Properties

Label 312.2.t.e.307.12
Level $312$
Weight $2$
Character 312.307
Analytic conductor $2.491$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,2,Mod(187,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.187"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.12
Character \(\chi\) \(=\) 312.307
Dual form 312.2.t.e.187.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41280 + 0.0632999i) q^{2} -1.00000 q^{3} +(1.99199 + 0.178860i) q^{4} +(-1.61967 + 1.61967i) q^{5} +(-1.41280 - 0.0632999i) q^{6} +(2.08158 + 2.08158i) q^{7} +(2.80295 + 0.378785i) q^{8} +1.00000 q^{9} +(-2.39080 + 2.18574i) q^{10} +(-0.0673682 + 0.0673682i) q^{11} +(-1.99199 - 0.178860i) q^{12} +(-1.04130 + 3.45191i) q^{13} +(2.80909 + 3.07262i) q^{14} +(1.61967 - 1.61967i) q^{15} +(3.93602 + 0.712572i) q^{16} -7.18195i q^{17} +(1.41280 + 0.0632999i) q^{18} +(2.30579 + 2.30579i) q^{19} +(-3.51606 + 2.93668i) q^{20} +(-2.08158 - 2.08158i) q^{21} +(-0.0994420 + 0.0909132i) q^{22} +2.00453 q^{23} +(-2.80295 - 0.378785i) q^{24} -0.246692i q^{25} +(-1.68965 + 4.81093i) q^{26} -1.00000 q^{27} +(3.77418 + 4.51880i) q^{28} -4.37007i q^{29} +(2.39080 - 2.18574i) q^{30} +(-2.08158 + 2.08158i) q^{31} +(5.51569 + 1.25587i) q^{32} +(0.0673682 - 0.0673682i) q^{33} +(0.454617 - 10.1466i) q^{34} -6.74298 q^{35} +(1.99199 + 0.178860i) q^{36} +(-6.43362 - 6.43362i) q^{37} +(3.11165 + 3.40356i) q^{38} +(1.04130 - 3.45191i) q^{39} +(-5.15337 + 3.92636i) q^{40} +(-7.94353 - 7.94353i) q^{41} +(-2.80909 - 3.07262i) q^{42} -10.4665i q^{43} +(-0.146246 + 0.122147i) q^{44} +(-1.61967 + 1.61967i) q^{45} +(2.83200 + 0.126887i) q^{46} +(5.31365 + 5.31365i) q^{47} +(-3.93602 - 0.712572i) q^{48} +1.66599i q^{49} +(0.0156156 - 0.348525i) q^{50} +7.18195i q^{51} +(-2.69166 + 6.68991i) q^{52} -1.41118i q^{53} +(-1.41280 - 0.0632999i) q^{54} -0.218229i q^{55} +(5.04610 + 6.62305i) q^{56} +(-2.30579 - 2.30579i) q^{57} +(0.276625 - 6.17401i) q^{58} +(-3.96350 + 3.96350i) q^{59} +(3.51606 - 2.93668i) q^{60} +1.94041i q^{61} +(-3.07262 + 2.80909i) q^{62} +(2.08158 + 2.08158i) q^{63} +(7.71304 + 2.12343i) q^{64} +(-3.90441 - 7.27754i) q^{65} +(0.0994420 - 0.0909132i) q^{66} +(8.16072 + 8.16072i) q^{67} +(1.28456 - 14.3063i) q^{68} -2.00453 q^{69} +(-9.52646 - 0.426830i) q^{70} +(0.00829610 - 0.00829610i) q^{71} +(2.80295 + 0.378785i) q^{72} +(0.419298 - 0.419298i) q^{73} +(-8.68214 - 9.49664i) q^{74} +0.246692i q^{75} +(4.18068 + 5.00551i) q^{76} -0.280465 q^{77} +(1.68965 - 4.81093i) q^{78} -8.46664i q^{79} +(-7.52920 + 5.22093i) q^{80} +1.00000 q^{81} +(-10.7198 - 11.7254i) q^{82} +(-3.35193 - 3.35193i) q^{83} +(-3.77418 - 4.51880i) q^{84} +(11.6324 + 11.6324i) q^{85} +(0.662529 - 14.7870i) q^{86} +4.37007i q^{87} +(-0.214348 + 0.163312i) q^{88} +(1.90441 - 1.90441i) q^{89} +(-2.39080 + 2.18574i) q^{90} +(-9.35300 + 5.01789i) q^{91} +(3.99300 + 0.358530i) q^{92} +(2.08158 - 2.08158i) q^{93} +(7.17075 + 7.84346i) q^{94} -7.46925 q^{95} +(-5.51569 - 1.25587i) q^{96} +(8.76265 + 8.76265i) q^{97} +(-0.105457 + 2.35370i) q^{98} +(-0.0673682 + 0.0673682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{3} - 6 q^{8} + 24 q^{9} + 8 q^{11} + 36 q^{14} + 28 q^{16} + 20 q^{19} - 20 q^{20} + 20 q^{22} + 6 q^{24} + 12 q^{26} - 24 q^{27} - 16 q^{28} - 30 q^{32} - 8 q^{33} + 16 q^{34} + 16 q^{35}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41280 + 0.0632999i 0.998998 + 0.0447598i
\(3\) −1.00000 −0.577350
\(4\) 1.99199 + 0.178860i 0.995993 + 0.0894299i
\(5\) −1.61967 + 1.61967i −0.724341 + 0.724341i −0.969486 0.245146i \(-0.921164\pi\)
0.245146 + 0.969486i \(0.421164\pi\)
\(6\) −1.41280 0.0632999i −0.576772 0.0258421i
\(7\) 2.08158 + 2.08158i 0.786765 + 0.786765i 0.980962 0.194197i \(-0.0622102\pi\)
−0.194197 + 0.980962i \(0.562210\pi\)
\(8\) 2.80295 + 0.378785i 0.990992 + 0.133921i
\(9\) 1.00000 0.333333
\(10\) −2.39080 + 2.18574i −0.756036 + 0.691193i
\(11\) −0.0673682 + 0.0673682i −0.0203123 + 0.0203123i −0.717190 0.696878i \(-0.754572\pi\)
0.696878 + 0.717190i \(0.254572\pi\)
\(12\) −1.99199 0.178860i −0.575037 0.0516323i
\(13\) −1.04130 + 3.45191i −0.288804 + 0.957388i
\(14\) 2.80909 + 3.07262i 0.750761 + 0.821192i
\(15\) 1.61967 1.61967i 0.418198 0.418198i
\(16\) 3.93602 + 0.712572i 0.984005 + 0.178143i
\(17\) 7.18195i 1.74188i −0.491391 0.870939i \(-0.663511\pi\)
0.491391 0.870939i \(-0.336489\pi\)
\(18\) 1.41280 + 0.0632999i 0.332999 + 0.0149199i
\(19\) 2.30579 + 2.30579i 0.528984 + 0.528984i 0.920269 0.391285i \(-0.127969\pi\)
−0.391285 + 0.920269i \(0.627969\pi\)
\(20\) −3.51606 + 2.93668i −0.786216 + 0.656661i
\(21\) −2.08158 2.08158i −0.454239 0.454239i
\(22\) −0.0994420 + 0.0909132i −0.0212011 + 0.0193828i
\(23\) 2.00453 0.417974 0.208987 0.977918i \(-0.432983\pi\)
0.208987 + 0.977918i \(0.432983\pi\)
\(24\) −2.80295 0.378785i −0.572150 0.0773191i
\(25\) 0.246692i 0.0493384i
\(26\) −1.68965 + 4.81093i −0.331367 + 0.943502i
\(27\) −1.00000 −0.192450
\(28\) 3.77418 + 4.51880i 0.713252 + 0.853973i
\(29\) 4.37007i 0.811501i −0.913984 0.405750i \(-0.867010\pi\)
0.913984 0.405750i \(-0.132990\pi\)
\(30\) 2.39080 2.18574i 0.436498 0.399061i
\(31\) −2.08158 + 2.08158i −0.373864 + 0.373864i −0.868882 0.495019i \(-0.835161\pi\)
0.495019 + 0.868882i \(0.335161\pi\)
\(32\) 5.51569 + 1.25587i 0.975045 + 0.222008i
\(33\) 0.0673682 0.0673682i 0.0117273 0.0117273i
\(34\) 0.454617 10.1466i 0.0779661 1.74013i
\(35\) −6.74298 −1.13977
\(36\) 1.99199 + 0.178860i 0.331998 + 0.0298100i
\(37\) −6.43362 6.43362i −1.05768 1.05768i −0.998231 0.0594489i \(-0.981066\pi\)
−0.0594489 0.998231i \(-0.518934\pi\)
\(38\) 3.11165 + 3.40356i 0.504777 + 0.552131i
\(39\) 1.04130 3.45191i 0.166741 0.552748i
\(40\) −5.15337 + 3.92636i −0.814820 + 0.620812i
\(41\) −7.94353 7.94353i −1.24057 1.24057i −0.959764 0.280806i \(-0.909398\pi\)
−0.280806 0.959764i \(-0.590602\pi\)
\(42\) −2.80909 3.07262i −0.433452 0.474115i
\(43\) 10.4665i 1.59613i −0.602573 0.798064i \(-0.705858\pi\)
0.602573 0.798064i \(-0.294142\pi\)
\(44\) −0.146246 + 0.122147i −0.0220474 + 0.0184144i
\(45\) −1.61967 + 1.61967i −0.241447 + 0.241447i
\(46\) 2.83200 + 0.126887i 0.417555 + 0.0187084i
\(47\) 5.31365 + 5.31365i 0.775076 + 0.775076i 0.978989 0.203913i \(-0.0653661\pi\)
−0.203913 + 0.978989i \(0.565366\pi\)
\(48\) −3.93602 0.712572i −0.568115 0.102851i
\(49\) 1.66599i 0.237998i
\(50\) 0.0156156 0.348525i 0.00220837 0.0492889i
\(51\) 7.18195i 1.00567i
\(52\) −2.69166 + 6.68991i −0.373266 + 0.927724i
\(53\) 1.41118i 0.193841i −0.995292 0.0969204i \(-0.969101\pi\)
0.995292 0.0969204i \(-0.0308992\pi\)
\(54\) −1.41280 0.0632999i −0.192257 0.00861402i
\(55\) 0.218229i 0.0294260i
\(56\) 5.04610 + 6.62305i 0.674314 + 0.885042i
\(57\) −2.30579 2.30579i −0.305409 0.305409i
\(58\) 0.276625 6.17401i 0.0363226 0.810687i
\(59\) −3.96350 + 3.96350i −0.516004 + 0.516004i −0.916360 0.400356i \(-0.868887\pi\)
0.400356 + 0.916360i \(0.368887\pi\)
\(60\) 3.51606 2.93668i 0.453922 0.379123i
\(61\) 1.94041i 0.248444i 0.992254 + 0.124222i \(0.0396434\pi\)
−0.992254 + 0.124222i \(0.960357\pi\)
\(62\) −3.07262 + 2.80909i −0.390223 + 0.356755i
\(63\) 2.08158 + 2.08158i 0.262255 + 0.262255i
\(64\) 7.71304 + 2.12343i 0.964131 + 0.265429i
\(65\) −3.90441 7.27754i −0.484282 0.902668i
\(66\) 0.0994420 0.0909132i 0.0122405 0.0111906i
\(67\) 8.16072 + 8.16072i 0.996991 + 0.996991i 0.999995 0.00300457i \(-0.000956387\pi\)
−0.00300457 + 0.999995i \(0.500956\pi\)
\(68\) 1.28456 14.3063i 0.155776 1.73490i
\(69\) −2.00453 −0.241317
\(70\) −9.52646 0.426830i −1.13863 0.0510159i
\(71\) 0.00829610 0.00829610i 0.000984566 0.000984566i −0.706614 0.707599i \(-0.749778\pi\)
0.707599 + 0.706614i \(0.249778\pi\)
\(72\) 2.80295 + 0.378785i 0.330331 + 0.0446402i
\(73\) 0.419298 0.419298i 0.0490751 0.0490751i −0.682143 0.731218i \(-0.738952\pi\)
0.731218 + 0.682143i \(0.238952\pi\)
\(74\) −8.68214 9.49664i −1.00928 1.10396i
\(75\) 0.246692i 0.0284855i
\(76\) 4.18068 + 5.00551i 0.479557 + 0.574171i
\(77\) −0.280465 −0.0319620
\(78\) 1.68965 4.81093i 0.191315 0.544731i
\(79\) 8.46664i 0.952571i −0.879291 0.476286i \(-0.841983\pi\)
0.879291 0.476286i \(-0.158017\pi\)
\(80\) −7.52920 + 5.22093i −0.841791 + 0.583718i
\(81\) 1.00000 0.111111
\(82\) −10.7198 11.7254i −1.18380 1.29486i
\(83\) −3.35193 3.35193i −0.367922 0.367922i 0.498797 0.866719i \(-0.333775\pi\)
−0.866719 + 0.498797i \(0.833775\pi\)
\(84\) −3.77418 4.51880i −0.411796 0.493041i
\(85\) 11.6324 + 11.6324i 1.26171 + 1.26171i
\(86\) 0.662529 14.7870i 0.0714423 1.59453i
\(87\) 4.37007i 0.468520i
\(88\) −0.214348 + 0.163312i −0.0228496 + 0.0174091i
\(89\) 1.90441 1.90441i 0.201867 0.201867i −0.598933 0.800799i \(-0.704408\pi\)
0.800799 + 0.598933i \(0.204408\pi\)
\(90\) −2.39080 + 2.18574i −0.252012 + 0.230398i
\(91\) −9.35300 + 5.01789i −0.980461 + 0.526018i
\(92\) 3.99300 + 0.358530i 0.416299 + 0.0373794i
\(93\) 2.08158 2.08158i 0.215850 0.215850i
\(94\) 7.17075 + 7.84346i 0.739607 + 0.808991i
\(95\) −7.46925 −0.766329
\(96\) −5.51569 1.25587i −0.562942 0.128177i
\(97\) 8.76265 + 8.76265i 0.889712 + 0.889712i 0.994495 0.104783i \(-0.0334147\pi\)
−0.104783 + 0.994495i \(0.533415\pi\)
\(98\) −0.105457 + 2.35370i −0.0106528 + 0.237760i
\(99\) −0.0673682 + 0.0673682i −0.00677076 + 0.00677076i
\(100\) 0.0441232 0.491407i 0.00441232 0.0491407i
\(101\) −10.5683 −1.05159 −0.525793 0.850613i \(-0.676231\pi\)
−0.525793 + 0.850613i \(0.676231\pi\)
\(102\) −0.454617 + 10.1466i −0.0450137 + 1.00467i
\(103\) 3.52228 0.347061 0.173530 0.984829i \(-0.444482\pi\)
0.173530 + 0.984829i \(0.444482\pi\)
\(104\) −4.22624 + 9.28110i −0.414417 + 0.910087i
\(105\) 6.74298 0.658047
\(106\) 0.0893277 1.99371i 0.00867627 0.193646i
\(107\) 11.8314 1.14378 0.571892 0.820329i \(-0.306210\pi\)
0.571892 + 0.820329i \(0.306210\pi\)
\(108\) −1.99199 0.178860i −0.191679 0.0172108i
\(109\) 12.9904 12.9904i 1.24425 1.24425i 0.286033 0.958220i \(-0.407663\pi\)
0.958220 0.286033i \(-0.0923367\pi\)
\(110\) 0.0138139 0.308313i 0.00131710 0.0293965i
\(111\) 6.43362 + 6.43362i 0.610652 + 0.610652i
\(112\) 6.70988 + 9.67643i 0.634024 + 0.914337i
\(113\) 12.7051 1.19520 0.597598 0.801796i \(-0.296122\pi\)
0.597598 + 0.801796i \(0.296122\pi\)
\(114\) −3.11165 3.40356i −0.291433 0.318773i
\(115\) −3.24669 + 3.24669i −0.302756 + 0.302756i
\(116\) 0.781629 8.70511i 0.0725724 0.808249i
\(117\) −1.04130 + 3.45191i −0.0962681 + 0.319129i
\(118\) −5.85051 + 5.34873i −0.538583 + 0.492391i
\(119\) 14.9498 14.9498i 1.37045 1.37045i
\(120\) 5.15337 3.92636i 0.470436 0.358426i
\(121\) 10.9909i 0.999175i
\(122\) −0.122828 + 2.74140i −0.0111203 + 0.248195i
\(123\) 7.94353 + 7.94353i 0.716244 + 0.716244i
\(124\) −4.51880 + 3.77418i −0.405800 + 0.338931i
\(125\) −7.69881 7.69881i −0.688603 0.688603i
\(126\) 2.80909 + 3.07262i 0.250254 + 0.273731i
\(127\) −18.5476 −1.64583 −0.822916 0.568164i \(-0.807654\pi\)
−0.822916 + 0.568164i \(0.807654\pi\)
\(128\) 10.7625 + 3.48821i 0.951284 + 0.308317i
\(129\) 10.4665i 0.921525i
\(130\) −5.05547 10.5288i −0.443394 0.923439i
\(131\) −5.20053 −0.454372 −0.227186 0.973851i \(-0.572953\pi\)
−0.227186 + 0.973851i \(0.572953\pi\)
\(132\) 0.146246 0.122147i 0.0127291 0.0106315i
\(133\) 9.59938i 0.832372i
\(134\) 11.0129 + 12.0460i 0.951367 + 1.04062i
\(135\) 1.61967 1.61967i 0.139399 0.139399i
\(136\) 2.72041 20.1306i 0.233274 1.72619i
\(137\) −15.0286 + 15.0286i −1.28398 + 1.28398i −0.345598 + 0.938383i \(0.612324\pi\)
−0.938383 + 0.345598i \(0.887676\pi\)
\(138\) −2.83200 0.126887i −0.241076 0.0108013i
\(139\) 6.12441 0.519466 0.259733 0.965681i \(-0.416366\pi\)
0.259733 + 0.965681i \(0.416366\pi\)
\(140\) −13.4319 1.20605i −1.13520 0.101930i
\(141\) −5.31365 5.31365i −0.447490 0.447490i
\(142\) 0.0122458 0.0111956i 0.00102765 0.000939510i
\(143\) −0.162399 0.302700i −0.0135805 0.0253130i
\(144\) 3.93602 + 0.712572i 0.328002 + 0.0593810i
\(145\) 7.07808 + 7.07808i 0.587803 + 0.587803i
\(146\) 0.618924 0.565841i 0.0512225 0.0468293i
\(147\) 1.66599i 0.137408i
\(148\) −11.6650 13.9664i −0.958854 1.14803i
\(149\) −13.2521 + 13.2521i −1.08565 + 1.08565i −0.0896836 + 0.995970i \(0.528586\pi\)
−0.995970 + 0.0896836i \(0.971414\pi\)
\(150\) −0.0156156 + 0.348525i −0.00127501 + 0.0284570i
\(151\) 2.61081 + 2.61081i 0.212465 + 0.212465i 0.805314 0.592849i \(-0.201997\pi\)
−0.592849 + 0.805314i \(0.701997\pi\)
\(152\) 5.58961 + 7.33640i 0.453377 + 0.595061i
\(153\) 7.18195i 0.580626i
\(154\) −0.396240 0.0177534i −0.0319300 0.00143061i
\(155\) 6.74298i 0.541609i
\(156\) 2.69166 6.68991i 0.215505 0.535622i
\(157\) 1.36321i 0.108796i −0.998519 0.0543978i \(-0.982676\pi\)
0.998519 0.0543978i \(-0.0173239\pi\)
\(158\) 0.535937 11.9616i 0.0426369 0.951617i
\(159\) 1.41118i 0.111914i
\(160\) −10.9677 + 6.89952i −0.867074 + 0.545455i
\(161\) 4.17261 + 4.17261i 0.328847 + 0.328847i
\(162\) 1.41280 + 0.0632999i 0.111000 + 0.00497331i
\(163\) 13.7263 13.7263i 1.07513 1.07513i 0.0781913 0.996938i \(-0.475086\pi\)
0.996938 0.0781913i \(-0.0249145\pi\)
\(164\) −14.4026 17.2442i −1.12466 1.34654i
\(165\) 0.218229i 0.0169891i
\(166\) −4.52342 4.94777i −0.351085 0.384021i
\(167\) −3.15502 3.15502i −0.244142 0.244142i 0.574419 0.818561i \(-0.305228\pi\)
−0.818561 + 0.574419i \(0.805228\pi\)
\(168\) −5.04610 6.62305i −0.389315 0.510979i
\(169\) −10.8314 7.18895i −0.833184 0.552996i
\(170\) 15.6979 + 17.1706i 1.20397 + 1.31692i
\(171\) 2.30579 + 2.30579i 0.176328 + 0.176328i
\(172\) 1.87204 20.8491i 0.142741 1.58973i
\(173\) 2.52229 0.191766 0.0958830 0.995393i \(-0.469433\pi\)
0.0958830 + 0.995393i \(0.469433\pi\)
\(174\) −0.276625 + 6.17401i −0.0209709 + 0.468051i
\(175\) 0.513510 0.513510i 0.0388177 0.0388177i
\(176\) −0.313167 + 0.217158i −0.0236059 + 0.0163689i
\(177\) 3.96350 3.96350i 0.297915 0.297915i
\(178\) 2.81109 2.56999i 0.210700 0.192629i
\(179\) 12.1739i 0.909917i 0.890513 + 0.454958i \(0.150346\pi\)
−0.890513 + 0.454958i \(0.849654\pi\)
\(180\) −3.51606 + 2.93668i −0.262072 + 0.218887i
\(181\) 1.13958 0.0847044 0.0423522 0.999103i \(-0.486515\pi\)
0.0423522 + 0.999103i \(0.486515\pi\)
\(182\) −13.5315 + 6.49722i −1.00302 + 0.481606i
\(183\) 1.94041i 0.143439i
\(184\) 5.61860 + 0.759287i 0.414209 + 0.0559754i
\(185\) 20.8407 1.53224
\(186\) 3.07262 2.80909i 0.225295 0.205973i
\(187\) 0.483835 + 0.483835i 0.0353815 + 0.0353815i
\(188\) 9.63432 + 11.5351i 0.702655 + 0.841285i
\(189\) −2.08158 2.08158i −0.151413 0.151413i
\(190\) −10.5525 0.472803i −0.765561 0.0343007i
\(191\) 22.4304i 1.62301i 0.584347 + 0.811504i \(0.301351\pi\)
−0.584347 + 0.811504i \(0.698649\pi\)
\(192\) −7.71304 2.12343i −0.556641 0.153245i
\(193\) −3.57371 + 3.57371i −0.257241 + 0.257241i −0.823931 0.566690i \(-0.808224\pi\)
0.566690 + 0.823931i \(0.308224\pi\)
\(194\) 11.8252 + 12.9345i 0.848997 + 0.928644i
\(195\) 3.90441 + 7.27754i 0.279601 + 0.521155i
\(196\) −0.297978 + 3.31863i −0.0212842 + 0.237045i
\(197\) 2.26114 2.26114i 0.161099 0.161099i −0.621954 0.783054i \(-0.713661\pi\)
0.783054 + 0.621954i \(0.213661\pi\)
\(198\) −0.0994420 + 0.0909132i −0.00706704 + 0.00646092i
\(199\) −26.4375 −1.87410 −0.937051 0.349193i \(-0.886456\pi\)
−0.937051 + 0.349193i \(0.886456\pi\)
\(200\) 0.0934431 0.691464i 0.00660743 0.0488939i
\(201\) −8.16072 8.16072i −0.575613 0.575613i
\(202\) −14.9309 0.668972i −1.05053 0.0470687i
\(203\) 9.09666 9.09666i 0.638460 0.638460i
\(204\) −1.28456 + 14.3063i −0.0899373 + 1.00164i
\(205\) 25.7319 1.79719
\(206\) 4.97627 + 0.222960i 0.346713 + 0.0155344i
\(207\) 2.00453 0.139325
\(208\) −6.55831 + 12.8448i −0.454737 + 0.890626i
\(209\) −0.310674 −0.0214897
\(210\) 9.52646 + 0.426830i 0.657388 + 0.0294541i
\(211\) −2.28566 −0.157351 −0.0786755 0.996900i \(-0.525069\pi\)
−0.0786755 + 0.996900i \(0.525069\pi\)
\(212\) 0.252404 2.81105i 0.0173351 0.193064i
\(213\) −0.00829610 + 0.00829610i −0.000568439 + 0.000568439i
\(214\) 16.7153 + 0.748926i 1.14264 + 0.0511955i
\(215\) 16.9523 + 16.9523i 1.15614 + 1.15614i
\(216\) −2.80295 0.378785i −0.190717 0.0257730i
\(217\) −8.66599 −0.588286
\(218\) 19.1751 17.5305i 1.29870 1.18731i
\(219\) −0.419298 + 0.419298i −0.0283335 + 0.0283335i
\(220\) 0.0390324 0.434710i 0.00263157 0.0293081i
\(221\) 24.7915 + 7.47856i 1.66765 + 0.503062i
\(222\) 8.68214 + 9.49664i 0.582707 + 0.637373i
\(223\) 6.65855 6.65855i 0.445889 0.445889i −0.448096 0.893985i \(-0.647898\pi\)
0.893985 + 0.448096i \(0.147898\pi\)
\(224\) 8.86717 + 14.0956i 0.592463 + 0.941800i
\(225\) 0.246692i 0.0164461i
\(226\) 17.9497 + 0.804232i 1.19400 + 0.0534967i
\(227\) −7.86789 7.86789i −0.522210 0.522210i 0.396028 0.918238i \(-0.370388\pi\)
−0.918238 + 0.396028i \(0.870388\pi\)
\(228\) −4.18068 5.00551i −0.276873 0.331498i
\(229\) −3.64543 3.64543i −0.240897 0.240897i 0.576324 0.817221i \(-0.304487\pi\)
−0.817221 + 0.576324i \(0.804487\pi\)
\(230\) −4.79243 + 4.38140i −0.316003 + 0.288901i
\(231\) 0.280465 0.0184533
\(232\) 1.65531 12.2491i 0.108677 0.804191i
\(233\) 3.31543i 0.217201i −0.994085 0.108601i \(-0.965363\pi\)
0.994085 0.108601i \(-0.0346370\pi\)
\(234\) −1.68965 + 4.81093i −0.110456 + 0.314501i
\(235\) −17.2128 −1.12284
\(236\) −8.60416 + 7.18633i −0.560083 + 0.467791i
\(237\) 8.46664i 0.549967i
\(238\) 22.0674 20.1747i 1.43042 1.30773i
\(239\) −7.48888 + 7.48888i −0.484415 + 0.484415i −0.906538 0.422123i \(-0.861285\pi\)
0.422123 + 0.906538i \(0.361285\pi\)
\(240\) 7.52920 5.22093i 0.486008 0.337010i
\(241\) −9.02754 + 9.02754i −0.581515 + 0.581515i −0.935319 0.353804i \(-0.884888\pi\)
0.353804 + 0.935319i \(0.384888\pi\)
\(242\) −0.695724 + 15.5279i −0.0447229 + 0.998173i
\(243\) −1.00000 −0.0641500
\(244\) −0.347061 + 3.86526i −0.0222183 + 0.247448i
\(245\) −2.69836 2.69836i −0.172392 0.172392i
\(246\) 10.7198 + 11.7254i 0.683467 + 0.747585i
\(247\) −10.3604 + 5.55836i −0.659216 + 0.353670i
\(248\) −6.62305 + 5.04610i −0.420564 + 0.320428i
\(249\) 3.35193 + 3.35193i 0.212420 + 0.212420i
\(250\) −10.3895 11.3642i −0.657091 0.718734i
\(251\) 18.4986i 1.16762i 0.811889 + 0.583812i \(0.198439\pi\)
−0.811889 + 0.583812i \(0.801561\pi\)
\(252\) 3.77418 + 4.51880i 0.237751 + 0.284658i
\(253\) −0.135042 + 0.135042i −0.00849001 + 0.00849001i
\(254\) −26.2039 1.17406i −1.64418 0.0736671i
\(255\) −11.6324 11.6324i −0.728450 0.728450i
\(256\) 14.9845 + 5.60939i 0.936530 + 0.350587i
\(257\) 17.6933i 1.10368i −0.833950 0.551840i \(-0.813926\pi\)
0.833950 0.551840i \(-0.186074\pi\)
\(258\) −0.662529 + 14.7870i −0.0412473 + 0.920601i
\(259\) 26.7842i 1.66429i
\(260\) −6.47587 15.1951i −0.401616 0.942360i
\(261\) 4.37007i 0.270500i
\(262\) −7.34728 0.329193i −0.453917 0.0203376i
\(263\) 18.2366i 1.12452i −0.826962 0.562258i \(-0.809933\pi\)
0.826962 0.562258i \(-0.190067\pi\)
\(264\) 0.214348 0.163312i 0.0131922 0.0100511i
\(265\) 2.28566 + 2.28566i 0.140407 + 0.140407i
\(266\) −0.607640 + 13.5620i −0.0372568 + 0.831538i
\(267\) −1.90441 + 1.90441i −0.116548 + 0.116548i
\(268\) 14.7964 + 17.7157i 0.903835 + 1.08216i
\(269\) 6.68357i 0.407504i 0.979023 + 0.203752i \(0.0653137\pi\)
−0.979023 + 0.203752i \(0.934686\pi\)
\(270\) 2.39080 2.18574i 0.145499 0.133020i
\(271\) −5.65140 5.65140i −0.343298 0.343298i 0.514308 0.857606i \(-0.328049\pi\)
−0.857606 + 0.514308i \(0.828049\pi\)
\(272\) 5.11766 28.2683i 0.310303 1.71402i
\(273\) 9.35300 5.01789i 0.566069 0.303697i
\(274\) −22.1837 + 20.2811i −1.34016 + 1.22522i
\(275\) 0.0166192 + 0.0166192i 0.00100218 + 0.00100218i
\(276\) −3.99300 0.358530i −0.240351 0.0215810i
\(277\) −24.3573 −1.46349 −0.731745 0.681579i \(-0.761294\pi\)
−0.731745 + 0.681579i \(0.761294\pi\)
\(278\) 8.65254 + 0.387674i 0.518945 + 0.0232512i
\(279\) −2.08158 + 2.08158i −0.124621 + 0.124621i
\(280\) −18.9002 2.55414i −1.12950 0.152639i
\(281\) −7.19722 + 7.19722i −0.429350 + 0.429350i −0.888407 0.459057i \(-0.848187\pi\)
0.459057 + 0.888407i \(0.348187\pi\)
\(282\) −7.17075 7.84346i −0.427012 0.467071i
\(283\) 14.0053i 0.832529i −0.909244 0.416264i \(-0.863339\pi\)
0.909244 0.416264i \(-0.136661\pi\)
\(284\) 0.0180096 0.0150419i 0.00106867 0.000892571i
\(285\) 7.46925 0.442440
\(286\) −0.210275 0.437933i −0.0124338 0.0258955i
\(287\) 33.0703i 1.95208i
\(288\) 5.51569 + 1.25587i 0.325015 + 0.0740028i
\(289\) −34.5804 −2.03414
\(290\) 9.55185 + 10.4479i 0.560904 + 0.613524i
\(291\) −8.76265 8.76265i −0.513676 0.513676i
\(292\) 0.910231 0.760240i 0.0532672 0.0444897i
\(293\) 10.4354 + 10.4354i 0.609643 + 0.609643i 0.942853 0.333210i \(-0.108132\pi\)
−0.333210 + 0.942853i \(0.608132\pi\)
\(294\) 0.105457 2.35370i 0.00615037 0.137271i
\(295\) 12.8392i 0.747526i
\(296\) −15.5961 20.4701i −0.906507 1.18980i
\(297\) 0.0673682 0.0673682i 0.00390910 0.00390910i
\(298\) −19.5614 + 17.8837i −1.13316 + 1.03597i
\(299\) −2.08732 + 6.91947i −0.120713 + 0.400163i
\(300\) −0.0441232 + 0.491407i −0.00254746 + 0.0283714i
\(301\) 21.7869 21.7869i 1.25578 1.25578i
\(302\) 3.52328 + 3.85381i 0.202742 + 0.221762i
\(303\) 10.5683 0.607133
\(304\) 7.43258 + 10.7187i 0.426288 + 0.614757i
\(305\) −3.14283 3.14283i −0.179958 0.179958i
\(306\) 0.454617 10.1466i 0.0259887 0.580044i
\(307\) 9.49598 9.49598i 0.541964 0.541964i −0.382140 0.924104i \(-0.624813\pi\)
0.924104 + 0.382140i \(0.124813\pi\)
\(308\) −0.558683 0.0501640i −0.0318339 0.00285836i
\(309\) −3.52228 −0.200376
\(310\) 0.426830 9.52646i 0.0242423 0.541066i
\(311\) −19.3516 −1.09733 −0.548664 0.836043i \(-0.684864\pi\)
−0.548664 + 0.836043i \(0.684864\pi\)
\(312\) 4.22624 9.28110i 0.239264 0.525439i
\(313\) 10.1200 0.572016 0.286008 0.958227i \(-0.407672\pi\)
0.286008 + 0.958227i \(0.407672\pi\)
\(314\) 0.0862908 1.92593i 0.00486967 0.108687i
\(315\) −6.74298 −0.379924
\(316\) 1.51434 16.8654i 0.0851883 0.948755i
\(317\) 18.1488 18.1488i 1.01934 1.01934i 0.0195277 0.999809i \(-0.493784\pi\)
0.999809 0.0195277i \(-0.00621626\pi\)
\(318\) −0.0893277 + 1.99371i −0.00500925 + 0.111802i
\(319\) 0.294404 + 0.294404i 0.0164834 + 0.0164834i
\(320\) −15.9319 + 9.05336i −0.890619 + 0.506098i
\(321\) −11.8314 −0.660364
\(322\) 5.63092 + 6.15917i 0.313799 + 0.343237i
\(323\) 16.5600 16.5600i 0.921426 0.921426i
\(324\) 1.99199 + 0.178860i 0.110666 + 0.00993665i
\(325\) 0.851558 + 0.256880i 0.0472360 + 0.0142491i
\(326\) 20.2614 18.5236i 1.12217 1.02593i
\(327\) −12.9904 + 12.9904i −0.718370 + 0.718370i
\(328\) −19.2564 25.2742i −1.06326 1.39553i
\(329\) 22.1216i 1.21960i
\(330\) −0.0138139 + 0.308313i −0.000760430 + 0.0169721i
\(331\) −22.5976 22.5976i −1.24208 1.24208i −0.959138 0.282939i \(-0.908691\pi\)
−0.282939 0.959138i \(-0.591309\pi\)
\(332\) −6.07747 7.27652i −0.333545 0.399351i
\(333\) −6.43362 6.43362i −0.352560 0.352560i
\(334\) −4.25768 4.65711i −0.232970 0.254825i
\(335\) −26.4354 −1.44432
\(336\) −6.70988 9.67643i −0.366054 0.527893i
\(337\) 8.65894i 0.471683i 0.971792 + 0.235841i \(0.0757846\pi\)
−0.971792 + 0.235841i \(0.924215\pi\)
\(338\) −14.8475 10.8421i −0.807597 0.589735i
\(339\) −12.7051 −0.690047
\(340\) 21.0910 + 25.2522i 1.14382 + 1.36949i
\(341\) 0.280465i 0.0151881i
\(342\) 3.11165 + 3.40356i 0.168259 + 0.184044i
\(343\) 11.1032 11.1032i 0.599516 0.599516i
\(344\) 3.96456 29.3371i 0.213754 1.58175i
\(345\) 3.24669 3.24669i 0.174796 0.174796i
\(346\) 3.56348 + 0.159661i 0.191574 + 0.00858341i
\(347\) −16.6635 −0.894546 −0.447273 0.894397i \(-0.647605\pi\)
−0.447273 + 0.894397i \(0.647605\pi\)
\(348\) −0.781629 + 8.70511i −0.0418997 + 0.466643i
\(349\) 3.99002 + 3.99002i 0.213581 + 0.213581i 0.805787 0.592206i \(-0.201743\pi\)
−0.592206 + 0.805787i \(0.701743\pi\)
\(350\) 0.757990 0.692980i 0.0405163 0.0370413i
\(351\) 1.04130 3.45191i 0.0555804 0.184249i
\(352\) −0.456188 + 0.286976i −0.0243149 + 0.0152959i
\(353\) −6.09559 6.09559i −0.324436 0.324436i 0.526030 0.850466i \(-0.323680\pi\)
−0.850466 + 0.526030i \(0.823680\pi\)
\(354\) 5.85051 5.34873i 0.310951 0.284282i
\(355\) 0.0268740i 0.00142632i
\(356\) 4.13418 3.45293i 0.219111 0.183005i
\(357\) −14.9498 + 14.9498i −0.791229 + 0.791229i
\(358\) −0.770604 + 17.1992i −0.0407277 + 0.909005i
\(359\) 20.6821 + 20.6821i 1.09156 + 1.09156i 0.995362 + 0.0961965i \(0.0306677\pi\)
0.0961965 + 0.995362i \(0.469332\pi\)
\(360\) −5.15337 + 3.92636i −0.271607 + 0.206937i
\(361\) 8.36669i 0.440352i
\(362\) 1.61000 + 0.0721353i 0.0846195 + 0.00379135i
\(363\) 10.9909i 0.576874i
\(364\) −19.5285 + 8.32270i −1.02357 + 0.436228i
\(365\) 1.35825i 0.0710941i
\(366\) 0.122828 2.74140i 0.00642030 0.143295i
\(367\) 30.1227i 1.57239i 0.617977 + 0.786196i \(0.287953\pi\)
−0.617977 + 0.786196i \(0.712047\pi\)
\(368\) 7.88988 + 1.42837i 0.411288 + 0.0744592i
\(369\) −7.94353 7.94353i −0.413524 0.413524i
\(370\) 29.4437 + 1.31922i 1.53071 + 0.0685828i
\(371\) 2.93749 2.93749i 0.152507 0.152507i
\(372\) 4.51880 3.77418i 0.234289 0.195682i
\(373\) 8.59939i 0.445259i 0.974903 + 0.222630i \(0.0714641\pi\)
−0.974903 + 0.222630i \(0.928536\pi\)
\(374\) 0.652934 + 0.714187i 0.0337624 + 0.0369297i
\(375\) 7.69881 + 7.69881i 0.397565 + 0.397565i
\(376\) 12.8812 + 16.9066i 0.664295 + 0.871893i
\(377\) 15.0851 + 4.55055i 0.776921 + 0.234365i
\(378\) −2.80909 3.07262i −0.144484 0.158038i
\(379\) 11.5751 + 11.5751i 0.594571 + 0.594571i 0.938863 0.344292i \(-0.111881\pi\)
−0.344292 + 0.938863i \(0.611881\pi\)
\(380\) −14.8786 1.33595i −0.763258 0.0685327i
\(381\) 18.5476 0.950221
\(382\) −1.41984 + 31.6896i −0.0726455 + 1.62138i
\(383\) −2.01486 + 2.01486i −0.102954 + 0.102954i −0.756708 0.653753i \(-0.773193\pi\)
0.653753 + 0.756708i \(0.273193\pi\)
\(384\) −10.7625 3.48821i −0.549224 0.178007i
\(385\) 0.454263 0.454263i 0.0231514 0.0231514i
\(386\) −5.27513 + 4.82270i −0.268497 + 0.245469i
\(387\) 10.4665i 0.532043i
\(388\) 15.8878 + 19.0224i 0.806581 + 0.965714i
\(389\) −25.8294 −1.30960 −0.654801 0.755801i \(-0.727248\pi\)
−0.654801 + 0.755801i \(0.727248\pi\)
\(390\) 5.05547 + 10.5288i 0.255993 + 0.533148i
\(391\) 14.3965i 0.728060i
\(392\) −0.631052 + 4.66968i −0.0318729 + 0.235855i
\(393\) 5.20053 0.262332
\(394\) 3.33766 3.05140i 0.168149 0.153727i
\(395\) 13.7132 + 13.7132i 0.689986 + 0.689986i
\(396\) −0.146246 + 0.122147i −0.00734914 + 0.00613813i
\(397\) 11.0841 + 11.0841i 0.556297 + 0.556297i 0.928251 0.371954i \(-0.121312\pi\)
−0.371954 + 0.928251i \(0.621312\pi\)
\(398\) −37.3507 1.67349i −1.87222 0.0838844i
\(399\) 9.59938i 0.480570i
\(400\) 0.175786 0.970983i 0.00878928 0.0485492i
\(401\) −25.0265 + 25.0265i −1.24977 + 1.24977i −0.293942 + 0.955823i \(0.594967\pi\)
−0.955823 + 0.293942i \(0.905033\pi\)
\(402\) −11.0129 12.0460i −0.549272 0.600800i
\(403\) −5.01789 9.35300i −0.249959 0.465906i
\(404\) −21.0519 1.89024i −1.04737 0.0940431i
\(405\) −1.61967 + 1.61967i −0.0804823 + 0.0804823i
\(406\) 13.4275 12.2759i 0.666398 0.609243i
\(407\) 0.866843 0.0429678
\(408\) −2.72041 + 20.1306i −0.134681 + 0.996615i
\(409\) 24.7440 + 24.7440i 1.22351 + 1.22351i 0.966374 + 0.257139i \(0.0827798\pi\)
0.257139 + 0.966374i \(0.417220\pi\)
\(410\) 36.3539 + 1.62882i 1.79539 + 0.0804419i
\(411\) 15.0286 15.0286i 0.741307 0.741307i
\(412\) 7.01634 + 0.629995i 0.345670 + 0.0310376i
\(413\) −16.5007 −0.811948
\(414\) 2.83200 + 0.126887i 0.139185 + 0.00623614i
\(415\) 10.8581 0.533002
\(416\) −10.0786 + 17.7319i −0.494145 + 0.869379i
\(417\) −6.12441 −0.299914
\(418\) −0.438919 0.0196656i −0.0214682 0.000961876i
\(419\) 15.6568 0.764883 0.382441 0.923980i \(-0.375083\pi\)
0.382441 + 0.923980i \(0.375083\pi\)
\(420\) 13.4319 + 1.20605i 0.655411 + 0.0588491i
\(421\) 5.24431 5.24431i 0.255592 0.255592i −0.567667 0.823259i \(-0.692154\pi\)
0.823259 + 0.567667i \(0.192154\pi\)
\(422\) −3.22916 0.144682i −0.157193 0.00704300i
\(423\) 5.31365 + 5.31365i 0.258359 + 0.258359i
\(424\) 0.534534 3.95547i 0.0259593 0.192095i
\(425\) −1.77173 −0.0859414
\(426\) −0.0122458 + 0.0111956i −0.000593313 + 0.000542426i
\(427\) −4.03912 + 4.03912i −0.195467 + 0.195467i
\(428\) 23.5680 + 2.11616i 1.13920 + 0.102288i
\(429\) 0.162399 + 0.302700i 0.00784069 + 0.0146145i
\(430\) 22.8771 + 25.0233i 1.10323 + 1.20673i
\(431\) −16.9631 + 16.9631i −0.817084 + 0.817084i −0.985684 0.168600i \(-0.946075\pi\)
0.168600 + 0.985684i \(0.446075\pi\)
\(432\) −3.93602 0.712572i −0.189372 0.0342836i
\(433\) 21.6657i 1.04119i −0.853805 0.520593i \(-0.825711\pi\)
0.853805 0.520593i \(-0.174289\pi\)
\(434\) −12.2433 0.548556i −0.587696 0.0263315i
\(435\) −7.07808 7.07808i −0.339368 0.339368i
\(436\) 28.2001 23.5532i 1.35054 1.12799i
\(437\) 4.62203 + 4.62203i 0.221102 + 0.221102i
\(438\) −0.618924 + 0.565841i −0.0295733 + 0.0270369i
\(439\) −26.9953 −1.28842 −0.644208 0.764850i \(-0.722813\pi\)
−0.644208 + 0.764850i \(0.722813\pi\)
\(440\) 0.0826619 0.611685i 0.00394075 0.0291610i
\(441\) 1.66599i 0.0793328i
\(442\) 34.5519 + 12.1350i 1.64347 + 0.577202i
\(443\) −3.69391 −0.175503 −0.0877515 0.996142i \(-0.527968\pi\)
−0.0877515 + 0.996142i \(0.527968\pi\)
\(444\) 11.6650 + 13.9664i 0.553595 + 0.662816i
\(445\) 6.16904i 0.292441i
\(446\) 9.82865 8.98568i 0.465400 0.425484i
\(447\) 13.2521 13.2521i 0.626803 0.626803i
\(448\) 11.6353 + 20.4755i 0.549714 + 0.967374i
\(449\) 15.9641 15.9641i 0.753391 0.753391i −0.221719 0.975111i \(-0.571167\pi\)
0.975111 + 0.221719i \(0.0711669\pi\)
\(450\) 0.0156156 0.348525i 0.000736125 0.0164296i
\(451\) 1.07028 0.0503977
\(452\) 25.3084 + 2.27243i 1.19041 + 0.106886i
\(453\) −2.61081 2.61081i −0.122667 0.122667i
\(454\) −10.6177 11.6138i −0.498313 0.545061i
\(455\) 7.02146 23.2762i 0.329171 1.09120i
\(456\) −5.58961 7.33640i −0.261757 0.343558i
\(457\) −9.99072 9.99072i −0.467346 0.467346i 0.433708 0.901054i \(-0.357205\pi\)
−0.901054 + 0.433708i \(0.857205\pi\)
\(458\) −4.91949 5.38100i −0.229873 0.251438i
\(459\) 7.18195i 0.335225i
\(460\) −7.04807 + 5.88666i −0.328618 + 0.274467i
\(461\) 9.80788 9.80788i 0.456798 0.456798i −0.440805 0.897603i \(-0.645307\pi\)
0.897603 + 0.440805i \(0.145307\pi\)
\(462\) 0.396240 + 0.0177534i 0.0184348 + 0.000825964i
\(463\) 16.5192 + 16.5192i 0.767714 + 0.767714i 0.977704 0.209990i \(-0.0673431\pi\)
−0.209990 + 0.977704i \(0.567343\pi\)
\(464\) 3.11399 17.2007i 0.144563 0.798521i
\(465\) 6.74298i 0.312698i
\(466\) 0.209867 4.68403i 0.00972188 0.216984i
\(467\) 13.7056i 0.634220i 0.948389 + 0.317110i \(0.102712\pi\)
−0.948389 + 0.317110i \(0.897288\pi\)
\(468\) −2.69166 + 6.68991i −0.124422 + 0.309241i
\(469\) 33.9745i 1.56880i
\(470\) −24.3181 1.08957i −1.12171 0.0502580i
\(471\) 1.36321i 0.0628132i
\(472\) −12.6108 + 9.60818i −0.580460 + 0.442252i
\(473\) 0.705110 + 0.705110i 0.0324210 + 0.0324210i
\(474\) −0.535937 + 11.9616i −0.0246164 + 0.549416i
\(475\) 0.568819 0.568819i 0.0260992 0.0260992i
\(476\) 32.4538 27.1059i 1.48752 1.24240i
\(477\) 1.41118i 0.0646136i
\(478\) −11.0543 + 10.1062i −0.505612 + 0.462248i
\(479\) −7.17788 7.17788i −0.327966 0.327966i 0.523847 0.851813i \(-0.324496\pi\)
−0.851813 + 0.523847i \(0.824496\pi\)
\(480\) 10.9677 6.89952i 0.500605 0.314918i
\(481\) 28.9076 15.5090i 1.31807 0.707148i
\(482\) −13.3255 + 12.1826i −0.606961 + 0.554904i
\(483\) −4.17261 4.17261i −0.189860 0.189860i
\(484\) −1.96583 + 21.8938i −0.0893561 + 0.995171i
\(485\) −28.3853 −1.28891
\(486\) −1.41280 0.0632999i −0.0640857 0.00287134i
\(487\) −0.384275 + 0.384275i −0.0174132 + 0.0174132i −0.715760 0.698347i \(-0.753919\pi\)
0.698347 + 0.715760i \(0.253919\pi\)
\(488\) −0.734997 + 5.43886i −0.0332717 + 0.246206i
\(489\) −13.7263 + 13.7263i −0.620726 + 0.620726i
\(490\) −3.64143 3.98304i −0.164503 0.179935i
\(491\) 2.72036i 0.122768i 0.998114 + 0.0613840i \(0.0195514\pi\)
−0.998114 + 0.0613840i \(0.980449\pi\)
\(492\) 14.4026 + 17.2442i 0.649320 + 0.777428i
\(493\) −31.3856 −1.41354
\(494\) −14.9890 + 7.19702i −0.674385 + 0.323809i
\(495\) 0.218229i 0.00980868i
\(496\) −9.67643 + 6.70988i −0.434485 + 0.301282i
\(497\) 0.0345381 0.00154924
\(498\) 4.52342 + 4.94777i 0.202699 + 0.221715i
\(499\) 29.4023 + 29.4023i 1.31623 + 1.31623i 0.916736 + 0.399493i \(0.130814\pi\)
0.399493 + 0.916736i \(0.369186\pi\)
\(500\) −13.9589 16.7129i −0.624262 0.747425i
\(501\) 3.15502 + 3.15502i 0.140956 + 0.140956i
\(502\) −1.17096 + 26.1348i −0.0522626 + 1.16645i
\(503\) 8.72354i 0.388963i 0.980906 + 0.194482i \(0.0623025\pi\)
−0.980906 + 0.194482i \(0.937698\pi\)
\(504\) 5.04610 + 6.62305i 0.224771 + 0.295014i
\(505\) 17.1172 17.1172i 0.761706 0.761706i
\(506\) −0.199335 + 0.182239i −0.00886151 + 0.00810149i
\(507\) 10.8314 + 7.18895i 0.481039 + 0.319272i
\(508\) −36.9465 3.31741i −1.63924 0.147186i
\(509\) 29.8098 29.8098i 1.32130 1.32130i 0.408572 0.912726i \(-0.366027\pi\)
0.912726 0.408572i \(-0.133973\pi\)
\(510\) −15.6979 17.1706i −0.695115 0.760326i
\(511\) 1.74561 0.0772211
\(512\) 20.8149 + 8.87345i 0.919899 + 0.392155i
\(513\) −2.30579 2.30579i −0.101803 0.101803i
\(514\) 1.11999 24.9971i 0.0494004 1.10257i
\(515\) −5.70495 + 5.70495i −0.251390 + 0.251390i
\(516\) −1.87204 + 20.8491i −0.0824118 + 0.917832i
\(517\) −0.715943 −0.0314871
\(518\) 1.69544 37.8407i 0.0744933 1.66262i
\(519\) −2.52229 −0.110716
\(520\) −8.18724 21.8775i −0.359034 0.959392i
\(521\) 23.2436 1.01832 0.509161 0.860671i \(-0.329956\pi\)
0.509161 + 0.860671i \(0.329956\pi\)
\(522\) 0.276625 6.17401i 0.0121075 0.270229i
\(523\) 15.0188 0.656728 0.328364 0.944551i \(-0.393503\pi\)
0.328364 + 0.944551i \(0.393503\pi\)
\(524\) −10.3594 0.930164i −0.452551 0.0406344i
\(525\) −0.513510 + 0.513510i −0.0224114 + 0.0224114i
\(526\) 1.15437 25.7646i 0.0503331 1.12339i
\(527\) 14.9498 + 14.9498i 0.651225 + 0.651225i
\(528\) 0.313167 0.217158i 0.0136289 0.00945058i
\(529\) −18.9818 −0.825298
\(530\) 3.08448 + 3.37385i 0.133981 + 0.146551i
\(531\) −3.96350 + 3.96350i −0.172001 + 0.172001i
\(532\) −1.71694 + 19.1218i −0.0744389 + 0.829037i
\(533\) 35.6920 19.1488i 1.54599 0.829425i
\(534\) −2.81109 + 2.56999i −0.121648 + 0.111214i
\(535\) −19.1630 + 19.1630i −0.828489 + 0.828489i
\(536\) 19.7829 + 25.9652i 0.854492 + 1.12153i
\(537\) 12.1739i 0.525341i
\(538\) −0.423069 + 9.44252i −0.0182398 + 0.407096i
\(539\) −0.112235 0.112235i −0.00483429 0.00483429i
\(540\) 3.51606 2.93668i 0.151307 0.126374i
\(541\) −7.84233 7.84233i −0.337168 0.337168i 0.518132 0.855300i \(-0.326627\pi\)
−0.855300 + 0.518132i \(0.826627\pi\)
\(542\) −7.62655 8.34201i −0.327588 0.358320i
\(543\) −1.13958 −0.0489041
\(544\) 9.01958 39.6134i 0.386712 1.69841i
\(545\) 42.0804i 1.80253i
\(546\) 13.5315 6.49722i 0.579095 0.278055i
\(547\) −24.3317 −1.04035 −0.520175 0.854060i \(-0.674133\pi\)
−0.520175 + 0.854060i \(0.674133\pi\)
\(548\) −32.6248 + 27.2488i −1.39366 + 1.16401i
\(549\) 1.94041i 0.0828145i
\(550\) 0.0224275 + 0.0245315i 0.000956313 + 0.00104603i
\(551\) 10.0764 10.0764i 0.429271 0.429271i
\(552\) −5.61860 0.759287i −0.239144 0.0323174i
\(553\) 17.6240 17.6240i 0.749450 0.749450i
\(554\) −34.4119 1.54182i −1.46202 0.0655055i
\(555\) −20.8407 −0.884640
\(556\) 12.1997 + 1.09541i 0.517384 + 0.0464557i
\(557\) 14.8145 + 14.8145i 0.627710 + 0.627710i 0.947491 0.319781i \(-0.103609\pi\)
−0.319781 + 0.947491i \(0.603609\pi\)
\(558\) −3.07262 + 2.80909i −0.130074 + 0.118918i
\(559\) 36.1295 + 10.8988i 1.52811 + 0.460969i
\(560\) −26.5405 4.80486i −1.12154 0.203042i
\(561\) −0.483835 0.483835i −0.0204275 0.0204275i
\(562\) −10.6238 + 9.71262i −0.448137 + 0.409702i
\(563\) 35.1602i 1.48183i 0.671601 + 0.740913i \(0.265607\pi\)
−0.671601 + 0.740913i \(0.734393\pi\)
\(564\) −9.63432 11.5351i −0.405678 0.485716i
\(565\) −20.5781 + 20.5781i −0.865729 + 0.865729i
\(566\) 0.886534 19.7866i 0.0372638 0.831694i
\(567\) 2.08158 + 2.08158i 0.0874183 + 0.0874183i
\(568\) 0.0263960 0.0201111i 0.00110755 0.000843843i
\(569\) 18.2323i 0.764337i −0.924093 0.382168i \(-0.875177\pi\)
0.924093 0.382168i \(-0.124823\pi\)
\(570\) 10.5525 + 0.472803i 0.441997 + 0.0198035i
\(571\) 33.5099i 1.40235i 0.712990 + 0.701174i \(0.247340\pi\)
−0.712990 + 0.701174i \(0.752660\pi\)
\(572\) −0.269355 0.632020i −0.0112623 0.0264261i
\(573\) 22.4304i 0.937044i
\(574\) 2.09334 46.7215i 0.0873745 1.95012i
\(575\) 0.494502i 0.0206222i
\(576\) 7.71304 + 2.12343i 0.321377 + 0.0884762i
\(577\) −4.19353 4.19353i −0.174579 0.174579i 0.614409 0.788988i \(-0.289395\pi\)
−0.788988 + 0.614409i \(0.789395\pi\)
\(578\) −48.8550 2.18893i −2.03210 0.0910477i
\(579\) 3.57371 3.57371i 0.148518 0.148518i
\(580\) 12.8335 + 15.3654i 0.532881 + 0.638015i
\(581\) 13.9546i 0.578936i
\(582\) −11.8252 12.9345i −0.490169 0.536153i
\(583\) 0.0950688 + 0.0950688i 0.00393735 + 0.00393735i
\(584\) 1.33409 1.01645i 0.0552052 0.0420608i
\(585\) −3.90441 7.27754i −0.161427 0.300889i
\(586\) 14.0825 + 15.4037i 0.581744 + 0.636319i
\(587\) 13.2081 + 13.2081i 0.545157 + 0.545157i 0.925036 0.379879i \(-0.124034\pi\)
−0.379879 + 0.925036i \(0.624034\pi\)
\(588\) 0.297978 3.31863i 0.0122884 0.136858i
\(589\) −9.59938 −0.395536
\(590\) 0.812718 18.1391i 0.0334591 0.746776i
\(591\) −2.26114 + 2.26114i −0.0930108 + 0.0930108i
\(592\) −20.7384 29.9073i −0.852344 1.22918i
\(593\) −0.911200 + 0.911200i −0.0374185 + 0.0374185i −0.725568 0.688150i \(-0.758423\pi\)
0.688150 + 0.725568i \(0.258423\pi\)
\(594\) 0.0994420 0.0909132i 0.00408015 0.00373021i
\(595\) 48.4277i 1.98534i
\(596\) −28.7683 + 24.0277i −1.17839 + 0.984214i
\(597\) 26.4375 1.08201
\(598\) −3.38696 + 9.64368i −0.138503 + 0.394359i
\(599\) 25.5885i 1.04552i −0.852481 0.522758i \(-0.824903\pi\)
0.852481 0.522758i \(-0.175097\pi\)
\(600\) −0.0934431 + 0.691464i −0.00381480 + 0.0282289i
\(601\) 9.95824 0.406205 0.203103 0.979157i \(-0.434897\pi\)
0.203103 + 0.979157i \(0.434897\pi\)
\(602\) 32.1596 29.4014i 1.31073 1.19831i
\(603\) 8.16072 + 8.16072i 0.332330 + 0.332330i
\(604\) 4.73373 + 5.66767i 0.192613 + 0.230614i
\(605\) −17.8017 17.8017i −0.723743 0.723743i
\(606\) 14.9309 + 0.668972i 0.606524 + 0.0271751i
\(607\) 41.0894i 1.66777i −0.551941 0.833883i \(-0.686113\pi\)
0.551941 0.833883i \(-0.313887\pi\)
\(608\) 9.82223 + 15.6138i 0.398344 + 0.633222i
\(609\) −9.09666 + 9.09666i −0.368615 + 0.368615i
\(610\) −4.24123 4.63912i −0.171723 0.187832i
\(611\) −23.8754 + 12.8092i −0.965894 + 0.518203i
\(612\) 1.28456 14.3063i 0.0519253 0.578300i
\(613\) −7.07976 + 7.07976i −0.285949 + 0.285949i −0.835476 0.549527i \(-0.814808\pi\)
0.549527 + 0.835476i \(0.314808\pi\)
\(614\) 14.0170 12.8148i 0.565679 0.517163i
\(615\) −25.7319 −1.03761
\(616\) −0.786130 0.106236i −0.0316741 0.00428037i
\(617\) 2.05439 + 2.05439i 0.0827067 + 0.0827067i 0.747250 0.664543i \(-0.231374\pi\)
−0.664543 + 0.747250i \(0.731374\pi\)
\(618\) −4.97627 0.222960i −0.200175 0.00896877i
\(619\) −16.6627 + 16.6627i −0.669730 + 0.669730i −0.957653 0.287923i \(-0.907035\pi\)
0.287923 + 0.957653i \(0.407035\pi\)
\(620\) 1.20605 13.4319i 0.0484360 0.539439i
\(621\) −2.00453 −0.0804392
\(622\) −27.3399 1.22495i −1.09623 0.0491162i
\(623\) 7.92838 0.317644
\(624\) 6.55831 12.8448i 0.262542 0.514203i
\(625\) 26.1726 1.04690
\(626\) 14.2975 + 0.640595i 0.571443 + 0.0256033i
\(627\) 0.310674 0.0124071
\(628\) 0.243823 2.71549i 0.00972958 0.108360i
\(629\) −46.2059 + 46.2059i −1.84235 + 1.84235i
\(630\) −9.52646 0.426830i −0.379543 0.0170053i
\(631\) 32.6063 + 32.6063i 1.29804 + 1.29804i 0.929688 + 0.368349i \(0.120077\pi\)
0.368349 + 0.929688i \(0.379923\pi\)
\(632\) 3.20703 23.7316i 0.127569 0.943991i
\(633\) 2.28566 0.0908466
\(634\) 26.7893 24.4917i 1.06394 0.972690i
\(635\) 30.0410 30.0410i 1.19214 1.19214i
\(636\) −0.252404 + 2.81105i −0.0100085 + 0.111466i
\(637\) −5.75085 1.73479i −0.227857 0.0687350i
\(638\) 0.397297 + 0.434568i 0.0157291 + 0.0172047i
\(639\) 0.00829610 0.00829610i 0.000328189 0.000328189i
\(640\) −23.0816 + 11.7821i −0.912380 + 0.465727i
\(641\) 2.93313i 0.115852i −0.998321 0.0579259i \(-0.981551\pi\)
0.998321 0.0579259i \(-0.0184487\pi\)
\(642\) −16.7153 0.748926i −0.659702 0.0295577i
\(643\) 19.2248 + 19.2248i 0.758153 + 0.758153i 0.975986 0.217833i \(-0.0698989\pi\)
−0.217833 + 0.975986i \(0.569899\pi\)
\(644\) 7.56546 + 9.05808i 0.298121 + 0.356939i
\(645\) −16.9523 16.9523i −0.667498 0.667498i
\(646\) 24.4442 22.3477i 0.961745 0.879259i
\(647\) 45.3264 1.78197 0.890983 0.454037i \(-0.150017\pi\)
0.890983 + 0.454037i \(0.150017\pi\)
\(648\) 2.80295 + 0.378785i 0.110110 + 0.0148801i
\(649\) 0.534029i 0.0209625i
\(650\) 1.18682 + 0.416823i 0.0465508 + 0.0163491i
\(651\) 8.66599 0.339647
\(652\) 29.7978 24.8876i 1.16697 0.974673i
\(653\) 2.67450i 0.104661i 0.998630 + 0.0523307i \(0.0166650\pi\)
−0.998630 + 0.0523307i \(0.983335\pi\)
\(654\) −19.1751 + 17.5305i −0.749804 + 0.685496i
\(655\) 8.42316 8.42316i 0.329120 0.329120i
\(656\) −25.6055 36.9262i −0.999728 1.44173i
\(657\) 0.419298 0.419298i 0.0163584 0.0163584i
\(658\) −1.40030 + 31.2534i −0.0545893 + 1.21838i
\(659\) 37.5991 1.46465 0.732326 0.680954i \(-0.238435\pi\)
0.732326 + 0.680954i \(0.238435\pi\)
\(660\) −0.0390324 + 0.434710i −0.00151933 + 0.0169211i
\(661\) −29.7860 29.7860i −1.15854 1.15854i −0.984789 0.173752i \(-0.944411\pi\)
−0.173752 0.984789i \(-0.555589\pi\)
\(662\) −30.4954 33.3562i −1.18524 1.29643i
\(663\) −24.7915 7.47856i −0.962820 0.290443i
\(664\) −8.12563 10.6649i −0.315335 0.413880i
\(665\) −15.5479 15.5479i −0.602921 0.602921i
\(666\) −8.68214 9.49664i −0.336426 0.367987i
\(667\) 8.75994i 0.339186i
\(668\) −5.72044 6.84905i −0.221331 0.264998i
\(669\) −6.65855 + 6.65855i −0.257434 + 0.257434i
\(670\) −37.3479 1.67336i −1.44287 0.0646475i
\(671\) −0.130722 0.130722i −0.00504646 0.00504646i
\(672\) −8.86717 14.0956i −0.342059 0.543748i
\(673\) 26.8225i 1.03393i −0.856006 0.516965i \(-0.827062\pi\)
0.856006 0.516965i \(-0.172938\pi\)
\(674\) −0.548110 + 12.2333i −0.0211124 + 0.471210i
\(675\) 0.246692i 0.00949517i
\(676\) −20.2902 16.2576i −0.780391 0.625292i
\(677\) 27.6382i 1.06222i 0.847302 + 0.531112i \(0.178226\pi\)
−0.847302 + 0.531112i \(0.821774\pi\)
\(678\) −17.9497 0.804232i −0.689355 0.0308864i
\(679\) 36.4804i 1.39999i
\(680\) 28.1989 + 37.0113i 1.08138 + 1.41932i
\(681\) 7.86789 + 7.86789i 0.301498 + 0.301498i
\(682\) 0.0177534 0.396240i 0.000679814 0.0151728i
\(683\) −0.401585 + 0.401585i −0.0153662 + 0.0153662i −0.714748 0.699382i \(-0.753459\pi\)
0.699382 + 0.714748i \(0.253459\pi\)
\(684\) 4.18068 + 5.00551i 0.159852 + 0.191390i
\(685\) 48.6829i 1.86008i
\(686\) 16.3894 14.9837i 0.625750 0.572081i
\(687\) 3.64543 + 3.64543i 0.139082 + 0.139082i
\(688\) 7.45814 41.1964i 0.284339 1.57060i
\(689\) 4.87127 + 1.46946i 0.185581 + 0.0559820i
\(690\) 4.79243 4.38140i 0.182445 0.166797i
\(691\) −25.8040 25.8040i −0.981632 0.981632i 0.0182023 0.999834i \(-0.494206\pi\)
−0.999834 + 0.0182023i \(0.994206\pi\)
\(692\) 5.02436 + 0.451136i 0.190998 + 0.0171496i
\(693\) −0.280465 −0.0106540
\(694\) −23.5422 1.05480i −0.893650 0.0400397i
\(695\) −9.91955 + 9.91955i −0.376270 + 0.376270i
\(696\) −1.65531 + 12.2491i −0.0627445 + 0.464300i
\(697\) −57.0500 + 57.0500i −2.16092 + 2.16092i
\(698\) 5.38452 + 5.88965i 0.203807 + 0.222927i
\(699\) 3.31543i 0.125401i
\(700\) 1.11475 0.931058i 0.0421336 0.0351907i
\(701\) −42.4434 −1.60307 −0.801533 0.597951i \(-0.795982\pi\)
−0.801533 + 0.597951i \(0.795982\pi\)
\(702\) 1.68965 4.81093i 0.0637717 0.181577i
\(703\) 29.6691i 1.11899i
\(704\) −0.662666 + 0.376563i −0.0249752 + 0.0141922i
\(705\) 17.2128 0.648271
\(706\) −8.22598 8.99768i −0.309589 0.338632i
\(707\) −21.9988 21.9988i −0.827350 0.827350i
\(708\) 8.60416 7.18633i 0.323364 0.270079i
\(709\) −21.9848 21.9848i −0.825657 0.825657i 0.161256 0.986913i \(-0.448446\pi\)
−0.986913 + 0.161256i \(0.948446\pi\)
\(710\) −0.00170112 + 0.0379674i −6.38419e−5 + 0.00142489i
\(711\) 8.46664i 0.317524i
\(712\) 6.05932 4.61660i 0.227083 0.173014i
\(713\) −4.17261 + 4.17261i −0.156265 + 0.156265i
\(714\) −22.0674 + 20.1747i −0.825851 + 0.755021i
\(715\) 0.753308 + 0.227242i 0.0281721 + 0.00849837i
\(716\) −2.17741 + 24.2502i −0.0813737 + 0.906271i
\(717\) 7.48888 7.48888i 0.279677 0.279677i
\(718\) 27.9104 + 30.5287i 1.04161 + 1.13932i
\(719\) 4.55035 0.169699 0.0848497 0.996394i \(-0.472959\pi\)
0.0848497 + 0.996394i \(0.472959\pi\)
\(720\) −7.52920 + 5.22093i −0.280597 + 0.194573i
\(721\) 7.33193 + 7.33193i 0.273055 + 0.273055i
\(722\) 0.529611 11.8204i 0.0197101 0.439911i
\(723\) 9.02754 9.02754i 0.335738 0.335738i
\(724\) 2.27003 + 0.203825i 0.0843650 + 0.00757510i
\(725\) −1.07806 −0.0400381
\(726\) 0.695724 15.5279i 0.0258207 0.576296i
\(727\) 35.3567 1.31131 0.655653 0.755062i \(-0.272393\pi\)
0.655653 + 0.755062i \(0.272393\pi\)
\(728\) −28.1167 + 10.5221i −1.04207 + 0.389976i
\(729\) 1.00000 0.0370370
\(730\) −0.0859772 + 1.91893i −0.00318216 + 0.0710229i
\(731\) −75.1699 −2.78026
\(732\) 0.347061 3.86526i 0.0128277 0.142864i
\(733\) 10.2364 10.2364i 0.378089 0.378089i −0.492323 0.870412i \(-0.663852\pi\)
0.870412 + 0.492323i \(0.163852\pi\)
\(734\) −1.90676 + 42.5572i −0.0703800 + 1.57082i
\(735\) 2.69836 + 2.69836i 0.0995305 + 0.0995305i
\(736\) 11.0564 + 2.51743i 0.407543 + 0.0927937i
\(737\) −1.09955 −0.0405023
\(738\) −10.7198 11.7254i −0.394600 0.431618i
\(739\) −15.9995 + 15.9995i −0.588550 + 0.588550i −0.937239 0.348688i \(-0.886627\pi\)
0.348688 + 0.937239i \(0.386627\pi\)
\(740\) 41.5145 + 3.72757i 1.52610 + 0.137028i
\(741\) 10.3604 5.55836i 0.380598 0.204191i
\(742\) 4.33602 3.96414i 0.159180 0.145528i
\(743\) −4.22277 + 4.22277i −0.154918 + 0.154918i −0.780311 0.625392i \(-0.784939\pi\)
0.625392 + 0.780311i \(0.284939\pi\)
\(744\) 6.62305 5.04610i 0.242813 0.184999i
\(745\) 42.9282i 1.57277i
\(746\) −0.544340 + 12.1492i −0.0199297 + 0.444813i
\(747\) −3.35193 3.35193i −0.122641 0.122641i
\(748\) 0.877255 + 1.05033i 0.0320756 + 0.0384039i
\(749\) 24.6280 + 24.6280i 0.899889 + 0.899889i
\(750\) 10.3895 + 11.3642i 0.379372 + 0.414961i
\(751\) 39.7818 1.45166 0.725828 0.687876i \(-0.241457\pi\)
0.725828 + 0.687876i \(0.241457\pi\)
\(752\) 17.1283 + 24.7010i 0.624604 + 0.900752i
\(753\) 18.4986i 0.674128i
\(754\) 21.0241 + 7.38388i 0.765652 + 0.268905i
\(755\) −8.45732 −0.307794
\(756\) −3.77418 4.51880i −0.137265 0.164347i
\(757\) 0.790942i 0.0287473i 0.999897 + 0.0143736i \(0.00457543\pi\)
−0.999897 + 0.0143736i \(0.995425\pi\)
\(758\) 15.6205 + 17.0859i 0.567362 + 0.620588i
\(759\) 0.135042 0.135042i 0.00490171 0.00490171i
\(760\) −20.9359 2.82924i −0.759426 0.102627i
\(761\) 2.96895 2.96895i 0.107624 0.107624i −0.651244 0.758868i \(-0.725753\pi\)
0.758868 + 0.651244i \(0.225753\pi\)
\(762\) 26.2039 + 1.17406i 0.949269 + 0.0425317i
\(763\) 54.0812 1.95787
\(764\) −4.01190 + 44.6811i −0.145145 + 1.61650i
\(765\) 11.6324 + 11.6324i 0.420571 + 0.420571i
\(766\) −2.97412 + 2.71904i −0.107459 + 0.0982430i
\(767\) −9.55447 17.8089i −0.344992 0.643041i
\(768\) −14.9845 5.60939i −0.540706 0.202412i
\(769\) −20.0249 20.0249i −0.722117 0.722117i 0.246919 0.969036i \(-0.420582\pi\)
−0.969036 + 0.246919i \(0.920582\pi\)
\(770\) 0.670535 0.613026i 0.0241644 0.0220919i
\(771\) 17.6933i 0.637210i
\(772\) −7.75796 + 6.47958i −0.279215 + 0.233205i
\(773\) 12.6302 12.6302i 0.454278 0.454278i −0.442494 0.896772i \(-0.645906\pi\)
0.896772 + 0.442494i \(0.145906\pi\)
\(774\) 0.662529 14.7870i 0.0238141 0.531509i
\(775\) 0.513510 + 0.513510i 0.0184458 + 0.0184458i
\(776\) 21.2421 + 27.8804i 0.762547 + 1.00085i
\(777\) 26.7842i 0.960879i
\(778\) −36.4917 1.63500i −1.30829 0.0586175i
\(779\) 36.6322i 1.31248i
\(780\) 6.47587 + 15.1951i 0.231873 + 0.544072i
\(781\) 0.00111779i 3.99976e-5i
\(782\) 0.911294 20.3393i 0.0325878 0.727330i
\(783\) 4.37007i 0.156173i
\(784\) −1.18714 + 6.55737i −0.0423978 + 0.234192i
\(785\) 2.20795 + 2.20795i 0.0788051 + 0.0788051i
\(786\) 7.34728 + 0.329193i 0.262069 + 0.0117419i
\(787\) −26.5637 + 26.5637i −0.946895 + 0.946895i −0.998659 0.0517643i \(-0.983516\pi\)
0.0517643 + 0.998659i \(0.483516\pi\)
\(788\) 4.90858 4.09973i 0.174861 0.146047i
\(789\) 18.2366i 0.649239i
\(790\) 18.5059 + 20.2420i 0.658411 + 0.720178i
\(791\) 26.4468 + 26.4468i 0.940339 + 0.940339i
\(792\) −0.214348 + 0.163312i −0.00761652 + 0.00580303i
\(793\) −6.69811 2.02054i −0.237857 0.0717516i
\(794\) 14.9580 + 16.3613i 0.530840 + 0.580640i
\(795\) −2.28566 2.28566i −0.0810638 0.0810638i
\(796\) −52.6631 4.72860i −1.86659 0.167601i
\(797\) 10.2872 0.364393 0.182196 0.983262i \(-0.441679\pi\)
0.182196 + 0.983262i \(0.441679\pi\)
\(798\) 0.607640 13.5620i 0.0215102 0.480089i
\(799\) 38.1624 38.1624i 1.35009 1.35009i
\(800\) 0.309813 1.36067i 0.0109535 0.0481071i
\(801\) 1.90441 1.90441i 0.0672890 0.0672890i
\(802\) −36.9416 + 33.7732i −1.30445 + 1.19257i
\(803\) 0.0564947i 0.00199365i
\(804\) −14.7964 17.7157i −0.521830 0.624784i
\(805\) −13.5165 −0.476395
\(806\) −6.49722 13.5315i −0.228855 0.476627i
\(807\) 6.68357i 0.235273i
\(808\) −29.6224 4.00311i −1.04211 0.140829i
\(809\) −1.64479 −0.0578278 −0.0289139 0.999582i \(-0.509205\pi\)
−0.0289139 + 0.999582i \(0.509205\pi\)
\(810\) −2.39080 + 2.18574i −0.0840040 + 0.0767992i
\(811\) −13.0418 13.0418i −0.457958 0.457958i 0.440026 0.897985i \(-0.354969\pi\)
−0.897985 + 0.440026i \(0.854969\pi\)
\(812\) 19.7475 16.4934i 0.693000 0.578805i
\(813\) 5.65140 + 5.65140i 0.198203 + 0.198203i
\(814\) 1.22467 + 0.0548711i 0.0429248 + 0.00192323i
\(815\) 44.4644i 1.55752i
\(816\) −5.11766 + 28.2683i −0.179154 + 0.989588i
\(817\) 24.1335 24.1335i 0.844326 0.844326i
\(818\) 33.3920 + 36.5246i 1.16752 + 1.27705i
\(819\) −9.35300 + 5.01789i −0.326820 + 0.175339i
\(820\) 51.2575 + 4.60239i 1.78999 + 0.160723i
\(821\) −9.46652 + 9.46652i −0.330384 + 0.330384i −0.852732 0.522348i \(-0.825056\pi\)
0.522348 + 0.852732i \(0.325056\pi\)
\(822\) 22.1837 20.2811i 0.773744 0.707383i
\(823\) −9.44005 −0.329059 −0.164530 0.986372i \(-0.552611\pi\)
−0.164530 + 0.986372i \(0.552611\pi\)
\(824\) 9.87278 + 1.33419i 0.343935 + 0.0464786i
\(825\) −0.0166192 0.0166192i −0.000578606 0.000578606i
\(826\) −23.3122 1.04450i −0.811134 0.0363426i
\(827\) 15.1241 15.1241i 0.525916 0.525916i −0.393436 0.919352i \(-0.628714\pi\)
0.919352 + 0.393436i \(0.128714\pi\)
\(828\) 3.99300 + 0.358530i 0.138766 + 0.0124598i
\(829\) 30.8994 1.07318 0.536590 0.843843i \(-0.319712\pi\)
0.536590 + 0.843843i \(0.319712\pi\)
\(830\) 15.3402 + 0.687315i 0.532468 + 0.0238570i
\(831\) 24.3573 0.844946
\(832\) −15.3615 + 24.4136i −0.532563 + 0.846390i
\(833\) 11.9651 0.414564
\(834\) −8.65254 0.387674i −0.299613 0.0134241i
\(835\) 10.2202 0.353684
\(836\) −0.618858 0.0555670i −0.0214036 0.00192182i
\(837\) 2.08158 2.08158i 0.0719501 0.0719501i
\(838\) 22.1198 + 0.991071i 0.764116 + 0.0342360i
\(839\) −39.8024 39.8024i −1.37413 1.37413i −0.854222 0.519909i \(-0.825966\pi\)
−0.519909 0.854222i \(-0.674034\pi\)
\(840\) 18.9002 + 2.55414i 0.652120 + 0.0881261i
\(841\) 9.90253 0.341466
\(842\) 7.74110 7.07718i 0.266776 0.243896i
\(843\) 7.19722 7.19722i 0.247885 0.247885i
\(844\) −4.55299 0.408812i −0.156720 0.0140719i
\(845\) 29.1871 5.89958i 1.00407 0.202952i
\(846\) 7.17075 + 7.84346i 0.246536 + 0.269664i
\(847\) −22.8785 + 22.8785i −0.786116 + 0.786116i
\(848\) 1.00557 5.55444i 0.0345314 0.190740i
\(849\) 14.0053i 0.480661i
\(850\) −2.50309 0.112150i −0.0858553 0.00384672i
\(851\) −12.8964 12.8964i −0.442083 0.442083i
\(852\) −0.0180096 + 0.0150419i −0.000616997 + 0.000515326i
\(853\) −5.81918 5.81918i −0.199245 0.199245i 0.600431 0.799676i \(-0.294996\pi\)
−0.799676 + 0.600431i \(0.794996\pi\)
\(854\) −5.96213 + 5.45078i −0.204020 + 0.186522i
\(855\) −7.46925 −0.255443
\(856\) 33.1628 + 4.48155i 1.13348 + 0.153176i
\(857\) 27.8183i 0.950256i −0.879917 0.475128i \(-0.842402\pi\)
0.879917 0.475128i \(-0.157598\pi\)
\(858\) 0.210275 + 0.437933i 0.00717869 + 0.0149508i
\(859\) −10.0327 −0.342311 −0.171155 0.985244i \(-0.554750\pi\)
−0.171155 + 0.985244i \(0.554750\pi\)
\(860\) 30.7367 + 36.8009i 1.04811 + 1.25490i
\(861\) 33.0703i 1.12703i
\(862\) −25.0392 + 22.8916i −0.852838 + 0.779693i
\(863\) −32.0055 + 32.0055i −1.08948 + 1.08948i −0.0938995 + 0.995582i \(0.529933\pi\)
−0.995582 + 0.0938995i \(0.970067\pi\)
\(864\) −5.51569 1.25587i −0.187647 0.0427255i
\(865\) −4.08529 + 4.08529i −0.138904 + 0.138904i
\(866\) 1.37143 30.6092i 0.0466032 1.04014i
\(867\) 34.5804 1.17441
\(868\) −17.2625 1.55000i −0.585929 0.0526103i
\(869\) 0.570383 + 0.570383i 0.0193489 + 0.0193489i
\(870\) −9.55185 10.4479i −0.323838 0.354218i
\(871\) −36.6678 + 19.6723i −1.24244 + 0.666572i
\(872\) 41.3319 31.4908i 1.39968 1.06641i
\(873\) 8.76265 + 8.76265i 0.296571 + 0.296571i
\(874\) 6.23741 + 6.82256i 0.210984 + 0.230776i
\(875\) 32.0515i 1.08354i
\(876\) −0.910231 + 0.760240i −0.0307538 + 0.0256861i
\(877\) −20.8160 + 20.8160i −0.702906 + 0.702906i −0.965033 0.262127i \(-0.915576\pi\)
0.262127 + 0.965033i \(0.415576\pi\)
\(878\) −38.1389 1.70880i −1.28713 0.0576692i
\(879\) −10.4354 10.4354i −0.351977 0.351977i
\(880\) 0.155504 0.858954i 0.00524204 0.0289553i
\(881\) 13.7757i 0.464116i 0.972702 + 0.232058i \(0.0745459\pi\)
−0.972702 + 0.232058i \(0.925454\pi\)
\(882\) −0.105457 + 2.35370i −0.00355092 + 0.0792533i
\(883\) 38.8765i 1.30830i −0.756366 0.654149i \(-0.773027\pi\)
0.756366 0.654149i \(-0.226973\pi\)
\(884\) 48.0466 + 19.3314i 1.61598 + 0.650184i
\(885\) 12.8392i 0.431584i
\(886\) −5.21874 0.233824i −0.175327 0.00785547i
\(887\) 51.7991i 1.73924i −0.493718 0.869622i \(-0.664363\pi\)
0.493718 0.869622i \(-0.335637\pi\)
\(888\) 15.5961 + 20.4701i 0.523372 + 0.686930i
\(889\) −38.6084 38.6084i −1.29488 1.29488i
\(890\) −0.390500 + 8.71560i −0.0130896 + 0.292148i
\(891\) −0.0673682 + 0.0673682i −0.00225692 + 0.00225692i
\(892\) 14.4547 12.0728i 0.483978 0.404227i
\(893\) 24.5043i 0.820005i
\(894\) 19.5614 17.8837i 0.654230 0.598119i
\(895\) −19.7177 19.7177i −0.659090 0.659090i
\(896\) 15.1422 + 29.6642i 0.505864 + 0.991010i
\(897\) 2.08732 6.91947i 0.0696935 0.231034i
\(898\) 23.5645 21.5435i 0.786358 0.718914i
\(899\) 9.09666 + 9.09666i 0.303391 + 0.303391i
\(900\) 0.0441232 0.491407i 0.00147077 0.0163802i
\(901\) −10.1350 −0.337647
\(902\) 1.51209 + 0.0677488i 0.0503472 + 0.00225579i
\(903\) −21.7869 + 21.7869i −0.725023 + 0.725023i
\(904\) 35.6118 + 4.81250i 1.18443 + 0.160061i
\(905\) −1.84575 + 1.84575i −0.0613548 + 0.0613548i
\(906\) −3.52328 3.85381i −0.117053 0.128034i
\(907\) 53.4908i 1.77613i 0.459714 + 0.888067i \(0.347952\pi\)
−0.459714 + 0.888067i \(0.652048\pi\)
\(908\) −14.2655 17.0800i −0.473416 0.566819i
\(909\) −10.5683 −0.350528
\(910\) 11.3933 32.4400i 0.377683 1.07538i
\(911\) 8.34775i 0.276573i 0.990392 + 0.138287i \(0.0441595\pi\)
−0.990392 + 0.138287i \(0.955840\pi\)
\(912\) −7.43258 10.7187i −0.246117 0.354930i
\(913\) 0.451627 0.0149467
\(914\) −13.4824 14.7473i −0.445959 0.487796i
\(915\) 3.14283 + 3.14283i 0.103899 + 0.103899i
\(916\) −6.60962 7.91366i −0.218388 0.261475i
\(917\) −10.8253 10.8253i −0.357484 0.357484i
\(918\) −0.454617 + 10.1466i −0.0150046 + 0.334889i
\(919\) 0.682347i 0.0225085i −0.999937 0.0112543i \(-0.996418\pi\)
0.999937 0.0112543i \(-0.00358242\pi\)
\(920\) −10.3301 + 7.87051i −0.340574 + 0.259483i
\(921\) −9.49598 + 9.49598i −0.312903 + 0.312903i
\(922\) 14.4774 13.2357i 0.476787 0.435894i
\(923\) 0.0199987 + 0.0372761i 0.000658265 + 0.00122696i
\(924\) 0.558683 + 0.0501640i 0.0183793 + 0.00165027i
\(925\) −1.58712 + 1.58712i −0.0521842 + 0.0521842i
\(926\) 22.2926 + 24.3840i 0.732581 + 0.801307i
\(927\) 3.52228 0.115687
\(928\) 5.48823 24.1039i 0.180160 0.791250i
\(929\) 11.6044 + 11.6044i 0.380728 + 0.380728i 0.871364 0.490636i \(-0.163236\pi\)
−0.490636 + 0.871364i \(0.663236\pi\)
\(930\) −0.426830 + 9.52646i −0.0139963 + 0.312385i
\(931\) −3.84142 + 3.84142i −0.125897 + 0.125897i
\(932\) 0.592997 6.60430i 0.0194243 0.216331i
\(933\) 19.3516 0.633543
\(934\) −0.867563 + 19.3632i −0.0283875 + 0.633584i
\(935\) −1.56731 −0.0512566
\(936\) −4.22624 + 9.28110i −0.138139 + 0.303362i
\(937\) −5.73855 −0.187470 −0.0937352 0.995597i \(-0.529881\pi\)
−0.0937352 + 0.995597i \(0.529881\pi\)
\(938\) −2.15058 + 47.9990i −0.0702189 + 1.56722i
\(939\) −10.1200 −0.330254
\(940\) −34.2876 3.07867i −1.11834 0.100415i
\(941\) 0.617212 0.617212i 0.0201205 0.0201205i −0.696975 0.717095i \(-0.745471\pi\)
0.717095 + 0.696975i \(0.245471\pi\)
\(942\) −0.0862908 + 1.92593i −0.00281151 + 0.0627503i
\(943\) −15.9231 15.9231i −0.518526 0.518526i
\(944\) −18.4247 + 12.7761i −0.599673 + 0.415828i
\(945\) 6.74298 0.219349
\(946\) 0.951544 + 1.04081i 0.0309374 + 0.0338397i
\(947\) −2.57671 + 2.57671i −0.0837319 + 0.0837319i −0.747732 0.664000i \(-0.768857\pi\)
0.664000 + 0.747732i \(0.268857\pi\)
\(948\) −1.51434 + 16.8654i −0.0491835 + 0.547764i
\(949\) 1.01076 + 1.88399i 0.0328108 + 0.0611570i
\(950\) 0.839631 0.767619i 0.0272412 0.0249048i
\(951\) −18.1488 + 18.1488i −0.588515 + 0.588515i
\(952\) 47.5664 36.2408i 1.54164 1.17457i
\(953\) 44.1686i 1.43076i −0.698736 0.715380i \(-0.746254\pi\)
0.698736 0.715380i \(-0.253746\pi\)
\(954\) 0.0893277 1.99371i 0.00289209 0.0645488i
\(955\) −36.3300 36.3300i −1.17561 1.17561i
\(956\) −16.2572 + 13.5783i −0.525796 + 0.439153i
\(957\) −0.294404 0.294404i −0.00951672 0.00951672i
\(958\) −9.68653 10.5952i −0.312958 0.342317i
\(959\) −62.5667 −2.02038
\(960\) 15.9319 9.05336i 0.514199 0.292196i
\(961\) 22.3340i 0.720452i
\(962\) 41.8223 20.0812i 1.34840 0.647442i
\(963\) 11.8314 0.381261
\(964\) −19.5974 + 16.3681i −0.631190 + 0.527180i
\(965\) 11.5765i 0.372660i
\(966\) −5.63092 6.15917i −0.181172 0.198168i
\(967\) 23.3487 23.3487i 0.750844 0.750844i −0.223792 0.974637i \(-0.571844\pi\)
0.974637 + 0.223792i \(0.0718438\pi\)
\(968\) −4.16319 + 30.8070i −0.133810 + 0.990174i
\(969\) −16.5600 + 16.5600i −0.531985 + 0.531985i
\(970\) −40.1026 1.79679i −1.28762 0.0576913i
\(971\) 15.8294 0.507990 0.253995 0.967205i \(-0.418255\pi\)
0.253995 + 0.967205i \(0.418255\pi\)
\(972\) −1.99199 0.178860i −0.0638930 0.00573693i
\(973\) 12.7485 + 12.7485i 0.408697 + 0.408697i
\(974\) −0.567227 + 0.518578i −0.0181751 + 0.0166163i
\(975\) −0.851558 0.256880i −0.0272717 0.00822674i
\(976\) −1.38268 + 7.63748i −0.0442585 + 0.244470i
\(977\) −19.1168 19.1168i −0.611602 0.611602i 0.331761 0.943363i \(-0.392357\pi\)
−0.943363 + 0.331761i \(0.892357\pi\)
\(978\) −20.2614 + 18.5236i −0.647888 + 0.592321i
\(979\) 0.256593i 0.00820076i
\(980\) −4.89247 5.85773i −0.156284 0.187118i
\(981\) 12.9904 12.9904i 0.414751 0.414751i
\(982\) −0.172198 + 3.84331i −0.00549507 + 0.122645i
\(983\) 20.0123 + 20.0123i 0.638293 + 0.638293i 0.950134 0.311841i \(-0.100946\pi\)
−0.311841 + 0.950134i \(0.600946\pi\)
\(984\) 19.2564 + 25.2742i 0.613872 + 0.805712i
\(985\) 7.32462i 0.233382i
\(986\) −44.3414 1.98670i −1.41212 0.0632696i
\(987\) 22.1216i 0.704139i
\(988\) −21.6319 + 9.21912i −0.688203 + 0.293299i
\(989\) 20.9805i 0.667140i
\(990\) 0.0138139 0.308313i 0.000439034 0.00979885i
\(991\) 36.3170i 1.15365i 0.816868 + 0.576824i \(0.195708\pi\)
−0.816868 + 0.576824i \(0.804292\pi\)
\(992\) −14.0956 + 8.86717i −0.447535 + 0.281533i
\(993\) 22.5976 + 22.5976i 0.717114 + 0.717114i
\(994\) 0.0487953 + 0.00218626i 0.00154769 + 6.93438e-5i
\(995\) 42.8201 42.8201i 1.35749 1.35749i
\(996\) 6.07747 + 7.27652i 0.192572 + 0.230565i
\(997\) 27.1788i 0.860762i −0.902647 0.430381i \(-0.858379\pi\)
0.902647 0.430381i \(-0.141621\pi\)
\(998\) 39.6783 + 43.4007i 1.25600 + 1.37382i
\(999\) 6.43362 + 6.43362i 0.203551 + 0.203551i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.t.e.307.12 yes 24
3.2 odd 2 936.2.w.j.307.1 24
4.3 odd 2 1248.2.bb.f.463.4 24
8.3 odd 2 inner 312.2.t.e.307.7 yes 24
8.5 even 2 1248.2.bb.f.463.9 24
13.5 odd 4 inner 312.2.t.e.187.7 24
24.11 even 2 936.2.w.j.307.6 24
39.5 even 4 936.2.w.j.811.6 24
52.31 even 4 1248.2.bb.f.655.9 24
104.5 odd 4 1248.2.bb.f.655.4 24
104.83 even 4 inner 312.2.t.e.187.12 yes 24
312.83 odd 4 936.2.w.j.811.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.7 24 13.5 odd 4 inner
312.2.t.e.187.12 yes 24 104.83 even 4 inner
312.2.t.e.307.7 yes 24 8.3 odd 2 inner
312.2.t.e.307.12 yes 24 1.1 even 1 trivial
936.2.w.j.307.1 24 3.2 odd 2
936.2.w.j.307.6 24 24.11 even 2
936.2.w.j.811.1 24 312.83 odd 4
936.2.w.j.811.6 24 39.5 even 4
1248.2.bb.f.463.4 24 4.3 odd 2
1248.2.bb.f.463.9 24 8.5 even 2
1248.2.bb.f.655.4 24 104.5 odd 4
1248.2.bb.f.655.9 24 52.31 even 4