L(s) = 1 | + (−1.41 − 0.0632i)2-s + (1.99 + 0.178i)4-s + (1.61 − 1.61i)5-s + (2.08 + 2.08i)7-s + (−2.80 − 0.378i)8-s + (−2.39 + 2.18i)10-s + (0.0673 − 0.0673i)11-s + (−1.04 + 3.45i)13-s + (−2.80 − 3.07i)14-s + (3.93 + 0.712i)16-s + 7.18i·17-s + (2.30 + 2.30i)19-s + (3.51 − 2.93i)20-s + (−0.0994 + 0.0909i)22-s − 2.00·23-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0447i)2-s + (0.995 + 0.0894i)4-s + (0.724 − 0.724i)5-s + (0.786 + 0.786i)7-s + (−0.990 − 0.133i)8-s + (−0.756 + 0.691i)10-s + (0.0203 − 0.0203i)11-s + (−0.288 + 0.957i)13-s + (−0.750 − 0.821i)14-s + (0.984 + 0.178i)16-s + 1.74i·17-s + (0.528 + 0.528i)19-s + (0.786 − 0.656i)20-s + (−0.0212 + 0.0193i)22-s − 0.417·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.660 - 0.750i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.660 - 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07478 + 0.486102i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07478 + 0.486102i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 + 0.0632i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (1.04 - 3.45i)T \) |
good | 5 | \( 1 + (-1.61 + 1.61i)T - 5iT^{2} \) |
| 7 | \( 1 + (-2.08 - 2.08i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.0673 + 0.0673i)T - 11iT^{2} \) |
| 17 | \( 1 - 7.18iT - 17T^{2} \) |
| 19 | \( 1 + (-2.30 - 2.30i)T + 19iT^{2} \) |
| 23 | \( 1 + 2.00T + 23T^{2} \) |
| 29 | \( 1 - 4.37iT - 29T^{2} \) |
| 31 | \( 1 + (2.08 - 2.08i)T - 31iT^{2} \) |
| 37 | \( 1 + (6.43 + 6.43i)T + 37iT^{2} \) |
| 41 | \( 1 + (-7.94 - 7.94i)T + 41iT^{2} \) |
| 43 | \( 1 + 10.4iT - 43T^{2} \) |
| 47 | \( 1 + (5.31 + 5.31i)T + 47iT^{2} \) |
| 53 | \( 1 - 1.41iT - 53T^{2} \) |
| 59 | \( 1 + (-3.96 + 3.96i)T - 59iT^{2} \) |
| 61 | \( 1 - 1.94iT - 61T^{2} \) |
| 67 | \( 1 + (-8.16 - 8.16i)T + 67iT^{2} \) |
| 71 | \( 1 + (0.00829 - 0.00829i)T - 71iT^{2} \) |
| 73 | \( 1 + (-0.419 + 0.419i)T - 73iT^{2} \) |
| 79 | \( 1 + 8.46iT - 79T^{2} \) |
| 83 | \( 1 + (-3.35 - 3.35i)T + 83iT^{2} \) |
| 89 | \( 1 + (1.90 - 1.90i)T - 89iT^{2} \) |
| 97 | \( 1 + (-8.76 - 8.76i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04193375526750129755893216253, −9.146184631041036683705962952262, −8.695991147579761929255150095816, −7.955688450271726348488325076642, −6.87334120964194560101715554745, −5.85224156345010166568557426303, −5.22232641139158101519696063161, −3.75399092275884630780920436261, −2.06772097862696173513130048249, −1.55766362958475946865618777412,
0.789736566050338846045977921221, 2.25657289363042910020804558374, 3.13720060985524577363837541574, 4.80122911176575119697221561308, 5.80964487141304296048283919229, 6.81843413117890521084059133437, 7.50762993625013671834664348212, 8.114369989218533132158402782914, 9.379670741049812992746044168338, 9.869732368117910635016667040691