L(s) = 1 | + (−0.849 − 1.13i)2-s + (−0.556 + 1.92i)4-s + (1.67 − 1.67i)5-s + (−1.16 − 1.16i)7-s + (2.64 − 1.00i)8-s + (−3.31 − 0.469i)10-s + (0.391 − 0.391i)11-s + (−3.59 + 0.311i)13-s + (−0.326 + 2.29i)14-s + (−3.38 − 2.13i)16-s − 2.95i·17-s + (−0.785 − 0.785i)19-s + (2.28 + 4.14i)20-s + (−0.776 − 0.110i)22-s − 2.14·23-s + ⋯ |
L(s) = 1 | + (−0.600 − 0.799i)2-s + (−0.278 + 0.960i)4-s + (0.747 − 0.747i)5-s + (−0.438 − 0.438i)7-s + (0.935 − 0.354i)8-s + (−1.04 − 0.148i)10-s + (0.118 − 0.118i)11-s + (−0.996 + 0.0863i)13-s + (−0.0871 + 0.613i)14-s + (−0.845 − 0.534i)16-s − 0.717i·17-s + (−0.180 − 0.180i)19-s + (0.510 + 0.926i)20-s + (−0.165 − 0.0234i)22-s − 0.447·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.154i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.988 + 0.154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0611716 - 0.788288i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0611716 - 0.788288i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.849 + 1.13i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3.59 - 0.311i)T \) |
good | 5 | \( 1 + (-1.67 + 1.67i)T - 5iT^{2} \) |
| 7 | \( 1 + (1.16 + 1.16i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.391 + 0.391i)T - 11iT^{2} \) |
| 17 | \( 1 + 2.95iT - 17T^{2} \) |
| 19 | \( 1 + (0.785 + 0.785i)T + 19iT^{2} \) |
| 23 | \( 1 + 2.14T + 23T^{2} \) |
| 29 | \( 1 + 9.69iT - 29T^{2} \) |
| 31 | \( 1 + (-1.16 + 1.16i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.87 - 1.87i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.21 - 1.21i)T + 41iT^{2} \) |
| 43 | \( 1 - 6.64iT - 43T^{2} \) |
| 47 | \( 1 + (5.19 + 5.19i)T + 47iT^{2} \) |
| 53 | \( 1 + 13.9iT - 53T^{2} \) |
| 59 | \( 1 + (8.86 - 8.86i)T - 59iT^{2} \) |
| 61 | \( 1 + 5.77iT - 61T^{2} \) |
| 67 | \( 1 + (5.85 + 5.85i)T + 67iT^{2} \) |
| 71 | \( 1 + (5.33 - 5.33i)T - 71iT^{2} \) |
| 73 | \( 1 + (5.90 - 5.90i)T - 73iT^{2} \) |
| 79 | \( 1 - 1.82iT - 79T^{2} \) |
| 83 | \( 1 + (3.29 + 3.29i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7.48 + 7.48i)T - 89iT^{2} \) |
| 97 | \( 1 + (-4.94 - 4.94i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.829319064578456244069460300038, −9.118181784535768001042711816693, −8.166486727978611979588331323483, −7.33577551562859603960303366270, −6.29742436209023209844886260172, −5.03722139233168232308326907796, −4.21119458304873733069832869674, −2.91906358256492819312902318066, −1.86179601577268498023651004531, −0.43760084899077024804606562655,
1.75486494588434133867953651966, 2.91240959273919121039263003979, 4.50679883758830005585365447864, 5.62784201069263683186813013691, 6.24863298895123308575868640497, 7.02290163166823499801849109895, 7.83210712521536358047205013348, 8.928385812014811109884749935036, 9.489733404670453309989102196871, 10.40373407156402576705807140843