Defining parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.w (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 352 | 144 | 208 |
Cusp forms | 320 | 136 | 184 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(936, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 2}\)