gp: [N,k,chi] = [91,2,Mod(16,91)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(91, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 2]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("91.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − x 11 + 7 x 10 − 2 x 9 + 33 x 8 − 11 x 7 + 55 x 6 + 17 x 5 + 47 x 4 + x 3 + 8 x 2 + x + 1 x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 x 1 2 − x 1 1 + 7 x 1 0 − 2 x 9 + 3 3 x 8 − 1 1 x 7 + 5 5 x 6 + 1 7 x 5 + 4 7 x 4 + x 3 + 8 x 2 + x + 1
x^12 - x^11 + 7*x^10 - 2*x^9 + 33*x^8 - 11*x^7 + 55*x^6 + 17*x^5 + 47*x^4 + x^3 + 8*x^2 + x + 1
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − 29696 ν 11 − 478424 ν 10 + 682506 ν 9 − 3846008 ν 8 + 2684563 ν 7 + ⋯ − 2119374 ) / 3318773 ( - 29696 \nu^{11} - 478424 \nu^{10} + 682506 \nu^{9} - 3846008 \nu^{8} + 2684563 \nu^{7} + \cdots - 2119374 ) / 3318773 ( − 2 9 6 9 6 ν 1 1 − 4 7 8 4 2 4 ν 1 0 + 6 8 2 5 0 6 ν 9 − 3 8 4 6 0 0 8 ν 8 + 2 6 8 4 5 6 3 ν 7 + ⋯ − 2 1 1 9 3 7 4 ) / 3 3 1 8 7 7 3
(-29696*v^11 - 478424*v^10 + 682506*v^9 - 3846008*v^8 + 2684563*v^7 - 16878368*v^6 + 16008568*v^5 - 31119861*v^4 + 8363982*v^3 - 14058754*v^2 + 5624108*v - 2119374) / 3318773
β 3 \beta_{3} β 3 = = =
( − 73788 ν 11 − 498559 ν 10 + 495146 ν 9 − 4188508 ν 8 + 1631143 ν 7 + ⋯ − 2229034 ) / 3318773 ( - 73788 \nu^{11} - 498559 \nu^{10} + 495146 \nu^{9} - 4188508 \nu^{8} + 1631143 \nu^{7} + \cdots - 2229034 ) / 3318773 ( − 7 3 7 8 8 ν 1 1 − 4 9 8 5 5 9 ν 1 0 + 4 9 5 1 4 6 ν 9 − 4 1 8 8 5 0 8 ν 8 + 1 6 3 1 1 4 3 ν 7 + ⋯ − 2 2 2 9 0 3 4 ) / 3 3 1 8 7 7 3
(-73788*v^11 - 498559*v^10 + 495146*v^9 - 4188508*v^8 + 1631143*v^7 - 18206928*v^6 + 16328192*v^5 - 34289666*v^4 + 8704710*v^3 - 14803002*v^2 + 21668998*v - 2229034) / 3318773
β 4 \beta_{4} β 4 = = =
( − 109660 ν 11 + 153752 ν 10 − 747485 ν 9 + 406680 ν 8 − 3276280 ν 7 + ⋯ − 6198231 ) / 3318773 ( - 109660 \nu^{11} + 153752 \nu^{10} - 747485 \nu^{9} + 406680 \nu^{8} - 3276280 \nu^{7} + \cdots - 6198231 ) / 3318773 ( − 1 0 9 6 6 0 ν 1 1 + 1 5 3 7 5 2 ν 1 0 − 7 4 7 4 8 5 ν 9 + 4 0 6 6 8 0 ν 8 − 3 2 7 6 2 8 0 ν 7 + ⋯ − 6 1 9 8 2 3 1 ) / 3 3 1 8 7 7 3
(-109660*v^11 + 153752*v^10 - 747485*v^9 + 406680*v^8 - 3276280*v^7 + 2259680*v^6 - 4702740*v^5 - 2183844*v^4 - 1984215*v^3 - 450388*v^2 - 133032*v - 6198231) / 3318773
β 5 \beta_{5} β 5 = = =
( 439315 ν 11 − 329655 ν 10 + 2921453 ν 9 − 131145 ν 8 + 14090715 ν 7 + ⋯ + 572347 ) / 3318773 ( 439315 \nu^{11} - 329655 \nu^{10} + 2921453 \nu^{9} - 131145 \nu^{8} + 14090715 \nu^{7} + \cdots + 572347 ) / 3318773 ( 4 3 9 3 1 5 ν 1 1 − 3 2 9 6 5 5 ν 1 0 + 2 9 2 1 4 5 3 ν 9 − 1 3 1 1 4 5 ν 8 + 1 4 0 9 0 7 1 5 ν 7 + ⋯ + 5 7 2 3 4 7 ) / 3 3 1 8 7 7 3
(439315*v^11 - 329655*v^10 + 2921453*v^9 - 131145*v^8 + 14090715*v^7 - 1556185*v^6 + 21902645*v^5 + 12171095*v^4 + 22831649*v^3 + 2423530*v^2 + 646135*v + 572347) / 3318773
β 6 \beta_{6} β 6 = = =
( 566698 ν 11 − 1732988 ν 10 + 5617249 ν 9 − 9944902 ν 8 + 24340355 ν 7 + ⋯ − 6707921 ) / 3318773 ( 566698 \nu^{11} - 1732988 \nu^{10} + 5617249 \nu^{9} - 9944902 \nu^{8} + 24340355 \nu^{7} + \cdots - 6707921 ) / 3318773 ( 5 6 6 6 9 8 ν 1 1 − 1 7 3 2 9 8 8 ν 1 0 + 5 6 1 7 2 4 9 ν 9 − 9 9 4 4 9 0 2 ν 8 + 2 4 3 4 0 3 5 5 ν 7 + ⋯ − 6 7 0 7 9 2 1 ) / 3 3 1 8 7 7 3
(566698*v^11 - 1732988*v^10 + 5617249*v^9 - 9944902*v^8 + 24340355*v^7 - 46353032*v^6 + 58565408*v^5 - 63065800*v^4 + 27901335*v^3 - 44235433*v^2 + 12588213*v - 6707921) / 3318773
β 7 \beta_{7} β 7 = = =
( − 572347 ν 11 + 1011662 ν 10 − 4336084 ν 9 + 4066147 ν 8 − 19018596 ν 7 + ⋯ + 3392561 ) / 3318773 ( - 572347 \nu^{11} + 1011662 \nu^{10} - 4336084 \nu^{9} + 4066147 \nu^{8} - 19018596 \nu^{7} + \cdots + 3392561 ) / 3318773 ( − 5 7 2 3 4 7 ν 1 1 + 1 0 1 1 6 6 2 ν 1 0 − 4 3 3 6 0 8 4 ν 9 + 4 0 6 6 1 4 7 ν 8 − 1 9 0 1 8 5 9 6 ν 7 + ⋯ + 3 3 9 2 5 6 1 ) / 3 3 1 8 7 7 3
(-572347*v^11 + 1011662*v^10 - 4336084*v^9 + 4066147*v^8 - 19018596*v^7 + 20386532*v^6 - 33035270*v^5 + 12172746*v^4 - 14729214*v^3 + 22259302*v^2 - 2155246*v + 3392561) / 3318773
β 8 \beta_{8} β 8 = = =
( − 1035034 ν 11 + 1869572 ν 10 − 7924683 ν 9 + 7725614 ν 8 − 34760912 ν 7 + ⋯ + 6345807 ) / 3318773 ( - 1035034 \nu^{11} + 1869572 \nu^{10} - 7924683 \nu^{9} + 7725614 \nu^{8} - 34760912 \nu^{7} + \cdots + 6345807 ) / 3318773 ( − 1 0 3 5 0 3 4 ν 1 1 + 1 8 6 9 5 7 2 ν 1 0 − 7 9 2 4 6 8 3 ν 9 + 7 7 2 5 6 1 4 ν 8 − 3 4 7 6 0 9 1 2 ν 7 + ⋯ + 6 3 4 5 8 0 7 ) / 3 3 1 8 7 7 3
(-1035034*v^11 + 1869572*v^10 - 7924683*v^9 + 7725614*v^8 - 34760912*v^7 + 38513384*v^6 - 61367800*v^5 + 26529336*v^4 - 27474213*v^3 + 41650219*v^2 - 4177460*v + 6345807) / 3318773
β 9 \beta_{9} β 9 = = =
( 1166290 ν 11 − 1650363 ν 10 + 8811506 ν 9 − 5639321 ν 8 + 40119354 ν 7 + ⋯ + 566698 ) / 3318773 ( 1166290 \nu^{11} - 1650363 \nu^{10} + 8811506 \nu^{9} - 5639321 \nu^{8} + 40119354 \nu^{7} + \cdots + 566698 ) / 3318773 ( 1 1 6 6 2 9 0 ν 1 1 − 1 6 5 0 3 6 3 ν 1 0 + 8 8 1 1 5 0 6 ν 9 − 5 6 3 9 3 2 1 ν 8 + 4 0 1 1 9 3 5 4 ν 7 + ⋯ + 5 6 6 6 9 8 ) / 3 3 1 8 7 7 3
(1166290*v^11 - 1650363*v^10 + 8811506*v^9 - 5639321*v^8 + 40119354*v^7 - 27397018*v^6 + 72699666*v^5 - 1266529*v^4 + 44802131*v^3 - 8054629*v^2 + 7274619*v + 566698) / 3318773
β 10 \beta_{10} β 1 0 = = =
( − 2686072 ν 11 + 3882058 ν 10 − 19974443 ν 9 + 13501144 ν 8 − 90433689 ν 7 + ⋯ − 1035561 ) / 3318773 ( - 2686072 \nu^{11} + 3882058 \nu^{10} - 19974443 \nu^{9} + 13501144 \nu^{8} - 90433689 \nu^{7} + \cdots - 1035561 ) / 3318773 ( − 2 6 8 6 0 7 2 ν 1 1 + 3 8 8 2 0 5 8 ν 1 0 − 1 9 9 7 4 4 4 3 ν 9 + 1 3 5 0 1 1 4 4 ν 8 − 9 0 4 3 3 6 8 9 ν 7 + ⋯ − 1 0 3 5 5 6 1 ) / 3 3 1 8 7 7 3
(-2686072*v^11 + 3882058*v^10 - 19974443*v^9 + 13501144*v^8 - 90433689*v^7 + 66981583*v^6 - 158252610*v^5 + 11027874*v^4 - 96392052*v^3 + 33752077*v^2 - 15484451*v - 1035561) / 3318773
β 11 \beta_{11} β 1 1 = = =
ν 11 − ν 10 + 7 ν 9 − 2 ν 8 + 33 ν 7 − 11 ν 6 + 55 ν 5 + 17 ν 4 + 47 ν 3 + ν 2 + 8 ν + 1 \nu^{11} - \nu^{10} + 7\nu^{9} - 2\nu^{8} + 33\nu^{7} - 11\nu^{6} + 55\nu^{5} + 17\nu^{4} + 47\nu^{3} + \nu^{2} + 8\nu + 1 ν 1 1 − ν 1 0 + 7 ν 9 − 2 ν 8 + 3 3 ν 7 − 1 1 ν 6 + 5 5 ν 5 + 1 7 ν 4 + 4 7 ν 3 + ν 2 + 8 ν + 1
v^11 - v^10 + 7*v^9 - 2*v^8 + 33*v^7 - 11*v^6 + 55*v^5 + 17*v^4 + 47*v^3 + v^2 + 8*v + 1
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
− β 8 + 2 β 7 − β 4 − 2 -\beta_{8} + 2\beta_{7} - \beta_{4} - 2 − β 8 + 2 β 7 − β 4 − 2
-b8 + 2*b7 - b4 - 2
ν 3 \nu^{3} ν 3 = = =
− β 11 + β 9 + 5 β 5 + β 3 − β 2 -\beta_{11} + \beta_{9} + 5\beta_{5} + \beta_{3} - \beta_{2} − β 1 1 + β 9 + 5 β 5 + β 3 − β 2
-b11 + b9 + 5*b5 + b3 - b2
ν 4 \nu^{4} ν 4 = = =
5 β 8 − 8 β 7 + β 6 − β 2 − β 1 5\beta_{8} - 8\beta_{7} + \beta_{6} - \beta_{2} - \beta_1 5 β 8 − 8 β 7 + β 6 − β 2 − β 1
5*b8 - 8*b7 + b6 - b2 - b1
ν 5 \nu^{5} ν 5 = = =
5 β 11 − β 10 − 7 β 9 + β 8 − β 7 − 24 β 5 + β 4 − 24 β 1 + 1 5\beta_{11} - \beta_{10} - 7\beta_{9} + \beta_{8} - \beta_{7} - 24\beta_{5} + \beta_{4} - 24\beta _1 + 1 5 β 1 1 − β 1 0 − 7 β 9 + β 8 − β 7 − 2 4 β 5 + β 4 − 2 4 β 1 + 1
5*b11 - b10 - 7*b9 + b8 - b7 - 24*b5 + b4 - 24*b1 + 1
ν 6 \nu^{6} ν 6 = = =
β 11 − 7 β 10 − 9 β 9 − 7 β 6 − 11 β 5 + 24 β 4 − β 3 + 9 β 2 + 36 \beta_{11} - 7\beta_{10} - 9\beta_{9} - 7\beta_{6} - 11\beta_{5} + 24\beta_{4} - \beta_{3} + 9\beta_{2} + 36 β 1 1 − 7 β 1 0 − 9 β 9 − 7 β 6 − 1 1 β 5 + 2 4 β 4 − β 3 + 9 β 2 + 3 6
b11 - 7*b10 - 9*b9 - 7*b6 - 11*b5 + 24*b4 - b3 + 9*b2 + 36
ν 7 \nu^{7} ν 7 = = =
− 11 β 8 + 12 β 7 − 9 β 6 − 24 β 3 + 40 β 2 + 117 β 1 -11\beta_{8} + 12\beta_{7} - 9\beta_{6} - 24\beta_{3} + 40\beta_{2} + 117\beta_1 − 1 1 β 8 + 1 2 β 7 − 9 β 6 − 2 4 β 3 + 4 0 β 2 + 1 1 7 β 1
-11*b8 + 12*b7 - 9*b6 - 24*b3 + 40*b2 + 117*b1
ν 8 \nu^{8} ν 8 = = =
− 11 β 11 + 40 β 10 + 60 β 9 − 117 β 8 + 170 β 7 + 85 β 5 + ⋯ − 170 - 11 \beta_{11} + 40 \beta_{10} + 60 \beta_{9} - 117 \beta_{8} + 170 \beta_{7} + 85 \beta_{5} + \cdots - 170 − 1 1 β 1 1 + 4 0 β 1 0 + 6 0 β 9 − 1 1 7 β 8 + 1 7 0 β 7 + 8 5 β 5 + ⋯ − 1 7 0
-11*b11 + 40*b10 + 60*b9 - 117*b8 + 170*b7 + 85*b5 - 117*b4 + 85*b1 - 170
ν 9 \nu^{9} ν 9 = = =
− 117 β 11 + 60 β 10 + 217 β 9 + 60 β 6 + 581 β 5 − 85 β 4 + ⋯ − 99 - 117 \beta_{11} + 60 \beta_{10} + 217 \beta_{9} + 60 \beta_{6} + 581 \beta_{5} - 85 \beta_{4} + \cdots - 99 − 1 1 7 β 1 1 + 6 0 β 1 0 + 2 1 7 β 9 + 6 0 β 6 + 5 8 1 β 5 − 8 5 β 4 + ⋯ − 9 9
-117*b11 + 60*b10 + 217*b9 + 60*b6 + 581*b5 - 85*b4 + 117*b3 - 217*b2 - 99
ν 10 \nu^{10} ν 1 0 = = =
581 β 8 − 828 β 7 + 217 β 6 + 85 β 3 − 362 β 2 − 571 β 1 581\beta_{8} - 828\beta_{7} + 217\beta_{6} + 85\beta_{3} - 362\beta_{2} - 571\beta_1 5 8 1 β 8 − 8 2 8 β 7 + 2 1 7 β 6 + 8 5 β 3 − 3 6 2 β 2 − 5 7 1 β 1
581*b8 - 828*b7 + 217*b6 + 85*b3 - 362*b2 - 571*b1
ν 11 \nu^{11} ν 1 1 = = =
581 β 11 − 362 β 10 − 1160 β 9 + 571 β 8 − 695 β 7 − 2933 β 5 + ⋯ + 695 581 \beta_{11} - 362 \beta_{10} - 1160 \beta_{9} + 571 \beta_{8} - 695 \beta_{7} - 2933 \beta_{5} + \cdots + 695 5 8 1 β 1 1 − 3 6 2 β 1 0 − 1 1 6 0 β 9 + 5 7 1 β 8 − 6 9 5 β 7 − 2 9 3 3 β 5 + ⋯ + 6 9 5
581*b11 - 362*b10 - 1160*b9 + 571*b8 - 695*b7 - 2933*b5 + 571*b4 - 2933*b1 + 695
Character values
We give the values of χ \chi χ on generators for ( Z / 91 Z ) × \left(\mathbb{Z}/91\mathbb{Z}\right)^\times ( Z / 9 1 Z ) × .
n n n
15 15 1 5
66 66 6 6
χ ( n ) \chi(n) χ ( n )
− 1 + β 7 -1 + \beta_{7} − 1 + β 7
− 1 + β 7 -1 + \beta_{7} − 1 + β 7
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 6 + 2 T 2 5 − 6 T 2 4 − 11 T 2 3 + 8 T 2 2 + 14 T 2 + 3 T_{2}^{6} + 2T_{2}^{5} - 6T_{2}^{4} - 11T_{2}^{3} + 8T_{2}^{2} + 14T_{2} + 3 T 2 6 + 2 T 2 5 − 6 T 2 4 − 1 1 T 2 3 + 8 T 2 2 + 1 4 T 2 + 3
T2^6 + 2*T2^5 - 6*T2^4 - 11*T2^3 + 8*T2^2 + 14*T2 + 3
acting on S 2 n e w ( 91 , [ χ ] ) S_{2}^{\mathrm{new}}(91, [\chi]) S 2 n e w ( 9 1 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 6 + 2 T 5 − 6 T 4 + ⋯ + 3 ) 2 (T^{6} + 2 T^{5} - 6 T^{4} + \cdots + 3)^{2} ( T 6 + 2 T 5 − 6 T 4 + ⋯ + 3 ) 2
(T^6 + 2*T^5 - 6*T^4 - 11*T^3 + 8*T^2 + 14*T + 3)^2
3 3 3
T 12 − T 11 + ⋯ + 1 T^{12} - T^{11} + \cdots + 1 T 1 2 − T 1 1 + ⋯ + 1
T^12 - T^11 + 8*T^10 - T^9 + 47*T^8 - 17*T^7 + 55*T^6 + 11*T^5 + 33*T^4 + 2*T^3 + 7*T^2 + T + 1
5 5 5
T 12 − T 11 + ⋯ + 9 T^{12} - T^{11} + \cdots + 9 T 1 2 − T 1 1 + ⋯ + 9
T^12 - T^11 + 12*T^10 - 25*T^9 + 133*T^8 - 203*T^7 + 379*T^6 - 269*T^5 + 375*T^4 - 210*T^3 + 271*T^2 - 51*T + 9
7 7 7
T 12 + 3 T 11 + ⋯ + 117649 T^{12} + 3 T^{11} + \cdots + 117649 T 1 2 + 3 T 1 1 + ⋯ + 1 1 7 6 4 9
T^12 + 3*T^11 + 6*T^10 + 45*T^9 + 147*T^8 + 348*T^7 + 1069*T^6 + 2436*T^5 + 7203*T^4 + 15435*T^3 + 14406*T^2 + 50421*T + 117649
11 11 1 1
T 12 − 4 T 11 + ⋯ + 6561 T^{12} - 4 T^{11} + \cdots + 6561 T 1 2 − 4 T 1 1 + ⋯ + 6 5 6 1
T^12 - 4*T^11 + 37*T^10 - 68*T^9 + 664*T^8 - 1155*T^7 + 6811*T^6 - 2862*T^5 + 23994*T^4 - 29079*T^3 + 36288*T^2 - 16767*T + 6561
13 13 1 3
T 12 + 2 T 11 + ⋯ + 4826809 T^{12} + 2 T^{11} + \cdots + 4826809 T 1 2 + 2 T 1 1 + ⋯ + 4 8 2 6 8 0 9
T^12 + 2*T^11 - 16*T^10 + 3*T^9 + 607*T^8 + 433*T^7 - 5615*T^6 + 5629*T^5 + 102583*T^4 + 6591*T^3 - 456976*T^2 + 742586*T + 4826809
17 17 1 7
( T 6 + 5 T 5 − 12 T 4 + ⋯ − 9 ) 2 (T^{6} + 5 T^{5} - 12 T^{4} + \cdots - 9)^{2} ( T 6 + 5 T 5 − 1 2 T 4 + ⋯ − 9 ) 2
(T^6 + 5*T^5 - 12*T^4 - 14*T^3 + 20*T^2 + 8*T - 9)^2
19 19 1 9
T 12 + T 11 + ⋯ + 762129 T^{12} + T^{11} + \cdots + 762129 T 1 2 + T 1 1 + ⋯ + 7 6 2 1 2 9
T^12 + T^11 + 65*T^10 + 158*T^9 + 3578*T^8 + 7388*T^7 + 52781*T^6 + 128430*T^5 + 622675*T^4 + 1163724*T^3 + 1828647*T^2 + 1346166*T + 762129
23 23 2 3
( T 6 − T 5 + ⋯ − 24387 ) 2 (T^{6} - T^{5} + \cdots - 24387)^{2} ( T 6 − T 5 + ⋯ − 2 4 3 8 7 ) 2
(T^6 - T^5 - 106*T^4 + 63*T^3 + 3031*T^2 - 440*T - 24387)^2
29 29 2 9
T 12 − 3 T 11 + ⋯ + 40401 T^{12} - 3 T^{11} + \cdots + 40401 T 1 2 − 3 T 1 1 + ⋯ + 4 0 4 0 1
T^12 - 3*T^11 + 87*T^10 - 254*T^9 + 6322*T^8 - 17192*T^7 + 94294*T^6 - 54205*T^5 + 502614*T^4 - 457168*T^3 + 1362670*T^2 + 225924*T + 40401
31 31 3 1
T 12 − 16 T 11 + ⋯ + 6135529 T^{12} - 16 T^{11} + \cdots + 6135529 T 1 2 − 1 6 T 1 1 + ⋯ + 6 1 3 5 5 2 9
T^12 - 16*T^11 + 206*T^10 - 1390*T^9 + 9262*T^8 - 46594*T^7 + 248171*T^6 - 962758*T^5 + 3113614*T^4 - 6706570*T^3 + 10941966*T^2 - 9908000*T + 6135529
37 37 3 7
( T 6 − 13 T 5 + ⋯ − 13477 ) 2 (T^{6} - 13 T^{5} + \cdots - 13477)^{2} ( T 6 − 1 3 T 5 + ⋯ − 1 3 4 7 7 ) 2
(T^6 - 13*T^5 - 38*T^4 + 1351*T^3 - 7753*T^2 + 17436*T - 13477)^2
41 41 4 1
T 12 + 8 T 11 + ⋯ + 4173849 T^{12} + 8 T^{11} + \cdots + 4173849 T 1 2 + 8 T 1 1 + ⋯ + 4 1 7 3 8 4 9
T^12 + 8*T^11 + 85*T^10 + 388*T^9 + 2948*T^8 + 11805*T^7 + 63915*T^6 + 155456*T^5 + 523034*T^4 + 728671*T^3 + 2648890*T^2 + 2939877*T + 4173849
43 43 4 3
T 12 + 11 T 11 + ⋯ + 1369 T^{12} + 11 T^{11} + \cdots + 1369 T 1 2 + 1 1 T 1 1 + ⋯ + 1 3 6 9
T^12 + 11*T^11 + 120*T^10 + 543*T^9 + 3212*T^8 + 7624*T^7 + 53295*T^6 + 72977*T^5 + 512108*T^4 - 442016*T^3 + 2634945*T^2 + 59940*T + 1369
47 47 4 7
T 12 + ⋯ + 318515409 T^{12} + \cdots + 318515409 T 1 2 + ⋯ + 3 1 8 5 1 5 4 0 9
T^12 + T^11 + 178*T^10 - T^9 + 25733*T^8 - 2115*T^7 + 984441*T^6 - 2756381*T^5 + 28592513*T^4 - 39081004*T^3 + 141422677*T^2 + 112846581*T + 318515409
53 53 5 3
T 12 + 2 T 11 + ⋯ + 4761 T^{12} + 2 T^{11} + \cdots + 4761 T 1 2 + 2 T 1 1 + ⋯ + 4 7 6 1
T^12 + 2*T^11 + 104*T^10 + 172*T^9 + 9267*T^8 + 14514*T^7 + 144290*T^6 - 138868*T^5 + 1276249*T^4 + 343402*T^3 + 187801*T^2 - 23046*T + 4761
59 59 5 9
( T 6 + 13 T 5 + ⋯ + 9123 ) 2 (T^{6} + 13 T^{5} + \cdots + 9123)^{2} ( T 6 + 1 3 T 5 + ⋯ + 9 1 2 3 ) 2
(T^6 + 13*T^5 - 59*T^4 - 996*T^3 + 666*T^2 + 18461*T + 9123)^2
61 61 6 1
T 12 + ⋯ + 1055015361 T^{12} + \cdots + 1055015361 T 1 2 + ⋯ + 1 0 5 5 0 1 5 3 6 1
T^12 + 5*T^11 + 226*T^10 + 847*T^9 + 36059*T^8 + 133207*T^7 + 2541805*T^6 + 6648335*T^5 + 121103191*T^4 + 390333384*T^3 + 1062894069*T^2 + 1195333281*T + 1055015361
67 67 6 7
T 12 + ⋯ + 276324129 T^{12} + \cdots + 276324129 T 1 2 + ⋯ + 2 7 6 3 2 4 1 2 9
T^12 + 11*T^11 + 227*T^10 + 612*T^9 + 18745*T^8 + 55361*T^7 + 875958*T^6 + 145321*T^5 + 13229425*T^4 - 4433604*T^3 + 160212699*T^2 - 183966741*T + 276324129
71 71 7 1
T 12 + ⋯ + 530979849 T^{12} + \cdots + 530979849 T 1 2 + ⋯ + 5 3 0 9 7 9 8 4 9
T^12 - 6*T^11 + 177*T^10 - 1426*T^9 + 26800*T^8 - 175105*T^7 + 1239901*T^6 - 4116692*T^5 + 18814920*T^4 - 50943317*T^3 + 189871678*T^2 - 315527799*T + 530979849
73 73 7 3
T 12 + ⋯ + 196812841 T^{12} + \cdots + 196812841 T 1 2 + ⋯ + 1 9 6 8 1 2 8 4 1
T^12 + 30*T^11 + 662*T^10 + 7642*T^9 + 72578*T^8 + 420036*T^7 + 2769075*T^6 + 13334350*T^5 + 67825152*T^4 + 198569706*T^3 + 480685440*T^2 + 343233514*T + 196812841
79 79 7 9
T 12 + ⋯ + 110859841 T^{12} + \cdots + 110859841 T 1 2 + ⋯ + 1 1 0 8 5 9 8 4 1
T^12 - 7*T^11 + 197*T^10 + 416*T^9 + 16825*T^8 + 74563*T^7 + 1322709*T^6 + 7784759*T^5 + 48229623*T^4 + 130891313*T^3 + 283043128*T^2 + 199598253*T + 110859841
83 83 8 3
( T 6 + 27 T 5 + ⋯ + 2673 ) 2 (T^{6} + 27 T^{5} + \cdots + 2673)^{2} ( T 6 + 2 7 T 5 + ⋯ + 2 6 7 3 ) 2
(T^6 + 27*T^5 + 158*T^4 - 403*T^3 - 1797*T^2 + 1188*T + 2673)^2
89 89 8 9
( T 6 + 4 T 5 + ⋯ − 304479 ) 2 (T^{6} + 4 T^{5} + \cdots - 304479)^{2} ( T 6 + 4 T 5 + ⋯ − 3 0 4 4 7 9 ) 2
(T^6 + 4*T^5 - 367*T^4 - 132*T^3 + 32872*T^2 - 79486*T - 304479)^2
97 97 9 7
T 12 + 35 T 11 + ⋯ + 15202201 T^{12} + 35 T^{11} + \cdots + 15202201 T 1 2 + 3 5 T 1 1 + ⋯ + 1 5 2 0 2 2 0 1
T^12 + 35*T^11 + 860*T^10 + 10403*T^9 + 92800*T^8 + 500330*T^7 + 2092673*T^6 + 4789025*T^5 + 12693220*T^4 + 18481778*T^3 + 68189685*T^2 + 33180490*T + 15202201
show more
show less