Properties

Label 312.2.t.e.187.7
Level $312$
Weight $2$
Character 312.187
Analytic conductor $2.491$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,2,Mod(187,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.187"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.7
Character \(\chi\) \(=\) 312.187
Dual form 312.2.t.e.307.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0632999 - 1.41280i) q^{2} -1.00000 q^{3} +(-1.99199 - 0.178860i) q^{4} +(1.61967 + 1.61967i) q^{5} +(-0.0632999 + 1.41280i) q^{6} +(-2.08158 + 2.08158i) q^{7} +(-0.378785 + 2.80295i) q^{8} +1.00000 q^{9} +(2.39080 - 2.18574i) q^{10} +(-0.0673682 - 0.0673682i) q^{11} +(1.99199 + 0.178860i) q^{12} +(1.04130 + 3.45191i) q^{13} +(2.80909 + 3.07262i) q^{14} +(-1.61967 - 1.61967i) q^{15} +(3.93602 + 0.712572i) q^{16} +7.18195i q^{17} +(0.0632999 - 1.41280i) q^{18} +(2.30579 - 2.30579i) q^{19} +(-2.93668 - 3.51606i) q^{20} +(2.08158 - 2.08158i) q^{21} +(-0.0994420 + 0.0909132i) q^{22} -2.00453 q^{23} +(0.378785 - 2.80295i) q^{24} +0.246692i q^{25} +(4.94276 - 1.25264i) q^{26} -1.00000 q^{27} +(4.51880 - 3.77418i) q^{28} -4.37007i q^{29} +(-2.39080 + 2.18574i) q^{30} +(2.08158 + 2.08158i) q^{31} +(1.25587 - 5.51569i) q^{32} +(0.0673682 + 0.0673682i) q^{33} +(10.1466 + 0.454617i) q^{34} -6.74298 q^{35} +(-1.99199 - 0.178860i) q^{36} +(6.43362 - 6.43362i) q^{37} +(-3.11165 - 3.40356i) q^{38} +(-1.04130 - 3.45191i) q^{39} +(-5.15337 + 3.92636i) q^{40} +(-7.94353 + 7.94353i) q^{41} +(-2.80909 - 3.07262i) q^{42} +10.4665i q^{43} +(0.122147 + 0.146246i) q^{44} +(1.61967 + 1.61967i) q^{45} +(-0.126887 + 2.83200i) q^{46} +(-5.31365 + 5.31365i) q^{47} +(-3.93602 - 0.712572i) q^{48} -1.66599i q^{49} +(0.348525 + 0.0156156i) q^{50} -7.18195i q^{51} +(-1.45685 - 7.06241i) q^{52} -1.41118i q^{53} +(-0.0632999 + 1.41280i) q^{54} -0.218229i q^{55} +(-5.04610 - 6.62305i) q^{56} +(-2.30579 + 2.30579i) q^{57} +(-6.17401 - 0.276625i) q^{58} +(-3.96350 - 3.96350i) q^{59} +(2.93668 + 3.51606i) q^{60} +1.94041i q^{61} +(3.07262 - 2.80909i) q^{62} +(-2.08158 + 2.08158i) q^{63} +(-7.71304 - 2.12343i) q^{64} +(-3.90441 + 7.27754i) q^{65} +(0.0994420 - 0.0909132i) q^{66} +(8.16072 - 8.16072i) q^{67} +(1.28456 - 14.3063i) q^{68} +2.00453 q^{69} +(-0.426830 + 9.52646i) q^{70} +(-0.00829610 - 0.00829610i) q^{71} +(-0.378785 + 2.80295i) q^{72} +(0.419298 + 0.419298i) q^{73} +(-8.68214 - 9.49664i) q^{74} -0.246692i q^{75} +(-5.00551 + 4.18068i) q^{76} +0.280465 q^{77} +(-4.94276 + 1.25264i) q^{78} -8.46664i q^{79} +(5.22093 + 7.52920i) q^{80} +1.00000 q^{81} +(10.7198 + 11.7254i) q^{82} +(-3.35193 + 3.35193i) q^{83} +(-4.51880 + 3.77418i) q^{84} +(-11.6324 + 11.6324i) q^{85} +(14.7870 + 0.662529i) q^{86} +4.37007i q^{87} +(0.214348 - 0.163312i) q^{88} +(1.90441 + 1.90441i) q^{89} +(2.39080 - 2.18574i) q^{90} +(-9.35300 - 5.01789i) q^{91} +(3.99300 + 0.358530i) q^{92} +(-2.08158 - 2.08158i) q^{93} +(7.17075 + 7.84346i) q^{94} +7.46925 q^{95} +(-1.25587 + 5.51569i) q^{96} +(8.76265 - 8.76265i) q^{97} +(-2.35370 - 0.105457i) q^{98} +(-0.0673682 - 0.0673682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{3} - 6 q^{8} + 24 q^{9} + 8 q^{11} + 36 q^{14} + 28 q^{16} + 20 q^{19} - 20 q^{20} + 20 q^{22} + 6 q^{24} + 12 q^{26} - 24 q^{27} - 16 q^{28} - 30 q^{32} - 8 q^{33} + 16 q^{34} + 16 q^{35}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0632999 1.41280i 0.0447598 0.998998i
\(3\) −1.00000 −0.577350
\(4\) −1.99199 0.178860i −0.995993 0.0894299i
\(5\) 1.61967 + 1.61967i 0.724341 + 0.724341i 0.969486 0.245146i \(-0.0788358\pi\)
−0.245146 + 0.969486i \(0.578836\pi\)
\(6\) −0.0632999 + 1.41280i −0.0258421 + 0.576772i
\(7\) −2.08158 + 2.08158i −0.786765 + 0.786765i −0.980962 0.194197i \(-0.937790\pi\)
0.194197 + 0.980962i \(0.437790\pi\)
\(8\) −0.378785 + 2.80295i −0.133921 + 0.990992i
\(9\) 1.00000 0.333333
\(10\) 2.39080 2.18574i 0.756036 0.691193i
\(11\) −0.0673682 0.0673682i −0.0203123 0.0203123i 0.696878 0.717190i \(-0.254572\pi\)
−0.717190 + 0.696878i \(0.754572\pi\)
\(12\) 1.99199 + 0.178860i 0.575037 + 0.0516323i
\(13\) 1.04130 + 3.45191i 0.288804 + 0.957388i
\(14\) 2.80909 + 3.07262i 0.750761 + 0.821192i
\(15\) −1.61967 1.61967i −0.418198 0.418198i
\(16\) 3.93602 + 0.712572i 0.984005 + 0.178143i
\(17\) 7.18195i 1.74188i 0.491391 + 0.870939i \(0.336489\pi\)
−0.491391 + 0.870939i \(0.663511\pi\)
\(18\) 0.0632999 1.41280i 0.0149199 0.332999i
\(19\) 2.30579 2.30579i 0.528984 0.528984i −0.391285 0.920269i \(-0.627969\pi\)
0.920269 + 0.391285i \(0.127969\pi\)
\(20\) −2.93668 3.51606i −0.656661 0.786216i
\(21\) 2.08158 2.08158i 0.454239 0.454239i
\(22\) −0.0994420 + 0.0909132i −0.0212011 + 0.0193828i
\(23\) −2.00453 −0.417974 −0.208987 0.977918i \(-0.567017\pi\)
−0.208987 + 0.977918i \(0.567017\pi\)
\(24\) 0.378785 2.80295i 0.0773191 0.572150i
\(25\) 0.246692i 0.0493384i
\(26\) 4.94276 1.25264i 0.969355 0.245662i
\(27\) −1.00000 −0.192450
\(28\) 4.51880 3.77418i 0.853973 0.713252i
\(29\) 4.37007i 0.811501i −0.913984 0.405750i \(-0.867010\pi\)
0.913984 0.405750i \(-0.132990\pi\)
\(30\) −2.39080 + 2.18574i −0.436498 + 0.399061i
\(31\) 2.08158 + 2.08158i 0.373864 + 0.373864i 0.868882 0.495019i \(-0.164839\pi\)
−0.495019 + 0.868882i \(0.664839\pi\)
\(32\) 1.25587 5.51569i 0.222008 0.975045i
\(33\) 0.0673682 + 0.0673682i 0.0117273 + 0.0117273i
\(34\) 10.1466 + 0.454617i 1.74013 + 0.0779661i
\(35\) −6.74298 −1.13977
\(36\) −1.99199 0.178860i −0.331998 0.0298100i
\(37\) 6.43362 6.43362i 1.05768 1.05768i 0.0594489 0.998231i \(-0.481066\pi\)
0.998231 0.0594489i \(-0.0189343\pi\)
\(38\) −3.11165 3.40356i −0.504777 0.552131i
\(39\) −1.04130 3.45191i −0.166741 0.552748i
\(40\) −5.15337 + 3.92636i −0.814820 + 0.620812i
\(41\) −7.94353 + 7.94353i −1.24057 + 1.24057i −0.280806 + 0.959764i \(0.590602\pi\)
−0.959764 + 0.280806i \(0.909398\pi\)
\(42\) −2.80909 3.07262i −0.433452 0.474115i
\(43\) 10.4665i 1.59613i 0.602573 + 0.798064i \(0.294142\pi\)
−0.602573 + 0.798064i \(0.705858\pi\)
\(44\) 0.122147 + 0.146246i 0.0184144 + 0.0220474i
\(45\) 1.61967 + 1.61967i 0.241447 + 0.241447i
\(46\) −0.126887 + 2.83200i −0.0187084 + 0.417555i
\(47\) −5.31365 + 5.31365i −0.775076 + 0.775076i −0.978989 0.203913i \(-0.934634\pi\)
0.203913 + 0.978989i \(0.434634\pi\)
\(48\) −3.93602 0.712572i −0.568115 0.102851i
\(49\) 1.66599i 0.237998i
\(50\) 0.348525 + 0.0156156i 0.0492889 + 0.00220837i
\(51\) 7.18195i 1.00567i
\(52\) −1.45685 7.06241i −0.202028 0.979380i
\(53\) 1.41118i 0.193841i −0.995292 0.0969204i \(-0.969101\pi\)
0.995292 0.0969204i \(-0.0308992\pi\)
\(54\) −0.0632999 + 1.41280i −0.00861402 + 0.192257i
\(55\) 0.218229i 0.0294260i
\(56\) −5.04610 6.62305i −0.674314 0.885042i
\(57\) −2.30579 + 2.30579i −0.305409 + 0.305409i
\(58\) −6.17401 0.276625i −0.810687 0.0363226i
\(59\) −3.96350 3.96350i −0.516004 0.516004i 0.400356 0.916360i \(-0.368887\pi\)
−0.916360 + 0.400356i \(0.868887\pi\)
\(60\) 2.93668 + 3.51606i 0.379123 + 0.453922i
\(61\) 1.94041i 0.248444i 0.992254 + 0.124222i \(0.0396434\pi\)
−0.992254 + 0.124222i \(0.960357\pi\)
\(62\) 3.07262 2.80909i 0.390223 0.356755i
\(63\) −2.08158 + 2.08158i −0.262255 + 0.262255i
\(64\) −7.71304 2.12343i −0.964131 0.265429i
\(65\) −3.90441 + 7.27754i −0.484282 + 0.902668i
\(66\) 0.0994420 0.0909132i 0.0122405 0.0111906i
\(67\) 8.16072 8.16072i 0.996991 0.996991i −0.00300457 0.999995i \(-0.500956\pi\)
0.999995 + 0.00300457i \(0.000956387\pi\)
\(68\) 1.28456 14.3063i 0.155776 1.73490i
\(69\) 2.00453 0.241317
\(70\) −0.426830 + 9.52646i −0.0510159 + 1.13863i
\(71\) −0.00829610 0.00829610i −0.000984566 0.000984566i 0.706614 0.707599i \(-0.250222\pi\)
−0.707599 + 0.706614i \(0.750222\pi\)
\(72\) −0.378785 + 2.80295i −0.0446402 + 0.330331i
\(73\) 0.419298 + 0.419298i 0.0490751 + 0.0490751i 0.731218 0.682143i \(-0.238952\pi\)
−0.682143 + 0.731218i \(0.738952\pi\)
\(74\) −8.68214 9.49664i −1.00928 1.10396i
\(75\) 0.246692i 0.0284855i
\(76\) −5.00551 + 4.18068i −0.574171 + 0.479557i
\(77\) 0.280465 0.0319620
\(78\) −4.94276 + 1.25264i −0.559658 + 0.141833i
\(79\) 8.46664i 0.952571i −0.879291 0.476286i \(-0.841983\pi\)
0.879291 0.476286i \(-0.158017\pi\)
\(80\) 5.22093 + 7.52920i 0.583718 + 0.841791i
\(81\) 1.00000 0.111111
\(82\) 10.7198 + 11.7254i 1.18380 + 1.29486i
\(83\) −3.35193 + 3.35193i −0.367922 + 0.367922i −0.866719 0.498797i \(-0.833775\pi\)
0.498797 + 0.866719i \(0.333775\pi\)
\(84\) −4.51880 + 3.77418i −0.493041 + 0.411796i
\(85\) −11.6324 + 11.6324i −1.26171 + 1.26171i
\(86\) 14.7870 + 0.662529i 1.59453 + 0.0714423i
\(87\) 4.37007i 0.468520i
\(88\) 0.214348 0.163312i 0.0228496 0.0174091i
\(89\) 1.90441 + 1.90441i 0.201867 + 0.201867i 0.800799 0.598933i \(-0.204408\pi\)
−0.598933 + 0.800799i \(0.704408\pi\)
\(90\) 2.39080 2.18574i 0.252012 0.230398i
\(91\) −9.35300 5.01789i −0.980461 0.526018i
\(92\) 3.99300 + 0.358530i 0.416299 + 0.0373794i
\(93\) −2.08158 2.08158i −0.215850 0.215850i
\(94\) 7.17075 + 7.84346i 0.739607 + 0.808991i
\(95\) 7.46925 0.766329
\(96\) −1.25587 + 5.51569i −0.128177 + 0.562942i
\(97\) 8.76265 8.76265i 0.889712 0.889712i −0.104783 0.994495i \(-0.533415\pi\)
0.994495 + 0.104783i \(0.0334147\pi\)
\(98\) −2.35370 0.105457i −0.237760 0.0106528i
\(99\) −0.0673682 0.0673682i −0.00677076 0.00677076i
\(100\) 0.0441232 0.491407i 0.00441232 0.0491407i
\(101\) 10.5683 1.05159 0.525793 0.850613i \(-0.323769\pi\)
0.525793 + 0.850613i \(0.323769\pi\)
\(102\) −10.1466 0.454617i −1.00467 0.0450137i
\(103\) −3.52228 −0.347061 −0.173530 0.984829i \(-0.555518\pi\)
−0.173530 + 0.984829i \(0.555518\pi\)
\(104\) −10.0700 + 1.61118i −0.987441 + 0.157989i
\(105\) 6.74298 0.658047
\(106\) −1.99371 0.0893277i −0.193646 0.00867627i
\(107\) 11.8314 1.14378 0.571892 0.820329i \(-0.306210\pi\)
0.571892 + 0.820329i \(0.306210\pi\)
\(108\) 1.99199 + 0.178860i 0.191679 + 0.0172108i
\(109\) −12.9904 12.9904i −1.24425 1.24425i −0.958220 0.286033i \(-0.907663\pi\)
−0.286033 0.958220i \(-0.592337\pi\)
\(110\) −0.308313 0.0138139i −0.0293965 0.00131710i
\(111\) −6.43362 + 6.43362i −0.610652 + 0.610652i
\(112\) −9.67643 + 6.70988i −0.914337 + 0.634024i
\(113\) 12.7051 1.19520 0.597598 0.801796i \(-0.296122\pi\)
0.597598 + 0.801796i \(0.296122\pi\)
\(114\) 3.11165 + 3.40356i 0.291433 + 0.318773i
\(115\) −3.24669 3.24669i −0.302756 0.302756i
\(116\) −0.781629 + 8.70511i −0.0725724 + 0.808249i
\(117\) 1.04130 + 3.45191i 0.0962681 + 0.319129i
\(118\) −5.85051 + 5.34873i −0.538583 + 0.492391i
\(119\) −14.9498 14.9498i −1.37045 1.37045i
\(120\) 5.15337 3.92636i 0.470436 0.358426i
\(121\) 10.9909i 0.999175i
\(122\) 2.74140 + 0.122828i 0.248195 + 0.0111203i
\(123\) 7.94353 7.94353i 0.716244 0.716244i
\(124\) −3.77418 4.51880i −0.338931 0.405800i
\(125\) 7.69881 7.69881i 0.688603 0.688603i
\(126\) 2.80909 + 3.07262i 0.250254 + 0.273731i
\(127\) 18.5476 1.64583 0.822916 0.568164i \(-0.192346\pi\)
0.822916 + 0.568164i \(0.192346\pi\)
\(128\) −3.48821 + 10.7625i −0.308317 + 0.951284i
\(129\) 10.4665i 0.921525i
\(130\) 10.0345 + 5.97680i 0.880087 + 0.524200i
\(131\) −5.20053 −0.454372 −0.227186 0.973851i \(-0.572953\pi\)
−0.227186 + 0.973851i \(0.572953\pi\)
\(132\) −0.122147 0.146246i −0.0106315 0.0127291i
\(133\) 9.59938i 0.832372i
\(134\) −11.0129 12.0460i −0.951367 1.04062i
\(135\) −1.61967 1.61967i −0.139399 0.139399i
\(136\) −20.1306 2.72041i −1.72619 0.233274i
\(137\) −15.0286 15.0286i −1.28398 1.28398i −0.938383 0.345598i \(-0.887676\pi\)
−0.345598 0.938383i \(-0.612324\pi\)
\(138\) 0.126887 2.83200i 0.0108013 0.241076i
\(139\) 6.12441 0.519466 0.259733 0.965681i \(-0.416366\pi\)
0.259733 + 0.965681i \(0.416366\pi\)
\(140\) 13.4319 + 1.20605i 1.13520 + 0.101930i
\(141\) 5.31365 5.31365i 0.447490 0.447490i
\(142\) −0.0122458 + 0.0111956i −0.00102765 + 0.000939510i
\(143\) 0.162399 0.302700i 0.0135805 0.0253130i
\(144\) 3.93602 + 0.712572i 0.328002 + 0.0593810i
\(145\) 7.07808 7.07808i 0.587803 0.587803i
\(146\) 0.618924 0.565841i 0.0512225 0.0468293i
\(147\) 1.66599i 0.137408i
\(148\) −13.9664 + 11.6650i −1.14803 + 0.958854i
\(149\) 13.2521 + 13.2521i 1.08565 + 1.08565i 0.995970 + 0.0896836i \(0.0285856\pi\)
0.0896836 + 0.995970i \(0.471414\pi\)
\(150\) −0.348525 0.0156156i −0.0284570 0.00127501i
\(151\) −2.61081 + 2.61081i −0.212465 + 0.212465i −0.805314 0.592849i \(-0.798003\pi\)
0.592849 + 0.805314i \(0.298003\pi\)
\(152\) 5.58961 + 7.33640i 0.453377 + 0.595061i
\(153\) 7.18195i 0.580626i
\(154\) 0.0177534 0.396240i 0.00143061 0.0319300i
\(155\) 6.74298i 0.541609i
\(156\) 1.45685 + 7.06241i 0.116641 + 0.565445i
\(157\) 1.36321i 0.108796i −0.998519 0.0543978i \(-0.982676\pi\)
0.998519 0.0543978i \(-0.0173239\pi\)
\(158\) −11.9616 0.535937i −0.951617 0.0426369i
\(159\) 1.41118i 0.111914i
\(160\) 10.9677 6.89952i 0.867074 0.545455i
\(161\) 4.17261 4.17261i 0.328847 0.328847i
\(162\) 0.0632999 1.41280i 0.00497331 0.111000i
\(163\) 13.7263 + 13.7263i 1.07513 + 1.07513i 0.996938 + 0.0781913i \(0.0249145\pi\)
0.0781913 + 0.996938i \(0.475086\pi\)
\(164\) 17.2442 14.4026i 1.34654 1.12466i
\(165\) 0.218229i 0.0169891i
\(166\) 4.52342 + 4.94777i 0.351085 + 0.384021i
\(167\) 3.15502 3.15502i 0.244142 0.244142i −0.574419 0.818561i \(-0.694772\pi\)
0.818561 + 0.574419i \(0.194772\pi\)
\(168\) 5.04610 + 6.62305i 0.389315 + 0.510979i
\(169\) −10.8314 + 7.18895i −0.833184 + 0.552996i
\(170\) 15.6979 + 17.1706i 1.20397 + 1.31692i
\(171\) 2.30579 2.30579i 0.176328 0.176328i
\(172\) 1.87204 20.8491i 0.142741 1.58973i
\(173\) −2.52229 −0.191766 −0.0958830 0.995393i \(-0.530567\pi\)
−0.0958830 + 0.995393i \(0.530567\pi\)
\(174\) 6.17401 + 0.276625i 0.468051 + 0.0209709i
\(175\) −0.513510 0.513510i −0.0388177 0.0388177i
\(176\) −0.217158 0.313167i −0.0163689 0.0236059i
\(177\) 3.96350 + 3.96350i 0.297915 + 0.297915i
\(178\) 2.81109 2.56999i 0.210700 0.192629i
\(179\) 12.1739i 0.909917i −0.890513 0.454958i \(-0.849654\pi\)
0.890513 0.454958i \(-0.150346\pi\)
\(180\) −2.93668 3.51606i −0.218887 0.262072i
\(181\) −1.13958 −0.0847044 −0.0423522 0.999103i \(-0.513485\pi\)
−0.0423522 + 0.999103i \(0.513485\pi\)
\(182\) −7.68131 + 12.8962i −0.569376 + 0.955934i
\(183\) 1.94041i 0.143439i
\(184\) 0.759287 5.61860i 0.0559754 0.414209i
\(185\) 20.8407 1.53224
\(186\) −3.07262 + 2.80909i −0.225295 + 0.205973i
\(187\) 0.483835 0.483835i 0.0353815 0.0353815i
\(188\) 11.5351 9.63432i 0.841285 0.702655i
\(189\) 2.08158 2.08158i 0.151413 0.151413i
\(190\) 0.472803 10.5525i 0.0343007 0.765561i
\(191\) 22.4304i 1.62301i 0.584347 + 0.811504i \(0.301351\pi\)
−0.584347 + 0.811504i \(0.698649\pi\)
\(192\) 7.71304 + 2.12343i 0.556641 + 0.153245i
\(193\) −3.57371 3.57371i −0.257241 0.257241i 0.566690 0.823931i \(-0.308224\pi\)
−0.823931 + 0.566690i \(0.808224\pi\)
\(194\) −11.8252 12.9345i −0.848997 0.928644i
\(195\) 3.90441 7.27754i 0.279601 0.521155i
\(196\) −0.297978 + 3.31863i −0.0212842 + 0.237045i
\(197\) −2.26114 2.26114i −0.161099 0.161099i 0.621954 0.783054i \(-0.286339\pi\)
−0.783054 + 0.621954i \(0.786339\pi\)
\(198\) −0.0994420 + 0.0909132i −0.00706704 + 0.00646092i
\(199\) 26.4375 1.87410 0.937051 0.349193i \(-0.113544\pi\)
0.937051 + 0.349193i \(0.113544\pi\)
\(200\) −0.691464 0.0934431i −0.0488939 0.00660743i
\(201\) −8.16072 + 8.16072i −0.575613 + 0.575613i
\(202\) 0.668972 14.9309i 0.0470687 1.05053i
\(203\) 9.09666 + 9.09666i 0.638460 + 0.638460i
\(204\) −1.28456 + 14.3063i −0.0899373 + 1.00164i
\(205\) −25.7319 −1.79719
\(206\) −0.222960 + 4.97627i −0.0155344 + 0.346713i
\(207\) −2.00453 −0.139325
\(208\) 1.63884 + 14.3288i 0.113633 + 0.993523i
\(209\) −0.310674 −0.0214897
\(210\) 0.426830 9.52646i 0.0294541 0.657388i
\(211\) −2.28566 −0.157351 −0.0786755 0.996900i \(-0.525069\pi\)
−0.0786755 + 0.996900i \(0.525069\pi\)
\(212\) −0.252404 + 2.81105i −0.0173351 + 0.193064i
\(213\) 0.00829610 + 0.00829610i 0.000568439 + 0.000568439i
\(214\) 0.748926 16.7153i 0.0511955 1.14264i
\(215\) −16.9523 + 16.9523i −1.15614 + 1.15614i
\(216\) 0.378785 2.80295i 0.0257730 0.190717i
\(217\) −8.66599 −0.588286
\(218\) −19.1751 + 17.5305i −1.29870 + 1.18731i
\(219\) −0.419298 0.419298i −0.0283335 0.0283335i
\(220\) −0.0390324 + 0.434710i −0.00263157 + 0.0293081i
\(221\) −24.7915 + 7.47856i −1.66765 + 0.503062i
\(222\) 8.68214 + 9.49664i 0.582707 + 0.637373i
\(223\) −6.65855 6.65855i −0.445889 0.445889i 0.448096 0.893985i \(-0.352102\pi\)
−0.893985 + 0.448096i \(0.852102\pi\)
\(224\) 8.86717 + 14.0956i 0.592463 + 0.941800i
\(225\) 0.246692i 0.0164461i
\(226\) 0.804232 17.9497i 0.0534967 1.19400i
\(227\) −7.86789 + 7.86789i −0.522210 + 0.522210i −0.918238 0.396028i \(-0.870388\pi\)
0.396028 + 0.918238i \(0.370388\pi\)
\(228\) 5.00551 4.18068i 0.331498 0.276873i
\(229\) 3.64543 3.64543i 0.240897 0.240897i −0.576324 0.817221i \(-0.695513\pi\)
0.817221 + 0.576324i \(0.195513\pi\)
\(230\) −4.79243 + 4.38140i −0.316003 + 0.288901i
\(231\) −0.280465 −0.0184533
\(232\) 12.2491 + 1.65531i 0.804191 + 0.108677i
\(233\) 3.31543i 0.217201i 0.994085 + 0.108601i \(0.0346370\pi\)
−0.994085 + 0.108601i \(0.965363\pi\)
\(234\) 4.94276 1.25264i 0.323118 0.0818875i
\(235\) −17.2128 −1.12284
\(236\) 7.18633 + 8.60416i 0.467791 + 0.560083i
\(237\) 8.46664i 0.549967i
\(238\) −22.0674 + 20.1747i −1.43042 + 1.30773i
\(239\) 7.48888 + 7.48888i 0.484415 + 0.484415i 0.906538 0.422123i \(-0.138715\pi\)
−0.422123 + 0.906538i \(0.638715\pi\)
\(240\) −5.22093 7.52920i −0.337010 0.486008i
\(241\) −9.02754 9.02754i −0.581515 0.581515i 0.353804 0.935319i \(-0.384888\pi\)
−0.935319 + 0.353804i \(0.884888\pi\)
\(242\) −15.5279 0.695724i −0.998173 0.0447229i
\(243\) −1.00000 −0.0641500
\(244\) 0.347061 3.86526i 0.0222183 0.247448i
\(245\) 2.69836 2.69836i 0.172392 0.172392i
\(246\) −10.7198 11.7254i −0.683467 0.747585i
\(247\) 10.3604 + 5.55836i 0.659216 + 0.353670i
\(248\) −6.62305 + 5.04610i −0.420564 + 0.320428i
\(249\) 3.35193 3.35193i 0.212420 0.212420i
\(250\) −10.3895 11.3642i −0.657091 0.718734i
\(251\) 18.4986i 1.16762i −0.811889 0.583812i \(-0.801561\pi\)
0.811889 0.583812i \(-0.198439\pi\)
\(252\) 4.51880 3.77418i 0.284658 0.237751i
\(253\) 0.135042 + 0.135042i 0.00849001 + 0.00849001i
\(254\) 1.17406 26.2039i 0.0736671 1.64418i
\(255\) 11.6324 11.6324i 0.728450 0.728450i
\(256\) 14.9845 + 5.60939i 0.936530 + 0.350587i
\(257\) 17.6933i 1.10368i 0.833950 + 0.551840i \(0.186074\pi\)
−0.833950 + 0.551840i \(0.813926\pi\)
\(258\) −14.7870 0.662529i −0.920601 0.0412473i
\(259\) 26.7842i 1.66429i
\(260\) 9.07919 13.7984i 0.563067 0.855742i
\(261\) 4.37007i 0.270500i
\(262\) −0.329193 + 7.34728i −0.0203376 + 0.453917i
\(263\) 18.2366i 1.12452i −0.826962 0.562258i \(-0.809933\pi\)
0.826962 0.562258i \(-0.190067\pi\)
\(264\) −0.214348 + 0.163312i −0.0131922 + 0.0100511i
\(265\) 2.28566 2.28566i 0.140407 0.140407i
\(266\) 13.5620 + 0.607640i 0.831538 + 0.0372568i
\(267\) −1.90441 1.90441i −0.116548 0.116548i
\(268\) −17.7157 + 14.7964i −1.08216 + 0.903835i
\(269\) 6.68357i 0.407504i 0.979023 + 0.203752i \(0.0653137\pi\)
−0.979023 + 0.203752i \(0.934686\pi\)
\(270\) −2.39080 + 2.18574i −0.145499 + 0.133020i
\(271\) 5.65140 5.65140i 0.343298 0.343298i −0.514308 0.857606i \(-0.671951\pi\)
0.857606 + 0.514308i \(0.171951\pi\)
\(272\) −5.11766 + 28.2683i −0.310303 + 1.71402i
\(273\) 9.35300 + 5.01789i 0.566069 + 0.303697i
\(274\) −22.1837 + 20.2811i −1.34016 + 1.22522i
\(275\) 0.0166192 0.0166192i 0.00100218 0.00100218i
\(276\) −3.99300 0.358530i −0.240351 0.0215810i
\(277\) 24.3573 1.46349 0.731745 0.681579i \(-0.238706\pi\)
0.731745 + 0.681579i \(0.238706\pi\)
\(278\) 0.387674 8.65254i 0.0232512 0.518945i
\(279\) 2.08158 + 2.08158i 0.124621 + 0.124621i
\(280\) 2.55414 18.9002i 0.152639 1.12950i
\(281\) −7.19722 7.19722i −0.429350 0.429350i 0.459057 0.888407i \(-0.348187\pi\)
−0.888407 + 0.459057i \(0.848187\pi\)
\(282\) −7.17075 7.84346i −0.427012 0.467071i
\(283\) 14.0053i 0.832529i 0.909244 + 0.416264i \(0.136661\pi\)
−0.909244 + 0.416264i \(0.863339\pi\)
\(284\) 0.0150419 + 0.0180096i 0.000892571 + 0.00106867i
\(285\) −7.46925 −0.442440
\(286\) −0.417373 0.248597i −0.0246798 0.0146999i
\(287\) 33.0703i 1.95208i
\(288\) 1.25587 5.51569i 0.0740028 0.325015i
\(289\) −34.5804 −2.03414
\(290\) −9.55185 10.4479i −0.560904 0.613524i
\(291\) −8.76265 + 8.76265i −0.513676 + 0.513676i
\(292\) −0.760240 0.910231i −0.0444897 0.0532672i
\(293\) −10.4354 + 10.4354i −0.609643 + 0.609643i −0.942853 0.333210i \(-0.891868\pi\)
0.333210 + 0.942853i \(0.391868\pi\)
\(294\) 2.35370 + 0.105457i 0.137271 + 0.00615037i
\(295\) 12.8392i 0.747526i
\(296\) 15.5961 + 20.4701i 0.906507 + 1.18980i
\(297\) 0.0673682 + 0.0673682i 0.00390910 + 0.00390910i
\(298\) 19.5614 17.8837i 1.13316 1.03597i
\(299\) −2.08732 6.91947i −0.120713 0.400163i
\(300\) −0.0441232 + 0.491407i −0.00254746 + 0.0283714i
\(301\) −21.7869 21.7869i −1.25578 1.25578i
\(302\) 3.52328 + 3.85381i 0.202742 + 0.221762i
\(303\) −10.5683 −0.607133
\(304\) 10.7187 7.43258i 0.614757 0.426288i
\(305\) −3.14283 + 3.14283i −0.179958 + 0.179958i
\(306\) 10.1466 + 0.454617i 0.580044 + 0.0259887i
\(307\) 9.49598 + 9.49598i 0.541964 + 0.541964i 0.924104 0.382140i \(-0.124813\pi\)
−0.382140 + 0.924104i \(0.624813\pi\)
\(308\) −0.558683 0.0501640i −0.0318339 0.00285836i
\(309\) 3.52228 0.200376
\(310\) 9.52646 + 0.426830i 0.541066 + 0.0242423i
\(311\) 19.3516 1.09733 0.548664 0.836043i \(-0.315136\pi\)
0.548664 + 0.836043i \(0.315136\pi\)
\(312\) 10.0700 1.61118i 0.570099 0.0912149i
\(313\) 10.1200 0.572016 0.286008 0.958227i \(-0.407672\pi\)
0.286008 + 0.958227i \(0.407672\pi\)
\(314\) −1.92593 0.0862908i −0.108687 0.00486967i
\(315\) −6.74298 −0.379924
\(316\) −1.51434 + 16.8654i −0.0851883 + 0.948755i
\(317\) −18.1488 18.1488i −1.01934 1.01934i −0.999809 0.0195277i \(-0.993784\pi\)
−0.0195277 0.999809i \(-0.506216\pi\)
\(318\) 1.99371 + 0.0893277i 0.111802 + 0.00500925i
\(319\) −0.294404 + 0.294404i −0.0164834 + 0.0164834i
\(320\) −9.05336 15.9319i −0.506098 0.890619i
\(321\) −11.8314 −0.660364
\(322\) −5.63092 6.15917i −0.313799 0.343237i
\(323\) 16.5600 + 16.5600i 0.921426 + 0.921426i
\(324\) −1.99199 0.178860i −0.110666 0.00993665i
\(325\) −0.851558 + 0.256880i −0.0472360 + 0.0142491i
\(326\) 20.2614 18.5236i 1.12217 1.02593i
\(327\) 12.9904 + 12.9904i 0.718370 + 0.718370i
\(328\) −19.2564 25.2742i −1.06326 1.39553i
\(329\) 22.1216i 1.21960i
\(330\) 0.308313 + 0.0138139i 0.0169721 + 0.000760430i
\(331\) −22.5976 + 22.5976i −1.24208 + 1.24208i −0.282939 + 0.959138i \(0.591309\pi\)
−0.959138 + 0.282939i \(0.908691\pi\)
\(332\) 7.27652 6.07747i 0.399351 0.333545i
\(333\) 6.43362 6.43362i 0.352560 0.352560i
\(334\) −4.25768 4.65711i −0.232970 0.254825i
\(335\) 26.4354 1.44432
\(336\) 9.67643 6.70988i 0.527893 0.366054i
\(337\) 8.65894i 0.471683i −0.971792 0.235841i \(-0.924215\pi\)
0.971792 0.235841i \(-0.0757846\pi\)
\(338\) 9.47089 + 15.7576i 0.515148 + 0.857101i
\(339\) −12.7051 −0.690047
\(340\) 25.2522 21.0910i 1.36949 1.14382i
\(341\) 0.280465i 0.0151881i
\(342\) −3.11165 3.40356i −0.168259 0.184044i
\(343\) −11.1032 11.1032i −0.599516 0.599516i
\(344\) −29.3371 3.96456i −1.58175 0.213754i
\(345\) 3.24669 + 3.24669i 0.174796 + 0.174796i
\(346\) −0.159661 + 3.56348i −0.00858341 + 0.191574i
\(347\) −16.6635 −0.894546 −0.447273 0.894397i \(-0.647605\pi\)
−0.447273 + 0.894397i \(0.647605\pi\)
\(348\) 0.781629 8.70511i 0.0418997 0.466643i
\(349\) −3.99002 + 3.99002i −0.213581 + 0.213581i −0.805787 0.592206i \(-0.798257\pi\)
0.592206 + 0.805787i \(0.298257\pi\)
\(350\) −0.757990 + 0.692980i −0.0405163 + 0.0370413i
\(351\) −1.04130 3.45191i −0.0555804 0.184249i
\(352\) −0.456188 + 0.286976i −0.0243149 + 0.0152959i
\(353\) −6.09559 + 6.09559i −0.324436 + 0.324436i −0.850466 0.526030i \(-0.823680\pi\)
0.526030 + 0.850466i \(0.323680\pi\)
\(354\) 5.85051 5.34873i 0.310951 0.284282i
\(355\) 0.0268740i 0.00142632i
\(356\) −3.45293 4.13418i −0.183005 0.219111i
\(357\) 14.9498 + 14.9498i 0.791229 + 0.791229i
\(358\) −17.1992 0.770604i −0.909005 0.0407277i
\(359\) −20.6821 + 20.6821i −1.09156 + 1.09156i −0.0961965 + 0.995362i \(0.530668\pi\)
−0.995362 + 0.0961965i \(0.969332\pi\)
\(360\) −5.15337 + 3.92636i −0.271607 + 0.206937i
\(361\) 8.36669i 0.440352i
\(362\) −0.0721353 + 1.61000i −0.00379135 + 0.0846195i
\(363\) 10.9909i 0.576874i
\(364\) 17.7335 + 11.6685i 0.929490 + 0.611593i
\(365\) 1.35825i 0.0710941i
\(366\) −2.74140 0.122828i −0.143295 0.00642030i
\(367\) 30.1227i 1.57239i 0.617977 + 0.786196i \(0.287953\pi\)
−0.617977 + 0.786196i \(0.712047\pi\)
\(368\) −7.88988 1.42837i −0.411288 0.0744592i
\(369\) −7.94353 + 7.94353i −0.413524 + 0.413524i
\(370\) 1.31922 29.4437i 0.0685828 1.53071i
\(371\) 2.93749 + 2.93749i 0.152507 + 0.152507i
\(372\) 3.77418 + 4.51880i 0.195682 + 0.234289i
\(373\) 8.59939i 0.445259i 0.974903 + 0.222630i \(0.0714641\pi\)
−0.974903 + 0.222630i \(0.928536\pi\)
\(374\) −0.652934 0.714187i −0.0337624 0.0369297i
\(375\) −7.69881 + 7.69881i −0.397565 + 0.397565i
\(376\) −12.8812 16.9066i −0.664295 0.871893i
\(377\) 15.0851 4.55055i 0.776921 0.234365i
\(378\) −2.80909 3.07262i −0.144484 0.158038i
\(379\) 11.5751 11.5751i 0.594571 0.594571i −0.344292 0.938863i \(-0.611881\pi\)
0.938863 + 0.344292i \(0.111881\pi\)
\(380\) −14.8786 1.33595i −0.763258 0.0685327i
\(381\) −18.5476 −0.950221
\(382\) 31.6896 + 1.41984i 1.62138 + 0.0726455i
\(383\) 2.01486 + 2.01486i 0.102954 + 0.102954i 0.756708 0.653753i \(-0.226807\pi\)
−0.653753 + 0.756708i \(0.726807\pi\)
\(384\) 3.48821 10.7625i 0.178007 0.549224i
\(385\) 0.454263 + 0.454263i 0.0231514 + 0.0231514i
\(386\) −5.27513 + 4.82270i −0.268497 + 0.245469i
\(387\) 10.4665i 0.532043i
\(388\) −19.0224 + 15.8878i −0.965714 + 0.806581i
\(389\) 25.8294 1.30960 0.654801 0.755801i \(-0.272752\pi\)
0.654801 + 0.755801i \(0.272752\pi\)
\(390\) −10.0345 5.97680i −0.508118 0.302647i
\(391\) 14.3965i 0.728060i
\(392\) 4.66968 + 0.631052i 0.235855 + 0.0318729i
\(393\) 5.20053 0.262332
\(394\) −3.33766 + 3.05140i −0.168149 + 0.153727i
\(395\) 13.7132 13.7132i 0.689986 0.689986i
\(396\) 0.122147 + 0.146246i 0.00613813 + 0.00734914i
\(397\) −11.0841 + 11.0841i −0.556297 + 0.556297i −0.928251 0.371954i \(-0.878688\pi\)
0.371954 + 0.928251i \(0.378688\pi\)
\(398\) 1.67349 37.3507i 0.0838844 1.87222i
\(399\) 9.59938i 0.480570i
\(400\) −0.175786 + 0.970983i −0.00878928 + 0.0485492i
\(401\) −25.0265 25.0265i −1.24977 1.24977i −0.955823 0.293942i \(-0.905033\pi\)
−0.293942 0.955823i \(-0.594967\pi\)
\(402\) 11.0129 + 12.0460i 0.549272 + 0.600800i
\(403\) −5.01789 + 9.35300i −0.249959 + 0.465906i
\(404\) −21.0519 1.89024i −1.04737 0.0940431i
\(405\) 1.61967 + 1.61967i 0.0804823 + 0.0804823i
\(406\) 13.4275 12.2759i 0.666398 0.609243i
\(407\) −0.866843 −0.0429678
\(408\) 20.1306 + 2.72041i 0.996615 + 0.134681i
\(409\) 24.7440 24.7440i 1.22351 1.22351i 0.257139 0.966374i \(-0.417220\pi\)
0.966374 0.257139i \(-0.0827798\pi\)
\(410\) −1.62882 + 36.3539i −0.0804419 + 1.79539i
\(411\) 15.0286 + 15.0286i 0.741307 + 0.741307i
\(412\) 7.01634 + 0.629995i 0.345670 + 0.0310376i
\(413\) 16.5007 0.811948
\(414\) −0.126887 + 2.83200i −0.00623614 + 0.139185i
\(415\) −10.8581 −0.533002
\(416\) 20.3474 1.40833i 0.997613 0.0690491i
\(417\) −6.12441 −0.299914
\(418\) −0.0196656 + 0.438919i −0.000961876 + 0.0214682i
\(419\) 15.6568 0.764883 0.382441 0.923980i \(-0.375083\pi\)
0.382441 + 0.923980i \(0.375083\pi\)
\(420\) −13.4319 1.20605i −0.655411 0.0588491i
\(421\) −5.24431 5.24431i −0.255592 0.255592i 0.567667 0.823259i \(-0.307846\pi\)
−0.823259 + 0.567667i \(0.807846\pi\)
\(422\) −0.144682 + 3.22916i −0.00704300 + 0.157193i
\(423\) −5.31365 + 5.31365i −0.258359 + 0.258359i
\(424\) 3.95547 + 0.534534i 0.192095 + 0.0259593i
\(425\) −1.77173 −0.0859414
\(426\) 0.0122458 0.0111956i 0.000593313 0.000542426i
\(427\) −4.03912 4.03912i −0.195467 0.195467i
\(428\) −23.5680 2.11616i −1.13920 0.102288i
\(429\) −0.162399 + 0.302700i −0.00784069 + 0.0146145i
\(430\) 22.8771 + 25.0233i 1.10323 + 1.20673i
\(431\) 16.9631 + 16.9631i 0.817084 + 0.817084i 0.985684 0.168600i \(-0.0539248\pi\)
−0.168600 + 0.985684i \(0.553925\pi\)
\(432\) −3.93602 0.712572i −0.189372 0.0342836i
\(433\) 21.6657i 1.04119i 0.853805 + 0.520593i \(0.174289\pi\)
−0.853805 + 0.520593i \(0.825711\pi\)
\(434\) −0.548556 + 12.2433i −0.0263315 + 0.587696i
\(435\) −7.07808 + 7.07808i −0.339368 + 0.339368i
\(436\) 23.5532 + 28.2001i 1.12799 + 1.35054i
\(437\) −4.62203 + 4.62203i −0.221102 + 0.221102i
\(438\) −0.618924 + 0.565841i −0.0295733 + 0.0270369i
\(439\) 26.9953 1.28842 0.644208 0.764850i \(-0.277187\pi\)
0.644208 + 0.764850i \(0.277187\pi\)
\(440\) 0.611685 + 0.0826619i 0.0291610 + 0.00394075i
\(441\) 1.66599i 0.0793328i
\(442\) 8.99638 + 35.4987i 0.427914 + 1.68850i
\(443\) −3.69391 −0.175503 −0.0877515 0.996142i \(-0.527968\pi\)
−0.0877515 + 0.996142i \(0.527968\pi\)
\(444\) 13.9664 11.6650i 0.662816 0.553595i
\(445\) 6.16904i 0.292441i
\(446\) −9.82865 + 8.98568i −0.465400 + 0.425484i
\(447\) −13.2521 13.2521i −0.626803 0.626803i
\(448\) 20.4755 11.6353i 0.967374 0.549714i
\(449\) 15.9641 + 15.9641i 0.753391 + 0.753391i 0.975111 0.221719i \(-0.0711669\pi\)
−0.221719 + 0.975111i \(0.571167\pi\)
\(450\) 0.348525 + 0.0156156i 0.0164296 + 0.000736125i
\(451\) 1.07028 0.0503977
\(452\) −25.3084 2.27243i −1.19041 0.106886i
\(453\) 2.61081 2.61081i 0.122667 0.122667i
\(454\) 10.6177 + 11.6138i 0.498313 + 0.545061i
\(455\) −7.02146 23.2762i −0.329171 1.09120i
\(456\) −5.58961 7.33640i −0.261757 0.343558i
\(457\) −9.99072 + 9.99072i −0.467346 + 0.467346i −0.901054 0.433708i \(-0.857205\pi\)
0.433708 + 0.901054i \(0.357205\pi\)
\(458\) −4.91949 5.38100i −0.229873 0.251438i
\(459\) 7.18195i 0.335225i
\(460\) 5.88666 + 7.04807i 0.274467 + 0.328618i
\(461\) −9.80788 9.80788i −0.456798 0.456798i 0.440805 0.897603i \(-0.354693\pi\)
−0.897603 + 0.440805i \(0.854693\pi\)
\(462\) −0.0177534 + 0.396240i −0.000825964 + 0.0184348i
\(463\) −16.5192 + 16.5192i −0.767714 + 0.767714i −0.977704 0.209990i \(-0.932657\pi\)
0.209990 + 0.977704i \(0.432657\pi\)
\(464\) 3.11399 17.2007i 0.144563 0.798521i
\(465\) 6.74298i 0.312698i
\(466\) 4.68403 + 0.209867i 0.216984 + 0.00972188i
\(467\) 13.7056i 0.634220i −0.948389 0.317110i \(-0.897288\pi\)
0.948389 0.317110i \(-0.102712\pi\)
\(468\) −1.45685 7.06241i −0.0673427 0.326460i
\(469\) 33.9745i 1.56880i
\(470\) −1.08957 + 24.3181i −0.0502580 + 1.12171i
\(471\) 1.36321i 0.0628132i
\(472\) 12.6108 9.60818i 0.580460 0.442252i
\(473\) 0.705110 0.705110i 0.0324210 0.0324210i
\(474\) 11.9616 + 0.535937i 0.549416 + 0.0246164i
\(475\) 0.568819 + 0.568819i 0.0260992 + 0.0260992i
\(476\) 27.1059 + 32.4538i 1.24240 + 1.48752i
\(477\) 1.41118i 0.0646136i
\(478\) 11.0543 10.1062i 0.505612 0.462248i
\(479\) 7.17788 7.17788i 0.327966 0.327966i −0.523847 0.851813i \(-0.675504\pi\)
0.851813 + 0.523847i \(0.175504\pi\)
\(480\) −10.9677 + 6.89952i −0.500605 + 0.314918i
\(481\) 28.9076 + 15.5090i 1.31807 + 0.707148i
\(482\) −13.3255 + 12.1826i −0.606961 + 0.554904i
\(483\) −4.17261 + 4.17261i −0.189860 + 0.189860i
\(484\) −1.96583 + 21.8938i −0.0893561 + 0.995171i
\(485\) 28.3853 1.28891
\(486\) −0.0632999 + 1.41280i −0.00287134 + 0.0640857i
\(487\) 0.384275 + 0.384275i 0.0174132 + 0.0174132i 0.715760 0.698347i \(-0.246081\pi\)
−0.698347 + 0.715760i \(0.746081\pi\)
\(488\) −5.43886 0.734997i −0.246206 0.0332717i
\(489\) −13.7263 13.7263i −0.620726 0.620726i
\(490\) −3.64143 3.98304i −0.164503 0.179935i
\(491\) 2.72036i 0.122768i −0.998114 0.0613840i \(-0.980449\pi\)
0.998114 0.0613840i \(-0.0195514\pi\)
\(492\) −17.2442 + 14.4026i −0.777428 + 0.649320i
\(493\) 31.3856 1.41354
\(494\) 8.50864 14.2853i 0.382822 0.642725i
\(495\) 0.218229i 0.00980868i
\(496\) 6.70988 + 9.67643i 0.301282 + 0.434485i
\(497\) 0.0345381 0.00154924
\(498\) −4.52342 4.94777i −0.202699 0.221715i
\(499\) 29.4023 29.4023i 1.31623 1.31623i 0.399493 0.916736i \(-0.369186\pi\)
0.916736 0.399493i \(-0.130814\pi\)
\(500\) −16.7129 + 13.9589i −0.747425 + 0.624262i
\(501\) −3.15502 + 3.15502i −0.140956 + 0.140956i
\(502\) −26.1348 1.17096i −1.16645 0.0522626i
\(503\) 8.72354i 0.388963i 0.980906 + 0.194482i \(0.0623025\pi\)
−0.980906 + 0.194482i \(0.937698\pi\)
\(504\) −5.04610 6.62305i −0.224771 0.295014i
\(505\) 17.1172 + 17.1172i 0.761706 + 0.761706i
\(506\) 0.199335 0.182239i 0.00886151 0.00810149i
\(507\) 10.8314 7.18895i 0.481039 0.319272i
\(508\) −36.9465 3.31741i −1.63924 0.147186i
\(509\) −29.8098 29.8098i −1.32130 1.32130i −0.912726 0.408572i \(-0.866027\pi\)
−0.408572 0.912726i \(-0.633973\pi\)
\(510\) −15.6979 17.1706i −0.695115 0.760326i
\(511\) −1.74561 −0.0772211
\(512\) 8.87345 20.8149i 0.392155 0.919899i
\(513\) −2.30579 + 2.30579i −0.101803 + 0.101803i
\(514\) 24.9971 + 1.11999i 1.10257 + 0.0494004i
\(515\) −5.70495 5.70495i −0.251390 0.251390i
\(516\) −1.87204 + 20.8491i −0.0824118 + 0.917832i
\(517\) 0.715943 0.0314871
\(518\) 37.8407 + 1.69544i 1.66262 + 0.0744933i
\(519\) 2.52229 0.110716
\(520\) −18.9196 13.7005i −0.829681 0.600806i
\(521\) 23.2436 1.01832 0.509161 0.860671i \(-0.329956\pi\)
0.509161 + 0.860671i \(0.329956\pi\)
\(522\) −6.17401 0.276625i −0.270229 0.0121075i
\(523\) 15.0188 0.656728 0.328364 0.944551i \(-0.393503\pi\)
0.328364 + 0.944551i \(0.393503\pi\)
\(524\) 10.3594 + 0.930164i 0.452551 + 0.0406344i
\(525\) 0.513510 + 0.513510i 0.0224114 + 0.0224114i
\(526\) −25.7646 1.15437i −1.12339 0.0503331i
\(527\) −14.9498 + 14.9498i −0.651225 + 0.651225i
\(528\) 0.217158 + 0.313167i 0.00945058 + 0.0136289i
\(529\) −18.9818 −0.825298
\(530\) −3.08448 3.37385i −0.133981 0.146551i
\(531\) −3.96350 3.96350i −0.172001 0.172001i
\(532\) 1.71694 19.1218i 0.0744389 0.829037i
\(533\) −35.6920 19.1488i −1.54599 0.829425i
\(534\) −2.81109 + 2.56999i −0.121648 + 0.111214i
\(535\) 19.1630 + 19.1630i 0.828489 + 0.828489i
\(536\) 19.7829 + 25.9652i 0.854492 + 1.12153i
\(537\) 12.1739i 0.525341i
\(538\) 9.44252 + 0.423069i 0.407096 + 0.0182398i
\(539\) −0.112235 + 0.112235i −0.00483429 + 0.00483429i
\(540\) 2.93668 + 3.51606i 0.126374 + 0.151307i
\(541\) 7.84233 7.84233i 0.337168 0.337168i −0.518132 0.855300i \(-0.673373\pi\)
0.855300 + 0.518132i \(0.173373\pi\)
\(542\) −7.62655 8.34201i −0.327588 0.358320i
\(543\) 1.13958 0.0489041
\(544\) 39.6134 + 9.01958i 1.69841 + 0.386712i
\(545\) 42.0804i 1.80253i
\(546\) 7.68131 12.8962i 0.328730 0.551909i
\(547\) −24.3317 −1.04035 −0.520175 0.854060i \(-0.674133\pi\)
−0.520175 + 0.854060i \(0.674133\pi\)
\(548\) 27.2488 + 32.6248i 1.16401 + 1.39366i
\(549\) 1.94041i 0.0828145i
\(550\) −0.0224275 0.0245315i −0.000956313 0.00104603i
\(551\) −10.0764 10.0764i −0.429271 0.429271i
\(552\) −0.759287 + 5.61860i −0.0323174 + 0.239144i
\(553\) 17.6240 + 17.6240i 0.749450 + 0.749450i
\(554\) 1.54182 34.4119i 0.0655055 1.46202i
\(555\) −20.8407 −0.884640
\(556\) −12.1997 1.09541i −0.517384 0.0464557i
\(557\) −14.8145 + 14.8145i −0.627710 + 0.627710i −0.947491 0.319781i \(-0.896391\pi\)
0.319781 + 0.947491i \(0.396391\pi\)
\(558\) 3.07262 2.80909i 0.130074 0.118918i
\(559\) −36.1295 + 10.8988i −1.52811 + 0.460969i
\(560\) −26.5405 4.80486i −1.12154 0.203042i
\(561\) −0.483835 + 0.483835i −0.0204275 + 0.0204275i
\(562\) −10.6238 + 9.71262i −0.448137 + 0.409702i
\(563\) 35.1602i 1.48183i −0.671601 0.740913i \(-0.734393\pi\)
0.671601 0.740913i \(-0.265607\pi\)
\(564\) −11.5351 + 9.63432i −0.485716 + 0.405678i
\(565\) 20.5781 + 20.5781i 0.865729 + 0.865729i
\(566\) 19.7866 + 0.886534i 0.831694 + 0.0372638i
\(567\) −2.08158 + 2.08158i −0.0874183 + 0.0874183i
\(568\) 0.0263960 0.0201111i 0.00110755 0.000843843i
\(569\) 18.2323i 0.764337i 0.924093 + 0.382168i \(0.124823\pi\)
−0.924093 + 0.382168i \(0.875177\pi\)
\(570\) −0.472803 + 10.5525i −0.0198035 + 0.441997i
\(571\) 33.5099i 1.40235i −0.712990 0.701174i \(-0.752660\pi\)
0.712990 0.701174i \(-0.247340\pi\)
\(572\) −0.377637 + 0.573927i −0.0157898 + 0.0239971i
\(573\) 22.4304i 0.937044i
\(574\) −46.7215 2.09334i −1.95012 0.0873745i
\(575\) 0.494502i 0.0206222i
\(576\) −7.71304 2.12343i −0.321377 0.0884762i
\(577\) −4.19353 + 4.19353i −0.174579 + 0.174579i −0.788988 0.614409i \(-0.789395\pi\)
0.614409 + 0.788988i \(0.289395\pi\)
\(578\) −2.18893 + 48.8550i −0.0910477 + 2.03210i
\(579\) 3.57371 + 3.57371i 0.148518 + 0.148518i
\(580\) −15.3654 + 12.8335i −0.638015 + 0.532881i
\(581\) 13.9546i 0.578936i
\(582\) 11.8252 + 12.9345i 0.490169 + 0.536153i
\(583\) −0.0950688 + 0.0950688i −0.00393735 + 0.00393735i
\(584\) −1.33409 + 1.01645i −0.0552052 + 0.0420608i
\(585\) −3.90441 + 7.27754i −0.161427 + 0.300889i
\(586\) 14.0825 + 15.4037i 0.581744 + 0.636319i
\(587\) 13.2081 13.2081i 0.545157 0.545157i −0.379879 0.925036i \(-0.624034\pi\)
0.925036 + 0.379879i \(0.124034\pi\)
\(588\) 0.297978 3.31863i 0.0122884 0.136858i
\(589\) 9.59938 0.395536
\(590\) −18.1391 0.812718i −0.746776 0.0334591i
\(591\) 2.26114 + 2.26114i 0.0930108 + 0.0930108i
\(592\) 29.9073 20.7384i 1.22918 0.852344i
\(593\) −0.911200 0.911200i −0.0374185 0.0374185i 0.688150 0.725568i \(-0.258423\pi\)
−0.725568 + 0.688150i \(0.758423\pi\)
\(594\) 0.0994420 0.0909132i 0.00408015 0.00373021i
\(595\) 48.4277i 1.98534i
\(596\) −24.0277 28.7683i −0.984214 1.17839i
\(597\) −26.4375 −1.08201
\(598\) −9.90793 + 2.51095i −0.405165 + 0.102681i
\(599\) 25.5885i 1.04552i −0.852481 0.522758i \(-0.824903\pi\)
0.852481 0.522758i \(-0.175097\pi\)
\(600\) 0.691464 + 0.0934431i 0.0282289 + 0.00381480i
\(601\) 9.95824 0.406205 0.203103 0.979157i \(-0.434897\pi\)
0.203103 + 0.979157i \(0.434897\pi\)
\(602\) −32.1596 + 29.4014i −1.31073 + 1.19831i
\(603\) 8.16072 8.16072i 0.332330 0.332330i
\(604\) 5.66767 4.73373i 0.230614 0.192613i
\(605\) 17.8017 17.8017i 0.723743 0.723743i
\(606\) −0.668972 + 14.9309i −0.0271751 + 0.606524i
\(607\) 41.0894i 1.66777i −0.551941 0.833883i \(-0.686113\pi\)
0.551941 0.833883i \(-0.313887\pi\)
\(608\) −9.82223 15.6138i −0.398344 0.633222i
\(609\) −9.09666 9.09666i −0.368615 0.368615i
\(610\) 4.24123 + 4.63912i 0.171723 + 0.187832i
\(611\) −23.8754 12.8092i −0.965894 0.518203i
\(612\) 1.28456 14.3063i 0.0519253 0.578300i
\(613\) 7.07976 + 7.07976i 0.285949 + 0.285949i 0.835476 0.549527i \(-0.185192\pi\)
−0.549527 + 0.835476i \(0.685192\pi\)
\(614\) 14.0170 12.8148i 0.565679 0.517163i
\(615\) 25.7319 1.03761
\(616\) −0.106236 + 0.786130i −0.00428037 + 0.0316741i
\(617\) 2.05439 2.05439i 0.0827067 0.0827067i −0.664543 0.747250i \(-0.731374\pi\)
0.747250 + 0.664543i \(0.231374\pi\)
\(618\) 0.222960 4.97627i 0.00896877 0.200175i
\(619\) −16.6627 16.6627i −0.669730 0.669730i 0.287923 0.957653i \(-0.407035\pi\)
−0.957653 + 0.287923i \(0.907035\pi\)
\(620\) 1.20605 13.4319i 0.0484360 0.539439i
\(621\) 2.00453 0.0804392
\(622\) 1.22495 27.3399i 0.0491162 1.09623i
\(623\) −7.92838 −0.317644
\(624\) −1.63884 14.3288i −0.0656059 0.573611i
\(625\) 26.1726 1.04690
\(626\) 0.640595 14.2975i 0.0256033 0.571443i
\(627\) 0.310674 0.0124071
\(628\) −0.243823 + 2.71549i −0.00972958 + 0.108360i
\(629\) 46.2059 + 46.2059i 1.84235 + 1.84235i
\(630\) −0.426830 + 9.52646i −0.0170053 + 0.379543i
\(631\) −32.6063 + 32.6063i −1.29804 + 1.29804i −0.368349 + 0.929688i \(0.620077\pi\)
−0.929688 + 0.368349i \(0.879923\pi\)
\(632\) 23.7316 + 3.20703i 0.943991 + 0.127569i
\(633\) 2.28566 0.0908466
\(634\) −26.7893 + 24.4917i −1.06394 + 0.972690i
\(635\) 30.0410 + 30.0410i 1.19214 + 1.19214i
\(636\) 0.252404 2.81105i 0.0100085 0.111466i
\(637\) 5.75085 1.73479i 0.227857 0.0687350i
\(638\) 0.397297 + 0.434568i 0.0157291 + 0.0172047i
\(639\) −0.00829610 0.00829610i −0.000328189 0.000328189i
\(640\) −23.0816 + 11.7821i −0.912380 + 0.465727i
\(641\) 2.93313i 0.115852i 0.998321 + 0.0579259i \(0.0184487\pi\)
−0.998321 + 0.0579259i \(0.981551\pi\)
\(642\) −0.748926 + 16.7153i −0.0295577 + 0.659702i
\(643\) 19.2248 19.2248i 0.758153 0.758153i −0.217833 0.975986i \(-0.569899\pi\)
0.975986 + 0.217833i \(0.0698989\pi\)
\(644\) −9.05808 + 7.56546i −0.356939 + 0.298121i
\(645\) 16.9523 16.9523i 0.667498 0.667498i
\(646\) 24.4442 22.3477i 0.961745 0.879259i
\(647\) −45.3264 −1.78197 −0.890983 0.454037i \(-0.849983\pi\)
−0.890983 + 0.454037i \(0.849983\pi\)
\(648\) −0.378785 + 2.80295i −0.0148801 + 0.110110i
\(649\) 0.534029i 0.0209625i
\(650\) 0.309015 + 1.21934i 0.0121206 + 0.0478264i
\(651\) 8.66599 0.339647
\(652\) −24.8876 29.7978i −0.974673 1.16697i
\(653\) 2.67450i 0.104661i 0.998630 + 0.0523307i \(0.0166650\pi\)
−0.998630 + 0.0523307i \(0.983335\pi\)
\(654\) 19.1751 17.5305i 0.749804 0.685496i
\(655\) −8.42316 8.42316i −0.329120 0.329120i
\(656\) −36.9262 + 25.6055i −1.44173 + 0.999728i
\(657\) 0.419298 + 0.419298i 0.0163584 + 0.0163584i
\(658\) −31.2534 1.40030i −1.21838 0.0545893i
\(659\) 37.5991 1.46465 0.732326 0.680954i \(-0.238435\pi\)
0.732326 + 0.680954i \(0.238435\pi\)
\(660\) 0.0390324 0.434710i 0.00151933 0.0169211i
\(661\) 29.7860 29.7860i 1.15854 1.15854i 0.173752 0.984789i \(-0.444411\pi\)
0.984789 0.173752i \(-0.0555892\pi\)
\(662\) 30.4954 + 33.3562i 1.18524 + 1.29643i
\(663\) 24.7915 7.47856i 0.962820 0.290443i
\(664\) −8.12563 10.6649i −0.315335 0.413880i
\(665\) −15.5479 + 15.5479i −0.602921 + 0.602921i
\(666\) −8.68214 9.49664i −0.336426 0.367987i
\(667\) 8.75994i 0.339186i
\(668\) −6.84905 + 5.72044i −0.264998 + 0.221331i
\(669\) 6.65855 + 6.65855i 0.257434 + 0.257434i
\(670\) 1.67336 37.3479i 0.0646475 1.44287i
\(671\) 0.130722 0.130722i 0.00504646 0.00504646i
\(672\) −8.86717 14.0956i −0.342059 0.543748i
\(673\) 26.8225i 1.03393i 0.856006 + 0.516965i \(0.172938\pi\)
−0.856006 + 0.516965i \(0.827062\pi\)
\(674\) −12.2333 0.548110i −0.471210 0.0211124i
\(675\) 0.246692i 0.00949517i
\(676\) 22.8618 12.3830i 0.879300 0.476269i
\(677\) 27.6382i 1.06222i 0.847302 + 0.531112i \(0.178226\pi\)
−0.847302 + 0.531112i \(0.821774\pi\)
\(678\) −0.804232 + 17.9497i −0.0308864 + 0.689355i
\(679\) 36.4804i 1.39999i
\(680\) −28.1989 37.0113i −1.08138 1.41932i
\(681\) 7.86789 7.86789i 0.301498 0.301498i
\(682\) −0.396240 0.0177534i −0.0151728 0.000679814i
\(683\) −0.401585 0.401585i −0.0153662 0.0153662i 0.699382 0.714748i \(-0.253459\pi\)
−0.714748 + 0.699382i \(0.753459\pi\)
\(684\) −5.00551 + 4.18068i −0.191390 + 0.159852i
\(685\) 48.6829i 1.86008i
\(686\) −16.3894 + 14.9837i −0.625750 + 0.572081i
\(687\) −3.64543 + 3.64543i −0.139082 + 0.139082i
\(688\) −7.45814 + 41.1964i −0.284339 + 1.57060i
\(689\) 4.87127 1.46946i 0.185581 0.0559820i
\(690\) 4.79243 4.38140i 0.182445 0.166797i
\(691\) −25.8040 + 25.8040i −0.981632 + 0.981632i −0.999834 0.0182023i \(-0.994206\pi\)
0.0182023 + 0.999834i \(0.494206\pi\)
\(692\) 5.02436 + 0.451136i 0.190998 + 0.0171496i
\(693\) 0.280465 0.0106540
\(694\) −1.05480 + 23.5422i −0.0400397 + 0.893650i
\(695\) 9.91955 + 9.91955i 0.376270 + 0.376270i
\(696\) −12.2491 1.65531i −0.464300 0.0627445i
\(697\) −57.0500 57.0500i −2.16092 2.16092i
\(698\) 5.38452 + 5.88965i 0.203807 + 0.222927i
\(699\) 3.31543i 0.125401i
\(700\) 0.931058 + 1.11475i 0.0351907 + 0.0421336i
\(701\) 42.4434 1.60307 0.801533 0.597951i \(-0.204018\pi\)
0.801533 + 0.597951i \(0.204018\pi\)
\(702\) −4.94276 + 1.25264i −0.186553 + 0.0472778i
\(703\) 29.6691i 1.11899i
\(704\) 0.376563 + 0.662666i 0.0141922 + 0.0249752i
\(705\) 17.2128 0.648271
\(706\) 8.22598 + 8.99768i 0.309589 + 0.338632i
\(707\) −21.9988 + 21.9988i −0.827350 + 0.827350i
\(708\) −7.18633 8.60416i −0.270079 0.323364i
\(709\) 21.9848 21.9848i 0.825657 0.825657i −0.161256 0.986913i \(-0.551554\pi\)
0.986913 + 0.161256i \(0.0515544\pi\)
\(710\) −0.0379674 0.00170112i −0.00142489 6.38419e-5i
\(711\) 8.46664i 0.317524i
\(712\) −6.05932 + 4.61660i −0.227083 + 0.173014i
\(713\) −4.17261 4.17261i −0.156265 0.156265i
\(714\) 22.0674 20.1747i 0.825851 0.755021i
\(715\) 0.753308 0.227242i 0.0281721 0.00849837i
\(716\) −2.17741 + 24.2502i −0.0813737 + 0.906271i
\(717\) −7.48888 7.48888i −0.279677 0.279677i
\(718\) 27.9104 + 30.5287i 1.04161 + 1.13932i
\(719\) −4.55035 −0.169699 −0.0848497 0.996394i \(-0.527041\pi\)
−0.0848497 + 0.996394i \(0.527041\pi\)
\(720\) 5.22093 + 7.52920i 0.194573 + 0.280597i
\(721\) 7.33193 7.33193i 0.273055 0.273055i
\(722\) 11.8204 + 0.529611i 0.439911 + 0.0197101i
\(723\) 9.02754 + 9.02754i 0.335738 + 0.335738i
\(724\) 2.27003 + 0.203825i 0.0843650 + 0.00757510i
\(725\) 1.07806 0.0400381
\(726\) 15.5279 + 0.695724i 0.576296 + 0.0258207i
\(727\) −35.3567 −1.31131 −0.655653 0.755062i \(-0.727607\pi\)
−0.655653 + 0.755062i \(0.727607\pi\)
\(728\) 17.6077 24.3153i 0.652584 0.901184i
\(729\) 1.00000 0.0370370
\(730\) 1.91893 + 0.0859772i 0.0710229 + 0.00318216i
\(731\) −75.1699 −2.78026
\(732\) −0.347061 + 3.86526i −0.0128277 + 0.142864i
\(733\) −10.2364 10.2364i −0.378089 0.378089i 0.492323 0.870412i \(-0.336148\pi\)
−0.870412 + 0.492323i \(0.836148\pi\)
\(734\) 42.5572 + 1.90676i 1.57082 + 0.0703800i
\(735\) −2.69836 + 2.69836i −0.0995305 + 0.0995305i
\(736\) −2.51743 + 11.0564i −0.0927937 + 0.407543i
\(737\) −1.09955 −0.0405023
\(738\) 10.7198 + 11.7254i 0.394600 + 0.431618i
\(739\) −15.9995 15.9995i −0.588550 0.588550i 0.348688 0.937239i \(-0.386627\pi\)
−0.937239 + 0.348688i \(0.886627\pi\)
\(740\) −41.5145 3.72757i −1.52610 0.137028i
\(741\) −10.3604 5.55836i −0.380598 0.204191i
\(742\) 4.33602 3.96414i 0.159180 0.145528i
\(743\) 4.22277 + 4.22277i 0.154918 + 0.154918i 0.780311 0.625392i \(-0.215061\pi\)
−0.625392 + 0.780311i \(0.715061\pi\)
\(744\) 6.62305 5.04610i 0.242813 0.184999i
\(745\) 42.9282i 1.57277i
\(746\) 12.1492 + 0.544340i 0.444813 + 0.0199297i
\(747\) −3.35193 + 3.35193i −0.122641 + 0.122641i
\(748\) −1.05033 + 0.877255i −0.0384039 + 0.0320756i
\(749\) −24.6280 + 24.6280i −0.899889 + 0.899889i
\(750\) 10.3895 + 11.3642i 0.379372 + 0.414961i
\(751\) −39.7818 −1.45166 −0.725828 0.687876i \(-0.758543\pi\)
−0.725828 + 0.687876i \(0.758543\pi\)
\(752\) −24.7010 + 17.1283i −0.900752 + 0.624604i
\(753\) 18.4986i 0.674128i
\(754\) −5.47411 21.6002i −0.199355 0.786633i
\(755\) −8.45732 −0.307794
\(756\) −4.51880 + 3.77418i −0.164347 + 0.137265i
\(757\) 0.790942i 0.0287473i 0.999897 + 0.0143736i \(0.00457543\pi\)
−0.999897 + 0.0143736i \(0.995425\pi\)
\(758\) −15.6205 17.0859i −0.567362 0.620588i
\(759\) −0.135042 0.135042i −0.00490171 0.00490171i
\(760\) −2.82924 + 20.9359i −0.102627 + 0.759426i
\(761\) 2.96895 + 2.96895i 0.107624 + 0.107624i 0.758868 0.651244i \(-0.225753\pi\)
−0.651244 + 0.758868i \(0.725753\pi\)
\(762\) −1.17406 + 26.2039i −0.0425317 + 0.949269i
\(763\) 54.0812 1.95787
\(764\) 4.01190 44.6811i 0.145145 1.61650i
\(765\) −11.6324 + 11.6324i −0.420571 + 0.420571i
\(766\) 2.97412 2.71904i 0.107459 0.0982430i
\(767\) 9.55447 17.8089i 0.344992 0.643041i
\(768\) −14.9845 5.60939i −0.540706 0.202412i
\(769\) −20.0249 + 20.0249i −0.722117 + 0.722117i −0.969036 0.246919i \(-0.920582\pi\)
0.246919 + 0.969036i \(0.420582\pi\)
\(770\) 0.670535 0.613026i 0.0241644 0.0220919i
\(771\) 17.6933i 0.637210i
\(772\) 6.47958 + 7.75796i 0.233205 + 0.279215i
\(773\) −12.6302 12.6302i −0.454278 0.454278i 0.442494 0.896772i \(-0.354094\pi\)
−0.896772 + 0.442494i \(0.854094\pi\)
\(774\) 14.7870 + 0.662529i 0.531509 + 0.0238141i
\(775\) −0.513510 + 0.513510i −0.0184458 + 0.0184458i
\(776\) 21.2421 + 27.8804i 0.762547 + 1.00085i
\(777\) 26.7842i 0.960879i
\(778\) 1.63500 36.4917i 0.0586175 1.30829i
\(779\) 36.6322i 1.31248i
\(780\) −9.07919 + 13.7984i −0.325087 + 0.494063i
\(781\) 0.00111779i 3.99976e-5i
\(782\) −20.3393 0.911294i −0.727330 0.0325878i
\(783\) 4.37007i 0.156173i
\(784\) 1.18714 6.55737i 0.0423978 0.234192i
\(785\) 2.20795 2.20795i 0.0788051 0.0788051i
\(786\) 0.329193 7.34728i 0.0117419 0.262069i
\(787\) −26.5637 26.5637i −0.946895 0.946895i 0.0517643 0.998659i \(-0.483516\pi\)
−0.998659 + 0.0517643i \(0.983516\pi\)
\(788\) 4.09973 + 4.90858i 0.146047 + 0.174861i
\(789\) 18.2366i 0.649239i
\(790\) −18.5059 20.2420i −0.658411 0.720178i
\(791\) −26.4468 + 26.4468i −0.940339 + 0.940339i
\(792\) 0.214348 0.163312i 0.00761652 0.00580303i
\(793\) −6.69811 + 2.02054i −0.237857 + 0.0717516i
\(794\) 14.9580 + 16.3613i 0.530840 + 0.580640i
\(795\) −2.28566 + 2.28566i −0.0810638 + 0.0810638i
\(796\) −52.6631 4.72860i −1.86659 0.167601i
\(797\) −10.2872 −0.364393 −0.182196 0.983262i \(-0.558321\pi\)
−0.182196 + 0.983262i \(0.558321\pi\)
\(798\) −13.5620 0.607640i −0.480089 0.0215102i
\(799\) −38.1624 38.1624i −1.35009 1.35009i
\(800\) 1.36067 + 0.309813i 0.0481071 + 0.0109535i
\(801\) 1.90441 + 1.90441i 0.0672890 + 0.0672890i
\(802\) −36.9416 + 33.7732i −1.30445 + 1.19257i
\(803\) 0.0564947i 0.00199365i
\(804\) 17.7157 14.7964i 0.624784 0.521830i
\(805\) 13.5165 0.476395
\(806\) 12.8962 + 7.68131i 0.454251 + 0.270562i
\(807\) 6.68357i 0.235273i
\(808\) −4.00311 + 29.6224i −0.140829 + 1.04211i
\(809\) −1.64479 −0.0578278 −0.0289139 0.999582i \(-0.509205\pi\)
−0.0289139 + 0.999582i \(0.509205\pi\)
\(810\) 2.39080 2.18574i 0.0840040 0.0767992i
\(811\) −13.0418 + 13.0418i −0.457958 + 0.457958i −0.897985 0.440026i \(-0.854969\pi\)
0.440026 + 0.897985i \(0.354969\pi\)
\(812\) −16.4934 19.7475i −0.578805 0.693000i
\(813\) −5.65140 + 5.65140i −0.198203 + 0.198203i
\(814\) −0.0548711 + 1.22467i −0.00192323 + 0.0429248i
\(815\) 44.4644i 1.55752i
\(816\) 5.11766 28.2683i 0.179154 0.989588i
\(817\) 24.1335 + 24.1335i 0.844326 + 0.844326i
\(818\) −33.3920 36.5246i −1.16752 1.27705i
\(819\) −9.35300 5.01789i −0.326820 0.175339i
\(820\) 51.2575 + 4.60239i 1.78999 + 0.160723i
\(821\) 9.46652 + 9.46652i 0.330384 + 0.330384i 0.852732 0.522348i \(-0.174944\pi\)
−0.522348 + 0.852732i \(0.674944\pi\)
\(822\) 22.1837 20.2811i 0.773744 0.707383i
\(823\) 9.44005 0.329059 0.164530 0.986372i \(-0.447389\pi\)
0.164530 + 0.986372i \(0.447389\pi\)
\(824\) 1.33419 9.87278i 0.0464786 0.343935i
\(825\) −0.0166192 + 0.0166192i −0.000578606 + 0.000578606i
\(826\) 1.04450 23.3122i 0.0363426 0.811134i
\(827\) 15.1241 + 15.1241i 0.525916 + 0.525916i 0.919352 0.393436i \(-0.128714\pi\)
−0.393436 + 0.919352i \(0.628714\pi\)
\(828\) 3.99300 + 0.358530i 0.138766 + 0.0124598i
\(829\) −30.8994 −1.07318 −0.536590 0.843843i \(-0.680288\pi\)
−0.536590 + 0.843843i \(0.680288\pi\)
\(830\) −0.687315 + 15.3402i −0.0238570 + 0.532468i
\(831\) −24.3573 −0.844946
\(832\) −0.701696 28.8359i −0.0243269 0.999704i
\(833\) 11.9651 0.414564
\(834\) −0.387674 + 8.65254i −0.0134241 + 0.299613i
\(835\) 10.2202 0.353684
\(836\) 0.618858 + 0.0555670i 0.0214036 + 0.00192182i
\(837\) −2.08158 2.08158i −0.0719501 0.0719501i
\(838\) 0.991071 22.1198i 0.0342360 0.764116i
\(839\) 39.8024 39.8024i 1.37413 1.37413i 0.519909 0.854222i \(-0.325966\pi\)
0.854222 0.519909i \(-0.174034\pi\)
\(840\) −2.55414 + 18.9002i −0.0881261 + 0.652120i
\(841\) 9.90253 0.341466
\(842\) −7.74110 + 7.07718i −0.266776 + 0.243896i
\(843\) 7.19722 + 7.19722i 0.247885 + 0.247885i
\(844\) 4.55299 + 0.408812i 0.156720 + 0.0140719i
\(845\) −29.1871 5.89958i −1.00407 0.202952i
\(846\) 7.17075 + 7.84346i 0.246536 + 0.269664i
\(847\) 22.8785 + 22.8785i 0.786116 + 0.786116i
\(848\) 1.00557 5.55444i 0.0345314 0.190740i
\(849\) 14.0053i 0.480661i
\(850\) −0.112150 + 2.50309i −0.00384672 + 0.0858553i
\(851\) −12.8964 + 12.8964i −0.442083 + 0.442083i
\(852\) −0.0150419 0.0180096i −0.000515326 0.000616997i
\(853\) 5.81918 5.81918i 0.199245 0.199245i −0.600431 0.799676i \(-0.705004\pi\)
0.799676 + 0.600431i \(0.205004\pi\)
\(854\) −5.96213 + 5.45078i −0.204020 + 0.186522i
\(855\) 7.46925 0.255443
\(856\) −4.48155 + 33.1628i −0.153176 + 1.13348i
\(857\) 27.8183i 0.950256i 0.879917 + 0.475128i \(0.157598\pi\)
−0.879917 + 0.475128i \(0.842402\pi\)
\(858\) 0.417373 + 0.248597i 0.0142489 + 0.00848697i
\(859\) −10.0327 −0.342311 −0.171155 0.985244i \(-0.554750\pi\)
−0.171155 + 0.985244i \(0.554750\pi\)
\(860\) 36.8009 30.7367i 1.25490 1.04811i
\(861\) 33.0703i 1.12703i
\(862\) 25.0392 22.8916i 0.852838 0.779693i
\(863\) 32.0055 + 32.0055i 1.08948 + 1.08948i 0.995582 + 0.0938995i \(0.0299332\pi\)
0.0938995 + 0.995582i \(0.470067\pi\)
\(864\) −1.25587 + 5.51569i −0.0427255 + 0.187647i
\(865\) −4.08529 4.08529i −0.138904 0.138904i
\(866\) 30.6092 + 1.37143i 1.04014 + 0.0466032i
\(867\) 34.5804 1.17441
\(868\) 17.2625 + 1.55000i 0.585929 + 0.0526103i
\(869\) −0.570383 + 0.570383i −0.0193489 + 0.0193489i
\(870\) 9.55185 + 10.4479i 0.323838 + 0.354218i
\(871\) 36.6678 + 19.6723i 1.24244 + 0.666572i
\(872\) 41.3319 31.4908i 1.39968 1.06641i
\(873\) 8.76265 8.76265i 0.296571 0.296571i
\(874\) 6.23741 + 6.82256i 0.210984 + 0.230776i
\(875\) 32.0515i 1.08354i
\(876\) 0.760240 + 0.910231i 0.0256861 + 0.0307538i
\(877\) 20.8160 + 20.8160i 0.702906 + 0.702906i 0.965033 0.262127i \(-0.0844240\pi\)
−0.262127 + 0.965033i \(0.584424\pi\)
\(878\) 1.70880 38.1389i 0.0576692 1.28713i
\(879\) 10.4354 10.4354i 0.351977 0.351977i
\(880\) 0.155504 0.858954i 0.00524204 0.0289553i
\(881\) 13.7757i 0.464116i −0.972702 0.232058i \(-0.925454\pi\)
0.972702 0.232058i \(-0.0745459\pi\)
\(882\) −2.35370 0.105457i −0.0792533 0.00355092i
\(883\) 38.8765i 1.30830i 0.756366 + 0.654149i \(0.226973\pi\)
−0.756366 + 0.654149i \(0.773027\pi\)
\(884\) 50.7218 10.4630i 1.70596 0.351908i
\(885\) 12.8392i 0.431584i
\(886\) −0.233824 + 5.21874i −0.00785547 + 0.175327i
\(887\) 51.7991i 1.73924i −0.493718 0.869622i \(-0.664363\pi\)
0.493718 0.869622i \(-0.335637\pi\)
\(888\) −15.5961 20.4701i −0.523372 0.686930i
\(889\) −38.6084 + 38.6084i −1.29488 + 1.29488i
\(890\) 8.71560 + 0.390500i 0.292148 + 0.0130896i
\(891\) −0.0673682 0.0673682i −0.00225692 0.00225692i
\(892\) 12.0728 + 14.4547i 0.404227 + 0.483978i
\(893\) 24.5043i 0.820005i
\(894\) −19.5614 + 17.8837i −0.654230 + 0.598119i
\(895\) 19.7177 19.7177i 0.659090 0.659090i
\(896\) −15.1422 29.6642i −0.505864 0.991010i
\(897\) 2.08732 + 6.91947i 0.0696935 + 0.231034i
\(898\) 23.5645 21.5435i 0.786358 0.718914i
\(899\) 9.09666 9.09666i 0.303391 0.303391i
\(900\) 0.0441232 0.491407i 0.00147077 0.0163802i
\(901\) 10.1350 0.337647
\(902\) 0.0677488 1.51209i 0.00225579 0.0503472i
\(903\) 21.7869 + 21.7869i 0.725023 + 0.725023i
\(904\) −4.81250 + 35.6118i −0.160061 + 1.18443i
\(905\) −1.84575 1.84575i −0.0613548 0.0613548i
\(906\) −3.52328 3.85381i −0.117053 0.128034i
\(907\) 53.4908i 1.77613i −0.459714 0.888067i \(-0.652048\pi\)
0.459714 0.888067i \(-0.347952\pi\)
\(908\) 17.0800 14.2655i 0.566819 0.473416i
\(909\) 10.5683 0.350528
\(910\) −33.3289 + 8.44651i −1.10484 + 0.279999i
\(911\) 8.34775i 0.276573i 0.990392 + 0.138287i \(0.0441595\pi\)
−0.990392 + 0.138287i \(0.955840\pi\)
\(912\) −10.7187 + 7.43258i −0.354930 + 0.246117i
\(913\) 0.451627 0.0149467
\(914\) 13.4824 + 14.7473i 0.445959 + 0.487796i
\(915\) 3.14283 3.14283i 0.103899 0.103899i
\(916\) −7.91366 + 6.60962i −0.261475 + 0.218388i
\(917\) 10.8253 10.8253i 0.357484 0.357484i
\(918\) −10.1466 0.454617i −0.334889 0.0150046i
\(919\) 0.682347i 0.0225085i −0.999937 0.0112543i \(-0.996418\pi\)
0.999937 0.0112543i \(-0.00358242\pi\)
\(920\) 10.3301 7.87051i 0.340574 0.259483i
\(921\) −9.49598 9.49598i −0.312903 0.312903i
\(922\) −14.4774 + 13.2357i −0.476787 + 0.435894i
\(923\) 0.0199987 0.0372761i 0.000658265 0.00122696i
\(924\) 0.558683 + 0.0501640i 0.0183793 + 0.00165027i
\(925\) 1.58712 + 1.58712i 0.0521842 + 0.0521842i
\(926\) 22.2926 + 24.3840i 0.732581 + 0.801307i
\(927\) −3.52228 −0.115687
\(928\) −24.1039 5.48823i −0.791250 0.180160i
\(929\) 11.6044 11.6044i 0.380728 0.380728i −0.490636 0.871364i \(-0.663236\pi\)
0.871364 + 0.490636i \(0.163236\pi\)
\(930\) −9.52646 0.426830i −0.312385 0.0139963i
\(931\) −3.84142 3.84142i −0.125897 0.125897i
\(932\) 0.592997 6.60430i 0.0194243 0.216331i
\(933\) −19.3516 −0.633543
\(934\) −19.3632 0.867563i −0.633584 0.0283875i
\(935\) 1.56731 0.0512566
\(936\) −10.0700 + 1.61118i −0.329147 + 0.0526629i
\(937\) −5.73855 −0.187470 −0.0937352 0.995597i \(-0.529881\pi\)
−0.0937352 + 0.995597i \(0.529881\pi\)
\(938\) 47.9990 + 2.15058i 1.56722 + 0.0702189i
\(939\) −10.1200 −0.330254
\(940\) 34.2876 + 3.07867i 1.11834 + 0.100415i
\(941\) −0.617212 0.617212i −0.0201205 0.0201205i 0.696975 0.717095i \(-0.254529\pi\)
−0.717095 + 0.696975i \(0.754529\pi\)
\(942\) 1.92593 + 0.0862908i 0.0627503 + 0.00281151i
\(943\) 15.9231 15.9231i 0.518526 0.518526i
\(944\) −12.7761 18.4247i −0.415828 0.599673i
\(945\) 6.74298 0.219349
\(946\) −0.951544 1.04081i −0.0309374 0.0338397i
\(947\) −2.57671 2.57671i −0.0837319 0.0837319i 0.664000 0.747732i \(-0.268857\pi\)
−0.747732 + 0.664000i \(0.768857\pi\)
\(948\) 1.51434 16.8654i 0.0491835 0.547764i
\(949\) −1.01076 + 1.88399i −0.0328108 + 0.0611570i
\(950\) 0.839631 0.767619i 0.0272412 0.0249048i
\(951\) 18.1488 + 18.1488i 0.588515 + 0.588515i
\(952\) 47.5664 36.2408i 1.54164 1.17457i
\(953\) 44.1686i 1.43076i 0.698736 + 0.715380i \(0.253746\pi\)
−0.698736 + 0.715380i \(0.746254\pi\)
\(954\) −1.99371 0.0893277i −0.0645488 0.00289209i
\(955\) −36.3300 + 36.3300i −1.17561 + 1.17561i
\(956\) −13.5783 16.2572i −0.439153 0.525796i
\(957\) 0.294404 0.294404i 0.00951672 0.00951672i
\(958\) −9.68653 10.5952i −0.312958 0.342317i
\(959\) 62.5667 2.02038
\(960\) 9.05336 + 15.9319i 0.292196 + 0.514199i
\(961\) 22.3340i 0.720452i
\(962\) 23.7409 39.8588i 0.765436 1.28510i
\(963\) 11.8314 0.381261
\(964\) 16.3681 + 19.5974i 0.527180 + 0.631190i
\(965\) 11.5765i 0.372660i
\(966\) 5.63092 + 6.15917i 0.181172 + 0.198168i
\(967\) −23.3487 23.3487i −0.750844 0.750844i 0.223792 0.974637i \(-0.428156\pi\)
−0.974637 + 0.223792i \(0.928156\pi\)
\(968\) 30.8070 + 4.16319i 0.990174 + 0.133810i
\(969\) −16.5600 16.5600i −0.531985 0.531985i
\(970\) 1.79679 40.1026i 0.0576913 1.28762i
\(971\) 15.8294 0.507990 0.253995 0.967205i \(-0.418255\pi\)
0.253995 + 0.967205i \(0.418255\pi\)
\(972\) 1.99199 + 0.178860i 0.0638930 + 0.00573693i
\(973\) −12.7485 + 12.7485i −0.408697 + 0.408697i
\(974\) 0.567227 0.518578i 0.0181751 0.0166163i
\(975\) 0.851558 0.256880i 0.0272717 0.00822674i
\(976\) −1.38268 + 7.63748i −0.0442585 + 0.244470i
\(977\) −19.1168 + 19.1168i −0.611602 + 0.611602i −0.943363 0.331761i \(-0.892357\pi\)
0.331761 + 0.943363i \(0.392357\pi\)
\(978\) −20.2614 + 18.5236i −0.647888 + 0.592321i
\(979\) 0.256593i 0.00820076i
\(980\) −5.85773 + 4.89247i −0.187118 + 0.156284i
\(981\) −12.9904 12.9904i −0.414751 0.414751i
\(982\) −3.84331 0.172198i −0.122645 0.00549507i
\(983\) −20.0123 + 20.0123i −0.638293 + 0.638293i −0.950134 0.311841i \(-0.899054\pi\)
0.311841 + 0.950134i \(0.399054\pi\)
\(984\) 19.2564 + 25.2742i 0.613872 + 0.805712i
\(985\) 7.32462i 0.233382i
\(986\) 1.98670 44.3414i 0.0632696 1.41212i
\(987\) 22.1216i 0.704139i
\(988\) −19.6436 12.9252i −0.624946 0.411206i
\(989\) 20.9805i 0.667140i
\(990\) −0.308313 0.0138139i −0.00979885 0.000439034i
\(991\) 36.3170i 1.15365i 0.816868 + 0.576824i \(0.195708\pi\)
−0.816868 + 0.576824i \(0.804292\pi\)
\(992\) 14.0956 8.86717i 0.447535 0.281533i
\(993\) 22.5976 22.5976i 0.717114 0.717114i
\(994\) 0.00218626 0.0487953i 6.93438e−5 0.00154769i
\(995\) 42.8201 + 42.8201i 1.35749 + 1.35749i
\(996\) −7.27652 + 6.07747i −0.230565 + 0.192572i
\(997\) 27.1788i 0.860762i −0.902647 0.430381i \(-0.858379\pi\)
0.902647 0.430381i \(-0.141621\pi\)
\(998\) −39.6783 43.4007i −1.25600 1.37382i
\(999\) −6.43362 + 6.43362i −0.203551 + 0.203551i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.t.e.187.7 24
3.2 odd 2 936.2.w.j.811.6 24
4.3 odd 2 1248.2.bb.f.655.9 24
8.3 odd 2 inner 312.2.t.e.187.12 yes 24
8.5 even 2 1248.2.bb.f.655.4 24
13.8 odd 4 inner 312.2.t.e.307.12 yes 24
24.11 even 2 936.2.w.j.811.1 24
39.8 even 4 936.2.w.j.307.1 24
52.47 even 4 1248.2.bb.f.463.4 24
104.21 odd 4 1248.2.bb.f.463.9 24
104.99 even 4 inner 312.2.t.e.307.7 yes 24
312.203 odd 4 936.2.w.j.307.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.7 24 1.1 even 1 trivial
312.2.t.e.187.12 yes 24 8.3 odd 2 inner
312.2.t.e.307.7 yes 24 104.99 even 4 inner
312.2.t.e.307.12 yes 24 13.8 odd 4 inner
936.2.w.j.307.1 24 39.8 even 4
936.2.w.j.307.6 24 312.203 odd 4
936.2.w.j.811.1 24 24.11 even 2
936.2.w.j.811.6 24 3.2 odd 2
1248.2.bb.f.463.4 24 52.47 even 4
1248.2.bb.f.463.9 24 104.21 odd 4
1248.2.bb.f.655.4 24 8.5 even 2
1248.2.bb.f.655.9 24 4.3 odd 2