Properties

Label 91.2.h.b
Level 9191
Weight 22
Character orbit 91.h
Analytic conductor 0.7270.727
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [91,2,Mod(16,91)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(91, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("91.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 91=713 91 = 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 91.h (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7266386583940.726638658394
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+7x102x9+33x811x7+55x6+17x5+47x4+x3+8x2+x+1 x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11+β5+β3)q2+β11q3+(β10β6+1)q4β9q5+(β10+β8+2β7+2)q6+(β9β8++β2)q7++(2β114β5+2β4+3)q99+O(q100) q + ( - \beta_{11} + \beta_{5} + \beta_{3}) q^{2} + \beta_{11} q^{3} + ( - \beta_{10} - \beta_{6} + 1) q^{4} - \beta_{9} q^{5} + (\beta_{10} + \beta_{8} + 2 \beta_{7} + \cdots - 2) q^{6} + ( - \beta_{9} - \beta_{8} + \cdots + \beta_{2}) q^{7}+ \cdots + (2 \beta_{11} - 4 \beta_{5} + 2 \beta_{4} + \cdots - 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q4q2+q3+8q4+q59q63q76q8+3q9+4q10+4q11+5q122q132q142q1516q1610q17+3q18q19q20+20q99+O(q100) 12 q - 4 q^{2} + q^{3} + 8 q^{4} + q^{5} - 9 q^{6} - 3 q^{7} - 6 q^{8} + 3 q^{9} + 4 q^{10} + 4 q^{11} + 5 q^{12} - 2 q^{13} - 2 q^{14} - 2 q^{15} - 16 q^{16} - 10 q^{17} + 3 q^{18} - q^{19} - q^{20}+ \cdots - 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12x11+7x102x9+33x811x7+55x6+17x5+47x4+x3+8x2+x+1 x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (29696ν11478424ν10+682506ν93846008ν8+2684563ν7+2119374)/3318773 ( - 29696 \nu^{11} - 478424 \nu^{10} + 682506 \nu^{9} - 3846008 \nu^{8} + 2684563 \nu^{7} + \cdots - 2119374 ) / 3318773 Copy content Toggle raw display
β3\beta_{3}== (73788ν11498559ν10+495146ν94188508ν8+1631143ν7+2229034)/3318773 ( - 73788 \nu^{11} - 498559 \nu^{10} + 495146 \nu^{9} - 4188508 \nu^{8} + 1631143 \nu^{7} + \cdots - 2229034 ) / 3318773 Copy content Toggle raw display
β4\beta_{4}== (109660ν11+153752ν10747485ν9+406680ν83276280ν7+6198231)/3318773 ( - 109660 \nu^{11} + 153752 \nu^{10} - 747485 \nu^{9} + 406680 \nu^{8} - 3276280 \nu^{7} + \cdots - 6198231 ) / 3318773 Copy content Toggle raw display
β5\beta_{5}== (439315ν11329655ν10+2921453ν9131145ν8+14090715ν7++572347)/3318773 ( 439315 \nu^{11} - 329655 \nu^{10} + 2921453 \nu^{9} - 131145 \nu^{8} + 14090715 \nu^{7} + \cdots + 572347 ) / 3318773 Copy content Toggle raw display
β6\beta_{6}== (566698ν111732988ν10+5617249ν99944902ν8+24340355ν7+6707921)/3318773 ( 566698 \nu^{11} - 1732988 \nu^{10} + 5617249 \nu^{9} - 9944902 \nu^{8} + 24340355 \nu^{7} + \cdots - 6707921 ) / 3318773 Copy content Toggle raw display
β7\beta_{7}== (572347ν11+1011662ν104336084ν9+4066147ν819018596ν7++3392561)/3318773 ( - 572347 \nu^{11} + 1011662 \nu^{10} - 4336084 \nu^{9} + 4066147 \nu^{8} - 19018596 \nu^{7} + \cdots + 3392561 ) / 3318773 Copy content Toggle raw display
β8\beta_{8}== (1035034ν11+1869572ν107924683ν9+7725614ν834760912ν7++6345807)/3318773 ( - 1035034 \nu^{11} + 1869572 \nu^{10} - 7924683 \nu^{9} + 7725614 \nu^{8} - 34760912 \nu^{7} + \cdots + 6345807 ) / 3318773 Copy content Toggle raw display
β9\beta_{9}== (1166290ν111650363ν10+8811506ν95639321ν8+40119354ν7++566698)/3318773 ( 1166290 \nu^{11} - 1650363 \nu^{10} + 8811506 \nu^{9} - 5639321 \nu^{8} + 40119354 \nu^{7} + \cdots + 566698 ) / 3318773 Copy content Toggle raw display
β10\beta_{10}== (2686072ν11+3882058ν1019974443ν9+13501144ν890433689ν7+1035561)/3318773 ( - 2686072 \nu^{11} + 3882058 \nu^{10} - 19974443 \nu^{9} + 13501144 \nu^{8} - 90433689 \nu^{7} + \cdots - 1035561 ) / 3318773 Copy content Toggle raw display
β11\beta_{11}== ν11ν10+7ν92ν8+33ν711ν6+55ν5+17ν4+47ν3+ν2+8ν+1 \nu^{11} - \nu^{10} + 7\nu^{9} - 2\nu^{8} + 33\nu^{7} - 11\nu^{6} + 55\nu^{5} + 17\nu^{4} + 47\nu^{3} + \nu^{2} + 8\nu + 1 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β8+2β7β42 -\beta_{8} + 2\beta_{7} - \beta_{4} - 2 Copy content Toggle raw display
ν3\nu^{3}== β11+β9+5β5+β3β2 -\beta_{11} + \beta_{9} + 5\beta_{5} + \beta_{3} - \beta_{2} Copy content Toggle raw display
ν4\nu^{4}== 5β88β7+β6β2β1 5\beta_{8} - 8\beta_{7} + \beta_{6} - \beta_{2} - \beta_1 Copy content Toggle raw display
ν5\nu^{5}== 5β11β107β9+β8β724β5+β424β1+1 5\beta_{11} - \beta_{10} - 7\beta_{9} + \beta_{8} - \beta_{7} - 24\beta_{5} + \beta_{4} - 24\beta _1 + 1 Copy content Toggle raw display
ν6\nu^{6}== β117β109β97β611β5+24β4β3+9β2+36 \beta_{11} - 7\beta_{10} - 9\beta_{9} - 7\beta_{6} - 11\beta_{5} + 24\beta_{4} - \beta_{3} + 9\beta_{2} + 36 Copy content Toggle raw display
ν7\nu^{7}== 11β8+12β79β624β3+40β2+117β1 -11\beta_{8} + 12\beta_{7} - 9\beta_{6} - 24\beta_{3} + 40\beta_{2} + 117\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 11β11+40β10+60β9117β8+170β7+85β5+170 - 11 \beta_{11} + 40 \beta_{10} + 60 \beta_{9} - 117 \beta_{8} + 170 \beta_{7} + 85 \beta_{5} + \cdots - 170 Copy content Toggle raw display
ν9\nu^{9}== 117β11+60β10+217β9+60β6+581β585β4+99 - 117 \beta_{11} + 60 \beta_{10} + 217 \beta_{9} + 60 \beta_{6} + 581 \beta_{5} - 85 \beta_{4} + \cdots - 99 Copy content Toggle raw display
ν10\nu^{10}== 581β8828β7+217β6+85β3362β2571β1 581\beta_{8} - 828\beta_{7} + 217\beta_{6} + 85\beta_{3} - 362\beta_{2} - 571\beta_1 Copy content Toggle raw display
ν11\nu^{11}== 581β11362β101160β9+571β8695β72933β5++695 581 \beta_{11} - 362 \beta_{10} - 1160 \beta_{9} + 571 \beta_{8} - 695 \beta_{7} - 2933 \beta_{5} + \cdots + 695 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/91Z)×\left(\mathbb{Z}/91\mathbb{Z}\right)^\times.

nn 1515 6666
χ(n)\chi(n) 1+β7-1 + \beta_{7} 1+β7-1 + \beta_{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
16.1
−0.181721 0.314749i
1.16700 + 2.02131i
0.756174 + 1.30973i
−0.437442 0.757672i
−1.02197 1.77010i
0.217953 + 0.377506i
−0.181721 + 0.314749i
1.16700 2.02131i
0.756174 1.30973i
−0.437442 + 0.757672i
−1.02197 + 1.77010i
0.217953 0.377506i
−2.38804 1.37574 2.38285i 3.70272 −0.491140 + 0.850679i −3.28532 + 5.69033i −0.911766 2.48368i −4.06616 −2.28532 3.95828i 1.17286 2.03145i
16.2 −1.90556 −0.214224 + 0.371047i 1.63116 0.736565 1.27577i 0.408216 0.707051i 1.58334 + 2.11968i 0.702849 1.40822 + 2.43910i −1.40357 + 2.43105i
16.3 −0.851125 −0.330612 + 0.572636i −1.27559 −1.72074 + 2.98041i 0.281392 0.487385i −2.57273 0.617304i 2.78793 1.28139 + 2.21944i 1.46456 2.53670i
16.4 −0.268125 0.571504 0.989875i −1.92811 1.28088 2.21854i −0.153235 + 0.265410i 1.80416 1.93520i 1.05323 0.846765 + 1.46664i −0.343436 + 0.594848i
16.5 1.55469 0.244626 0.423704i 0.417051 0.595756 1.03188i 0.380316 0.658727i −2.44127 + 1.01990i −2.46099 1.38032 + 2.39078i 0.926214 1.60425i
16.6 1.85816 −1.14703 + 1.98672i 1.45276 0.0986811 0.170921i −2.13137 + 3.69165i 1.03826 2.43352i −1.01686 −1.13137 1.95960i 0.183365 0.317598i
74.1 −2.38804 1.37574 + 2.38285i 3.70272 −0.491140 0.850679i −3.28532 5.69033i −0.911766 + 2.48368i −4.06616 −2.28532 + 3.95828i 1.17286 + 2.03145i
74.2 −1.90556 −0.214224 0.371047i 1.63116 0.736565 + 1.27577i 0.408216 + 0.707051i 1.58334 2.11968i 0.702849 1.40822 2.43910i −1.40357 2.43105i
74.3 −0.851125 −0.330612 0.572636i −1.27559 −1.72074 2.98041i 0.281392 + 0.487385i −2.57273 + 0.617304i 2.78793 1.28139 2.21944i 1.46456 + 2.53670i
74.4 −0.268125 0.571504 + 0.989875i −1.92811 1.28088 + 2.21854i −0.153235 0.265410i 1.80416 + 1.93520i 1.05323 0.846765 1.46664i −0.343436 0.594848i
74.5 1.55469 0.244626 + 0.423704i 0.417051 0.595756 + 1.03188i 0.380316 + 0.658727i −2.44127 1.01990i −2.46099 1.38032 2.39078i 0.926214 + 1.60425i
74.6 1.85816 −1.14703 1.98672i 1.45276 0.0986811 + 0.170921i −2.13137 3.69165i 1.03826 + 2.43352i −1.01686 −1.13137 + 1.95960i 0.183365 + 0.317598i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 16.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 91.2.h.b yes 12
3.b odd 2 1 819.2.s.d 12
7.b odd 2 1 637.2.h.l 12
7.c even 3 1 91.2.g.b 12
7.c even 3 1 637.2.f.k 12
7.d odd 6 1 637.2.f.j 12
7.d odd 6 1 637.2.g.l 12
13.c even 3 1 91.2.g.b 12
13.c even 3 1 1183.2.e.h 12
13.e even 6 1 1183.2.e.g 12
21.h odd 6 1 819.2.n.d 12
39.i odd 6 1 819.2.n.d 12
91.g even 3 1 637.2.f.k 12
91.g even 3 1 1183.2.e.h 12
91.h even 3 1 inner 91.2.h.b yes 12
91.h even 3 1 8281.2.a.bz 6
91.k even 6 1 8281.2.a.ce 6
91.l odd 6 1 8281.2.a.cf 6
91.m odd 6 1 637.2.f.j 12
91.n odd 6 1 637.2.g.l 12
91.u even 6 1 1183.2.e.g 12
91.v odd 6 1 637.2.h.l 12
91.v odd 6 1 8281.2.a.ca 6
273.s odd 6 1 819.2.s.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.g.b 12 7.c even 3 1
91.2.g.b 12 13.c even 3 1
91.2.h.b yes 12 1.a even 1 1 trivial
91.2.h.b yes 12 91.h even 3 1 inner
637.2.f.j 12 7.d odd 6 1
637.2.f.j 12 91.m odd 6 1
637.2.f.k 12 7.c even 3 1
637.2.f.k 12 91.g even 3 1
637.2.g.l 12 7.d odd 6 1
637.2.g.l 12 91.n odd 6 1
637.2.h.l 12 7.b odd 2 1
637.2.h.l 12 91.v odd 6 1
819.2.n.d 12 21.h odd 6 1
819.2.n.d 12 39.i odd 6 1
819.2.s.d 12 3.b odd 2 1
819.2.s.d 12 273.s odd 6 1
1183.2.e.g 12 13.e even 6 1
1183.2.e.g 12 91.u even 6 1
1183.2.e.h 12 13.c even 3 1
1183.2.e.h 12 91.g even 3 1
8281.2.a.bz 6 91.h even 3 1
8281.2.a.ca 6 91.v odd 6 1
8281.2.a.ce 6 91.k even 6 1
8281.2.a.cf 6 91.l odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T26+2T256T2411T23+8T22+14T2+3 T_{2}^{6} + 2T_{2}^{5} - 6T_{2}^{4} - 11T_{2}^{3} + 8T_{2}^{2} + 14T_{2} + 3 acting on S2new(91,[χ])S_{2}^{\mathrm{new}}(91, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T6+2T56T4++3)2 (T^{6} + 2 T^{5} - 6 T^{4} + \cdots + 3)^{2} Copy content Toggle raw display
33 T12T11++1 T^{12} - T^{11} + \cdots + 1 Copy content Toggle raw display
55 T12T11++9 T^{12} - T^{11} + \cdots + 9 Copy content Toggle raw display
77 T12+3T11++117649 T^{12} + 3 T^{11} + \cdots + 117649 Copy content Toggle raw display
1111 T124T11++6561 T^{12} - 4 T^{11} + \cdots + 6561 Copy content Toggle raw display
1313 T12+2T11++4826809 T^{12} + 2 T^{11} + \cdots + 4826809 Copy content Toggle raw display
1717 (T6+5T512T4+9)2 (T^{6} + 5 T^{5} - 12 T^{4} + \cdots - 9)^{2} Copy content Toggle raw display
1919 T12+T11++762129 T^{12} + T^{11} + \cdots + 762129 Copy content Toggle raw display
2323 (T6T5+24387)2 (T^{6} - T^{5} + \cdots - 24387)^{2} Copy content Toggle raw display
2929 T123T11++40401 T^{12} - 3 T^{11} + \cdots + 40401 Copy content Toggle raw display
3131 T1216T11++6135529 T^{12} - 16 T^{11} + \cdots + 6135529 Copy content Toggle raw display
3737 (T613T5+13477)2 (T^{6} - 13 T^{5} + \cdots - 13477)^{2} Copy content Toggle raw display
4141 T12+8T11++4173849 T^{12} + 8 T^{11} + \cdots + 4173849 Copy content Toggle raw display
4343 T12+11T11++1369 T^{12} + 11 T^{11} + \cdots + 1369 Copy content Toggle raw display
4747 T12++318515409 T^{12} + \cdots + 318515409 Copy content Toggle raw display
5353 T12+2T11++4761 T^{12} + 2 T^{11} + \cdots + 4761 Copy content Toggle raw display
5959 (T6+13T5++9123)2 (T^{6} + 13 T^{5} + \cdots + 9123)^{2} Copy content Toggle raw display
6161 T12++1055015361 T^{12} + \cdots + 1055015361 Copy content Toggle raw display
6767 T12++276324129 T^{12} + \cdots + 276324129 Copy content Toggle raw display
7171 T12++530979849 T^{12} + \cdots + 530979849 Copy content Toggle raw display
7373 T12++196812841 T^{12} + \cdots + 196812841 Copy content Toggle raw display
7979 T12++110859841 T^{12} + \cdots + 110859841 Copy content Toggle raw display
8383 (T6+27T5++2673)2 (T^{6} + 27 T^{5} + \cdots + 2673)^{2} Copy content Toggle raw display
8989 (T6+4T5+304479)2 (T^{6} + 4 T^{5} + \cdots - 304479)^{2} Copy content Toggle raw display
9797 T12+35T11++15202201 T^{12} + 35 T^{11} + \cdots + 15202201 Copy content Toggle raw display
show more
show less