Defining parameters
Level: | \( N \) | \(=\) | \( 1248 = 2^{5} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1248.bb (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(448\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 480 | 56 | 424 |
Cusp forms | 416 | 56 | 360 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1248.2.bb.a | $2$ | $9.965$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(-4\) | \(6\) | \(q-q^{3}+(2 i-2)q^{5}+(3 i+3)q^{7}+\cdots\) |
1248.2.bb.b | $2$ | $9.965$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(4\) | \(-6\) | \(q-q^{3}+(-2 i+2)q^{5}+(-3 i-3)q^{7}+\cdots\) |
1248.2.bb.c | $2$ | $9.965$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(-4\) | \(-2\) | \(q+q^{3}+(2 i-2)q^{5}+(-i-1)q^{7}+\cdots\) |
1248.2.bb.d | $2$ | $9.965$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(4\) | \(2\) | \(q+q^{3}+(-2 i+2)q^{5}+(i+1)q^{7}+\cdots\) |
1248.2.bb.e | $24$ | $9.965$ | None | \(0\) | \(-24\) | \(0\) | \(0\) | ||
1248.2.bb.f | $24$ | $9.965$ | None | \(0\) | \(24\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)