Properties

Label 936.2.w.j.307.4
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.4
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.j.811.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.849559 - 1.13060i) q^{2} +(-0.556500 + 1.92102i) q^{4} +(1.67211 - 1.67211i) q^{5} +(-1.16012 - 1.16012i) q^{7} +(2.64468 - 1.00284i) q^{8} +(-3.31105 - 0.469928i) q^{10} +(0.391951 - 0.391951i) q^{11} +(-3.59209 + 0.311317i) q^{13} +(-0.326039 + 2.29722i) q^{14} +(-3.38062 - 2.13809i) q^{16} -2.95889i q^{17} +(-0.785637 - 0.785637i) q^{19} +(2.28163 + 4.14269i) q^{20} +(-0.776123 - 0.110153i) q^{22} -2.14814 q^{23} -0.591934i q^{25} +(3.40366 + 3.79672i) q^{26} +(2.87422 - 1.58301i) q^{28} -9.69684i q^{29} +(1.16012 - 1.16012i) q^{31} +(0.454711 + 5.63855i) q^{32} +(-3.34531 + 2.51375i) q^{34} -3.87971 q^{35} +(1.87575 + 1.87575i) q^{37} +(-0.220794 + 1.55568i) q^{38} +(2.74534 - 6.09907i) q^{40} +(1.21870 + 1.21870i) q^{41} +6.64295i q^{43} +(0.534823 + 0.971064i) q^{44} +(1.82497 + 2.42868i) q^{46} +(-5.19778 - 5.19778i) q^{47} -4.30823i q^{49} +(-0.669239 + 0.502883i) q^{50} +(1.40095 - 7.07371i) q^{52} -13.9505i q^{53} -1.31077i q^{55} +(-4.23156 - 1.90473i) q^{56} +(-10.9632 + 8.23804i) q^{58} +(-8.86339 + 8.86339i) q^{59} -5.77916i q^{61} +(-2.29722 - 0.326039i) q^{62} +(5.98862 - 5.30437i) q^{64} +(-5.48582 + 6.52694i) q^{65} +(-5.85732 - 5.85732i) q^{67} +(5.68407 + 1.64662i) q^{68} +(3.29604 + 4.38639i) q^{70} +(-5.33062 + 5.33062i) q^{71} +(-5.90017 + 5.90017i) q^{73} +(0.527158 - 3.71428i) q^{74} +(1.94643 - 1.07202i) q^{76} -0.909421 q^{77} +1.82465i q^{79} +(-9.22791 + 2.07764i) q^{80} +(0.342502 - 2.41322i) q^{82} +(-3.29212 - 3.29212i) q^{83} +(-4.94759 - 4.94759i) q^{85} +(7.51051 - 5.64358i) q^{86} +(0.643519 - 1.42965i) q^{88} +(7.48582 - 7.48582i) q^{89} +(4.52842 + 3.80609i) q^{91} +(1.19544 - 4.12661i) q^{92} +(-1.46078 + 10.2924i) q^{94} -2.62735 q^{95} +(4.94128 + 4.94128i) q^{97} +(-4.87088 + 3.66010i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{8} - 8 q^{11} - 36 q^{14} + 28 q^{16} + 20 q^{19} + 20 q^{20} + 20 q^{22} - 12 q^{26} - 16 q^{28} + 30 q^{32} + 16 q^{34} - 16 q^{35} + 36 q^{40} + 12 q^{41} + 32 q^{44} - 44 q^{46} + 36 q^{50}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.849559 1.13060i −0.600729 0.799453i
\(3\) 0 0
\(4\) −0.556500 + 1.92102i −0.278250 + 0.960509i
\(5\) 1.67211 1.67211i 0.747792 0.747792i −0.226272 0.974064i \(-0.572654\pi\)
0.974064 + 0.226272i \(0.0726538\pi\)
\(6\) 0 0
\(7\) −1.16012 1.16012i −0.438485 0.438485i 0.453017 0.891502i \(-0.350348\pi\)
−0.891502 + 0.453017i \(0.850348\pi\)
\(8\) 2.64468 1.00284i 0.935034 0.354557i
\(9\) 0 0
\(10\) −3.31105 0.469928i −1.04705 0.148604i
\(11\) 0.391951 0.391951i 0.118178 0.118178i −0.645545 0.763722i \(-0.723370\pi\)
0.763722 + 0.645545i \(0.223370\pi\)
\(12\) 0 0
\(13\) −3.59209 + 0.311317i −0.996265 + 0.0863438i
\(14\) −0.326039 + 2.29722i −0.0871375 + 0.613958i
\(15\) 0 0
\(16\) −3.38062 2.13809i −0.845154 0.534523i
\(17\) 2.95889i 0.717635i −0.933408 0.358818i \(-0.883180\pi\)
0.933408 0.358818i \(-0.116820\pi\)
\(18\) 0 0
\(19\) −0.785637 0.785637i −0.180238 0.180238i 0.611222 0.791459i \(-0.290678\pi\)
−0.791459 + 0.611222i \(0.790678\pi\)
\(20\) 2.28163 + 4.14269i 0.510188 + 0.926334i
\(21\) 0 0
\(22\) −0.776123 0.110153i −0.165470 0.0234847i
\(23\) −2.14814 −0.447918 −0.223959 0.974599i \(-0.571898\pi\)
−0.223959 + 0.974599i \(0.571898\pi\)
\(24\) 0 0
\(25\) 0.591934i 0.118387i
\(26\) 3.40366 + 3.79672i 0.667513 + 0.744598i
\(27\) 0 0
\(28\) 2.87422 1.58301i 0.543177 0.299160i
\(29\) 9.69684i 1.80066i −0.435210 0.900329i \(-0.643326\pi\)
0.435210 0.900329i \(-0.356674\pi\)
\(30\) 0 0
\(31\) 1.16012 1.16012i 0.208364 0.208364i −0.595208 0.803572i \(-0.702930\pi\)
0.803572 + 0.595208i \(0.202930\pi\)
\(32\) 0.454711 + 5.63855i 0.0803824 + 0.996764i
\(33\) 0 0
\(34\) −3.34531 + 2.51375i −0.573715 + 0.431104i
\(35\) −3.87971 −0.655791
\(36\) 0 0
\(37\) 1.87575 + 1.87575i 0.308372 + 0.308372i 0.844278 0.535906i \(-0.180030\pi\)
−0.535906 + 0.844278i \(0.680030\pi\)
\(38\) −0.220794 + 1.55568i −0.0358176 + 0.252365i
\(39\) 0 0
\(40\) 2.74534 6.09907i 0.434076 0.964347i
\(41\) 1.21870 + 1.21870i 0.190329 + 0.190329i 0.795838 0.605509i \(-0.207030\pi\)
−0.605509 + 0.795838i \(0.707030\pi\)
\(42\) 0 0
\(43\) 6.64295i 1.01304i 0.862228 + 0.506521i \(0.169069\pi\)
−0.862228 + 0.506521i \(0.830931\pi\)
\(44\) 0.534823 + 0.971064i 0.0806277 + 0.146393i
\(45\) 0 0
\(46\) 1.82497 + 2.42868i 0.269077 + 0.358089i
\(47\) −5.19778 5.19778i −0.758174 0.758174i 0.217816 0.975990i \(-0.430107\pi\)
−0.975990 + 0.217816i \(0.930107\pi\)
\(48\) 0 0
\(49\) 4.30823i 0.615462i
\(50\) −0.669239 + 0.502883i −0.0946447 + 0.0711184i
\(51\) 0 0
\(52\) 1.40095 7.07371i 0.194277 0.980947i
\(53\) 13.9505i 1.91625i −0.286355 0.958124i \(-0.592444\pi\)
0.286355 0.958124i \(-0.407556\pi\)
\(54\) 0 0
\(55\) 1.31077i 0.176745i
\(56\) −4.23156 1.90473i −0.565466 0.254530i
\(57\) 0 0
\(58\) −10.9632 + 8.23804i −1.43954 + 1.08171i
\(59\) −8.86339 + 8.86339i −1.15392 + 1.15392i −0.168155 + 0.985761i \(0.553781\pi\)
−0.985761 + 0.168155i \(0.946219\pi\)
\(60\) 0 0
\(61\) 5.77916i 0.739945i −0.929043 0.369972i \(-0.879367\pi\)
0.929043 0.369972i \(-0.120633\pi\)
\(62\) −2.29722 0.326039i −0.291748 0.0414070i
\(63\) 0 0
\(64\) 5.98862 5.30437i 0.748578 0.663047i
\(65\) −5.48582 + 6.52694i −0.680432 + 0.809567i
\(66\) 0 0
\(67\) −5.85732 5.85732i −0.715585 0.715585i 0.252113 0.967698i \(-0.418875\pi\)
−0.967698 + 0.252113i \(0.918875\pi\)
\(68\) 5.68407 + 1.64662i 0.689295 + 0.199682i
\(69\) 0 0
\(70\) 3.29604 + 4.38639i 0.393953 + 0.524274i
\(71\) −5.33062 + 5.33062i −0.632629 + 0.632629i −0.948727 0.316098i \(-0.897627\pi\)
0.316098 + 0.948727i \(0.397627\pi\)
\(72\) 0 0
\(73\) −5.90017 + 5.90017i −0.690563 + 0.690563i −0.962356 0.271793i \(-0.912383\pi\)
0.271793 + 0.962356i \(0.412383\pi\)
\(74\) 0.527158 3.71428i 0.0612809 0.431777i
\(75\) 0 0
\(76\) 1.94643 1.07202i 0.223271 0.122969i
\(77\) −0.909421 −0.103638
\(78\) 0 0
\(79\) 1.82465i 0.205289i 0.994718 + 0.102644i \(0.0327304\pi\)
−0.994718 + 0.102644i \(0.967270\pi\)
\(80\) −9.22791 + 2.07764i −1.03171 + 0.232288i
\(81\) 0 0
\(82\) 0.342502 2.41322i 0.0378230 0.266496i
\(83\) −3.29212 3.29212i −0.361357 0.361357i 0.502955 0.864312i \(-0.332246\pi\)
−0.864312 + 0.502955i \(0.832246\pi\)
\(84\) 0 0
\(85\) −4.94759 4.94759i −0.536642 0.536642i
\(86\) 7.51051 5.64358i 0.809879 0.608563i
\(87\) 0 0
\(88\) 0.643519 1.42965i 0.0685993 0.152401i
\(89\) 7.48582 7.48582i 0.793496 0.793496i −0.188565 0.982061i \(-0.560384\pi\)
0.982061 + 0.188565i \(0.0603837\pi\)
\(90\) 0 0
\(91\) 4.52842 + 3.80609i 0.474708 + 0.398987i
\(92\) 1.19544 4.12661i 0.124633 0.430229i
\(93\) 0 0
\(94\) −1.46078 + 10.2924i −0.150667 + 1.06158i
\(95\) −2.62735 −0.269561
\(96\) 0 0
\(97\) 4.94128 + 4.94128i 0.501711 + 0.501711i 0.911969 0.410258i \(-0.134561\pi\)
−0.410258 + 0.911969i \(0.634561\pi\)
\(98\) −4.87088 + 3.66010i −0.492033 + 0.369726i
\(99\) 0 0
\(100\) 1.13712 + 0.329411i 0.113712 + 0.0329411i
\(101\) −2.09896 −0.208854 −0.104427 0.994533i \(-0.533301\pi\)
−0.104427 + 0.994533i \(0.533301\pi\)
\(102\) 0 0
\(103\) −15.6849 −1.54548 −0.772741 0.634722i \(-0.781115\pi\)
−0.772741 + 0.634722i \(0.781115\pi\)
\(104\) −9.18770 + 4.42562i −0.900928 + 0.433968i
\(105\) 0 0
\(106\) −15.7724 + 11.8518i −1.53195 + 1.15114i
\(107\) 11.8062 1.14134 0.570672 0.821178i \(-0.306683\pi\)
0.570672 + 0.821178i \(0.306683\pi\)
\(108\) 0 0
\(109\) 9.84874 9.84874i 0.943338 0.943338i −0.0551405 0.998479i \(-0.517561\pi\)
0.998479 + 0.0551405i \(0.0175607\pi\)
\(110\) −1.48196 + 1.11358i −0.141299 + 0.106176i
\(111\) 0 0
\(112\) 1.44148 + 6.40237i 0.136207 + 0.604967i
\(113\) −9.39629 −0.883929 −0.441964 0.897033i \(-0.645718\pi\)
−0.441964 + 0.897033i \(0.645718\pi\)
\(114\) 0 0
\(115\) −3.59193 + 3.59193i −0.334950 + 0.334950i
\(116\) 18.6278 + 5.39629i 1.72955 + 0.501033i
\(117\) 0 0
\(118\) 17.5509 + 2.49095i 1.61569 + 0.229311i
\(119\) −3.43267 + 3.43267i −0.314672 + 0.314672i
\(120\) 0 0
\(121\) 10.6927i 0.972068i
\(122\) −6.53390 + 4.90973i −0.591551 + 0.444506i
\(123\) 0 0
\(124\) 1.58301 + 2.87422i 0.142158 + 0.258113i
\(125\) 7.37079 + 7.37079i 0.659264 + 0.659264i
\(126\) 0 0
\(127\) −4.36241 −0.387101 −0.193551 0.981090i \(-0.562000\pi\)
−0.193551 + 0.981090i \(0.562000\pi\)
\(128\) −11.0848 2.26434i −0.979767 0.200142i
\(129\) 0 0
\(130\) 12.0399 + 0.657238i 1.05597 + 0.0576436i
\(131\) 20.5049 1.79152 0.895759 0.444540i \(-0.146633\pi\)
0.895759 + 0.444540i \(0.146633\pi\)
\(132\) 0 0
\(133\) 1.82287i 0.158063i
\(134\) −1.64613 + 11.5984i −0.142204 + 1.00195i
\(135\) 0 0
\(136\) −2.96729 7.82529i −0.254443 0.671013i
\(137\) −9.80009 + 9.80009i −0.837278 + 0.837278i −0.988500 0.151222i \(-0.951679\pi\)
0.151222 + 0.988500i \(0.451679\pi\)
\(138\) 0 0
\(139\) −3.50388 −0.297195 −0.148598 0.988898i \(-0.547476\pi\)
−0.148598 + 0.988898i \(0.547476\pi\)
\(140\) 2.15906 7.45300i 0.182474 0.629893i
\(141\) 0 0
\(142\) 10.5555 + 1.49811i 0.885795 + 0.125719i
\(143\) −1.28590 + 1.52994i −0.107532 + 0.127940i
\(144\) 0 0
\(145\) −16.2142 16.2142i −1.34652 1.34652i
\(146\) 11.6833 + 1.65817i 0.966913 + 0.137231i
\(147\) 0 0
\(148\) −4.64721 + 2.55950i −0.381998 + 0.210389i
\(149\) −3.27548 + 3.27548i −0.268338 + 0.268338i −0.828430 0.560092i \(-0.810766\pi\)
0.560092 + 0.828430i \(0.310766\pi\)
\(150\) 0 0
\(151\) 7.01121 + 7.01121i 0.570564 + 0.570564i 0.932286 0.361722i \(-0.117811\pi\)
−0.361722 + 0.932286i \(0.617811\pi\)
\(152\) −2.86562 1.28989i −0.232433 0.104624i
\(153\) 0 0
\(154\) 0.772606 + 1.02819i 0.0622584 + 0.0828538i
\(155\) 3.87971i 0.311626i
\(156\) 0 0
\(157\) 23.5918i 1.88283i −0.337252 0.941414i \(-0.609497\pi\)
0.337252 0.941414i \(-0.390503\pi\)
\(158\) 2.06294 1.55015i 0.164119 0.123323i
\(159\) 0 0
\(160\) 10.1886 + 8.66797i 0.805482 + 0.685263i
\(161\) 2.49210 + 2.49210i 0.196405 + 0.196405i
\(162\) 0 0
\(163\) 14.2947 14.2947i 1.11965 1.11965i 0.127856 0.991793i \(-0.459190\pi\)
0.991793 0.127856i \(-0.0408097\pi\)
\(164\) −3.01936 + 1.66294i −0.235772 + 0.129854i
\(165\) 0 0
\(166\) −0.925212 + 6.51891i −0.0718104 + 0.505965i
\(167\) 9.66616 + 9.66616i 0.747990 + 0.747990i 0.974101 0.226111i \(-0.0726013\pi\)
−0.226111 + 0.974101i \(0.572601\pi\)
\(168\) 0 0
\(169\) 12.8062 2.23655i 0.985090 0.172043i
\(170\) −1.39046 + 9.79701i −0.106644 + 0.751396i
\(171\) 0 0
\(172\) −12.7612 3.69680i −0.973035 0.281879i
\(173\) 4.90900 0.373224 0.186612 0.982434i \(-0.440249\pi\)
0.186612 + 0.982434i \(0.440249\pi\)
\(174\) 0 0
\(175\) −0.686716 + 0.686716i −0.0519109 + 0.0519109i
\(176\) −2.16306 + 0.487008i −0.163047 + 0.0367096i
\(177\) 0 0
\(178\) −14.8231 2.10380i −1.11104 0.157687i
\(179\) 15.4884i 1.15766i −0.815448 0.578830i \(-0.803510\pi\)
0.815448 0.578830i \(-0.196490\pi\)
\(180\) 0 0
\(181\) 13.7660 1.02322 0.511610 0.859217i \(-0.329049\pi\)
0.511610 + 0.859217i \(0.329049\pi\)
\(182\) 0.455995 8.35332i 0.0338006 0.619189i
\(183\) 0 0
\(184\) −5.68113 + 2.15424i −0.418819 + 0.158813i
\(185\) 6.27295 0.461196
\(186\) 0 0
\(187\) −1.15974 1.15974i −0.0848083 0.0848083i
\(188\) 12.8776 7.09246i 0.939195 0.517271i
\(189\) 0 0
\(190\) 2.23209 + 2.97048i 0.161933 + 0.215501i
\(191\) 9.49269i 0.686867i −0.939177 0.343433i \(-0.888410\pi\)
0.939177 0.343433i \(-0.111590\pi\)
\(192\) 0 0
\(193\) −4.70473 + 4.70473i −0.338654 + 0.338654i −0.855861 0.517207i \(-0.826972\pi\)
0.517207 + 0.855861i \(0.326972\pi\)
\(194\) 1.38869 9.78451i 0.0997022 0.702487i
\(195\) 0 0
\(196\) 8.27619 + 2.39753i 0.591157 + 0.171252i
\(197\) 13.2304 13.2304i 0.942629 0.942629i −0.0558125 0.998441i \(-0.517775\pi\)
0.998441 + 0.0558125i \(0.0177749\pi\)
\(198\) 0 0
\(199\) 2.89962 0.205549 0.102774 0.994705i \(-0.467228\pi\)
0.102774 + 0.994705i \(0.467228\pi\)
\(200\) −0.593616 1.56547i −0.0419750 0.110696i
\(201\) 0 0
\(202\) 1.78319 + 2.37308i 0.125465 + 0.166969i
\(203\) −11.2495 + 11.2495i −0.789561 + 0.789561i
\(204\) 0 0
\(205\) 4.07562 0.284654
\(206\) 13.3253 + 17.7333i 0.928415 + 1.23554i
\(207\) 0 0
\(208\) 12.8091 + 6.62777i 0.888150 + 0.459553i
\(209\) −0.615862 −0.0426001
\(210\) 0 0
\(211\) 23.3268 1.60588 0.802942 0.596057i \(-0.203267\pi\)
0.802942 + 0.596057i \(0.203267\pi\)
\(212\) 26.7991 + 7.76345i 1.84057 + 0.533196i
\(213\) 0 0
\(214\) −10.0300 13.3480i −0.685639 0.912452i
\(215\) 11.1078 + 11.1078i 0.757544 + 0.757544i
\(216\) 0 0
\(217\) −2.69177 −0.182729
\(218\) −19.5020 2.76787i −1.32084 0.187464i
\(219\) 0 0
\(220\) 2.51802 + 0.729445i 0.169765 + 0.0491791i
\(221\) 0.921151 + 10.6286i 0.0619633 + 0.714955i
\(222\) 0 0
\(223\) −18.2336 + 18.2336i −1.22101 + 1.22101i −0.253736 + 0.967274i \(0.581659\pi\)
−0.967274 + 0.253736i \(0.918341\pi\)
\(224\) 6.01388 7.06893i 0.401820 0.472312i
\(225\) 0 0
\(226\) 7.98270 + 10.6234i 0.531001 + 0.706659i
\(227\) −2.94277 2.94277i −0.195319 0.195319i 0.602671 0.797990i \(-0.294103\pi\)
−0.797990 + 0.602671i \(0.794103\pi\)
\(228\) 0 0
\(229\) 2.08468 + 2.08468i 0.137759 + 0.137759i 0.772624 0.634864i \(-0.218944\pi\)
−0.634864 + 0.772624i \(0.718944\pi\)
\(230\) 7.11259 + 1.00947i 0.468990 + 0.0665626i
\(231\) 0 0
\(232\) −9.72438 25.6450i −0.638437 1.68368i
\(233\) 16.1555i 1.05838i −0.848502 0.529191i \(-0.822495\pi\)
0.848502 0.529191i \(-0.177505\pi\)
\(234\) 0 0
\(235\) −17.3826 −1.13391
\(236\) −12.0943 21.9592i −0.787269 1.42942i
\(237\) 0 0
\(238\) 6.79722 + 0.964711i 0.440598 + 0.0625329i
\(239\) 11.3906 11.3906i 0.736799 0.736799i −0.235158 0.971957i \(-0.575561\pi\)
0.971957 + 0.235158i \(0.0755607\pi\)
\(240\) 0 0
\(241\) 8.56378 8.56378i 0.551642 0.551642i −0.375273 0.926914i \(-0.622451\pi\)
0.926914 + 0.375273i \(0.122451\pi\)
\(242\) 12.0892 9.08412i 0.777123 0.583949i
\(243\) 0 0
\(244\) 11.1019 + 3.21610i 0.710724 + 0.205890i
\(245\) −7.20386 7.20386i −0.460238 0.460238i
\(246\) 0 0
\(247\) 3.06666 + 2.57749i 0.195127 + 0.164002i
\(248\) 1.90473 4.23156i 0.120950 0.268705i
\(249\) 0 0
\(250\) 2.07148 14.5953i 0.131012 0.923089i
\(251\) 1.13387i 0.0715692i 0.999360 + 0.0357846i \(0.0113930\pi\)
−0.999360 + 0.0357846i \(0.988607\pi\)
\(252\) 0 0
\(253\) −0.841964 + 0.841964i −0.0529338 + 0.0529338i
\(254\) 3.70612 + 4.93213i 0.232543 + 0.309469i
\(255\) 0 0
\(256\) 6.85713 + 14.4561i 0.428570 + 0.903508i
\(257\) 11.6824i 0.728728i −0.931257 0.364364i \(-0.881286\pi\)
0.931257 0.364364i \(-0.118714\pi\)
\(258\) 0 0
\(259\) 4.35220i 0.270433i
\(260\) −9.48550 14.1706i −0.588266 0.878823i
\(261\) 0 0
\(262\) −17.4201 23.1827i −1.07622 1.43223i
\(263\) 2.49816i 0.154043i −0.997029 0.0770214i \(-0.975459\pi\)
0.997029 0.0770214i \(-0.0245410\pi\)
\(264\) 0 0
\(265\) −23.3268 23.3268i −1.43296 1.43296i
\(266\) 2.06093 1.54864i 0.126364 0.0949529i
\(267\) 0 0
\(268\) 14.5116 7.99241i 0.886437 0.488214i
\(269\) 17.3767i 1.05948i 0.848161 + 0.529739i \(0.177710\pi\)
−0.848161 + 0.529739i \(0.822290\pi\)
\(270\) 0 0
\(271\) 19.5790 + 19.5790i 1.18934 + 1.18934i 0.977250 + 0.212089i \(0.0680266\pi\)
0.212089 + 0.977250i \(0.431973\pi\)
\(272\) −6.32637 + 10.0029i −0.383592 + 0.606512i
\(273\) 0 0
\(274\) 19.4057 + 2.75420i 1.17234 + 0.166387i
\(275\) −0.232009 0.232009i −0.0139907 0.0139907i
\(276\) 0 0
\(277\) 28.2035 1.69459 0.847293 0.531126i \(-0.178231\pi\)
0.847293 + 0.531126i \(0.178231\pi\)
\(278\) 2.97675 + 3.96147i 0.178534 + 0.237593i
\(279\) 0 0
\(280\) −10.2606 + 3.89073i −0.613187 + 0.232516i
\(281\) 6.00608 6.00608i 0.358292 0.358292i −0.504891 0.863183i \(-0.668467\pi\)
0.863183 + 0.504891i \(0.168467\pi\)
\(282\) 0 0
\(283\) 29.1306i 1.73164i 0.500359 + 0.865818i \(0.333201\pi\)
−0.500359 + 0.865818i \(0.666799\pi\)
\(284\) −7.27373 13.2067i −0.431616 0.783674i
\(285\) 0 0
\(286\) 2.82219 + 0.154059i 0.166880 + 0.00910972i
\(287\) 2.82769i 0.166913i
\(288\) 0 0
\(289\) 8.24500 0.485000
\(290\) −4.55682 + 32.1067i −0.267586 + 1.88537i
\(291\) 0 0
\(292\) −8.05088 14.6178i −0.471142 0.855440i
\(293\) −5.43420 5.43420i −0.317469 0.317469i 0.530325 0.847794i \(-0.322070\pi\)
−0.847794 + 0.530325i \(0.822070\pi\)
\(294\) 0 0
\(295\) 29.6412i 1.72578i
\(296\) 6.84184 + 3.07968i 0.397674 + 0.179003i
\(297\) 0 0
\(298\) 6.48596 + 0.920536i 0.375722 + 0.0533252i
\(299\) 7.71630 0.668752i 0.446245 0.0386749i
\(300\) 0 0
\(301\) 7.70664 7.70664i 0.444203 0.444203i
\(302\) 1.97042 13.8833i 0.113385 0.798894i
\(303\) 0 0
\(304\) 0.976173 + 4.33570i 0.0559874 + 0.248670i
\(305\) −9.66341 9.66341i −0.553325 0.553325i
\(306\) 0 0
\(307\) 11.4314 11.4314i 0.652427 0.652427i −0.301150 0.953577i \(-0.597370\pi\)
0.953577 + 0.301150i \(0.0973704\pi\)
\(308\) 0.506093 1.74701i 0.0288373 0.0995453i
\(309\) 0 0
\(310\) −4.38639 + 3.29604i −0.249130 + 0.187203i
\(311\) −16.2544 −0.921700 −0.460850 0.887478i \(-0.652455\pi\)
−0.460850 + 0.887478i \(0.652455\pi\)
\(312\) 0 0
\(313\) 19.1736 1.08376 0.541878 0.840457i \(-0.317713\pi\)
0.541878 + 0.840457i \(0.317713\pi\)
\(314\) −26.6728 + 20.0426i −1.50523 + 1.13107i
\(315\) 0 0
\(316\) −3.50518 1.01542i −0.197182 0.0571216i
\(317\) −6.77764 + 6.77764i −0.380670 + 0.380670i −0.871344 0.490673i \(-0.836751\pi\)
0.490673 + 0.871344i \(0.336751\pi\)
\(318\) 0 0
\(319\) −3.80068 3.80068i −0.212797 0.212797i
\(320\) 1.14414 18.8832i 0.0639596 1.05560i
\(321\) 0 0
\(322\) 0.700377 4.93475i 0.0390305 0.275003i
\(323\) −2.32461 + 2.32461i −0.129345 + 0.129345i
\(324\) 0 0
\(325\) 0.184279 + 2.12628i 0.0102220 + 0.117945i
\(326\) −28.3058 4.01737i −1.56771 0.222501i
\(327\) 0 0
\(328\) 4.44524 + 2.00091i 0.245447 + 0.110482i
\(329\) 12.0601i 0.664896i
\(330\) 0 0
\(331\) −13.9517 13.9517i −0.766855 0.766855i 0.210697 0.977551i \(-0.432427\pi\)
−0.977551 + 0.210697i \(0.932427\pi\)
\(332\) 8.15628 4.49215i 0.447634 0.246539i
\(333\) 0 0
\(334\) 2.71656 19.1405i 0.148644 1.04732i
\(335\) −19.5882 −1.07022
\(336\) 0 0
\(337\) 20.3092i 1.10631i 0.833077 + 0.553157i \(0.186577\pi\)
−0.833077 + 0.553157i \(0.813423\pi\)
\(338\) −13.4082 12.5785i −0.729312 0.684182i
\(339\) 0 0
\(340\) 12.2578 6.75108i 0.664770 0.366129i
\(341\) 0.909421i 0.0492479i
\(342\) 0 0
\(343\) −13.1189 + 13.1189i −0.708356 + 0.708356i
\(344\) 6.66182 + 17.5685i 0.359181 + 0.947228i
\(345\) 0 0
\(346\) −4.17048 5.55010i −0.224206 0.298375i
\(347\) −18.8537 −1.01212 −0.506060 0.862498i \(-0.668899\pi\)
−0.506060 + 0.862498i \(0.668899\pi\)
\(348\) 0 0
\(349\) 4.93319 + 4.93319i 0.264068 + 0.264068i 0.826704 0.562637i \(-0.190213\pi\)
−0.562637 + 0.826704i \(0.690213\pi\)
\(350\) 1.35981 + 0.192994i 0.0726846 + 0.0103159i
\(351\) 0 0
\(352\) 2.38826 + 2.03181i 0.127295 + 0.108296i
\(353\) 15.4858 + 15.4858i 0.824227 + 0.824227i 0.986711 0.162484i \(-0.0519506\pi\)
−0.162484 + 0.986711i \(0.551951\pi\)
\(354\) 0 0
\(355\) 17.8268i 0.946150i
\(356\) 10.2145 + 18.5463i 0.541369 + 0.982949i
\(357\) 0 0
\(358\) −17.5112 + 13.1583i −0.925494 + 0.695439i
\(359\) 12.6928 + 12.6928i 0.669902 + 0.669902i 0.957693 0.287791i \(-0.0929210\pi\)
−0.287791 + 0.957693i \(0.592921\pi\)
\(360\) 0 0
\(361\) 17.7655i 0.935029i
\(362\) −11.6951 15.5638i −0.614678 0.818017i
\(363\) 0 0
\(364\) −9.83164 + 6.58109i −0.515318 + 0.344943i
\(365\) 19.7315i 1.03279i
\(366\) 0 0
\(367\) 1.60603i 0.0838342i 0.999121 + 0.0419171i \(0.0133465\pi\)
−0.999121 + 0.0419171i \(0.986653\pi\)
\(368\) 7.26203 + 4.59292i 0.378560 + 0.239422i
\(369\) 0 0
\(370\) −5.32924 7.09217i −0.277054 0.368705i
\(371\) −16.1843 + 16.1843i −0.840245 + 0.840245i
\(372\) 0 0
\(373\) 12.5988i 0.652341i 0.945311 + 0.326170i \(0.105758\pi\)
−0.945311 + 0.326170i \(0.894242\pi\)
\(374\) −0.325930 + 2.29646i −0.0168535 + 0.118747i
\(375\) 0 0
\(376\) −18.9590 8.53390i −0.977735 0.440102i
\(377\) 3.01879 + 34.8319i 0.155476 + 1.79393i
\(378\) 0 0
\(379\) 3.97178 + 3.97178i 0.204017 + 0.204017i 0.801718 0.597702i \(-0.203919\pi\)
−0.597702 + 0.801718i \(0.703919\pi\)
\(380\) 1.46212 5.04719i 0.0750052 0.258915i
\(381\) 0 0
\(382\) −10.7324 + 8.06459i −0.549118 + 0.412621i
\(383\) 24.1673 24.1673i 1.23489 1.23489i 0.272832 0.962062i \(-0.412040\pi\)
0.962062 0.272832i \(-0.0879604\pi\)
\(384\) 0 0
\(385\) −1.52066 + 1.52066i −0.0774998 + 0.0774998i
\(386\) 9.31610 + 1.32221i 0.474177 + 0.0672987i
\(387\) 0 0
\(388\) −12.2421 + 6.74247i −0.621499 + 0.342297i
\(389\) −19.5120 −0.989298 −0.494649 0.869093i \(-0.664703\pi\)
−0.494649 + 0.869093i \(0.664703\pi\)
\(390\) 0 0
\(391\) 6.35610i 0.321442i
\(392\) −4.32047 11.3939i −0.218217 0.575478i
\(393\) 0 0
\(394\) −26.1983 3.71826i −1.31985 0.187323i
\(395\) 3.05102 + 3.05102i 0.153513 + 0.153513i
\(396\) 0 0
\(397\) −12.4820 12.4820i −0.626454 0.626454i 0.320720 0.947174i \(-0.396075\pi\)
−0.947174 + 0.320720i \(0.896075\pi\)
\(398\) −2.46340 3.27831i −0.123479 0.164327i
\(399\) 0 0
\(400\) −1.26561 + 2.00110i −0.0632805 + 0.100055i
\(401\) 5.08810 5.08810i 0.254088 0.254088i −0.568557 0.822644i \(-0.692498\pi\)
0.822644 + 0.568557i \(0.192498\pi\)
\(402\) 0 0
\(403\) −3.80609 + 4.52842i −0.189595 + 0.225577i
\(404\) 1.16807 4.03214i 0.0581137 0.200607i
\(405\) 0 0
\(406\) 22.2758 + 3.16155i 1.10553 + 0.156905i
\(407\) 1.47040 0.0728852
\(408\) 0 0
\(409\) 18.2904 + 18.2904i 0.904403 + 0.904403i 0.995813 0.0914099i \(-0.0291373\pi\)
−0.0914099 + 0.995813i \(0.529137\pi\)
\(410\) −3.46248 4.60789i −0.171000 0.227567i
\(411\) 0 0
\(412\) 8.72866 30.1310i 0.430030 1.48445i
\(413\) 20.5652 1.01195
\(414\) 0 0
\(415\) −11.0096 −0.540440
\(416\) −3.38874 20.1126i −0.166147 0.986101i
\(417\) 0 0
\(418\) 0.523211 + 0.696292i 0.0255911 + 0.0340567i
\(419\) 19.2388 0.939875 0.469938 0.882700i \(-0.344276\pi\)
0.469938 + 0.882700i \(0.344276\pi\)
\(420\) 0 0
\(421\) −22.4944 + 22.4944i −1.09631 + 1.09631i −0.101471 + 0.994839i \(0.532355\pi\)
−0.994839 + 0.101471i \(0.967645\pi\)
\(422\) −19.8175 26.3732i −0.964701 1.28383i
\(423\) 0 0
\(424\) −13.9901 36.8945i −0.679420 1.79176i
\(425\) −1.75147 −0.0849586
\(426\) 0 0
\(427\) −6.70452 + 6.70452i −0.324455 + 0.324455i
\(428\) −6.57013 + 22.6798i −0.317579 + 1.09627i
\(429\) 0 0
\(430\) 3.12171 21.9951i 0.150542 1.06070i
\(431\) −23.8969 + 23.8969i −1.15107 + 1.15107i −0.164735 + 0.986338i \(0.552677\pi\)
−0.986338 + 0.164735i \(0.947323\pi\)
\(432\) 0 0
\(433\) 33.4534i 1.60767i 0.594854 + 0.803834i \(0.297210\pi\)
−0.594854 + 0.803834i \(0.702790\pi\)
\(434\) 2.28681 + 3.04330i 0.109771 + 0.146083i
\(435\) 0 0
\(436\) 13.4388 + 24.4004i 0.643601 + 1.16857i
\(437\) 1.68766 + 1.68766i 0.0807316 + 0.0807316i
\(438\) 0 0
\(439\) −2.89421 −0.138133 −0.0690665 0.997612i \(-0.522002\pi\)
−0.0690665 + 0.997612i \(0.522002\pi\)
\(440\) −1.31449 3.46657i −0.0626661 0.165262i
\(441\) 0 0
\(442\) 11.2341 10.0710i 0.534350 0.479031i
\(443\) 19.6887 0.935440 0.467720 0.883877i \(-0.345076\pi\)
0.467720 + 0.883877i \(0.345076\pi\)
\(444\) 0 0
\(445\) 25.0343i 1.18674i
\(446\) 36.1053 + 5.12433i 1.70964 + 0.242644i
\(447\) 0 0
\(448\) −13.1013 0.793813i −0.618976 0.0375041i
\(449\) 13.5405 13.5405i 0.639017 0.639017i −0.311296 0.950313i \(-0.600763\pi\)
0.950313 + 0.311296i \(0.100763\pi\)
\(450\) 0 0
\(451\) 0.955342 0.0449853
\(452\) 5.22903 18.0504i 0.245953 0.849021i
\(453\) 0 0
\(454\) −0.827031 + 5.82714i −0.0388145 + 0.273481i
\(455\) 13.9363 1.20782i 0.653342 0.0566235i
\(456\) 0 0
\(457\) −3.88236 3.88236i −0.181609 0.181609i 0.610447 0.792057i \(-0.290990\pi\)
−0.792057 + 0.610447i \(0.790990\pi\)
\(458\) 0.585875 4.12799i 0.0273761 0.192888i
\(459\) 0 0
\(460\) −4.90126 8.89908i −0.228522 0.414922i
\(461\) −17.4455 + 17.4455i −0.812517 + 0.812517i −0.985011 0.172494i \(-0.944818\pi\)
0.172494 + 0.985011i \(0.444818\pi\)
\(462\) 0 0
\(463\) −30.0459 30.0459i −1.39635 1.39635i −0.810210 0.586140i \(-0.800647\pi\)
−0.586140 0.810210i \(-0.699353\pi\)
\(464\) −20.7327 + 32.7813i −0.962493 + 1.52183i
\(465\) 0 0
\(466\) −18.2654 + 13.7251i −0.846127 + 0.635801i
\(467\) 8.61820i 0.398803i −0.979918 0.199401i \(-0.936100\pi\)
0.979918 0.199401i \(-0.0638998\pi\)
\(468\) 0 0
\(469\) 13.5904i 0.627547i
\(470\) 14.7675 + 19.6527i 0.681174 + 0.906510i
\(471\) 0 0
\(472\) −14.5522 + 32.3294i −0.669821 + 1.48808i
\(473\) 2.60371 + 2.60371i 0.119719 + 0.119719i
\(474\) 0 0
\(475\) −0.465046 + 0.465046i −0.0213378 + 0.0213378i
\(476\) −4.68394 8.50449i −0.214688 0.389803i
\(477\) 0 0
\(478\) −22.5552 3.20121i −1.03165 0.146420i
\(479\) 4.53008 + 4.53008i 0.206985 + 0.206985i 0.802984 0.596000i \(-0.203244\pi\)
−0.596000 + 0.802984i \(0.703244\pi\)
\(480\) 0 0
\(481\) −7.32182 6.15391i −0.333846 0.280594i
\(482\) −16.9576 2.40675i −0.772399 0.109625i
\(483\) 0 0
\(484\) −20.5410 5.95051i −0.933680 0.270478i
\(485\) 16.5248 0.750352
\(486\) 0 0
\(487\) 14.1789 14.1789i 0.642507 0.642507i −0.308664 0.951171i \(-0.599882\pi\)
0.951171 + 0.308664i \(0.0998820\pi\)
\(488\) −5.79557 15.2840i −0.262353 0.691874i
\(489\) 0 0
\(490\) −2.02456 + 14.2648i −0.0914604 + 0.644417i
\(491\) 19.7677i 0.892104i −0.895007 0.446052i \(-0.852830\pi\)
0.895007 0.446052i \(-0.147170\pi\)
\(492\) 0 0
\(493\) −28.6918 −1.29222
\(494\) 0.308801 5.65689i 0.0138936 0.254515i
\(495\) 0 0
\(496\) −6.40237 + 1.44148i −0.287475 + 0.0647243i
\(497\) 12.3683 0.554796
\(498\) 0 0
\(499\) −14.8709 14.8709i −0.665713 0.665713i 0.291008 0.956721i \(-0.406009\pi\)
−0.956721 + 0.291008i \(0.906009\pi\)
\(500\) −18.2613 + 10.0576i −0.816668 + 0.449788i
\(501\) 0 0
\(502\) 1.28195 0.963288i 0.0572162 0.0429937i
\(503\) 30.0549i 1.34008i 0.742324 + 0.670041i \(0.233724\pi\)
−0.742324 + 0.670041i \(0.766276\pi\)
\(504\) 0 0
\(505\) −3.50970 + 3.50970i −0.156180 + 0.156180i
\(506\) 1.66722 + 0.236624i 0.0741170 + 0.0105192i
\(507\) 0 0
\(508\) 2.42768 8.38026i 0.107711 0.371814i
\(509\) 0.547453 0.547453i 0.0242654 0.0242654i −0.694870 0.719135i \(-0.744538\pi\)
0.719135 + 0.694870i \(0.244538\pi\)
\(510\) 0 0
\(511\) 13.6898 0.605602
\(512\) 10.5185 20.0340i 0.464858 0.885385i
\(513\) 0 0
\(514\) −13.2081 + 9.92489i −0.582584 + 0.437768i
\(515\) −26.2270 + 26.2270i −1.15570 + 1.15570i
\(516\) 0 0
\(517\) −4.07454 −0.179198
\(518\) −4.92059 + 3.69745i −0.216198 + 0.162457i
\(519\) 0 0
\(520\) −7.96275 + 22.7630i −0.349190 + 0.998225i
\(521\) −10.9111 −0.478025 −0.239012 0.971017i \(-0.576824\pi\)
−0.239012 + 0.971017i \(0.576824\pi\)
\(522\) 0 0
\(523\) 36.6897 1.60433 0.802165 0.597103i \(-0.203682\pi\)
0.802165 + 0.597103i \(0.203682\pi\)
\(524\) −11.4110 + 39.3902i −0.498490 + 1.72077i
\(525\) 0 0
\(526\) −2.82441 + 2.12233i −0.123150 + 0.0925380i
\(527\) −3.43267 3.43267i −0.149529 0.149529i
\(528\) 0 0
\(529\) −18.3855 −0.799370
\(530\) −6.55573 + 46.1907i −0.284763 + 2.00640i
\(531\) 0 0
\(532\) −3.50176 1.01443i −0.151821 0.0439810i
\(533\) −4.75709 3.99828i −0.206052 0.173185i
\(534\) 0 0
\(535\) 19.7413 19.7413i 0.853489 0.853489i
\(536\) −21.3647 9.61676i −0.922813 0.415381i
\(537\) 0 0
\(538\) 19.6461 14.7626i 0.847003 0.636459i
\(539\) −1.68861 1.68861i −0.0727338 0.0727338i
\(540\) 0 0
\(541\) −2.29349 2.29349i −0.0986047 0.0986047i 0.656084 0.754688i \(-0.272212\pi\)
−0.754688 + 0.656084i \(0.772212\pi\)
\(542\) 5.50245 38.7695i 0.236350 1.66529i
\(543\) 0 0
\(544\) 16.6838 1.34544i 0.715313 0.0576852i
\(545\) 32.9364i 1.41084i
\(546\) 0 0
\(547\) −29.3860 −1.25646 −0.628228 0.778029i \(-0.716220\pi\)
−0.628228 + 0.778029i \(0.716220\pi\)
\(548\) −13.3724 24.2799i −0.571240 1.03719i
\(549\) 0 0
\(550\) −0.0652034 + 0.459414i −0.00278028 + 0.0195895i
\(551\) −7.61820 + 7.61820i −0.324546 + 0.324546i
\(552\) 0 0
\(553\) 2.11681 2.11681i 0.0900161 0.0900161i
\(554\) −23.9606 31.8868i −1.01799 1.35474i
\(555\) 0 0
\(556\) 1.94991 6.73101i 0.0826945 0.285458i
\(557\) −15.4424 15.4424i −0.654316 0.654316i 0.299713 0.954029i \(-0.403109\pi\)
−0.954029 + 0.299713i \(0.903109\pi\)
\(558\) 0 0
\(559\) −2.06806 23.8621i −0.0874698 1.00926i
\(560\) 13.1158 + 8.29518i 0.554245 + 0.350536i
\(561\) 0 0
\(562\) −11.8930 1.68794i −0.501675 0.0712014i
\(563\) 28.2354i 1.18998i −0.803733 0.594990i \(-0.797156\pi\)
0.803733 0.594990i \(-0.202844\pi\)
\(564\) 0 0
\(565\) −15.7117 + 15.7117i −0.660995 + 0.660995i
\(566\) 32.9350 24.7482i 1.38436 1.04024i
\(567\) 0 0
\(568\) −8.75201 + 19.4435i −0.367226 + 0.815832i
\(569\) 8.54680i 0.358301i −0.983822 0.179150i \(-0.942665\pi\)
0.983822 0.179150i \(-0.0573348\pi\)
\(570\) 0 0
\(571\) 37.8236i 1.58287i −0.611254 0.791435i \(-0.709335\pi\)
0.611254 0.791435i \(-0.290665\pi\)
\(572\) −2.22344 3.32165i −0.0929667 0.138885i
\(573\) 0 0
\(574\) −3.19698 + 2.40229i −0.133439 + 0.100270i
\(575\) 1.27156i 0.0530276i
\(576\) 0 0
\(577\) −14.3094 14.3094i −0.595709 0.595709i 0.343459 0.939168i \(-0.388401\pi\)
−0.939168 + 0.343459i \(0.888401\pi\)
\(578\) −7.00461 9.32177i −0.291353 0.387735i
\(579\) 0 0
\(580\) 40.1710 22.1246i 1.66801 0.918674i
\(581\) 7.63852i 0.316899i
\(582\) 0 0
\(583\) −5.46790 5.46790i −0.226457 0.226457i
\(584\) −9.68711 + 21.5210i −0.400855 + 0.890544i
\(585\) 0 0
\(586\) −1.52722 + 10.7606i −0.0630888 + 0.444515i
\(587\) −5.61673 5.61673i −0.231827 0.231827i 0.581628 0.813455i \(-0.302416\pi\)
−0.813455 + 0.581628i \(0.802416\pi\)
\(588\) 0 0
\(589\) −1.82287 −0.0751100
\(590\) 33.5123 25.1820i 1.37968 1.03672i
\(591\) 0 0
\(592\) −2.33067 10.3517i −0.0957898 0.425453i
\(593\) −9.10077 + 9.10077i −0.373724 + 0.373724i −0.868832 0.495108i \(-0.835129\pi\)
0.495108 + 0.868832i \(0.335129\pi\)
\(594\) 0 0
\(595\) 11.4796i 0.470619i
\(596\) −4.46945 8.11506i −0.183076 0.332406i
\(597\) 0 0
\(598\) −7.31154 8.15588i −0.298991 0.333519i
\(599\) 22.5156i 0.919962i 0.887929 + 0.459981i \(0.152144\pi\)
−0.887929 + 0.459981i \(0.847856\pi\)
\(600\) 0 0
\(601\) 6.23544 0.254349 0.127174 0.991880i \(-0.459409\pi\)
0.127174 + 0.991880i \(0.459409\pi\)
\(602\) −15.2603 2.16586i −0.621965 0.0882739i
\(603\) 0 0
\(604\) −17.3704 + 9.56692i −0.706792 + 0.389273i
\(605\) 17.8795 + 17.8795i 0.726905 + 0.726905i
\(606\) 0 0
\(607\) 46.7547i 1.89772i −0.315704 0.948858i \(-0.602241\pi\)
0.315704 0.948858i \(-0.397759\pi\)
\(608\) 4.07262 4.78709i 0.165166 0.194142i
\(609\) 0 0
\(610\) −2.71579 + 19.1351i −0.109959 + 0.774756i
\(611\) 20.2890 + 17.0527i 0.820806 + 0.689879i
\(612\) 0 0
\(613\) −13.4628 + 13.4628i −0.543757 + 0.543757i −0.924628 0.380871i \(-0.875624\pi\)
0.380871 + 0.924628i \(0.375624\pi\)
\(614\) −22.6360 3.21268i −0.913516 0.129653i
\(615\) 0 0
\(616\) −2.40512 + 0.912004i −0.0969052 + 0.0367457i
\(617\) −13.6695 13.6695i −0.550313 0.550313i 0.376218 0.926531i \(-0.377224\pi\)
−0.926531 + 0.376218i \(0.877224\pi\)
\(618\) 0 0
\(619\) 11.8988 11.8988i 0.478255 0.478255i −0.426318 0.904573i \(-0.640190\pi\)
0.904573 + 0.426318i \(0.140190\pi\)
\(620\) 7.45300 + 2.15906i 0.299320 + 0.0867099i
\(621\) 0 0
\(622\) 13.8090 + 18.3771i 0.553691 + 0.736855i
\(623\) −17.3689 −0.695872
\(624\) 0 0
\(625\) 27.6093 1.10437
\(626\) −16.2891 21.6776i −0.651044 0.866412i
\(627\) 0 0
\(628\) 45.3202 + 13.1288i 1.80847 + 0.523897i
\(629\) 5.55014 5.55014i 0.221298 0.221298i
\(630\) 0 0
\(631\) 11.8137 + 11.8137i 0.470295 + 0.470295i 0.902010 0.431715i \(-0.142091\pi\)
−0.431715 + 0.902010i \(0.642091\pi\)
\(632\) 1.82983 + 4.82560i 0.0727867 + 0.191952i
\(633\) 0 0
\(634\) 13.4208 + 1.90478i 0.533008 + 0.0756484i
\(635\) −7.29445 + 7.29445i −0.289471 + 0.289471i
\(636\) 0 0
\(637\) 1.34123 + 15.4755i 0.0531413 + 0.613164i
\(638\) −1.06814 + 7.52594i −0.0422880 + 0.297955i
\(639\) 0 0
\(640\) −22.3213 + 14.7488i −0.882327 + 0.582998i
\(641\) 12.0489i 0.475902i 0.971277 + 0.237951i \(0.0764757\pi\)
−0.971277 + 0.237951i \(0.923524\pi\)
\(642\) 0 0
\(643\) −28.4624 28.4624i −1.12245 1.12245i −0.991372 0.131076i \(-0.958157\pi\)
−0.131076 0.991372i \(-0.541843\pi\)
\(644\) −6.17423 + 3.40052i −0.243299 + 0.133999i
\(645\) 0 0
\(646\) 4.60309 + 0.653305i 0.181106 + 0.0257039i
\(647\) −9.55223 −0.375537 −0.187768 0.982213i \(-0.560125\pi\)
−0.187768 + 0.982213i \(0.560125\pi\)
\(648\) 0 0
\(649\) 6.94802i 0.272734i
\(650\) 2.24741 2.01474i 0.0881507 0.0790248i
\(651\) 0 0
\(652\) 19.5054 + 35.4154i 0.763890 + 1.38698i
\(653\) 21.6730i 0.848130i 0.905632 + 0.424065i \(0.139397\pi\)
−0.905632 + 0.424065i \(0.860603\pi\)
\(654\) 0 0
\(655\) 34.2865 34.2865i 1.33968 1.33968i
\(656\) −1.51427 6.72566i −0.0591222 0.262593i
\(657\) 0 0
\(658\) 13.6351 10.2458i 0.531553 0.399422i
\(659\) 12.1786 0.474409 0.237205 0.971460i \(-0.423769\pi\)
0.237205 + 0.971460i \(0.423769\pi\)
\(660\) 0 0
\(661\) −16.9361 16.9361i −0.658738 0.658738i 0.296343 0.955082i \(-0.404233\pi\)
−0.955082 + 0.296343i \(0.904233\pi\)
\(662\) −3.92096 + 27.6265i −0.152393 + 1.07374i
\(663\) 0 0
\(664\) −12.0081 5.40512i −0.466003 0.209759i
\(665\) 3.04805 + 3.04805i 0.118198 + 0.118198i
\(666\) 0 0
\(667\) 20.8302i 0.806547i
\(668\) −23.9481 + 13.1896i −0.926579 + 0.510323i
\(669\) 0 0
\(670\) 16.6413 + 22.1464i 0.642911 + 0.855589i
\(671\) −2.26514 2.26514i −0.0874449 0.0874449i
\(672\) 0 0
\(673\) 31.5099i 1.21462i −0.794466 0.607308i \(-0.792249\pi\)
0.794466 0.607308i \(-0.207751\pi\)
\(674\) 22.9615 17.2539i 0.884446 0.664594i
\(675\) 0 0
\(676\) −2.83017 + 25.8455i −0.108853 + 0.994058i
\(677\) 32.9475i 1.26627i −0.774040 0.633137i \(-0.781767\pi\)
0.774040 0.633137i \(-0.218233\pi\)
\(678\) 0 0
\(679\) 11.4650i 0.439986i
\(680\) −18.0464 8.12314i −0.692049 0.311508i
\(681\) 0 0
\(682\) −1.02819 + 0.772606i −0.0393714 + 0.0295846i
\(683\) 12.5106 12.5106i 0.478704 0.478704i −0.426013 0.904717i \(-0.640082\pi\)
0.904717 + 0.426013i \(0.140082\pi\)
\(684\) 0 0
\(685\) 32.7737i 1.25222i
\(686\) 25.9775 + 3.68692i 0.991827 + 0.140767i
\(687\) 0 0
\(688\) 14.2032 22.4573i 0.541494 0.856176i
\(689\) 4.34302 + 50.1114i 0.165456 + 1.90909i
\(690\) 0 0
\(691\) 36.4803 + 36.4803i 1.38777 + 1.38777i 0.829978 + 0.557797i \(0.188353\pi\)
0.557797 + 0.829978i \(0.311647\pi\)
\(692\) −2.73186 + 9.43027i −0.103850 + 0.358485i
\(693\) 0 0
\(694\) 16.0173 + 21.3160i 0.608010 + 0.809142i
\(695\) −5.85889 + 5.85889i −0.222240 + 0.222240i
\(696\) 0 0
\(697\) 3.60600 3.60600i 0.136587 0.136587i
\(698\) 1.38642 9.76849i 0.0524767 0.369743i
\(699\) 0 0
\(700\) −0.937036 1.70135i −0.0354166 0.0643050i
\(701\) 41.5365 1.56881 0.784407 0.620247i \(-0.212967\pi\)
0.784407 + 0.620247i \(0.212967\pi\)
\(702\) 0 0
\(703\) 2.94732i 0.111160i
\(704\) 0.268192 4.42630i 0.0101079 0.166822i
\(705\) 0 0
\(706\) 4.35211 30.6643i 0.163794 1.15407i
\(707\) 2.43505 + 2.43505i 0.0915795 + 0.0915795i
\(708\) 0 0
\(709\) 26.1966 + 26.1966i 0.983834 + 0.983834i 0.999871 0.0160378i \(-0.00510519\pi\)
−0.0160378 + 0.999871i \(0.505105\pi\)
\(710\) 20.1550 15.1449i 0.756402 0.568379i
\(711\) 0 0
\(712\) 12.2905 27.3047i 0.460606 1.02329i
\(713\) −2.49210 + 2.49210i −0.0933300 + 0.0933300i
\(714\) 0 0
\(715\) 0.408066 + 4.70841i 0.0152608 + 0.176084i
\(716\) 29.7535 + 8.61931i 1.11194 + 0.322119i
\(717\) 0 0
\(718\) 3.56717 25.1338i 0.133126 0.937984i
\(719\) −1.99265 −0.0743134 −0.0371567 0.999309i \(-0.511830\pi\)
−0.0371567 + 0.999309i \(0.511830\pi\)
\(720\) 0 0
\(721\) 18.1964 + 18.1964i 0.677670 + 0.677670i
\(722\) −20.0857 + 15.0929i −0.747512 + 0.561699i
\(723\) 0 0
\(724\) −7.66079 + 26.4448i −0.284711 + 0.982813i
\(725\) −5.73989 −0.213174
\(726\) 0 0
\(727\) 18.2357 0.676325 0.338162 0.941088i \(-0.390195\pi\)
0.338162 + 0.941088i \(0.390195\pi\)
\(728\) 15.7931 + 5.52460i 0.585332 + 0.204755i
\(729\) 0 0
\(730\) 22.3084 16.7631i 0.825671 0.620430i
\(731\) 19.6557 0.726994
\(732\) 0 0
\(733\) −18.4701 + 18.4701i −0.682209 + 0.682209i −0.960497 0.278289i \(-0.910233\pi\)
0.278289 + 0.960497i \(0.410233\pi\)
\(734\) 1.81578 1.36442i 0.0670215 0.0503616i
\(735\) 0 0
\(736\) −0.976783 12.1124i −0.0360047 0.446469i
\(737\) −4.59156 −0.169132
\(738\) 0 0
\(739\) −17.9656 + 17.9656i −0.660876 + 0.660876i −0.955587 0.294710i \(-0.904777\pi\)
0.294710 + 0.955587i \(0.404777\pi\)
\(740\) −3.49089 + 12.0504i −0.128328 + 0.442983i
\(741\) 0 0
\(742\) 32.0474 + 4.54840i 1.17650 + 0.166977i
\(743\) 18.0076 18.0076i 0.660635 0.660635i −0.294895 0.955530i \(-0.595285\pi\)
0.955530 + 0.294895i \(0.0952845\pi\)
\(744\) 0 0
\(745\) 10.9540i 0.401322i
\(746\) 14.2442 10.7034i 0.521516 0.391880i
\(747\) 0 0
\(748\) 2.87327 1.58248i 0.105057 0.0578612i
\(749\) −13.6966 13.6966i −0.500462 0.500462i
\(750\) 0 0
\(751\) 42.4965 1.55072 0.775359 0.631521i \(-0.217569\pi\)
0.775359 + 0.631521i \(0.217569\pi\)
\(752\) 6.45836 + 28.6850i 0.235512 + 1.04604i
\(753\) 0 0
\(754\) 36.8162 33.0048i 1.34077 1.20196i
\(755\) 23.4471 0.853328
\(756\) 0 0
\(757\) 16.7233i 0.607817i 0.952701 + 0.303908i \(0.0982917\pi\)
−0.952701 + 0.303908i \(0.901708\pi\)
\(758\) 1.11622 7.86474i 0.0405430 0.285660i
\(759\) 0 0
\(760\) −6.94849 + 2.63481i −0.252048 + 0.0955747i
\(761\) 1.74539 1.74539i 0.0632703 0.0632703i −0.674764 0.738034i \(-0.735754\pi\)
0.738034 + 0.674764i \(0.235754\pi\)
\(762\) 0 0
\(763\) −22.8515 −0.827279
\(764\) 18.2356 + 5.28268i 0.659741 + 0.191121i
\(765\) 0 0
\(766\) −47.8551 6.79195i −1.72908 0.245403i
\(767\) 29.0787 34.5974i 1.04997 1.24924i
\(768\) 0 0
\(769\) −6.50326 6.50326i −0.234514 0.234514i 0.580060 0.814574i \(-0.303029\pi\)
−0.814574 + 0.580060i \(0.803029\pi\)
\(770\) 3.01114 + 0.427363i 0.108514 + 0.0154011i
\(771\) 0 0
\(772\) −6.41969 11.6560i −0.231050 0.419510i
\(773\) 10.4555 10.4555i 0.376058 0.376058i −0.493620 0.869678i \(-0.664326\pi\)
0.869678 + 0.493620i \(0.164326\pi\)
\(774\) 0 0
\(775\) −0.686716 0.686716i −0.0246676 0.0246676i
\(776\) 18.0234 + 8.11278i 0.647003 + 0.291232i
\(777\) 0 0
\(778\) 16.5766 + 22.0602i 0.594300 + 0.790897i
\(779\) 1.91492i 0.0686090i
\(780\) 0 0
\(781\) 4.17868i 0.149525i
\(782\) 7.18618 5.39988i 0.256977 0.193099i
\(783\) 0 0
\(784\) −9.21140 + 14.5645i −0.328979 + 0.520160i
\(785\) −39.4482 39.4482i −1.40797 1.40797i
\(786\) 0 0
\(787\) 5.07056 5.07056i 0.180746 0.180746i −0.610935 0.791681i \(-0.709206\pi\)
0.791681 + 0.610935i \(0.209206\pi\)
\(788\) 18.0531 + 32.7786i 0.643117 + 1.16769i
\(789\) 0 0
\(790\) 0.857454 6.04150i 0.0305068 0.214947i
\(791\) 10.9008 + 10.9008i 0.387589 + 0.387589i
\(792\) 0 0
\(793\) 1.79915 + 20.7592i 0.0638896 + 0.737182i
\(794\) −3.50793 + 24.7163i −0.124492 + 0.877150i
\(795\) 0 0
\(796\) −1.61364 + 5.57023i −0.0571940 + 0.197432i
\(797\) −24.5139 −0.868327 −0.434163 0.900834i \(-0.642956\pi\)
−0.434163 + 0.900834i \(0.642956\pi\)
\(798\) 0 0
\(799\) −15.3796 + 15.3796i −0.544092 + 0.544092i
\(800\) 3.33765 0.269159i 0.118004 0.00951622i
\(801\) 0 0
\(802\) −10.0752 1.42995i −0.355769 0.0504934i
\(803\) 4.62515i 0.163218i
\(804\) 0 0
\(805\) 8.33416 0.293741
\(806\) 8.35332 + 0.455995i 0.294233 + 0.0160618i
\(807\) 0 0
\(808\) −5.55107 + 2.10492i −0.195286 + 0.0740509i
\(809\) −25.7049 −0.903738 −0.451869 0.892084i \(-0.649242\pi\)
−0.451869 + 0.892084i \(0.649242\pi\)
\(810\) 0 0
\(811\) 5.86079 + 5.86079i 0.205800 + 0.205800i 0.802480 0.596679i \(-0.203514\pi\)
−0.596679 + 0.802480i \(0.703514\pi\)
\(812\) −15.3502 27.8709i −0.538685 0.978076i
\(813\) 0 0
\(814\) −1.24919 1.66243i −0.0437843 0.0582683i
\(815\) 47.8048i 1.67453i
\(816\) 0 0
\(817\) 5.21895 5.21895i 0.182588 0.182588i
\(818\) 5.14031 36.2179i 0.179727 1.26633i
\(819\) 0 0
\(820\) −2.26808 + 7.82934i −0.0792049 + 0.273412i
\(821\) −4.28711 + 4.28711i −0.149621 + 0.149621i −0.777949 0.628328i \(-0.783740\pi\)
0.628328 + 0.777949i \(0.283740\pi\)
\(822\) 0 0
\(823\) 7.17762 0.250196 0.125098 0.992144i \(-0.460075\pi\)
0.125098 + 0.992144i \(0.460075\pi\)
\(824\) −41.4815 + 15.7295i −1.44508 + 0.547962i
\(825\) 0 0
\(826\) −17.4714 23.2510i −0.607907 0.809006i
\(827\) −29.8057 + 29.8057i −1.03644 + 1.03644i −0.0371341 + 0.999310i \(0.511823\pi\)
−0.999310 + 0.0371341i \(0.988177\pi\)
\(828\) 0 0
\(829\) −16.9928 −0.590184 −0.295092 0.955469i \(-0.595350\pi\)
−0.295092 + 0.955469i \(0.595350\pi\)
\(830\) 9.35330 + 12.4474i 0.324658 + 0.432056i
\(831\) 0 0
\(832\) −19.8603 + 20.9181i −0.688532 + 0.725206i
\(833\) −12.7476 −0.441677
\(834\) 0 0
\(835\) 32.3259 1.11868
\(836\) 0.342727 1.18308i 0.0118535 0.0409177i
\(837\) 0 0
\(838\) −16.3445 21.7513i −0.564610 0.751386i
\(839\) 7.08206 + 7.08206i 0.244500 + 0.244500i 0.818709 0.574209i \(-0.194690\pi\)
−0.574209 + 0.818709i \(0.694690\pi\)
\(840\) 0 0
\(841\) −65.0287 −2.24237
\(842\) 44.5424 + 6.32178i 1.53503 + 0.217863i
\(843\) 0 0
\(844\) −12.9814 + 44.8112i −0.446837 + 1.54247i
\(845\) 17.6736 25.1531i 0.607990 0.865295i
\(846\) 0 0
\(847\) 12.4049 12.4049i 0.426237 0.426237i
\(848\) −29.8274 + 47.1613i −1.02428 + 1.61952i
\(849\) 0 0
\(850\) 1.48797 + 1.98020i 0.0510371 + 0.0679204i
\(851\) −4.02938 4.02938i −0.138125 0.138125i
\(852\) 0 0
\(853\) 27.2045 + 27.2045i 0.931464 + 0.931464i 0.997797 0.0663337i \(-0.0211302\pi\)
−0.0663337 + 0.997797i \(0.521130\pi\)
\(854\) 13.2760 + 1.88423i 0.454296 + 0.0644770i
\(855\) 0 0
\(856\) 31.2235 11.8397i 1.06720 0.404672i
\(857\) 28.0509i 0.958202i −0.877760 0.479101i \(-0.840963\pi\)
0.877760 0.479101i \(-0.159037\pi\)
\(858\) 0 0
\(859\) −13.4573 −0.459158 −0.229579 0.973290i \(-0.573735\pi\)
−0.229579 + 0.973290i \(0.573735\pi\)
\(860\) −27.5197 + 15.1568i −0.938415 + 0.516841i
\(861\) 0 0
\(862\) 47.3196 + 6.71594i 1.61171 + 0.228746i
\(863\) −7.81239 + 7.81239i −0.265937 + 0.265937i −0.827461 0.561524i \(-0.810215\pi\)
0.561524 + 0.827461i \(0.310215\pi\)
\(864\) 0 0
\(865\) 8.20840 8.20840i 0.279094 0.279094i
\(866\) 37.8223 28.4206i 1.28525 0.965772i
\(867\) 0 0
\(868\) 1.49797 5.17093i 0.0508443 0.175513i
\(869\) 0.715172 + 0.715172i 0.0242605 + 0.0242605i
\(870\) 0 0
\(871\) 22.8635 + 19.2165i 0.774699 + 0.651126i
\(872\) 16.1700 35.9234i 0.547586 1.21652i
\(873\) 0 0
\(874\) 0.474297 3.34183i 0.0160433 0.113039i
\(875\) 17.1020i 0.578154i
\(876\) 0 0
\(877\) 11.8817 11.8817i 0.401216 0.401216i −0.477445 0.878661i \(-0.658437\pi\)
0.878661 + 0.477445i \(0.158437\pi\)
\(878\) 2.45880 + 3.27218i 0.0829805 + 0.110431i
\(879\) 0 0
\(880\) −2.80255 + 4.43122i −0.0944740 + 0.149376i
\(881\) 20.0497i 0.675493i 0.941237 + 0.337746i \(0.109665\pi\)
−0.941237 + 0.337746i \(0.890335\pi\)
\(882\) 0 0
\(883\) 32.1521i 1.08201i −0.841021 0.541003i \(-0.818045\pi\)
0.841021 0.541003i \(-0.181955\pi\)
\(884\) −20.9303 4.14525i −0.703962 0.139420i
\(885\) 0 0
\(886\) −16.7267 22.2600i −0.561946 0.747840i
\(887\) 36.2082i 1.21575i −0.794032 0.607876i \(-0.792022\pi\)
0.794032 0.607876i \(-0.207978\pi\)
\(888\) 0 0
\(889\) 5.06093 + 5.06093i 0.169738 + 0.169738i
\(890\) −28.3037 + 21.2681i −0.948743 + 0.712909i
\(891\) 0 0
\(892\) −24.8800 45.1740i −0.833044 1.51254i
\(893\) 8.16714i 0.273303i
\(894\) 0 0
\(895\) −25.8984 25.8984i −0.865689 0.865689i
\(896\) 10.2328 + 15.4866i 0.341854 + 0.517372i
\(897\) 0 0
\(898\) −26.8123 3.80541i −0.894739 0.126988i
\(899\) −11.2495 11.2495i −0.375192 0.375192i
\(900\) 0 0
\(901\) −41.2779 −1.37517
\(902\) −0.811619 1.08011i −0.0270240 0.0359636i
\(903\) 0 0
\(904\) −24.8501 + 9.42298i −0.826504 + 0.313404i
\(905\) 23.0184 23.0184i 0.765157 0.765157i
\(906\) 0 0
\(907\) 22.5108i 0.747460i −0.927538 0.373730i \(-0.878079\pi\)
0.927538 0.373730i \(-0.121921\pi\)
\(908\) 7.29076 4.01546i 0.241952 0.133258i
\(909\) 0 0
\(910\) −13.2052 14.7302i −0.437749 0.488301i
\(911\) 42.8030i 1.41813i −0.705146 0.709063i \(-0.749118\pi\)
0.705146 0.709063i \(-0.250882\pi\)
\(912\) 0 0
\(913\) −2.58070 −0.0854086
\(914\) −1.09109 + 7.68768i −0.0360901 + 0.254286i
\(915\) 0 0
\(916\) −5.16483 + 2.84458i −0.170651 + 0.0939876i
\(917\) −23.7881 23.7881i −0.785554 0.785554i
\(918\) 0 0
\(919\) 3.91723i 0.129218i −0.997911 0.0646088i \(-0.979420\pi\)
0.997911 0.0646088i \(-0.0205800\pi\)
\(920\) −5.89737 + 13.1016i −0.194430 + 0.431948i
\(921\) 0 0
\(922\) 34.5448 + 4.90285i 1.13767 + 0.161467i
\(923\) 17.4885 20.8076i 0.575642 0.684889i
\(924\) 0 0
\(925\) 1.11032 1.11032i 0.0365072 0.0365072i
\(926\) −8.44404 + 59.4955i −0.277488 + 1.95514i
\(927\) 0 0
\(928\) 54.6761 4.40926i 1.79483 0.144741i
\(929\) 16.9835 + 16.9835i 0.557212 + 0.557212i 0.928513 0.371301i \(-0.121088\pi\)
−0.371301 + 0.928513i \(0.621088\pi\)
\(930\) 0 0
\(931\) −3.38471 + 3.38471i −0.110929 + 0.110929i
\(932\) 31.0350 + 8.99054i 1.01659 + 0.294495i
\(933\) 0 0
\(934\) −9.74372 + 7.32167i −0.318824 + 0.239572i
\(935\) −3.87842 −0.126838
\(936\) 0 0
\(937\) 16.7414 0.546919 0.273459 0.961884i \(-0.411832\pi\)
0.273459 + 0.961884i \(0.411832\pi\)
\(938\) 15.3653 11.5458i 0.501694 0.376985i
\(939\) 0 0
\(940\) 9.67339 33.3922i 0.315511 1.08913i
\(941\) −30.5678 + 30.5678i −0.996481 + 0.996481i −0.999994 0.00351291i \(-0.998882\pi\)
0.00351291 + 0.999994i \(0.498882\pi\)
\(942\) 0 0
\(943\) −2.61794 2.61794i −0.0852519 0.0852519i
\(944\) 48.9145 11.0130i 1.59203 0.358442i
\(945\) 0 0
\(946\) 0.731742 5.15575i 0.0237910 0.167628i
\(947\) −34.2563 + 34.2563i −1.11318 + 1.11318i −0.120461 + 0.992718i \(0.538437\pi\)
−0.992718 + 0.120461i \(0.961563\pi\)
\(948\) 0 0
\(949\) 19.3571 23.0307i 0.628358 0.747609i
\(950\) 0.920863 + 0.130696i 0.0298767 + 0.00424033i
\(951\) 0 0
\(952\) −5.63588 + 12.5207i −0.182660 + 0.405799i
\(953\) 14.8870i 0.482236i 0.970496 + 0.241118i \(0.0775141\pi\)
−0.970496 + 0.241118i \(0.922486\pi\)
\(954\) 0 0
\(955\) −15.8729 15.8729i −0.513634 0.513634i
\(956\) 15.5427 + 28.2205i 0.502688 + 0.912717i
\(957\) 0 0
\(958\) 1.27313 8.97026i 0.0411328 0.289816i
\(959\) 22.7386 0.734267
\(960\) 0 0
\(961\) 28.3082i 0.913169i
\(962\) −0.737280 + 13.5061i −0.0237709 + 0.435455i
\(963\) 0 0
\(964\) 11.6854 + 21.2169i 0.376362 + 0.683351i
\(965\) 15.7337i 0.506486i
\(966\) 0 0
\(967\) −3.08494 + 3.08494i −0.0992049 + 0.0992049i −0.754967 0.655762i \(-0.772347\pi\)
0.655762 + 0.754967i \(0.272347\pi\)
\(968\) 10.7231 + 28.2789i 0.344654 + 0.908917i
\(969\) 0 0
\(970\) −14.0388 18.6829i −0.450758 0.599871i
\(971\) −40.4168 −1.29704 −0.648519 0.761199i \(-0.724611\pi\)
−0.648519 + 0.761199i \(0.724611\pi\)
\(972\) 0 0
\(973\) 4.06493 + 4.06493i 0.130316 + 0.130316i
\(974\) −28.0764 3.98481i −0.899626 0.127682i
\(975\) 0 0
\(976\) −12.3564 + 19.5371i −0.395518 + 0.625367i
\(977\) 40.2981 + 40.2981i 1.28925 + 1.28925i 0.935242 + 0.354008i \(0.115182\pi\)
0.354008 + 0.935242i \(0.384818\pi\)
\(978\) 0 0
\(979\) 5.86814i 0.187547i
\(980\) 17.8477 9.82980i 0.570124 0.314001i
\(981\) 0 0
\(982\) −22.3493 + 16.7938i −0.713195 + 0.535912i
\(983\) −4.02628 4.02628i −0.128418 0.128418i 0.639976 0.768395i \(-0.278944\pi\)
−0.768395 + 0.639976i \(0.778944\pi\)
\(984\) 0 0
\(985\) 44.2456i 1.40978i
\(986\) 24.3754 + 32.4389i 0.776271 + 1.03307i
\(987\) 0 0
\(988\) −6.65801 + 4.45673i −0.211819 + 0.141787i
\(989\) 14.2700i 0.453759i
\(990\) 0 0
\(991\) 17.6322i 0.560104i −0.959985 0.280052i \(-0.909648\pi\)
0.959985 0.280052i \(-0.0903517\pi\)
\(992\) 7.06893 + 6.01388i 0.224439 + 0.190941i
\(993\) 0 0
\(994\) −10.5076 13.9836i −0.333282 0.443533i
\(995\) 4.84850 4.84850i 0.153708 0.153708i
\(996\) 0 0
\(997\) 0.131010i 0.00414912i 0.999998 + 0.00207456i \(0.000660353\pi\)
−0.999998 + 0.00207456i \(0.999340\pi\)
\(998\) −4.17929 + 29.4467i −0.132293 + 0.932119i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.j.307.4 24
3.2 odd 2 312.2.t.e.307.9 yes 24
8.3 odd 2 inner 936.2.w.j.307.3 24
12.11 even 2 1248.2.bb.f.463.3 24
13.5 odd 4 inner 936.2.w.j.811.3 24
24.5 odd 2 1248.2.bb.f.463.10 24
24.11 even 2 312.2.t.e.307.10 yes 24
39.5 even 4 312.2.t.e.187.10 yes 24
104.83 even 4 inner 936.2.w.j.811.4 24
156.83 odd 4 1248.2.bb.f.655.10 24
312.5 even 4 1248.2.bb.f.655.3 24
312.83 odd 4 312.2.t.e.187.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.9 24 312.83 odd 4
312.2.t.e.187.10 yes 24 39.5 even 4
312.2.t.e.307.9 yes 24 3.2 odd 2
312.2.t.e.307.10 yes 24 24.11 even 2
936.2.w.j.307.3 24 8.3 odd 2 inner
936.2.w.j.307.4 24 1.1 even 1 trivial
936.2.w.j.811.3 24 13.5 odd 4 inner
936.2.w.j.811.4 24 104.83 even 4 inner
1248.2.bb.f.463.3 24 12.11 even 2
1248.2.bb.f.463.10 24 24.5 odd 2
1248.2.bb.f.655.3 24 312.5 even 4
1248.2.bb.f.655.10 24 156.83 odd 4