Properties

Label 1248.2.bb.f.463.4
Level $1248$
Weight $2$
Character 1248.463
Analytic conductor $9.965$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(463,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.463"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.bb (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.4
Character \(\chi\) \(=\) 1248.463
Dual form 1248.2.bb.f.655.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-1.61967 + 1.61967i) q^{5} +(-2.08158 - 2.08158i) q^{7} +1.00000 q^{9} +(0.0673682 - 0.0673682i) q^{11} +(-1.04130 + 3.45191i) q^{13} +(-1.61967 + 1.61967i) q^{15} -7.18195i q^{17} +(-2.30579 - 2.30579i) q^{19} +(-2.08158 - 2.08158i) q^{21} -2.00453 q^{23} -0.246692i q^{25} +1.00000 q^{27} -4.37007i q^{29} +(2.08158 - 2.08158i) q^{31} +(0.0673682 - 0.0673682i) q^{33} +6.74298 q^{35} +(-6.43362 - 6.43362i) q^{37} +(-1.04130 + 3.45191i) q^{39} +(-7.94353 - 7.94353i) q^{41} +10.4665i q^{43} +(-1.61967 + 1.61967i) q^{45} +(-5.31365 - 5.31365i) q^{47} +1.66599i q^{49} -7.18195i q^{51} -1.41118i q^{53} +0.218229i q^{55} +(-2.30579 - 2.30579i) q^{57} +(3.96350 - 3.96350i) q^{59} +1.94041i q^{61} +(-2.08158 - 2.08158i) q^{63} +(-3.90441 - 7.27754i) q^{65} +(-8.16072 - 8.16072i) q^{67} -2.00453 q^{69} +(-0.00829610 + 0.00829610i) q^{71} +(0.419298 - 0.419298i) q^{73} -0.246692i q^{75} -0.280465 q^{77} +8.46664i q^{79} +1.00000 q^{81} +(3.35193 + 3.35193i) q^{83} +(11.6324 + 11.6324i) q^{85} -4.37007i q^{87} +(1.90441 - 1.90441i) q^{89} +(9.35300 - 5.01789i) q^{91} +(2.08158 - 2.08158i) q^{93} +7.46925 q^{95} +(8.76265 + 8.76265i) q^{97} +(0.0673682 - 0.0673682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{3} + 24 q^{9} - 8 q^{11} - 20 q^{19} + 24 q^{27} - 8 q^{33} - 16 q^{35} - 12 q^{41} - 20 q^{57} + 16 q^{59} - 76 q^{65} - 28 q^{67} - 8 q^{73} + 24 q^{81} + 72 q^{83} + 28 q^{89} + 4 q^{91}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.61967 + 1.61967i −0.724341 + 0.724341i −0.969486 0.245146i \(-0.921164\pi\)
0.245146 + 0.969486i \(0.421164\pi\)
\(6\) 0 0
\(7\) −2.08158 2.08158i −0.786765 0.786765i 0.194197 0.980962i \(-0.437790\pi\)
−0.980962 + 0.194197i \(0.937790\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.0673682 0.0673682i 0.0203123 0.0203123i −0.696878 0.717190i \(-0.745428\pi\)
0.717190 + 0.696878i \(0.245428\pi\)
\(12\) 0 0
\(13\) −1.04130 + 3.45191i −0.288804 + 0.957388i
\(14\) 0 0
\(15\) −1.61967 + 1.61967i −0.418198 + 0.418198i
\(16\) 0 0
\(17\) 7.18195i 1.74188i −0.491391 0.870939i \(-0.663511\pi\)
0.491391 0.870939i \(-0.336489\pi\)
\(18\) 0 0
\(19\) −2.30579 2.30579i −0.528984 0.528984i 0.391285 0.920269i \(-0.372031\pi\)
−0.920269 + 0.391285i \(0.872031\pi\)
\(20\) 0 0
\(21\) −2.08158 2.08158i −0.454239 0.454239i
\(22\) 0 0
\(23\) −2.00453 −0.417974 −0.208987 0.977918i \(-0.567017\pi\)
−0.208987 + 0.977918i \(0.567017\pi\)
\(24\) 0 0
\(25\) 0.246692i 0.0493384i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.37007i 0.811501i −0.913984 0.405750i \(-0.867010\pi\)
0.913984 0.405750i \(-0.132990\pi\)
\(30\) 0 0
\(31\) 2.08158 2.08158i 0.373864 0.373864i −0.495019 0.868882i \(-0.664839\pi\)
0.868882 + 0.495019i \(0.164839\pi\)
\(32\) 0 0
\(33\) 0.0673682 0.0673682i 0.0117273 0.0117273i
\(34\) 0 0
\(35\) 6.74298 1.13977
\(36\) 0 0
\(37\) −6.43362 6.43362i −1.05768 1.05768i −0.998231 0.0594489i \(-0.981066\pi\)
−0.0594489 0.998231i \(-0.518934\pi\)
\(38\) 0 0
\(39\) −1.04130 + 3.45191i −0.166741 + 0.552748i
\(40\) 0 0
\(41\) −7.94353 7.94353i −1.24057 1.24057i −0.959764 0.280806i \(-0.909398\pi\)
−0.280806 0.959764i \(-0.590602\pi\)
\(42\) 0 0
\(43\) 10.4665i 1.59613i 0.602573 + 0.798064i \(0.294142\pi\)
−0.602573 + 0.798064i \(0.705858\pi\)
\(44\) 0 0
\(45\) −1.61967 + 1.61967i −0.241447 + 0.241447i
\(46\) 0 0
\(47\) −5.31365 5.31365i −0.775076 0.775076i 0.203913 0.978989i \(-0.434634\pi\)
−0.978989 + 0.203913i \(0.934634\pi\)
\(48\) 0 0
\(49\) 1.66599i 0.237998i
\(50\) 0 0
\(51\) 7.18195i 1.00567i
\(52\) 0 0
\(53\) 1.41118i 0.193841i −0.995292 0.0969204i \(-0.969101\pi\)
0.995292 0.0969204i \(-0.0308992\pi\)
\(54\) 0 0
\(55\) 0.218229i 0.0294260i
\(56\) 0 0
\(57\) −2.30579 2.30579i −0.305409 0.305409i
\(58\) 0 0
\(59\) 3.96350 3.96350i 0.516004 0.516004i −0.400356 0.916360i \(-0.631113\pi\)
0.916360 + 0.400356i \(0.131113\pi\)
\(60\) 0 0
\(61\) 1.94041i 0.248444i 0.992254 + 0.124222i \(0.0396434\pi\)
−0.992254 + 0.124222i \(0.960357\pi\)
\(62\) 0 0
\(63\) −2.08158 2.08158i −0.262255 0.262255i
\(64\) 0 0
\(65\) −3.90441 7.27754i −0.484282 0.902668i
\(66\) 0 0
\(67\) −8.16072 8.16072i −0.996991 0.996991i 0.00300457 0.999995i \(-0.499044\pi\)
−0.999995 + 0.00300457i \(0.999044\pi\)
\(68\) 0 0
\(69\) −2.00453 −0.241317
\(70\) 0 0
\(71\) −0.00829610 + 0.00829610i −0.000984566 + 0.000984566i −0.707599 0.706614i \(-0.750222\pi\)
0.706614 + 0.707599i \(0.250222\pi\)
\(72\) 0 0
\(73\) 0.419298 0.419298i 0.0490751 0.0490751i −0.682143 0.731218i \(-0.738952\pi\)
0.731218 + 0.682143i \(0.238952\pi\)
\(74\) 0 0
\(75\) 0.246692i 0.0284855i
\(76\) 0 0
\(77\) −0.280465 −0.0319620
\(78\) 0 0
\(79\) 8.46664i 0.952571i 0.879291 + 0.476286i \(0.158017\pi\)
−0.879291 + 0.476286i \(0.841983\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 3.35193 + 3.35193i 0.367922 + 0.367922i 0.866719 0.498797i \(-0.166225\pi\)
−0.498797 + 0.866719i \(0.666225\pi\)
\(84\) 0 0
\(85\) 11.6324 + 11.6324i 1.26171 + 1.26171i
\(86\) 0 0
\(87\) 4.37007i 0.468520i
\(88\) 0 0
\(89\) 1.90441 1.90441i 0.201867 0.201867i −0.598933 0.800799i \(-0.704408\pi\)
0.800799 + 0.598933i \(0.204408\pi\)
\(90\) 0 0
\(91\) 9.35300 5.01789i 0.980461 0.526018i
\(92\) 0 0
\(93\) 2.08158 2.08158i 0.215850 0.215850i
\(94\) 0 0
\(95\) 7.46925 0.766329
\(96\) 0 0
\(97\) 8.76265 + 8.76265i 0.889712 + 0.889712i 0.994495 0.104783i \(-0.0334147\pi\)
−0.104783 + 0.994495i \(0.533415\pi\)
\(98\) 0 0
\(99\) 0.0673682 0.0673682i 0.00677076 0.00677076i
\(100\) 0 0
\(101\) −10.5683 −1.05159 −0.525793 0.850613i \(-0.676231\pi\)
−0.525793 + 0.850613i \(0.676231\pi\)
\(102\) 0 0
\(103\) −3.52228 −0.347061 −0.173530 0.984829i \(-0.555518\pi\)
−0.173530 + 0.984829i \(0.555518\pi\)
\(104\) 0 0
\(105\) 6.74298 0.658047
\(106\) 0 0
\(107\) −11.8314 −1.14378 −0.571892 0.820329i \(-0.693790\pi\)
−0.571892 + 0.820329i \(0.693790\pi\)
\(108\) 0 0
\(109\) 12.9904 12.9904i 1.24425 1.24425i 0.286033 0.958220i \(-0.407663\pi\)
0.958220 0.286033i \(-0.0923367\pi\)
\(110\) 0 0
\(111\) −6.43362 6.43362i −0.610652 0.610652i
\(112\) 0 0
\(113\) 12.7051 1.19520 0.597598 0.801796i \(-0.296122\pi\)
0.597598 + 0.801796i \(0.296122\pi\)
\(114\) 0 0
\(115\) 3.24669 3.24669i 0.302756 0.302756i
\(116\) 0 0
\(117\) −1.04130 + 3.45191i −0.0962681 + 0.319129i
\(118\) 0 0
\(119\) −14.9498 + 14.9498i −1.37045 + 1.37045i
\(120\) 0 0
\(121\) 10.9909i 0.999175i
\(122\) 0 0
\(123\) −7.94353 7.94353i −0.716244 0.716244i
\(124\) 0 0
\(125\) −7.69881 7.69881i −0.688603 0.688603i
\(126\) 0 0
\(127\) 18.5476 1.64583 0.822916 0.568164i \(-0.192346\pi\)
0.822916 + 0.568164i \(0.192346\pi\)
\(128\) 0 0
\(129\) 10.4665i 0.921525i
\(130\) 0 0
\(131\) 5.20053 0.454372 0.227186 0.973851i \(-0.427047\pi\)
0.227186 + 0.973851i \(0.427047\pi\)
\(132\) 0 0
\(133\) 9.59938i 0.832372i
\(134\) 0 0
\(135\) −1.61967 + 1.61967i −0.139399 + 0.139399i
\(136\) 0 0
\(137\) −15.0286 + 15.0286i −1.28398 + 1.28398i −0.345598 + 0.938383i \(0.612324\pi\)
−0.938383 + 0.345598i \(0.887676\pi\)
\(138\) 0 0
\(139\) −6.12441 −0.519466 −0.259733 0.965681i \(-0.583634\pi\)
−0.259733 + 0.965681i \(0.583634\pi\)
\(140\) 0 0
\(141\) −5.31365 5.31365i −0.447490 0.447490i
\(142\) 0 0
\(143\) 0.162399 + 0.302700i 0.0135805 + 0.0253130i
\(144\) 0 0
\(145\) 7.07808 + 7.07808i 0.587803 + 0.587803i
\(146\) 0 0
\(147\) 1.66599i 0.137408i
\(148\) 0 0
\(149\) −13.2521 + 13.2521i −1.08565 + 1.08565i −0.0896836 + 0.995970i \(0.528586\pi\)
−0.995970 + 0.0896836i \(0.971414\pi\)
\(150\) 0 0
\(151\) −2.61081 2.61081i −0.212465 0.212465i 0.592849 0.805314i \(-0.298003\pi\)
−0.805314 + 0.592849i \(0.798003\pi\)
\(152\) 0 0
\(153\) 7.18195i 0.580626i
\(154\) 0 0
\(155\) 6.74298i 0.541609i
\(156\) 0 0
\(157\) 1.36321i 0.108796i −0.998519 0.0543978i \(-0.982676\pi\)
0.998519 0.0543978i \(-0.0173239\pi\)
\(158\) 0 0
\(159\) 1.41118i 0.111914i
\(160\) 0 0
\(161\) 4.17261 + 4.17261i 0.328847 + 0.328847i
\(162\) 0 0
\(163\) −13.7263 + 13.7263i −1.07513 + 1.07513i −0.0781913 + 0.996938i \(0.524914\pi\)
−0.996938 + 0.0781913i \(0.975086\pi\)
\(164\) 0 0
\(165\) 0.218229i 0.0169891i
\(166\) 0 0
\(167\) 3.15502 + 3.15502i 0.244142 + 0.244142i 0.818561 0.574419i \(-0.194772\pi\)
−0.574419 + 0.818561i \(0.694772\pi\)
\(168\) 0 0
\(169\) −10.8314 7.18895i −0.833184 0.552996i
\(170\) 0 0
\(171\) −2.30579 2.30579i −0.176328 0.176328i
\(172\) 0 0
\(173\) 2.52229 0.191766 0.0958830 0.995393i \(-0.469433\pi\)
0.0958830 + 0.995393i \(0.469433\pi\)
\(174\) 0 0
\(175\) −0.513510 + 0.513510i −0.0388177 + 0.0388177i
\(176\) 0 0
\(177\) 3.96350 3.96350i 0.297915 0.297915i
\(178\) 0 0
\(179\) 12.1739i 0.909917i −0.890513 0.454958i \(-0.849654\pi\)
0.890513 0.454958i \(-0.150346\pi\)
\(180\) 0 0
\(181\) 1.13958 0.0847044 0.0423522 0.999103i \(-0.486515\pi\)
0.0423522 + 0.999103i \(0.486515\pi\)
\(182\) 0 0
\(183\) 1.94041i 0.143439i
\(184\) 0 0
\(185\) 20.8407 1.53224
\(186\) 0 0
\(187\) −0.483835 0.483835i −0.0353815 0.0353815i
\(188\) 0 0
\(189\) −2.08158 2.08158i −0.151413 0.151413i
\(190\) 0 0
\(191\) 22.4304i 1.62301i −0.584347 0.811504i \(-0.698649\pi\)
0.584347 0.811504i \(-0.301351\pi\)
\(192\) 0 0
\(193\) −3.57371 + 3.57371i −0.257241 + 0.257241i −0.823931 0.566690i \(-0.808224\pi\)
0.566690 + 0.823931i \(0.308224\pi\)
\(194\) 0 0
\(195\) −3.90441 7.27754i −0.279601 0.521155i
\(196\) 0 0
\(197\) 2.26114 2.26114i 0.161099 0.161099i −0.621954 0.783054i \(-0.713661\pi\)
0.783054 + 0.621954i \(0.213661\pi\)
\(198\) 0 0
\(199\) 26.4375 1.87410 0.937051 0.349193i \(-0.113544\pi\)
0.937051 + 0.349193i \(0.113544\pi\)
\(200\) 0 0
\(201\) −8.16072 8.16072i −0.575613 0.575613i
\(202\) 0 0
\(203\) −9.09666 + 9.09666i −0.638460 + 0.638460i
\(204\) 0 0
\(205\) 25.7319 1.79719
\(206\) 0 0
\(207\) −2.00453 −0.139325
\(208\) 0 0
\(209\) −0.310674 −0.0214897
\(210\) 0 0
\(211\) 2.28566 0.157351 0.0786755 0.996900i \(-0.474931\pi\)
0.0786755 + 0.996900i \(0.474931\pi\)
\(212\) 0 0
\(213\) −0.00829610 + 0.00829610i −0.000568439 + 0.000568439i
\(214\) 0 0
\(215\) −16.9523 16.9523i −1.15614 1.15614i
\(216\) 0 0
\(217\) −8.66599 −0.588286
\(218\) 0 0
\(219\) 0.419298 0.419298i 0.0283335 0.0283335i
\(220\) 0 0
\(221\) 24.7915 + 7.47856i 1.66765 + 0.503062i
\(222\) 0 0
\(223\) −6.65855 + 6.65855i −0.445889 + 0.445889i −0.893985 0.448096i \(-0.852102\pi\)
0.448096 + 0.893985i \(0.352102\pi\)
\(224\) 0 0
\(225\) 0.246692i 0.0164461i
\(226\) 0 0
\(227\) 7.86789 + 7.86789i 0.522210 + 0.522210i 0.918238 0.396028i \(-0.129612\pi\)
−0.396028 + 0.918238i \(0.629612\pi\)
\(228\) 0 0
\(229\) −3.64543 3.64543i −0.240897 0.240897i 0.576324 0.817221i \(-0.304487\pi\)
−0.817221 + 0.576324i \(0.804487\pi\)
\(230\) 0 0
\(231\) −0.280465 −0.0184533
\(232\) 0 0
\(233\) 3.31543i 0.217201i −0.994085 0.108601i \(-0.965363\pi\)
0.994085 0.108601i \(-0.0346370\pi\)
\(234\) 0 0
\(235\) 17.2128 1.12284
\(236\) 0 0
\(237\) 8.46664i 0.549967i
\(238\) 0 0
\(239\) 7.48888 7.48888i 0.484415 0.484415i −0.422123 0.906538i \(-0.638715\pi\)
0.906538 + 0.422123i \(0.138715\pi\)
\(240\) 0 0
\(241\) −9.02754 + 9.02754i −0.581515 + 0.581515i −0.935319 0.353804i \(-0.884888\pi\)
0.353804 + 0.935319i \(0.384888\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −2.69836 2.69836i −0.172392 0.172392i
\(246\) 0 0
\(247\) 10.3604 5.55836i 0.659216 0.353670i
\(248\) 0 0
\(249\) 3.35193 + 3.35193i 0.212420 + 0.212420i
\(250\) 0 0
\(251\) 18.4986i 1.16762i −0.811889 0.583812i \(-0.801561\pi\)
0.811889 0.583812i \(-0.198439\pi\)
\(252\) 0 0
\(253\) −0.135042 + 0.135042i −0.00849001 + 0.00849001i
\(254\) 0 0
\(255\) 11.6324 + 11.6324i 0.728450 + 0.728450i
\(256\) 0 0
\(257\) 17.6933i 1.10368i −0.833950 0.551840i \(-0.813926\pi\)
0.833950 0.551840i \(-0.186074\pi\)
\(258\) 0 0
\(259\) 26.7842i 1.66429i
\(260\) 0 0
\(261\) 4.37007i 0.270500i
\(262\) 0 0
\(263\) 18.2366i 1.12452i 0.826962 + 0.562258i \(0.190067\pi\)
−0.826962 + 0.562258i \(0.809933\pi\)
\(264\) 0 0
\(265\) 2.28566 + 2.28566i 0.140407 + 0.140407i
\(266\) 0 0
\(267\) 1.90441 1.90441i 0.116548 0.116548i
\(268\) 0 0
\(269\) 6.68357i 0.407504i 0.979023 + 0.203752i \(0.0653137\pi\)
−0.979023 + 0.203752i \(0.934686\pi\)
\(270\) 0 0
\(271\) 5.65140 + 5.65140i 0.343298 + 0.343298i 0.857606 0.514308i \(-0.171951\pi\)
−0.514308 + 0.857606i \(0.671951\pi\)
\(272\) 0 0
\(273\) 9.35300 5.01789i 0.566069 0.303697i
\(274\) 0 0
\(275\) −0.0166192 0.0166192i −0.00100218 0.00100218i
\(276\) 0 0
\(277\) −24.3573 −1.46349 −0.731745 0.681579i \(-0.761294\pi\)
−0.731745 + 0.681579i \(0.761294\pi\)
\(278\) 0 0
\(279\) 2.08158 2.08158i 0.124621 0.124621i
\(280\) 0 0
\(281\) −7.19722 + 7.19722i −0.429350 + 0.429350i −0.888407 0.459057i \(-0.848187\pi\)
0.459057 + 0.888407i \(0.348187\pi\)
\(282\) 0 0
\(283\) 14.0053i 0.832529i 0.909244 + 0.416264i \(0.136661\pi\)
−0.909244 + 0.416264i \(0.863339\pi\)
\(284\) 0 0
\(285\) 7.46925 0.442440
\(286\) 0 0
\(287\) 33.0703i 1.95208i
\(288\) 0 0
\(289\) −34.5804 −2.03414
\(290\) 0 0
\(291\) 8.76265 + 8.76265i 0.513676 + 0.513676i
\(292\) 0 0
\(293\) 10.4354 + 10.4354i 0.609643 + 0.609643i 0.942853 0.333210i \(-0.108132\pi\)
−0.333210 + 0.942853i \(0.608132\pi\)
\(294\) 0 0
\(295\) 12.8392i 0.747526i
\(296\) 0 0
\(297\) 0.0673682 0.0673682i 0.00390910 0.00390910i
\(298\) 0 0
\(299\) 2.08732 6.91947i 0.120713 0.400163i
\(300\) 0 0
\(301\) 21.7869 21.7869i 1.25578 1.25578i
\(302\) 0 0
\(303\) −10.5683 −0.607133
\(304\) 0 0
\(305\) −3.14283 3.14283i −0.179958 0.179958i
\(306\) 0 0
\(307\) −9.49598 + 9.49598i −0.541964 + 0.541964i −0.924104 0.382140i \(-0.875187\pi\)
0.382140 + 0.924104i \(0.375187\pi\)
\(308\) 0 0
\(309\) −3.52228 −0.200376
\(310\) 0 0
\(311\) 19.3516 1.09733 0.548664 0.836043i \(-0.315136\pi\)
0.548664 + 0.836043i \(0.315136\pi\)
\(312\) 0 0
\(313\) 10.1200 0.572016 0.286008 0.958227i \(-0.407672\pi\)
0.286008 + 0.958227i \(0.407672\pi\)
\(314\) 0 0
\(315\) 6.74298 0.379924
\(316\) 0 0
\(317\) 18.1488 18.1488i 1.01934 1.01934i 0.0195277 0.999809i \(-0.493784\pi\)
0.999809 0.0195277i \(-0.00621626\pi\)
\(318\) 0 0
\(319\) −0.294404 0.294404i −0.0164834 0.0164834i
\(320\) 0 0
\(321\) −11.8314 −0.660364
\(322\) 0 0
\(323\) −16.5600 + 16.5600i −0.921426 + 0.921426i
\(324\) 0 0
\(325\) 0.851558 + 0.256880i 0.0472360 + 0.0142491i
\(326\) 0 0
\(327\) 12.9904 12.9904i 0.718370 0.718370i
\(328\) 0 0
\(329\) 22.1216i 1.21960i
\(330\) 0 0
\(331\) 22.5976 + 22.5976i 1.24208 + 1.24208i 0.959138 + 0.282939i \(0.0913095\pi\)
0.282939 + 0.959138i \(0.408691\pi\)
\(332\) 0 0
\(333\) −6.43362 6.43362i −0.352560 0.352560i
\(334\) 0 0
\(335\) 26.4354 1.44432
\(336\) 0 0
\(337\) 8.65894i 0.471683i 0.971792 + 0.235841i \(0.0757846\pi\)
−0.971792 + 0.235841i \(0.924215\pi\)
\(338\) 0 0
\(339\) 12.7051 0.690047
\(340\) 0 0
\(341\) 0.280465i 0.0151881i
\(342\) 0 0
\(343\) −11.1032 + 11.1032i −0.599516 + 0.599516i
\(344\) 0 0
\(345\) 3.24669 3.24669i 0.174796 0.174796i
\(346\) 0 0
\(347\) 16.6635 0.894546 0.447273 0.894397i \(-0.352395\pi\)
0.447273 + 0.894397i \(0.352395\pi\)
\(348\) 0 0
\(349\) 3.99002 + 3.99002i 0.213581 + 0.213581i 0.805787 0.592206i \(-0.201743\pi\)
−0.592206 + 0.805787i \(0.701743\pi\)
\(350\) 0 0
\(351\) −1.04130 + 3.45191i −0.0555804 + 0.184249i
\(352\) 0 0
\(353\) −6.09559 6.09559i −0.324436 0.324436i 0.526030 0.850466i \(-0.323680\pi\)
−0.850466 + 0.526030i \(0.823680\pi\)
\(354\) 0 0
\(355\) 0.0268740i 0.00142632i
\(356\) 0 0
\(357\) −14.9498 + 14.9498i −0.791229 + 0.791229i
\(358\) 0 0
\(359\) −20.6821 20.6821i −1.09156 1.09156i −0.995362 0.0961965i \(-0.969332\pi\)
−0.0961965 0.995362i \(-0.530668\pi\)
\(360\) 0 0
\(361\) 8.36669i 0.440352i
\(362\) 0 0
\(363\) 10.9909i 0.576874i
\(364\) 0 0
\(365\) 1.35825i 0.0710941i
\(366\) 0 0
\(367\) 30.1227i 1.57239i −0.617977 0.786196i \(-0.712047\pi\)
0.617977 0.786196i \(-0.287953\pi\)
\(368\) 0 0
\(369\) −7.94353 7.94353i −0.413524 0.413524i
\(370\) 0 0
\(371\) −2.93749 + 2.93749i −0.152507 + 0.152507i
\(372\) 0 0
\(373\) 8.59939i 0.445259i 0.974903 + 0.222630i \(0.0714641\pi\)
−0.974903 + 0.222630i \(0.928536\pi\)
\(374\) 0 0
\(375\) −7.69881 7.69881i −0.397565 0.397565i
\(376\) 0 0
\(377\) 15.0851 + 4.55055i 0.776921 + 0.234365i
\(378\) 0 0
\(379\) −11.5751 11.5751i −0.594571 0.594571i 0.344292 0.938863i \(-0.388119\pi\)
−0.938863 + 0.344292i \(0.888119\pi\)
\(380\) 0 0
\(381\) 18.5476 0.950221
\(382\) 0 0
\(383\) 2.01486 2.01486i 0.102954 0.102954i −0.653753 0.756708i \(-0.726807\pi\)
0.756708 + 0.653753i \(0.226807\pi\)
\(384\) 0 0
\(385\) 0.454263 0.454263i 0.0231514 0.0231514i
\(386\) 0 0
\(387\) 10.4665i 0.532043i
\(388\) 0 0
\(389\) −25.8294 −1.30960 −0.654801 0.755801i \(-0.727248\pi\)
−0.654801 + 0.755801i \(0.727248\pi\)
\(390\) 0 0
\(391\) 14.3965i 0.728060i
\(392\) 0 0
\(393\) 5.20053 0.262332
\(394\) 0 0
\(395\) −13.7132 13.7132i −0.689986 0.689986i
\(396\) 0 0
\(397\) 11.0841 + 11.0841i 0.556297 + 0.556297i 0.928251 0.371954i \(-0.121312\pi\)
−0.371954 + 0.928251i \(0.621312\pi\)
\(398\) 0 0
\(399\) 9.59938i 0.480570i
\(400\) 0 0
\(401\) −25.0265 + 25.0265i −1.24977 + 1.24977i −0.293942 + 0.955823i \(0.594967\pi\)
−0.955823 + 0.293942i \(0.905033\pi\)
\(402\) 0 0
\(403\) 5.01789 + 9.35300i 0.249959 + 0.465906i
\(404\) 0 0
\(405\) −1.61967 + 1.61967i −0.0804823 + 0.0804823i
\(406\) 0 0
\(407\) −0.866843 −0.0429678
\(408\) 0 0
\(409\) 24.7440 + 24.7440i 1.22351 + 1.22351i 0.966374 + 0.257139i \(0.0827798\pi\)
0.257139 + 0.966374i \(0.417220\pi\)
\(410\) 0 0
\(411\) −15.0286 + 15.0286i −0.741307 + 0.741307i
\(412\) 0 0
\(413\) −16.5007 −0.811948
\(414\) 0 0
\(415\) −10.8581 −0.533002
\(416\) 0 0
\(417\) −6.12441 −0.299914
\(418\) 0 0
\(419\) −15.6568 −0.764883 −0.382441 0.923980i \(-0.624917\pi\)
−0.382441 + 0.923980i \(0.624917\pi\)
\(420\) 0 0
\(421\) 5.24431 5.24431i 0.255592 0.255592i −0.567667 0.823259i \(-0.692154\pi\)
0.823259 + 0.567667i \(0.192154\pi\)
\(422\) 0 0
\(423\) −5.31365 5.31365i −0.258359 0.258359i
\(424\) 0 0
\(425\) −1.77173 −0.0859414
\(426\) 0 0
\(427\) 4.03912 4.03912i 0.195467 0.195467i
\(428\) 0 0
\(429\) 0.162399 + 0.302700i 0.00784069 + 0.0146145i
\(430\) 0 0
\(431\) 16.9631 16.9631i 0.817084 0.817084i −0.168600 0.985684i \(-0.553925\pi\)
0.985684 + 0.168600i \(0.0539248\pi\)
\(432\) 0 0
\(433\) 21.6657i 1.04119i −0.853805 0.520593i \(-0.825711\pi\)
0.853805 0.520593i \(-0.174289\pi\)
\(434\) 0 0
\(435\) 7.07808 + 7.07808i 0.339368 + 0.339368i
\(436\) 0 0
\(437\) 4.62203 + 4.62203i 0.221102 + 0.221102i
\(438\) 0 0
\(439\) 26.9953 1.28842 0.644208 0.764850i \(-0.277187\pi\)
0.644208 + 0.764850i \(0.277187\pi\)
\(440\) 0 0
\(441\) 1.66599i 0.0793328i
\(442\) 0 0
\(443\) 3.69391 0.175503 0.0877515 0.996142i \(-0.472032\pi\)
0.0877515 + 0.996142i \(0.472032\pi\)
\(444\) 0 0
\(445\) 6.16904i 0.292441i
\(446\) 0 0
\(447\) −13.2521 + 13.2521i −0.626803 + 0.626803i
\(448\) 0 0
\(449\) 15.9641 15.9641i 0.753391 0.753391i −0.221719 0.975111i \(-0.571167\pi\)
0.975111 + 0.221719i \(0.0711669\pi\)
\(450\) 0 0
\(451\) −1.07028 −0.0503977
\(452\) 0 0
\(453\) −2.61081 2.61081i −0.122667 0.122667i
\(454\) 0 0
\(455\) −7.02146 + 23.2762i −0.329171 + 1.09120i
\(456\) 0 0
\(457\) −9.99072 9.99072i −0.467346 0.467346i 0.433708 0.901054i \(-0.357205\pi\)
−0.901054 + 0.433708i \(0.857205\pi\)
\(458\) 0 0
\(459\) 7.18195i 0.335225i
\(460\) 0 0
\(461\) 9.80788 9.80788i 0.456798 0.456798i −0.440805 0.897603i \(-0.645307\pi\)
0.897603 + 0.440805i \(0.145307\pi\)
\(462\) 0 0
\(463\) −16.5192 16.5192i −0.767714 0.767714i 0.209990 0.977704i \(-0.432657\pi\)
−0.977704 + 0.209990i \(0.932657\pi\)
\(464\) 0 0
\(465\) 6.74298i 0.312698i
\(466\) 0 0
\(467\) 13.7056i 0.634220i −0.948389 0.317110i \(-0.897288\pi\)
0.948389 0.317110i \(-0.102712\pi\)
\(468\) 0 0
\(469\) 33.9745i 1.56880i
\(470\) 0 0
\(471\) 1.36321i 0.0628132i
\(472\) 0 0
\(473\) 0.705110 + 0.705110i 0.0324210 + 0.0324210i
\(474\) 0 0
\(475\) −0.568819 + 0.568819i −0.0260992 + 0.0260992i
\(476\) 0 0
\(477\) 1.41118i 0.0646136i
\(478\) 0 0
\(479\) 7.17788 + 7.17788i 0.327966 + 0.327966i 0.851813 0.523847i \(-0.175504\pi\)
−0.523847 + 0.851813i \(0.675504\pi\)
\(480\) 0 0
\(481\) 28.9076 15.5090i 1.31807 0.707148i
\(482\) 0 0
\(483\) 4.17261 + 4.17261i 0.189860 + 0.189860i
\(484\) 0 0
\(485\) −28.3853 −1.28891
\(486\) 0 0
\(487\) 0.384275 0.384275i 0.0174132 0.0174132i −0.698347 0.715760i \(-0.746081\pi\)
0.715760 + 0.698347i \(0.246081\pi\)
\(488\) 0 0
\(489\) −13.7263 + 13.7263i −0.620726 + 0.620726i
\(490\) 0 0
\(491\) 2.72036i 0.122768i −0.998114 0.0613840i \(-0.980449\pi\)
0.998114 0.0613840i \(-0.0195514\pi\)
\(492\) 0 0
\(493\) −31.3856 −1.41354
\(494\) 0 0
\(495\) 0.218229i 0.00980868i
\(496\) 0 0
\(497\) 0.0345381 0.00154924
\(498\) 0 0
\(499\) −29.4023 29.4023i −1.31623 1.31623i −0.916736 0.399493i \(-0.869186\pi\)
−0.399493 0.916736i \(-0.630814\pi\)
\(500\) 0 0
\(501\) 3.15502 + 3.15502i 0.140956 + 0.140956i
\(502\) 0 0
\(503\) 8.72354i 0.388963i −0.980906 0.194482i \(-0.937698\pi\)
0.980906 0.194482i \(-0.0623025\pi\)
\(504\) 0 0
\(505\) 17.1172 17.1172i 0.761706 0.761706i
\(506\) 0 0
\(507\) −10.8314 7.18895i −0.481039 0.319272i
\(508\) 0 0
\(509\) 29.8098 29.8098i 1.32130 1.32130i 0.408572 0.912726i \(-0.366027\pi\)
0.912726 0.408572i \(-0.133973\pi\)
\(510\) 0 0
\(511\) −1.74561 −0.0772211
\(512\) 0 0
\(513\) −2.30579 2.30579i −0.101803 0.101803i
\(514\) 0 0
\(515\) 5.70495 5.70495i 0.251390 0.251390i
\(516\) 0 0
\(517\) −0.715943 −0.0314871
\(518\) 0 0
\(519\) 2.52229 0.110716
\(520\) 0 0
\(521\) 23.2436 1.01832 0.509161 0.860671i \(-0.329956\pi\)
0.509161 + 0.860671i \(0.329956\pi\)
\(522\) 0 0
\(523\) −15.0188 −0.656728 −0.328364 0.944551i \(-0.606497\pi\)
−0.328364 + 0.944551i \(0.606497\pi\)
\(524\) 0 0
\(525\) −0.513510 + 0.513510i −0.0224114 + 0.0224114i
\(526\) 0 0
\(527\) −14.9498 14.9498i −0.651225 0.651225i
\(528\) 0 0
\(529\) −18.9818 −0.825298
\(530\) 0 0
\(531\) 3.96350 3.96350i 0.172001 0.172001i
\(532\) 0 0
\(533\) 35.6920 19.1488i 1.54599 0.829425i
\(534\) 0 0
\(535\) 19.1630 19.1630i 0.828489 0.828489i
\(536\) 0 0
\(537\) 12.1739i 0.525341i
\(538\) 0 0
\(539\) 0.112235 + 0.112235i 0.00483429 + 0.00483429i
\(540\) 0 0
\(541\) −7.84233 7.84233i −0.337168 0.337168i 0.518132 0.855300i \(-0.326627\pi\)
−0.855300 + 0.518132i \(0.826627\pi\)
\(542\) 0 0
\(543\) 1.13958 0.0489041
\(544\) 0 0
\(545\) 42.0804i 1.80253i
\(546\) 0 0
\(547\) 24.3317 1.04035 0.520175 0.854060i \(-0.325867\pi\)
0.520175 + 0.854060i \(0.325867\pi\)
\(548\) 0 0
\(549\) 1.94041i 0.0828145i
\(550\) 0 0
\(551\) −10.0764 + 10.0764i −0.429271 + 0.429271i
\(552\) 0 0
\(553\) 17.6240 17.6240i 0.749450 0.749450i
\(554\) 0 0
\(555\) 20.8407 0.884640
\(556\) 0 0
\(557\) 14.8145 + 14.8145i 0.627710 + 0.627710i 0.947491 0.319781i \(-0.103609\pi\)
−0.319781 + 0.947491i \(0.603609\pi\)
\(558\) 0 0
\(559\) −36.1295 10.8988i −1.52811 0.460969i
\(560\) 0 0
\(561\) −0.483835 0.483835i −0.0204275 0.0204275i
\(562\) 0 0
\(563\) 35.1602i 1.48183i −0.671601 0.740913i \(-0.734393\pi\)
0.671601 0.740913i \(-0.265607\pi\)
\(564\) 0 0
\(565\) −20.5781 + 20.5781i −0.865729 + 0.865729i
\(566\) 0 0
\(567\) −2.08158 2.08158i −0.0874183 0.0874183i
\(568\) 0 0
\(569\) 18.2323i 0.764337i −0.924093 0.382168i \(-0.875177\pi\)
0.924093 0.382168i \(-0.124823\pi\)
\(570\) 0 0
\(571\) 33.5099i 1.40235i −0.712990 0.701174i \(-0.752660\pi\)
0.712990 0.701174i \(-0.247340\pi\)
\(572\) 0 0
\(573\) 22.4304i 0.937044i
\(574\) 0 0
\(575\) 0.494502i 0.0206222i
\(576\) 0 0
\(577\) −4.19353 4.19353i −0.174579 0.174579i 0.614409 0.788988i \(-0.289395\pi\)
−0.788988 + 0.614409i \(0.789395\pi\)
\(578\) 0 0
\(579\) −3.57371 + 3.57371i −0.148518 + 0.148518i
\(580\) 0 0
\(581\) 13.9546i 0.578936i
\(582\) 0 0
\(583\) −0.0950688 0.0950688i −0.00393735 0.00393735i
\(584\) 0 0
\(585\) −3.90441 7.27754i −0.161427 0.300889i
\(586\) 0 0
\(587\) −13.2081 13.2081i −0.545157 0.545157i 0.379879 0.925036i \(-0.375966\pi\)
−0.925036 + 0.379879i \(0.875966\pi\)
\(588\) 0 0
\(589\) −9.59938 −0.395536
\(590\) 0 0
\(591\) 2.26114 2.26114i 0.0930108 0.0930108i
\(592\) 0 0
\(593\) −0.911200 + 0.911200i −0.0374185 + 0.0374185i −0.725568 0.688150i \(-0.758423\pi\)
0.688150 + 0.725568i \(0.258423\pi\)
\(594\) 0 0
\(595\) 48.4277i 1.98534i
\(596\) 0 0
\(597\) 26.4375 1.08201
\(598\) 0 0
\(599\) 25.5885i 1.04552i 0.852481 + 0.522758i \(0.175097\pi\)
−0.852481 + 0.522758i \(0.824903\pi\)
\(600\) 0 0
\(601\) 9.95824 0.406205 0.203103 0.979157i \(-0.434897\pi\)
0.203103 + 0.979157i \(0.434897\pi\)
\(602\) 0 0
\(603\) −8.16072 8.16072i −0.332330 0.332330i
\(604\) 0 0
\(605\) −17.8017 17.8017i −0.723743 0.723743i
\(606\) 0 0
\(607\) 41.0894i 1.66777i 0.551941 + 0.833883i \(0.313887\pi\)
−0.551941 + 0.833883i \(0.686113\pi\)
\(608\) 0 0
\(609\) −9.09666 + 9.09666i −0.368615 + 0.368615i
\(610\) 0 0
\(611\) 23.8754 12.8092i 0.965894 0.518203i
\(612\) 0 0
\(613\) −7.07976 + 7.07976i −0.285949 + 0.285949i −0.835476 0.549527i \(-0.814808\pi\)
0.549527 + 0.835476i \(0.314808\pi\)
\(614\) 0 0
\(615\) 25.7319 1.03761
\(616\) 0 0
\(617\) 2.05439 + 2.05439i 0.0827067 + 0.0827067i 0.747250 0.664543i \(-0.231374\pi\)
−0.664543 + 0.747250i \(0.731374\pi\)
\(618\) 0 0
\(619\) 16.6627 16.6627i 0.669730 0.669730i −0.287923 0.957653i \(-0.592965\pi\)
0.957653 + 0.287923i \(0.0929649\pi\)
\(620\) 0 0
\(621\) −2.00453 −0.0804392
\(622\) 0 0
\(623\) −7.92838 −0.317644
\(624\) 0 0
\(625\) 26.1726 1.04690
\(626\) 0 0
\(627\) −0.310674 −0.0124071
\(628\) 0 0
\(629\) −46.2059 + 46.2059i −1.84235 + 1.84235i
\(630\) 0 0
\(631\) −32.6063 32.6063i −1.29804 1.29804i −0.929688 0.368349i \(-0.879923\pi\)
−0.368349 0.929688i \(-0.620077\pi\)
\(632\) 0 0
\(633\) 2.28566 0.0908466
\(634\) 0 0
\(635\) −30.0410 + 30.0410i −1.19214 + 1.19214i
\(636\) 0 0
\(637\) −5.75085 1.73479i −0.227857 0.0687350i
\(638\) 0 0
\(639\) −0.00829610 + 0.00829610i −0.000328189 + 0.000328189i
\(640\) 0 0
\(641\) 2.93313i 0.115852i −0.998321 0.0579259i \(-0.981551\pi\)
0.998321 0.0579259i \(-0.0184487\pi\)
\(642\) 0 0
\(643\) −19.2248 19.2248i −0.758153 0.758153i 0.217833 0.975986i \(-0.430101\pi\)
−0.975986 + 0.217833i \(0.930101\pi\)
\(644\) 0 0
\(645\) −16.9523 16.9523i −0.667498 0.667498i
\(646\) 0 0
\(647\) −45.3264 −1.78197 −0.890983 0.454037i \(-0.849983\pi\)
−0.890983 + 0.454037i \(0.849983\pi\)
\(648\) 0 0
\(649\) 0.534029i 0.0209625i
\(650\) 0 0
\(651\) −8.66599 −0.339647
\(652\) 0 0
\(653\) 2.67450i 0.104661i 0.998630 + 0.0523307i \(0.0166650\pi\)
−0.998630 + 0.0523307i \(0.983335\pi\)
\(654\) 0 0
\(655\) −8.42316 + 8.42316i −0.329120 + 0.329120i
\(656\) 0 0
\(657\) 0.419298 0.419298i 0.0163584 0.0163584i
\(658\) 0 0
\(659\) −37.5991 −1.46465 −0.732326 0.680954i \(-0.761565\pi\)
−0.732326 + 0.680954i \(0.761565\pi\)
\(660\) 0 0
\(661\) −29.7860 29.7860i −1.15854 1.15854i −0.984789 0.173752i \(-0.944411\pi\)
−0.173752 0.984789i \(-0.555589\pi\)
\(662\) 0 0
\(663\) 24.7915 + 7.47856i 0.962820 + 0.290443i
\(664\) 0 0
\(665\) −15.5479 15.5479i −0.602921 0.602921i
\(666\) 0 0
\(667\) 8.75994i 0.339186i
\(668\) 0 0
\(669\) −6.65855 + 6.65855i −0.257434 + 0.257434i
\(670\) 0 0
\(671\) 0.130722 + 0.130722i 0.00504646 + 0.00504646i
\(672\) 0 0
\(673\) 26.8225i 1.03393i −0.856006 0.516965i \(-0.827062\pi\)
0.856006 0.516965i \(-0.172938\pi\)
\(674\) 0 0
\(675\) 0.246692i 0.00949517i
\(676\) 0 0
\(677\) 27.6382i 1.06222i 0.847302 + 0.531112i \(0.178226\pi\)
−0.847302 + 0.531112i \(0.821774\pi\)
\(678\) 0 0
\(679\) 36.4804i 1.39999i
\(680\) 0 0
\(681\) 7.86789 + 7.86789i 0.301498 + 0.301498i
\(682\) 0 0
\(683\) 0.401585 0.401585i 0.0153662 0.0153662i −0.699382 0.714748i \(-0.746541\pi\)
0.714748 + 0.699382i \(0.246541\pi\)
\(684\) 0 0
\(685\) 48.6829i 1.86008i
\(686\) 0 0
\(687\) −3.64543 3.64543i −0.139082 0.139082i
\(688\) 0 0
\(689\) 4.87127 + 1.46946i 0.185581 + 0.0559820i
\(690\) 0 0
\(691\) 25.8040 + 25.8040i 0.981632 + 0.981632i 0.999834 0.0182023i \(-0.00579429\pi\)
−0.0182023 + 0.999834i \(0.505794\pi\)
\(692\) 0 0
\(693\) −0.280465 −0.0106540
\(694\) 0 0
\(695\) 9.91955 9.91955i 0.376270 0.376270i
\(696\) 0 0
\(697\) −57.0500 + 57.0500i −2.16092 + 2.16092i
\(698\) 0 0
\(699\) 3.31543i 0.125401i
\(700\) 0 0
\(701\) −42.4434 −1.60307 −0.801533 0.597951i \(-0.795982\pi\)
−0.801533 + 0.597951i \(0.795982\pi\)
\(702\) 0 0
\(703\) 29.6691i 1.11899i
\(704\) 0 0
\(705\) 17.2128 0.648271
\(706\) 0 0
\(707\) 21.9988 + 21.9988i 0.827350 + 0.827350i
\(708\) 0 0
\(709\) −21.9848 21.9848i −0.825657 0.825657i 0.161256 0.986913i \(-0.448446\pi\)
−0.986913 + 0.161256i \(0.948446\pi\)
\(710\) 0 0
\(711\) 8.46664i 0.317524i
\(712\) 0 0
\(713\) −4.17261 + 4.17261i −0.156265 + 0.156265i
\(714\) 0 0
\(715\) −0.753308 0.227242i −0.0281721 0.00849837i
\(716\) 0 0
\(717\) 7.48888 7.48888i 0.279677 0.279677i
\(718\) 0 0
\(719\) −4.55035 −0.169699 −0.0848497 0.996394i \(-0.527041\pi\)
−0.0848497 + 0.996394i \(0.527041\pi\)
\(720\) 0 0
\(721\) 7.33193 + 7.33193i 0.273055 + 0.273055i
\(722\) 0 0
\(723\) −9.02754 + 9.02754i −0.335738 + 0.335738i
\(724\) 0 0
\(725\) −1.07806 −0.0400381
\(726\) 0 0
\(727\) −35.3567 −1.31131 −0.655653 0.755062i \(-0.727607\pi\)
−0.655653 + 0.755062i \(0.727607\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 75.1699 2.78026
\(732\) 0 0
\(733\) 10.2364 10.2364i 0.378089 0.378089i −0.492323 0.870412i \(-0.663852\pi\)
0.870412 + 0.492323i \(0.163852\pi\)
\(734\) 0 0
\(735\) −2.69836 2.69836i −0.0995305 0.0995305i
\(736\) 0 0
\(737\) −1.09955 −0.0405023
\(738\) 0 0
\(739\) 15.9995 15.9995i 0.588550 0.588550i −0.348688 0.937239i \(-0.613373\pi\)
0.937239 + 0.348688i \(0.113373\pi\)
\(740\) 0 0
\(741\) 10.3604 5.55836i 0.380598 0.204191i
\(742\) 0 0
\(743\) 4.22277 4.22277i 0.154918 0.154918i −0.625392 0.780311i \(-0.715061\pi\)
0.780311 + 0.625392i \(0.215061\pi\)
\(744\) 0 0
\(745\) 42.9282i 1.57277i
\(746\) 0 0
\(747\) 3.35193 + 3.35193i 0.122641 + 0.122641i
\(748\) 0 0
\(749\) 24.6280 + 24.6280i 0.899889 + 0.899889i
\(750\) 0 0
\(751\) −39.7818 −1.45166 −0.725828 0.687876i \(-0.758543\pi\)
−0.725828 + 0.687876i \(0.758543\pi\)
\(752\) 0 0
\(753\) 18.4986i 0.674128i
\(754\) 0 0
\(755\) 8.45732 0.307794
\(756\) 0 0
\(757\) 0.790942i 0.0287473i 0.999897 + 0.0143736i \(0.00457543\pi\)
−0.999897 + 0.0143736i \(0.995425\pi\)
\(758\) 0 0
\(759\) −0.135042 + 0.135042i −0.00490171 + 0.00490171i
\(760\) 0 0
\(761\) 2.96895 2.96895i 0.107624 0.107624i −0.651244 0.758868i \(-0.725753\pi\)
0.758868 + 0.651244i \(0.225753\pi\)
\(762\) 0 0
\(763\) −54.0812 −1.95787
\(764\) 0 0
\(765\) 11.6324 + 11.6324i 0.420571 + 0.420571i
\(766\) 0 0
\(767\) 9.55447 + 17.8089i 0.344992 + 0.643041i
\(768\) 0 0
\(769\) −20.0249 20.0249i −0.722117 0.722117i 0.246919 0.969036i \(-0.420582\pi\)
−0.969036 + 0.246919i \(0.920582\pi\)
\(770\) 0 0
\(771\) 17.6933i 0.637210i
\(772\) 0 0
\(773\) 12.6302 12.6302i 0.454278 0.454278i −0.442494 0.896772i \(-0.645906\pi\)
0.896772 + 0.442494i \(0.145906\pi\)
\(774\) 0 0
\(775\) −0.513510 0.513510i −0.0184458 0.0184458i
\(776\) 0 0
\(777\) 26.7842i 0.960879i
\(778\) 0 0
\(779\) 36.6322i 1.31248i
\(780\) 0 0
\(781\) 0.00111779i 3.99976e-5i
\(782\) 0 0
\(783\) 4.37007i 0.156173i
\(784\) 0 0
\(785\) 2.20795 + 2.20795i 0.0788051 + 0.0788051i
\(786\) 0 0
\(787\) 26.5637 26.5637i 0.946895 0.946895i −0.0517643 0.998659i \(-0.516484\pi\)
0.998659 + 0.0517643i \(0.0164844\pi\)
\(788\) 0 0
\(789\) 18.2366i 0.649239i
\(790\) 0 0
\(791\) −26.4468 26.4468i −0.940339 0.940339i
\(792\) 0 0
\(793\) −6.69811 2.02054i −0.237857 0.0717516i
\(794\) 0 0
\(795\) 2.28566 + 2.28566i 0.0810638 + 0.0810638i
\(796\) 0 0
\(797\) 10.2872 0.364393 0.182196 0.983262i \(-0.441679\pi\)
0.182196 + 0.983262i \(0.441679\pi\)
\(798\) 0 0
\(799\) −38.1624 + 38.1624i −1.35009 + 1.35009i
\(800\) 0 0
\(801\) 1.90441 1.90441i 0.0672890 0.0672890i
\(802\) 0 0
\(803\) 0.0564947i 0.00199365i
\(804\) 0 0
\(805\) −13.5165 −0.476395
\(806\) 0 0
\(807\) 6.68357i 0.235273i
\(808\) 0 0
\(809\) −1.64479 −0.0578278 −0.0289139 0.999582i \(-0.509205\pi\)
−0.0289139 + 0.999582i \(0.509205\pi\)
\(810\) 0 0
\(811\) 13.0418 + 13.0418i 0.457958 + 0.457958i 0.897985 0.440026i \(-0.145031\pi\)
−0.440026 + 0.897985i \(0.645031\pi\)
\(812\) 0 0
\(813\) 5.65140 + 5.65140i 0.198203 + 0.198203i
\(814\) 0 0
\(815\) 44.4644i 1.55752i
\(816\) 0 0
\(817\) 24.1335 24.1335i 0.844326 0.844326i
\(818\) 0 0
\(819\) 9.35300 5.01789i 0.326820 0.175339i
\(820\) 0 0
\(821\) −9.46652 + 9.46652i −0.330384 + 0.330384i −0.852732 0.522348i \(-0.825056\pi\)
0.522348 + 0.852732i \(0.325056\pi\)
\(822\) 0 0
\(823\) 9.44005 0.329059 0.164530 0.986372i \(-0.447389\pi\)
0.164530 + 0.986372i \(0.447389\pi\)
\(824\) 0 0
\(825\) −0.0166192 0.0166192i −0.000578606 0.000578606i
\(826\) 0 0
\(827\) −15.1241 + 15.1241i −0.525916 + 0.525916i −0.919352 0.393436i \(-0.871286\pi\)
0.393436 + 0.919352i \(0.371286\pi\)
\(828\) 0 0
\(829\) 30.8994 1.07318 0.536590 0.843843i \(-0.319712\pi\)
0.536590 + 0.843843i \(0.319712\pi\)
\(830\) 0 0
\(831\) −24.3573 −0.844946
\(832\) 0 0
\(833\) 11.9651 0.414564
\(834\) 0 0
\(835\) −10.2202 −0.353684
\(836\) 0 0
\(837\) 2.08158 2.08158i 0.0719501 0.0719501i
\(838\) 0 0
\(839\) 39.8024 + 39.8024i 1.37413 + 1.37413i 0.854222 + 0.519909i \(0.174034\pi\)
0.519909 + 0.854222i \(0.325966\pi\)
\(840\) 0 0
\(841\) 9.90253 0.341466
\(842\) 0 0
\(843\) −7.19722 + 7.19722i −0.247885 + 0.247885i
\(844\) 0 0
\(845\) 29.1871 5.89958i 1.00407 0.202952i
\(846\) 0 0
\(847\) 22.8785 22.8785i 0.786116 0.786116i
\(848\) 0 0
\(849\) 14.0053i 0.480661i
\(850\) 0 0
\(851\) 12.8964 + 12.8964i 0.442083 + 0.442083i
\(852\) 0 0
\(853\) −5.81918 5.81918i −0.199245 0.199245i 0.600431 0.799676i \(-0.294996\pi\)
−0.799676 + 0.600431i \(0.794996\pi\)
\(854\) 0 0
\(855\) 7.46925 0.255443
\(856\) 0 0
\(857\) 27.8183i 0.950256i −0.879917 0.475128i \(-0.842402\pi\)
0.879917 0.475128i \(-0.157598\pi\)
\(858\) 0 0
\(859\) 10.0327 0.342311 0.171155 0.985244i \(-0.445250\pi\)
0.171155 + 0.985244i \(0.445250\pi\)
\(860\) 0 0
\(861\) 33.0703i 1.12703i
\(862\) 0 0
\(863\) 32.0055 32.0055i 1.08948 1.08948i 0.0938995 0.995582i \(-0.470067\pi\)
0.995582 0.0938995i \(-0.0299332\pi\)
\(864\) 0 0
\(865\) −4.08529 + 4.08529i −0.138904 + 0.138904i
\(866\) 0 0
\(867\) −34.5804 −1.17441
\(868\) 0 0
\(869\) 0.570383 + 0.570383i 0.0193489 + 0.0193489i
\(870\) 0 0
\(871\) 36.6678 19.6723i 1.24244 0.666572i
\(872\) 0 0
\(873\) 8.76265 + 8.76265i 0.296571 + 0.296571i
\(874\) 0 0
\(875\) 32.0515i 1.08354i
\(876\) 0 0
\(877\) −20.8160 + 20.8160i −0.702906 + 0.702906i −0.965033 0.262127i \(-0.915576\pi\)
0.262127 + 0.965033i \(0.415576\pi\)
\(878\) 0 0
\(879\) 10.4354 + 10.4354i 0.351977 + 0.351977i
\(880\) 0 0
\(881\) 13.7757i 0.464116i 0.972702 + 0.232058i \(0.0745459\pi\)
−0.972702 + 0.232058i \(0.925454\pi\)
\(882\) 0 0
\(883\) 38.8765i 1.30830i 0.756366 + 0.654149i \(0.226973\pi\)
−0.756366 + 0.654149i \(0.773027\pi\)
\(884\) 0 0
\(885\) 12.8392i 0.431584i
\(886\) 0 0
\(887\) 51.7991i 1.73924i 0.493718 + 0.869622i \(0.335637\pi\)
−0.493718 + 0.869622i \(0.664363\pi\)
\(888\) 0 0
\(889\) −38.6084 38.6084i −1.29488 1.29488i
\(890\) 0 0
\(891\) 0.0673682 0.0673682i 0.00225692 0.00225692i
\(892\) 0 0
\(893\) 24.5043i 0.820005i
\(894\) 0 0
\(895\) 19.7177 + 19.7177i 0.659090 + 0.659090i
\(896\) 0 0
\(897\) 2.08732 6.91947i 0.0696935 0.231034i
\(898\) 0 0
\(899\) −9.09666 9.09666i −0.303391 0.303391i
\(900\) 0 0
\(901\) −10.1350 −0.337647
\(902\) 0 0
\(903\) 21.7869 21.7869i 0.725023 0.725023i
\(904\) 0 0
\(905\) −1.84575 + 1.84575i −0.0613548 + 0.0613548i
\(906\) 0 0
\(907\) 53.4908i 1.77613i −0.459714 0.888067i \(-0.652048\pi\)
0.459714 0.888067i \(-0.347952\pi\)
\(908\) 0 0
\(909\) −10.5683 −0.350528
\(910\) 0 0
\(911\) 8.34775i 0.276573i −0.990392 0.138287i \(-0.955840\pi\)
0.990392 0.138287i \(-0.0441595\pi\)
\(912\) 0 0
\(913\) 0.451627 0.0149467
\(914\) 0 0
\(915\) −3.14283 3.14283i −0.103899 0.103899i
\(916\) 0 0
\(917\) −10.8253 10.8253i −0.357484 0.357484i
\(918\) 0 0
\(919\) 0.682347i 0.0225085i 0.999937 + 0.0112543i \(0.00358242\pi\)
−0.999937 + 0.0112543i \(0.996418\pi\)
\(920\) 0 0
\(921\) −9.49598 + 9.49598i −0.312903 + 0.312903i
\(922\) 0 0
\(923\) −0.0199987 0.0372761i −0.000658265 0.00122696i
\(924\) 0 0
\(925\) −1.58712 + 1.58712i −0.0521842 + 0.0521842i
\(926\) 0 0
\(927\) −3.52228 −0.115687
\(928\) 0 0
\(929\) 11.6044 + 11.6044i 0.380728 + 0.380728i 0.871364 0.490636i \(-0.163236\pi\)
−0.490636 + 0.871364i \(0.663236\pi\)
\(930\) 0 0
\(931\) 3.84142 3.84142i 0.125897 0.125897i
\(932\) 0 0
\(933\) 19.3516 0.633543
\(934\) 0 0
\(935\) 1.56731 0.0512566
\(936\) 0 0
\(937\) −5.73855 −0.187470 −0.0937352 0.995597i \(-0.529881\pi\)
−0.0937352 + 0.995597i \(0.529881\pi\)
\(938\) 0 0
\(939\) 10.1200 0.330254
\(940\) 0 0
\(941\) 0.617212 0.617212i 0.0201205 0.0201205i −0.696975 0.717095i \(-0.745471\pi\)
0.717095 + 0.696975i \(0.245471\pi\)
\(942\) 0 0
\(943\) 15.9231 + 15.9231i 0.518526 + 0.518526i
\(944\) 0 0
\(945\) 6.74298 0.219349
\(946\) 0 0
\(947\) 2.57671 2.57671i 0.0837319 0.0837319i −0.664000 0.747732i \(-0.731143\pi\)
0.747732 + 0.664000i \(0.231143\pi\)
\(948\) 0 0
\(949\) 1.01076 + 1.88399i 0.0328108 + 0.0611570i
\(950\) 0 0
\(951\) 18.1488 18.1488i 0.588515 0.588515i
\(952\) 0 0
\(953\) 44.1686i 1.43076i −0.698736 0.715380i \(-0.746254\pi\)
0.698736 0.715380i \(-0.253746\pi\)
\(954\) 0 0
\(955\) 36.3300 + 36.3300i 1.17561 + 1.17561i
\(956\) 0 0
\(957\) −0.294404 0.294404i −0.00951672 0.00951672i
\(958\) 0 0
\(959\) 62.5667 2.02038
\(960\) 0 0
\(961\) 22.3340i 0.720452i
\(962\) 0 0
\(963\) −11.8314 −0.381261
\(964\) 0 0
\(965\) 11.5765i 0.372660i
\(966\) 0 0
\(967\) −23.3487 + 23.3487i −0.750844 + 0.750844i −0.974637 0.223792i \(-0.928156\pi\)
0.223792 + 0.974637i \(0.428156\pi\)
\(968\) 0 0
\(969\) −16.5600 + 16.5600i −0.531985 + 0.531985i
\(970\) 0 0
\(971\) −15.8294 −0.507990 −0.253995 0.967205i \(-0.581745\pi\)
−0.253995 + 0.967205i \(0.581745\pi\)
\(972\) 0 0
\(973\) 12.7485 + 12.7485i 0.408697 + 0.408697i
\(974\) 0 0
\(975\) 0.851558 + 0.256880i 0.0272717 + 0.00822674i
\(976\) 0 0
\(977\) −19.1168 19.1168i −0.611602 0.611602i 0.331761 0.943363i \(-0.392357\pi\)
−0.943363 + 0.331761i \(0.892357\pi\)
\(978\) 0 0
\(979\) 0.256593i 0.00820076i
\(980\) 0 0
\(981\) 12.9904 12.9904i 0.414751 0.414751i
\(982\) 0 0
\(983\) −20.0123 20.0123i −0.638293 0.638293i 0.311841 0.950134i \(-0.399054\pi\)
−0.950134 + 0.311841i \(0.899054\pi\)
\(984\) 0 0
\(985\) 7.32462i 0.233382i
\(986\) 0 0
\(987\) 22.1216i 0.704139i
\(988\) 0 0
\(989\) 20.9805i 0.667140i
\(990\) 0 0
\(991\) 36.3170i 1.15365i −0.816868 0.576824i \(-0.804292\pi\)
0.816868 0.576824i \(-0.195708\pi\)
\(992\) 0 0
\(993\) 22.5976 + 22.5976i 0.717114 + 0.717114i
\(994\) 0 0
\(995\) −42.8201 + 42.8201i −1.35749 + 1.35749i
\(996\) 0 0
\(997\) 27.1788i 0.860762i −0.902647 0.430381i \(-0.858379\pi\)
0.902647 0.430381i \(-0.141621\pi\)
\(998\) 0 0
\(999\) −6.43362 6.43362i −0.203551 0.203551i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.bb.f.463.4 24
4.3 odd 2 312.2.t.e.307.12 yes 24
8.3 odd 2 inner 1248.2.bb.f.463.9 24
8.5 even 2 312.2.t.e.307.7 yes 24
12.11 even 2 936.2.w.j.307.1 24
13.5 odd 4 inner 1248.2.bb.f.655.9 24
24.5 odd 2 936.2.w.j.307.6 24
52.31 even 4 312.2.t.e.187.7 24
104.5 odd 4 312.2.t.e.187.12 yes 24
104.83 even 4 inner 1248.2.bb.f.655.4 24
156.83 odd 4 936.2.w.j.811.6 24
312.5 even 4 936.2.w.j.811.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.7 24 52.31 even 4
312.2.t.e.187.12 yes 24 104.5 odd 4
312.2.t.e.307.7 yes 24 8.5 even 2
312.2.t.e.307.12 yes 24 4.3 odd 2
936.2.w.j.307.1 24 12.11 even 2
936.2.w.j.307.6 24 24.5 odd 2
936.2.w.j.811.1 24 312.5 even 4
936.2.w.j.811.6 24 156.83 odd 4
1248.2.bb.f.463.4 24 1.1 even 1 trivial
1248.2.bb.f.463.9 24 8.3 odd 2 inner
1248.2.bb.f.655.4 24 104.83 even 4 inner
1248.2.bb.f.655.9 24 13.5 odd 4 inner