L(s) = 1 | + (−0.437 + 1.34i)2-s + (−1.61 − 1.17i)4-s + (1.98 − 1.98i)5-s + (3.05 + 3.05i)7-s + (2.28 − 1.66i)8-s + (1.79 + 3.52i)10-s + (1.08 − 1.08i)11-s + (3.57 − 0.429i)13-s + (−5.45 + 2.77i)14-s + (1.23 + 3.80i)16-s − 5.70i·17-s + (−4.39 − 4.39i)19-s + (−5.53 + 0.874i)20-s + (0.984 + 1.93i)22-s − 2.95·23-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.808 − 0.588i)4-s + (0.885 − 0.885i)5-s + (1.15 + 1.15i)7-s + (0.809 − 0.587i)8-s + (0.568 + 1.11i)10-s + (0.327 − 0.327i)11-s + (0.992 − 0.119i)13-s + (−1.45 + 0.742i)14-s + (0.308 + 0.951i)16-s − 1.38i·17-s + (−1.00 − 1.00i)19-s + (−1.23 + 0.195i)20-s + (0.210 + 0.412i)22-s − 0.615·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.67064 + 0.385154i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.67064 + 0.385154i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.437 - 1.34i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.57 + 0.429i)T \) |
good | 5 | \( 1 + (-1.98 + 1.98i)T - 5iT^{2} \) |
| 7 | \( 1 + (-3.05 - 3.05i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.08 + 1.08i)T - 11iT^{2} \) |
| 17 | \( 1 + 5.70iT - 17T^{2} \) |
| 19 | \( 1 + (4.39 + 4.39i)T + 19iT^{2} \) |
| 23 | \( 1 + 2.95T + 23T^{2} \) |
| 29 | \( 1 + 6.96iT - 29T^{2} \) |
| 31 | \( 1 + (3.05 - 3.05i)T - 31iT^{2} \) |
| 37 | \( 1 + (-5.14 - 5.14i)T + 37iT^{2} \) |
| 41 | \( 1 + (-2.77 - 2.77i)T + 41iT^{2} \) |
| 43 | \( 1 + 3.00iT - 43T^{2} \) |
| 47 | \( 1 + (-6.40 - 6.40i)T + 47iT^{2} \) |
| 53 | \( 1 + 4.28iT - 53T^{2} \) |
| 59 | \( 1 + (3.00 - 3.00i)T - 59iT^{2} \) |
| 61 | \( 1 + 1.13iT - 61T^{2} \) |
| 67 | \( 1 + (-7.39 - 7.39i)T + 67iT^{2} \) |
| 71 | \( 1 + (3.20 - 3.20i)T - 71iT^{2} \) |
| 73 | \( 1 + (-7.87 + 7.87i)T - 73iT^{2} \) |
| 79 | \( 1 + 4.46iT - 79T^{2} \) |
| 83 | \( 1 + (-9.78 - 9.78i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.24 - 4.24i)T - 89iT^{2} \) |
| 97 | \( 1 + (11.5 + 11.5i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.648240625352031811952995521603, −9.064017589106509462595742725447, −8.552954090051357482303223752431, −7.83551067229927828200855372336, −6.50686677860678854240708161085, −5.77489002567125203090788314168, −5.12091264690672800717637268799, −4.34152680761586483963483095344, −2.31276783553083929513235215031, −1.08203166894260974917670063878,
1.44044850450930243413598088173, 2.10881643333871998360191422878, 3.76000113467158401289081312931, 4.18758920866848224684433403433, 5.64294473489570591088701161042, 6.61880367849071335547404396036, 7.72019005264307133496643713070, 8.368094432422201313003687807549, 9.366625975318979878693992674289, 10.47280971832173532117465218632