Newspace parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.w (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.47399762919\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 312) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
307.1 | −1.41280 | − | 0.0632999i | 0 | 1.99199 | + | 0.178860i | 1.61967 | − | 1.61967i | 0 | 2.08158 | + | 2.08158i | −2.80295 | − | 0.378785i | 0 | −2.39080 | + | 2.18574i | ||||||
307.2 | −1.30513 | + | 0.544643i | 0 | 1.40673 | − | 1.42166i | 0.220561 | − | 0.220561i | 0 | −0.834354 | − | 0.834354i | −1.06167 | + | 2.62161i | 0 | −0.167734 | + | 0.407987i | ||||||
307.3 | −1.13060 | − | 0.849559i | 0 | 0.556500 | + | 1.92102i | −1.67211 | + | 1.67211i | 0 | 1.16012 | + | 1.16012i | 1.00284 | − | 2.64468i | 0 | 3.31105 | − | 0.469928i | ||||||
307.4 | −0.849559 | − | 1.13060i | 0 | −0.556500 | + | 1.92102i | 1.67211 | − | 1.67211i | 0 | −1.16012 | − | 1.16012i | 2.64468 | − | 1.00284i | 0 | −3.31105 | − | 0.469928i | ||||||
307.5 | −0.437240 | + | 1.34492i | 0 | −1.61764 | − | 1.17611i | 1.98058 | − | 1.98058i | 0 | 3.05943 | + | 3.05943i | 2.28908 | − | 1.66136i | 0 | 1.79774 | + | 3.52971i | ||||||
307.6 | −0.0632999 | − | 1.41280i | 0 | −1.99199 | + | 0.178860i | −1.61967 | + | 1.61967i | 0 | −2.08158 | − | 2.08158i | 0.378785 | + | 2.80295i | 0 | 2.39080 | + | 2.18574i | ||||||
307.7 | 0.140104 | + | 1.40726i | 0 | −1.96074 | + | 0.394325i | −3.08779 | + | 3.08779i | 0 | 2.85816 | + | 2.85816i | −0.829624 | − | 2.70402i | 0 | −4.77792 | − | 3.91270i | ||||||
307.8 | 0.407446 | + | 1.35425i | 0 | −1.66797 | + | 1.10357i | 0.273741 | − | 0.273741i | 0 | −1.75949 | − | 1.75949i | −2.17411 | − | 1.80921i | 0 | 0.482247 | + | 0.259178i | ||||||
307.9 | 0.544643 | − | 1.30513i | 0 | −1.40673 | − | 1.42166i | −0.220561 | + | 0.220561i | 0 | 0.834354 | + | 0.834354i | −2.62161 | + | 1.06167i | 0 | 0.167734 | + | 0.407987i | ||||||
307.10 | 1.34492 | − | 0.437240i | 0 | 1.61764 | − | 1.17611i | −1.98058 | + | 1.98058i | 0 | −3.05943 | − | 3.05943i | 1.66136 | − | 2.28908i | 0 | −1.79774 | + | 3.52971i | ||||||
307.11 | 1.35425 | + | 0.407446i | 0 | 1.66797 | + | 1.10357i | −0.273741 | + | 0.273741i | 0 | 1.75949 | + | 1.75949i | 1.80921 | + | 2.17411i | 0 | −0.482247 | + | 0.259178i | ||||||
307.12 | 1.40726 | + | 0.140104i | 0 | 1.96074 | + | 0.394325i | 3.08779 | − | 3.08779i | 0 | −2.85816 | − | 2.85816i | 2.70402 | + | 0.829624i | 0 | 4.77792 | − | 3.91270i | ||||||
811.1 | −1.41280 | + | 0.0632999i | 0 | 1.99199 | − | 0.178860i | 1.61967 | + | 1.61967i | 0 | 2.08158 | − | 2.08158i | −2.80295 | + | 0.378785i | 0 | −2.39080 | − | 2.18574i | ||||||
811.2 | −1.30513 | − | 0.544643i | 0 | 1.40673 | + | 1.42166i | 0.220561 | + | 0.220561i | 0 | −0.834354 | + | 0.834354i | −1.06167 | − | 2.62161i | 0 | −0.167734 | − | 0.407987i | ||||||
811.3 | −1.13060 | + | 0.849559i | 0 | 0.556500 | − | 1.92102i | −1.67211 | − | 1.67211i | 0 | 1.16012 | − | 1.16012i | 1.00284 | + | 2.64468i | 0 | 3.31105 | + | 0.469928i | ||||||
811.4 | −0.849559 | + | 1.13060i | 0 | −0.556500 | − | 1.92102i | 1.67211 | + | 1.67211i | 0 | −1.16012 | + | 1.16012i | 2.64468 | + | 1.00284i | 0 | −3.31105 | + | 0.469928i | ||||||
811.5 | −0.437240 | − | 1.34492i | 0 | −1.61764 | + | 1.17611i | 1.98058 | + | 1.98058i | 0 | 3.05943 | − | 3.05943i | 2.28908 | + | 1.66136i | 0 | 1.79774 | − | 3.52971i | ||||||
811.6 | −0.0632999 | + | 1.41280i | 0 | −1.99199 | − | 0.178860i | −1.61967 | − | 1.61967i | 0 | −2.08158 | + | 2.08158i | 0.378785 | − | 2.80295i | 0 | 2.39080 | − | 2.18574i | ||||||
811.7 | 0.140104 | − | 1.40726i | 0 | −1.96074 | − | 0.394325i | −3.08779 | − | 3.08779i | 0 | 2.85816 | − | 2.85816i | −0.829624 | + | 2.70402i | 0 | −4.77792 | + | 3.91270i | ||||||
811.8 | 0.407446 | − | 1.35425i | 0 | −1.66797 | − | 1.10357i | 0.273741 | + | 0.273741i | 0 | −1.75949 | + | 1.75949i | −2.17411 | + | 1.80921i | 0 | 0.482247 | − | 0.259178i | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
104.m | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.w.j | 24 | |
3.b | odd | 2 | 1 | 312.2.t.e | ✓ | 24 | |
8.d | odd | 2 | 1 | inner | 936.2.w.j | 24 | |
12.b | even | 2 | 1 | 1248.2.bb.f | 24 | ||
13.d | odd | 4 | 1 | inner | 936.2.w.j | 24 | |
24.f | even | 2 | 1 | 312.2.t.e | ✓ | 24 | |
24.h | odd | 2 | 1 | 1248.2.bb.f | 24 | ||
39.f | even | 4 | 1 | 312.2.t.e | ✓ | 24 | |
104.m | even | 4 | 1 | inner | 936.2.w.j | 24 | |
156.l | odd | 4 | 1 | 1248.2.bb.f | 24 | ||
312.w | odd | 4 | 1 | 312.2.t.e | ✓ | 24 | |
312.y | even | 4 | 1 | 1248.2.bb.f | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
312.2.t.e | ✓ | 24 | 3.b | odd | 2 | 1 | |
312.2.t.e | ✓ | 24 | 24.f | even | 2 | 1 | |
312.2.t.e | ✓ | 24 | 39.f | even | 4 | 1 | |
312.2.t.e | ✓ | 24 | 312.w | odd | 4 | 1 | |
936.2.w.j | 24 | 1.a | even | 1 | 1 | trivial | |
936.2.w.j | 24 | 8.d | odd | 2 | 1 | inner | |
936.2.w.j | 24 | 13.d | odd | 4 | 1 | inner | |
936.2.w.j | 24 | 104.m | even | 4 | 1 | inner | |
1248.2.bb.f | 24 | 12.b | even | 2 | 1 | ||
1248.2.bb.f | 24 | 24.h | odd | 2 | 1 | ||
1248.2.bb.f | 24 | 156.l | odd | 4 | 1 | ||
1248.2.bb.f | 24 | 312.y | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\):
\( T_{5}^{24} + 484T_{5}^{20} + 48256T_{5}^{16} + 1683456T_{5}^{12} + 19318784T_{5}^{8} + 615424T_{5}^{4} + 4096 \)
|
\( T_{7}^{24} + 740T_{7}^{20} + 173184T_{7}^{16} + 13927936T_{7}^{12} + 385439744T_{7}^{8} + 2647475200T_{7}^{4} + 3782742016 \)
|