Properties

Label 312.2
Level 312
Weight 2
Dimension 1076
Nonzero newspaces 18
Newform subspaces 46
Sturm bound 10752
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 46 \)
Sturm bound: \(10752\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(312))\).

Total New Old
Modular forms 2976 1164 1812
Cusp forms 2401 1076 1325
Eisenstein series 575 88 487

Trace form

\( 1076 q + 4 q^{2} - 6 q^{3} - 16 q^{4} + 4 q^{5} - 16 q^{6} - 16 q^{7} - 8 q^{8} - 18 q^{9} - 32 q^{10} - 8 q^{11} - 28 q^{12} + 2 q^{13} - 8 q^{14} - 24 q^{15} - 24 q^{16} + 10 q^{17} + 16 q^{20} + 24 q^{21}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(312))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
312.2.a \(\chi_{312}(1, \cdot)\) 312.2.a.a 1 1
312.2.a.b 1
312.2.a.c 1
312.2.a.d 1
312.2.a.e 1
312.2.a.f 1
312.2.c \(\chi_{312}(25, \cdot)\) 312.2.c.a 2 1
312.2.c.b 2
312.2.c.c 2
312.2.d \(\chi_{312}(287, \cdot)\) None 0 1
312.2.g \(\chi_{312}(157, \cdot)\) 312.2.g.a 8 1
312.2.g.b 16
312.2.h \(\chi_{312}(155, \cdot)\) 312.2.h.a 8 1
312.2.h.b 12
312.2.h.c 32
312.2.j \(\chi_{312}(131, \cdot)\) 312.2.j.a 48 1
312.2.m \(\chi_{312}(181, \cdot)\) 312.2.m.a 2 1
312.2.m.b 2
312.2.m.c 24
312.2.n \(\chi_{312}(311, \cdot)\) None 0 1
312.2.q \(\chi_{312}(217, \cdot)\) 312.2.q.a 2 2
312.2.q.b 2
312.2.q.c 2
312.2.q.d 4
312.2.q.e 6
312.2.t \(\chi_{312}(187, \cdot)\) 312.2.t.a 2 2
312.2.t.b 2
312.2.t.c 2
312.2.t.d 2
312.2.t.e 24
312.2.t.f 24
312.2.u \(\chi_{312}(31, \cdot)\) None 0 2
312.2.x \(\chi_{312}(161, \cdot)\) 312.2.x.a 4 2
312.2.x.b 8
312.2.x.c 16
312.2.y \(\chi_{312}(5, \cdot)\) 312.2.y.a 104 2
312.2.ba \(\chi_{312}(179, \cdot)\) 312.2.ba.a 104 2
312.2.bb \(\chi_{312}(61, \cdot)\) 312.2.bb.a 56 2
312.2.be \(\chi_{312}(191, \cdot)\) None 0 2
312.2.bf \(\chi_{312}(49, \cdot)\) 312.2.bf.a 4 2
312.2.bf.b 8
312.2.bj \(\chi_{312}(23, \cdot)\) None 0 2
312.2.bk \(\chi_{312}(205, \cdot)\) 312.2.bk.a 8 2
312.2.bk.b 48
312.2.bn \(\chi_{312}(35, \cdot)\) 312.2.bn.a 104 2
312.2.bo \(\chi_{312}(149, \cdot)\) 312.2.bo.a 208 4
312.2.bp \(\chi_{312}(41, \cdot)\) 312.2.bp.a 56 4
312.2.bs \(\chi_{312}(7, \cdot)\) None 0 4
312.2.bt \(\chi_{312}(19, \cdot)\) 312.2.bt.a 4 4
312.2.bt.b 4
312.2.bt.c 48
312.2.bt.d 56

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(312))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(312)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 2}\)