.2.t.e.187.12 yes 24 1.1 even 1 trivial
312.2.t.e.307.7 yes 24 13.8 odd 4 inner
312.2.t.e.307.12 yes 24 104.99 even 4 inner
936.2.w.j.307.1 24 312.203 odd 4
936.2.w.j.307.6 24 39.8 even 4
936.2.w.j.811.1 24 3.2 odd 2
936.2.w.j.811.6 24 24.11 even 2
1248.2.bb.f.463.4 24 104.21 odd 4
1248.2.bb.f.463.9 24 52.47 even 4
1248.2.bb.f.655.4 24 4.3 odd 2
1248.2.bb.f.655.9 24 8.5 even 2