Properties

Label 1248.2.bb
Level $1248$
Weight $2$
Character orbit 1248.bb
Rep. character $\chi_{1248}(463,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $56$
Newform subspaces $6$
Sturm bound $448$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.bb (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(448\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).

Total New Old
Modular forms 480 56 424
Cusp forms 416 56 360
Eisenstein series 64 0 64

Trace form

\( 56 q + 56 q^{9} - 8 q^{41} - 16 q^{57} + 64 q^{59} + 8 q^{65} - 24 q^{73} + 56 q^{81} + 80 q^{83} + 40 q^{89} + 16 q^{91} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1248.2.bb.a 1248.bb 104.m $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 312.2.t.b \(0\) \(-2\) \(-4\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q-q^{3}+(2 i-2)q^{5}+(3 i+3)q^{7}+\cdots\)
1248.2.bb.b 1248.bb 104.m $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 312.2.t.b \(0\) \(-2\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q-q^{3}+(-2 i+2)q^{5}+(-3 i-3)q^{7}+\cdots\)
1248.2.bb.c 1248.bb 104.m $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 312.2.t.a \(0\) \(2\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+q^{3}+(2 i-2)q^{5}+(-i-1)q^{7}+\cdots\)
1248.2.bb.d 1248.bb 104.m $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 312.2.t.a \(0\) \(2\) \(4\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+q^{3}+(-2 i+2)q^{5}+(i+1)q^{7}+\cdots\)
1248.2.bb.e 1248.bb 104.m $24$ $9.965$ None 312.2.t.f \(0\) \(-24\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
1248.2.bb.f 1248.bb 104.m $24$ $9.965$ None 312.2.t.e \(0\) \(24\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)