Properties

Label 91.2.h.b.16.6
Level $91$
Weight $2$
Character 91.16
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 7 x^{10} - 2 x^{9} + 33 x^{8} - 11 x^{7} + 55 x^{6} + 17 x^{5} + 47 x^{4} + x^{3} + 8 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 16.6
Root \(0.217953 + 0.377506i\) of defining polynomial
Character \(\chi\) \(=\) 91.16
Dual form 91.2.h.b.74.6

$q$-expansion

\(f(q)\) \(=\) \(q+1.85816 q^{2} +(-1.14703 + 1.98672i) q^{3} +1.45276 q^{4} +(0.0986811 - 0.170921i) q^{5} +(-2.13137 + 3.69165i) q^{6} +(1.03826 - 2.43352i) q^{7} -1.01686 q^{8} +(-1.13137 - 1.95960i) q^{9} +O(q^{10})\) \(q+1.85816 q^{2} +(-1.14703 + 1.98672i) q^{3} +1.45276 q^{4} +(0.0986811 - 0.170921i) q^{5} +(-2.13137 + 3.69165i) q^{6} +(1.03826 - 2.43352i) q^{7} -1.01686 q^{8} +(-1.13137 - 1.95960i) q^{9} +(0.183365 - 0.317598i) q^{10} +(2.09137 - 3.62236i) q^{11} +(-1.66637 + 2.88623i) q^{12} +(-2.72221 + 2.36423i) q^{13} +(1.92926 - 4.52187i) q^{14} +(0.226381 + 0.392104i) q^{15} -4.79501 q^{16} +0.841305 q^{17} +(-2.10227 - 3.64125i) q^{18} +(-0.675876 - 1.17065i) q^{19} +(0.143360 - 0.248307i) q^{20} +(3.64380 + 4.85406i) q^{21} +(3.88610 - 6.73092i) q^{22} -4.11519 q^{23} +(1.16637 - 2.02021i) q^{24} +(2.48052 + 4.29639i) q^{25} +(-5.05830 + 4.39312i) q^{26} -1.69131 q^{27} +(1.50835 - 3.53532i) q^{28} +(4.11931 + 7.13485i) q^{29} +(0.420653 + 0.728592i) q^{30} +(0.640350 + 1.10912i) q^{31} -6.87618 q^{32} +(4.79774 + 8.30993i) q^{33} +1.56328 q^{34} +(-0.313482 - 0.417603i) q^{35} +(-1.64362 - 2.84683i) q^{36} +3.04485 q^{37} +(-1.25589 - 2.17526i) q^{38} +(-1.57459 - 8.12012i) q^{39} +(-0.100344 + 0.173802i) q^{40} +(-2.69848 - 4.67390i) q^{41} +(6.77077 + 9.01963i) q^{42} +(-2.66389 + 4.61399i) q^{43} +(3.03826 - 5.26242i) q^{44} -0.446581 q^{45} -7.64669 q^{46} +(5.83204 - 10.1014i) q^{47} +(5.50003 - 9.52634i) q^{48} +(-4.84403 - 5.05326i) q^{49} +(4.60921 + 7.98339i) q^{50} +(-0.965006 + 1.67144i) q^{51} +(-3.95472 + 3.43466i) q^{52} +(-2.32398 - 4.02525i) q^{53} -3.14272 q^{54} +(-0.412757 - 0.714916i) q^{55} +(-1.05576 + 2.47454i) q^{56} +3.10101 q^{57} +(7.65434 + 13.2577i) q^{58} +6.05811 q^{59} +(0.328878 + 0.569634i) q^{60} +(5.68285 + 9.84298i) q^{61} +(1.18987 + 2.06092i) q^{62} +(-5.94338 + 0.718645i) q^{63} -3.18704 q^{64} +(0.135465 + 0.698587i) q^{65} +(8.91498 + 15.4412i) q^{66} +(-6.69851 + 11.6022i) q^{67} +1.22222 q^{68} +(4.72026 - 8.17574i) q^{69} +(-0.582500 - 0.775973i) q^{70} +(2.98520 - 5.17051i) q^{71} +(1.15044 + 1.99263i) q^{72} +(-1.94273 - 3.36491i) q^{73} +5.65782 q^{74} -11.3810 q^{75} +(-0.981887 - 1.70068i) q^{76} +(-6.64368 - 8.85034i) q^{77} +(-2.92585 - 15.0885i) q^{78} +(5.36669 - 9.29537i) q^{79} +(-0.473177 + 0.819566i) q^{80} +(5.33411 - 9.23895i) q^{81} +(-5.01421 - 8.68486i) q^{82} +3.07390 q^{83} +(5.29358 + 7.05180i) q^{84} +(0.0830210 - 0.143797i) q^{85} +(-4.94994 + 8.57354i) q^{86} -18.8999 q^{87} +(-2.12662 + 3.68341i) q^{88} -11.9841 q^{89} -0.829819 q^{90} +(2.92702 + 9.07924i) q^{91} -5.97840 q^{92} -2.93801 q^{93} +(10.8369 - 18.7700i) q^{94} -0.266785 q^{95} +(7.88721 - 13.6611i) q^{96} +(-9.73637 + 16.8639i) q^{97} +(-9.00098 - 9.38977i) q^{98} -9.46448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 4q^{2} + q^{3} + 8q^{4} + q^{5} - 9q^{6} - 3q^{7} - 6q^{8} + 3q^{9} + O(q^{10}) \) \( 12q - 4q^{2} + q^{3} + 8q^{4} + q^{5} - 9q^{6} - 3q^{7} - 6q^{8} + 3q^{9} + 4q^{10} + 4q^{11} + 5q^{12} - 2q^{13} - 2q^{14} - 2q^{15} - 16q^{16} - 10q^{17} + 3q^{18} - q^{19} - q^{20} - 9q^{21} - 5q^{22} + 2q^{23} - 11q^{24} + 7q^{25} - 16q^{26} - 8q^{27} - q^{28} + 3q^{29} - 5q^{30} + 16q^{31} - 16q^{32} + 16q^{33} + 32q^{34} + 20q^{35} - 21q^{36} + 26q^{37} - 17q^{38} - 20q^{39} - 5q^{40} - 8q^{41} + 50q^{42} - 11q^{43} + 21q^{44} + 14q^{45} - 32q^{46} - q^{47} + 21q^{48} - 3q^{49} + 6q^{50} - 20q^{51} + 41q^{52} - 2q^{53} + 36q^{54} + 9q^{55} + 9q^{56} + 42q^{57} - 8q^{58} - 26q^{59} + 20q^{60} - 5q^{61} + 5q^{62} - 40q^{63} - 30q^{64} - 5q^{65} + 18q^{66} - 11q^{67} - 58q^{68} + 23q^{69} - 39q^{70} + 6q^{71} + 25q^{72} - 30q^{73} + 6q^{74} + 6q^{75} - 9q^{76} + 11q^{77} + 16q^{78} + 7q^{79} - 7q^{80} - 6q^{81} + q^{82} - 54q^{83} - 46q^{84} - q^{85} - 7q^{86} - 32q^{87} - 8q^{89} - 16q^{90} - 23q^{91} + 54q^{92} + 14q^{93} + 45q^{94} + 12q^{95} + 19q^{96} - 35q^{97} + 20q^{98} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.85816 1.31392 0.656959 0.753926i \(-0.271842\pi\)
0.656959 + 0.753926i \(0.271842\pi\)
\(3\) −1.14703 + 1.98672i −0.662240 + 1.14703i 0.317785 + 0.948163i \(0.397061\pi\)
−0.980026 + 0.198871i \(0.936272\pi\)
\(4\) 1.45276 0.726381
\(5\) 0.0986811 0.170921i 0.0441315 0.0764381i −0.843116 0.537732i \(-0.819281\pi\)
0.887247 + 0.461294i \(0.152615\pi\)
\(6\) −2.13137 + 3.69165i −0.870130 + 1.50711i
\(7\) 1.03826 2.43352i 0.392426 0.919784i
\(8\) −1.01686 −0.359513
\(9\) −1.13137 1.95960i −0.377125 0.653199i
\(10\) 0.183365 0.317598i 0.0579852 0.100433i
\(11\) 2.09137 3.62236i 0.630571 1.09218i −0.356864 0.934156i \(-0.616154\pi\)
0.987435 0.158025i \(-0.0505127\pi\)
\(12\) −1.66637 + 2.88623i −0.481039 + 0.833184i
\(13\) −2.72221 + 2.36423i −0.755005 + 0.655719i
\(14\) 1.92926 4.52187i 0.515616 1.20852i
\(15\) 0.226381 + 0.392104i 0.0584514 + 0.101241i
\(16\) −4.79501 −1.19875
\(17\) 0.841305 0.204047 0.102023 0.994782i \(-0.467468\pi\)
0.102023 + 0.994782i \(0.467468\pi\)
\(18\) −2.10227 3.64125i −0.495511 0.858250i
\(19\) −0.675876 1.17065i −0.155057 0.268566i 0.778023 0.628236i \(-0.216223\pi\)
−0.933080 + 0.359670i \(0.882889\pi\)
\(20\) 0.143360 0.248307i 0.0320563 0.0555232i
\(21\) 3.64380 + 4.85406i 0.795143 + 1.05924i
\(22\) 3.88610 6.73092i 0.828519 1.43504i
\(23\) −4.11519 −0.858077 −0.429038 0.903286i \(-0.641147\pi\)
−0.429038 + 0.903286i \(0.641147\pi\)
\(24\) 1.16637 2.02021i 0.238084 0.412373i
\(25\) 2.48052 + 4.29639i 0.496105 + 0.859279i
\(26\) −5.05830 + 4.39312i −0.992015 + 0.861561i
\(27\) −1.69131 −0.325492
\(28\) 1.50835 3.53532i 0.285051 0.668113i
\(29\) 4.11931 + 7.13485i 0.764936 + 1.32491i 0.940280 + 0.340401i \(0.110563\pi\)
−0.175344 + 0.984507i \(0.556104\pi\)
\(30\) 0.420653 + 0.728592i 0.0768003 + 0.133022i
\(31\) 0.640350 + 1.10912i 0.115010 + 0.199203i 0.917784 0.397080i \(-0.129977\pi\)
−0.802774 + 0.596284i \(0.796643\pi\)
\(32\) −6.87618 −1.21555
\(33\) 4.79774 + 8.30993i 0.835180 + 1.44657i
\(34\) 1.56328 0.268100
\(35\) −0.313482 0.417603i −0.0529881 0.0705878i
\(36\) −1.64362 2.84683i −0.273936 0.474471i
\(37\) 3.04485 0.500570 0.250285 0.968172i \(-0.419476\pi\)
0.250285 + 0.968172i \(0.419476\pi\)
\(38\) −1.25589 2.17526i −0.203732 0.352874i
\(39\) −1.57459 8.12012i −0.252137 1.30026i
\(40\) −0.100344 + 0.173802i −0.0158659 + 0.0274805i
\(41\) −2.69848 4.67390i −0.421431 0.729941i 0.574648 0.818400i \(-0.305139\pi\)
−0.996080 + 0.0884599i \(0.971805\pi\)
\(42\) 6.77077 + 9.01963i 1.04475 + 1.39176i
\(43\) −2.66389 + 4.61399i −0.406239 + 0.703627i −0.994465 0.105070i \(-0.966493\pi\)
0.588226 + 0.808697i \(0.299827\pi\)
\(44\) 3.03826 5.26242i 0.458035 0.793340i
\(45\) −0.446581 −0.0665724
\(46\) −7.64669 −1.12744
\(47\) 5.83204 10.1014i 0.850690 1.47344i −0.0298969 0.999553i \(-0.509518\pi\)
0.880587 0.473885i \(-0.157149\pi\)
\(48\) 5.50003 9.52634i 0.793862 1.37501i
\(49\) −4.84403 5.05326i −0.692004 0.721894i
\(50\) 4.60921 + 7.98339i 0.651841 + 1.12902i
\(51\) −0.965006 + 1.67144i −0.135128 + 0.234048i
\(52\) −3.95472 + 3.43466i −0.548422 + 0.476302i
\(53\) −2.32398 4.02525i −0.319223 0.552911i 0.661103 0.750295i \(-0.270089\pi\)
−0.980326 + 0.197384i \(0.936755\pi\)
\(54\) −3.14272 −0.427670
\(55\) −0.412757 0.714916i −0.0556562 0.0963993i
\(56\) −1.05576 + 2.47454i −0.141082 + 0.330674i
\(57\) 3.10101 0.410739
\(58\) 7.65434 + 13.2577i 1.00506 + 1.74082i
\(59\) 6.05811 0.788698 0.394349 0.918961i \(-0.370970\pi\)
0.394349 + 0.918961i \(0.370970\pi\)
\(60\) 0.328878 + 0.569634i 0.0424580 + 0.0735394i
\(61\) 5.68285 + 9.84298i 0.727614 + 1.26026i 0.957889 + 0.287139i \(0.0927042\pi\)
−0.230275 + 0.973126i \(0.573962\pi\)
\(62\) 1.18987 + 2.06092i 0.151114 + 0.261737i
\(63\) −5.94338 + 0.718645i −0.748795 + 0.0905407i
\(64\) −3.18704 −0.398380
\(65\) 0.135465 + 0.698587i 0.0168023 + 0.0866490i
\(66\) 8.91498 + 15.4412i 1.09736 + 1.90068i
\(67\) −6.69851 + 11.6022i −0.818354 + 1.41743i 0.0885411 + 0.996073i \(0.471780\pi\)
−0.906895 + 0.421357i \(0.861554\pi\)
\(68\) 1.22222 0.148216
\(69\) 4.72026 8.17574i 0.568253 0.984243i
\(70\) −0.582500 0.775973i −0.0696221 0.0927465i
\(71\) 2.98520 5.17051i 0.354278 0.613627i −0.632716 0.774384i \(-0.718060\pi\)
0.986994 + 0.160757i \(0.0513934\pi\)
\(72\) 1.15044 + 1.99263i 0.135581 + 0.234833i
\(73\) −1.94273 3.36491i −0.227380 0.393833i 0.729651 0.683820i \(-0.239683\pi\)
−0.957031 + 0.289986i \(0.906349\pi\)
\(74\) 5.65782 0.657708
\(75\) −11.3810 −1.31416
\(76\) −0.981887 1.70068i −0.112630 0.195081i
\(77\) −6.64368 8.85034i −0.757118 1.00859i
\(78\) −2.92585 15.0885i −0.331287 1.70844i
\(79\) 5.36669 9.29537i 0.603799 1.04581i −0.388441 0.921474i \(-0.626986\pi\)
0.992240 0.124337i \(-0.0396805\pi\)
\(80\) −0.473177 + 0.819566i −0.0529028 + 0.0916303i
\(81\) 5.33411 9.23895i 0.592679 1.02655i
\(82\) −5.01421 8.68486i −0.553726 0.959082i
\(83\) 3.07390 0.337404 0.168702 0.985667i \(-0.446042\pi\)
0.168702 + 0.985667i \(0.446042\pi\)
\(84\) 5.29358 + 7.05180i 0.577577 + 0.769415i
\(85\) 0.0830210 0.143797i 0.00900489 0.0155969i
\(86\) −4.94994 + 8.57354i −0.533765 + 0.924509i
\(87\) −18.8999 −2.02629
\(88\) −2.12662 + 3.68341i −0.226698 + 0.392653i
\(89\) −11.9841 −1.27032 −0.635159 0.772382i \(-0.719065\pi\)
−0.635159 + 0.772382i \(0.719065\pi\)
\(90\) −0.829819 −0.0874706
\(91\) 2.92702 + 9.07924i 0.306836 + 0.951763i
\(92\) −5.97840 −0.623291
\(93\) −2.93801 −0.304658
\(94\) 10.8369 18.7700i 1.11774 1.93598i
\(95\) −0.266785 −0.0273715
\(96\) 7.88721 13.6611i 0.804986 1.39428i
\(97\) −9.73637 + 16.8639i −0.988578 + 1.71227i −0.363771 + 0.931488i \(0.618511\pi\)
−0.624807 + 0.780779i \(0.714822\pi\)
\(98\) −9.00098 9.38977i −0.909236 0.948510i
\(99\) −9.46448 −0.951216
\(100\) 3.60361 + 6.24164i 0.360361 + 0.624164i
\(101\) 8.46697 14.6652i 0.842495 1.45924i −0.0452843 0.998974i \(-0.514419\pi\)
0.887779 0.460270i \(-0.152247\pi\)
\(102\) −1.79314 + 3.10580i −0.177547 + 0.307520i
\(103\) 3.61712 6.26504i 0.356406 0.617313i −0.630952 0.775822i \(-0.717335\pi\)
0.987357 + 0.158509i \(0.0506688\pi\)
\(104\) 2.76809 2.40408i 0.271434 0.235739i
\(105\) 1.18923 0.143797i 0.116057 0.0140331i
\(106\) −4.31833 7.47957i −0.419434 0.726480i
\(107\) −9.85249 −0.952477 −0.476238 0.879316i \(-0.658000\pi\)
−0.476238 + 0.879316i \(0.658000\pi\)
\(108\) −2.45707 −0.236431
\(109\) 6.90796 + 11.9649i 0.661662 + 1.14603i 0.980179 + 0.198115i \(0.0634821\pi\)
−0.318516 + 0.947917i \(0.603185\pi\)
\(110\) −0.766969 1.32843i −0.0731277 0.126661i
\(111\) −3.49255 + 6.04927i −0.331498 + 0.574171i
\(112\) −4.97847 + 11.6687i −0.470421 + 1.10259i
\(113\) 2.13432 3.69675i 0.200780 0.347761i −0.748000 0.663699i \(-0.768986\pi\)
0.948780 + 0.315938i \(0.102319\pi\)
\(114\) 5.76218 0.539677
\(115\) −0.406092 + 0.703371i −0.0378682 + 0.0655897i
\(116\) 5.98437 + 10.3652i 0.555635 + 0.962388i
\(117\) 7.71277 + 2.65961i 0.713046 + 0.245881i
\(118\) 11.2569 1.03629
\(119\) 0.873495 2.04733i 0.0800732 0.187679i
\(120\) −0.230197 0.398713i −0.0210140 0.0363973i
\(121\) −3.24765 5.62509i −0.295240 0.511372i
\(122\) 10.5596 + 18.2898i 0.956026 + 1.65589i
\(123\) 12.3810 1.11636
\(124\) 0.930276 + 1.61129i 0.0835412 + 0.144698i
\(125\) 1.96593 0.175839
\(126\) −11.0438 + 1.33536i −0.983856 + 0.118963i
\(127\) 1.09512 + 1.89680i 0.0971761 + 0.168314i 0.910515 0.413477i \(-0.135686\pi\)
−0.813339 + 0.581791i \(0.802352\pi\)
\(128\) 7.83033 0.692110
\(129\) −6.11114 10.5848i −0.538056 0.931941i
\(130\) 0.251715 + 1.29809i 0.0220769 + 0.113850i
\(131\) −1.13806 + 1.97117i −0.0994326 + 0.172222i −0.911450 0.411411i \(-0.865036\pi\)
0.812017 + 0.583633i \(0.198369\pi\)
\(132\) 6.96998 + 12.0724i 0.606659 + 1.05076i
\(133\) −3.55054 + 0.429314i −0.307871 + 0.0372262i
\(134\) −12.4469 + 21.5587i −1.07525 + 1.86239i
\(135\) −0.166900 + 0.289079i −0.0143645 + 0.0248800i
\(136\) −0.855486 −0.0733573
\(137\) 13.4480 1.14894 0.574469 0.818526i \(-0.305209\pi\)
0.574469 + 0.818526i \(0.305209\pi\)
\(138\) 8.77101 15.1918i 0.746638 1.29321i
\(139\) −2.02270 + 3.50342i −0.171563 + 0.297156i −0.938966 0.344009i \(-0.888215\pi\)
0.767403 + 0.641165i \(0.221548\pi\)
\(140\) −0.455415 0.606678i −0.0384896 0.0512736i
\(141\) 13.3791 + 23.1733i 1.12672 + 1.95154i
\(142\) 5.54698 9.60765i 0.465492 0.806256i
\(143\) 2.87093 + 14.8053i 0.240079 + 1.23808i
\(144\) 5.42494 + 9.39628i 0.452079 + 0.783023i
\(145\) 1.62599 0.135031
\(146\) −3.60991 6.25255i −0.298758 0.517465i
\(147\) 15.5957 3.82747i 1.28631 0.315684i
\(148\) 4.42344 0.363605
\(149\) −7.67596 13.2952i −0.628840 1.08918i −0.987785 0.155823i \(-0.950197\pi\)
0.358945 0.933359i \(-0.383136\pi\)
\(150\) −21.1477 −1.72670
\(151\) −3.06054 5.30101i −0.249063 0.431390i 0.714203 0.699939i \(-0.246789\pi\)
−0.963266 + 0.268548i \(0.913456\pi\)
\(152\) 0.687268 + 1.19038i 0.0557448 + 0.0965528i
\(153\) −0.951831 1.64862i −0.0769510 0.133283i
\(154\) −12.3450 16.4454i −0.994791 1.32520i
\(155\) 0.252762 0.0203023
\(156\) −2.28751 11.7966i −0.183147 0.944484i
\(157\) −2.26834 3.92888i −0.181033 0.313559i 0.761199 0.648518i \(-0.224611\pi\)
−0.942233 + 0.334959i \(0.891278\pi\)
\(158\) 9.97217 17.2723i 0.793343 1.37411i
\(159\) 10.6627 0.845611
\(160\) −0.678549 + 1.17528i −0.0536440 + 0.0929142i
\(161\) −4.27265 + 10.0144i −0.336732 + 0.789245i
\(162\) 9.91163 17.1674i 0.778731 1.34880i
\(163\) −0.911271 1.57837i −0.0713762 0.123627i 0.828128 0.560538i \(-0.189406\pi\)
−0.899505 + 0.436911i \(0.856072\pi\)
\(164\) −3.92025 6.79007i −0.306120 0.530215i
\(165\) 1.89379 0.147431
\(166\) 5.71180 0.443322
\(167\) 5.35397 + 9.27336i 0.414303 + 0.717594i 0.995355 0.0962726i \(-0.0306921\pi\)
−0.581052 + 0.813866i \(0.697359\pi\)
\(168\) −3.70522 4.93588i −0.285864 0.380812i
\(169\) 1.82086 12.8718i 0.140066 0.990142i
\(170\) 0.154266 0.267197i 0.0118317 0.0204931i
\(171\) −1.52934 + 2.64889i −0.116951 + 0.202566i
\(172\) −3.87000 + 6.70303i −0.295085 + 0.511102i
\(173\) 6.74634 + 11.6850i 0.512915 + 0.888395i 0.999888 + 0.0149778i \(0.00476775\pi\)
−0.486973 + 0.873417i \(0.661899\pi\)
\(174\) −35.1191 −2.66237
\(175\) 13.0308 1.57562i 0.985035 0.119106i
\(176\) −10.0281 + 17.3692i −0.755898 + 1.30925i
\(177\) −6.94886 + 12.0358i −0.522308 + 0.904664i
\(178\) −22.2685 −1.66909
\(179\) −5.23458 + 9.06657i −0.391251 + 0.677667i −0.992615 0.121309i \(-0.961291\pi\)
0.601364 + 0.798975i \(0.294624\pi\)
\(180\) −0.648776 −0.0483569
\(181\) 12.5209 0.930674 0.465337 0.885133i \(-0.345933\pi\)
0.465337 + 0.885133i \(0.345933\pi\)
\(182\) 5.43888 + 16.8707i 0.403157 + 1.25054i
\(183\) −26.0737 −1.92742
\(184\) 4.18455 0.308489
\(185\) 0.300469 0.520428i 0.0220909 0.0382626i
\(186\) −5.45930 −0.400295
\(187\) 1.75948 3.04751i 0.128666 0.222856i
\(188\) 8.47256 14.6749i 0.617925 1.07028i
\(189\) −1.75602 + 4.11583i −0.127732 + 0.299382i
\(190\) −0.495729 −0.0359640
\(191\) −6.55685 11.3568i −0.474437 0.821749i 0.525135 0.851019i \(-0.324015\pi\)
−0.999572 + 0.0292704i \(0.990682\pi\)
\(192\) 3.65565 6.33176i 0.263823 0.456956i
\(193\) −0.520786 + 0.902028i −0.0374870 + 0.0649294i −0.884160 0.467184i \(-0.845269\pi\)
0.846673 + 0.532113i \(0.178602\pi\)
\(194\) −18.0917 + 31.3358i −1.29891 + 2.24978i
\(195\) −1.54328 0.532172i −0.110517 0.0381096i
\(196\) −7.03722 7.34118i −0.502658 0.524370i
\(197\) −0.739167 1.28027i −0.0526635 0.0912158i 0.838492 0.544914i \(-0.183438\pi\)
−0.891155 + 0.453698i \(0.850104\pi\)
\(198\) −17.5865 −1.24982
\(199\) 14.0999 0.999512 0.499756 0.866166i \(-0.333423\pi\)
0.499756 + 0.866166i \(0.333423\pi\)
\(200\) −2.52233 4.36881i −0.178356 0.308922i
\(201\) −15.3668 26.6162i −1.08389 1.87736i
\(202\) 15.7330 27.2503i 1.10697 1.91733i
\(203\) 21.6397 2.61657i 1.51881 0.183647i
\(204\) −1.40192 + 2.42820i −0.0981543 + 0.170008i
\(205\) −1.06516 −0.0743937
\(206\) 6.72120 11.6415i 0.468288 0.811099i
\(207\) 4.65582 + 8.06412i 0.323602 + 0.560495i
\(208\) 13.0530 11.3365i 0.905064 0.786044i
\(209\) −5.65402 −0.391097
\(210\) 2.20979 0.267197i 0.152490 0.0184384i
\(211\) −13.2346 22.9230i −0.911108 1.57809i −0.812501 0.582959i \(-0.801895\pi\)
−0.0986067 0.995126i \(-0.531439\pi\)
\(212\) −3.37619 5.84774i −0.231878 0.401624i
\(213\) 6.84825 + 11.8615i 0.469234 + 0.812737i
\(214\) −18.3075 −1.25148
\(215\) 0.525751 + 0.910628i 0.0358559 + 0.0621043i
\(216\) 1.71981 0.117019
\(217\) 3.36391 0.406748i 0.228357 0.0276118i
\(218\) 12.8361 + 22.2328i 0.869370 + 1.50579i
\(219\) 8.91352 0.602320
\(220\) −0.599638 1.03860i −0.0404276 0.0700227i
\(221\) −2.29021 + 1.98904i −0.154056 + 0.133797i
\(222\) −6.48971 + 11.2405i −0.435561 + 0.754414i
\(223\) 0.364024 + 0.630508i 0.0243769 + 0.0422219i 0.877956 0.478740i \(-0.158907\pi\)
−0.853580 + 0.520962i \(0.825573\pi\)
\(224\) −7.13928 + 16.7333i −0.477013 + 1.11804i
\(225\) 5.61280 9.72165i 0.374187 0.648110i
\(226\) 3.96591 6.86916i 0.263808 0.456929i
\(227\) −2.85195 −0.189291 −0.0946454 0.995511i \(-0.530172\pi\)
−0.0946454 + 0.995511i \(0.530172\pi\)
\(228\) 4.50503 0.298353
\(229\) −1.58676 + 2.74835i −0.104856 + 0.181616i −0.913679 0.406436i \(-0.866772\pi\)
0.808823 + 0.588052i \(0.200105\pi\)
\(230\) −0.754584 + 1.30698i −0.0497558 + 0.0861795i
\(231\) 25.2037 3.04751i 1.65828 0.200511i
\(232\) −4.18874 7.25511i −0.275004 0.476321i
\(233\) −6.70354 + 11.6109i −0.439163 + 0.760653i −0.997625 0.0688769i \(-0.978058\pi\)
0.558462 + 0.829530i \(0.311392\pi\)
\(234\) 14.3316 + 4.94198i 0.936884 + 0.323068i
\(235\) −1.15102 1.99363i −0.0750845 0.130050i
\(236\) 8.80099 0.572896
\(237\) 12.3115 + 21.3242i 0.799721 + 1.38516i
\(238\) 1.62309 3.80427i 0.105210 0.246594i
\(239\) −15.5538 −1.00609 −0.503046 0.864259i \(-0.667788\pi\)
−0.503046 + 0.864259i \(0.667788\pi\)
\(240\) −1.08550 1.88014i −0.0700687 0.121363i
\(241\) −7.57574 −0.487996 −0.243998 0.969776i \(-0.578459\pi\)
−0.243998 + 0.969776i \(0.578459\pi\)
\(242\) −6.03465 10.4523i −0.387922 0.671900i
\(243\) 9.69985 + 16.8006i 0.622245 + 1.07776i
\(244\) 8.25583 + 14.2995i 0.528525 + 0.915433i
\(245\) −1.34172 + 0.329283i −0.0857194 + 0.0210371i
\(246\) 23.0059 1.46680
\(247\) 4.60756 + 1.58883i 0.293172 + 0.101095i
\(248\) −0.651143 1.12781i −0.0413476 0.0716162i
\(249\) −3.52587 + 6.10698i −0.223443 + 0.387014i
\(250\) 3.65302 0.231038
\(251\) −0.637382 + 1.10398i −0.0402312 + 0.0696825i −0.885440 0.464754i \(-0.846143\pi\)
0.845209 + 0.534436i \(0.179476\pi\)
\(252\) −8.63432 + 1.04402i −0.543911 + 0.0657671i
\(253\) −8.60638 + 14.9067i −0.541079 + 0.937176i
\(254\) 2.03491 + 3.52456i 0.127682 + 0.221151i
\(255\) 0.190456 + 0.329879i 0.0119268 + 0.0206578i
\(256\) 20.9241 1.30776
\(257\) −8.48019 −0.528980 −0.264490 0.964388i \(-0.585204\pi\)
−0.264490 + 0.964388i \(0.585204\pi\)
\(258\) −11.3555 19.6683i −0.706962 1.22449i
\(259\) 3.16135 7.40970i 0.196437 0.460416i
\(260\) 0.196798 + 1.01488i 0.0122049 + 0.0629402i
\(261\) 9.32095 16.1444i 0.576952 0.999311i
\(262\) −2.11470 + 3.66276i −0.130646 + 0.226286i
\(263\) −6.39415 + 11.0750i −0.394280 + 0.682913i −0.993009 0.118038i \(-0.962339\pi\)
0.598729 + 0.800952i \(0.295673\pi\)
\(264\) −4.87861 8.45000i −0.300258 0.520062i
\(265\) −0.917333 −0.0563513
\(266\) −6.59747 + 0.797735i −0.404517 + 0.0489122i
\(267\) 13.7462 23.8092i 0.841255 1.45710i
\(268\) −9.73135 + 16.8552i −0.594437 + 1.02959i
\(269\) −4.71172 −0.287278 −0.143639 0.989630i \(-0.545880\pi\)
−0.143639 + 0.989630i \(0.545880\pi\)
\(270\) −0.310127 + 0.537156i −0.0188737 + 0.0326903i
\(271\) −18.0112 −1.09410 −0.547052 0.837098i \(-0.684250\pi\)
−0.547052 + 0.837098i \(0.684250\pi\)
\(272\) −4.03407 −0.244601
\(273\) −21.3953 4.59901i −1.29490 0.278345i
\(274\) 24.9885 1.50961
\(275\) 20.7508 1.25132
\(276\) 6.85742 11.8774i 0.412768 0.714936i
\(277\) −26.1209 −1.56945 −0.784725 0.619844i \(-0.787196\pi\)
−0.784725 + 0.619844i \(0.787196\pi\)
\(278\) −3.75850 + 6.50991i −0.225420 + 0.390439i
\(279\) 1.44895 2.50965i 0.0867463 0.150249i
\(280\) 0.318766 + 0.424642i 0.0190499 + 0.0253772i
\(281\) −3.66197 −0.218455 −0.109227 0.994017i \(-0.534838\pi\)
−0.109227 + 0.994017i \(0.534838\pi\)
\(282\) 24.8605 + 43.0596i 1.48042 + 2.56416i
\(283\) −3.82263 + 6.62099i −0.227232 + 0.393577i −0.956987 0.290132i \(-0.906301\pi\)
0.729755 + 0.683709i \(0.239634\pi\)
\(284\) 4.33678 7.51153i 0.257341 0.445727i
\(285\) 0.306011 0.530027i 0.0181265 0.0313961i
\(286\) 5.33465 + 27.5106i 0.315445 + 1.62674i
\(287\) −14.1757 + 1.71406i −0.836768 + 0.101178i
\(288\) 7.77953 + 13.4745i 0.458413 + 0.793995i
\(289\) −16.2922 −0.958365
\(290\) 3.02135 0.177420
\(291\) −22.3359 38.6869i −1.30935 2.26787i
\(292\) −2.82233 4.88842i −0.165164 0.286073i
\(293\) 8.57670 14.8553i 0.501056 0.867855i −0.498943 0.866635i \(-0.666278\pi\)
0.999999 0.00122001i \(-0.000388343\pi\)
\(294\) 28.9793 7.11205i 1.69011 0.414783i
\(295\) 0.597821 1.03546i 0.0348065 0.0602866i
\(296\) −3.09617 −0.179961
\(297\) −3.53715 + 6.12652i −0.205246 + 0.355497i
\(298\) −14.2632 24.7045i −0.826244 1.43110i
\(299\) 11.2024 9.72925i 0.647852 0.562657i
\(300\) −16.5339 −0.954583
\(301\) 8.46242 + 11.2732i 0.487766 + 0.649774i
\(302\) −5.68698 9.85014i −0.327249 0.566812i
\(303\) 19.4238 + 33.6430i 1.11587 + 1.93274i
\(304\) 3.24083 + 5.61328i 0.185874 + 0.321944i
\(305\) 2.24316 0.128443
\(306\) −1.76866 3.06340i −0.101107 0.175123i
\(307\) −28.0696 −1.60201 −0.801007 0.598655i \(-0.795702\pi\)
−0.801007 + 0.598655i \(0.795702\pi\)
\(308\) −9.65169 12.8574i −0.549956 0.732621i
\(309\) 8.29793 + 14.3724i 0.472052 + 0.817619i
\(310\) 0.469672 0.0266756
\(311\) 11.7670 + 20.3811i 0.667248 + 1.15571i 0.978671 + 0.205436i \(0.0658611\pi\)
−0.311423 + 0.950271i \(0.600806\pi\)
\(312\) 1.60113 + 8.25699i 0.0906464 + 0.467460i
\(313\) 1.67430 2.89997i 0.0946370 0.163916i −0.814820 0.579714i \(-0.803164\pi\)
0.909457 + 0.415798i \(0.136498\pi\)
\(314\) −4.21494 7.30050i −0.237863 0.411991i
\(315\) −0.463668 + 1.08676i −0.0261247 + 0.0612322i
\(316\) 7.79652 13.5040i 0.438588 0.759658i
\(317\) 3.63917 6.30323i 0.204396 0.354025i −0.745544 0.666456i \(-0.767810\pi\)
0.949940 + 0.312432i \(0.101144\pi\)
\(318\) 19.8131 1.11106
\(319\) 34.4600 1.92939
\(320\) −0.314501 + 0.544732i −0.0175811 + 0.0304514i
\(321\) 11.3011 19.5742i 0.630768 1.09252i
\(322\) −7.93926 + 18.6084i −0.442438 + 1.03700i
\(323\) −0.568618 0.984875i −0.0316388 0.0547999i
\(324\) 7.74919 13.4220i 0.430511 0.745666i
\(325\) −16.9102 5.83116i −0.938007 0.323455i
\(326\) −1.69329 2.93286i −0.0937826 0.162436i
\(327\) −31.6946 −1.75272
\(328\) 2.74396 + 4.75268i 0.151510 + 0.262423i
\(329\) −18.5267 24.6802i −1.02141 1.36067i
\(330\) 3.51896 0.193712
\(331\) 7.16168 + 12.4044i 0.393642 + 0.681807i 0.992927 0.118728i \(-0.0378818\pi\)
−0.599285 + 0.800536i \(0.704548\pi\)
\(332\) 4.46564 0.245084
\(333\) −3.44486 5.96668i −0.188777 0.326972i
\(334\) 9.94855 + 17.2314i 0.544360 + 0.942860i
\(335\) 1.32203 + 2.28983i 0.0722304 + 0.125107i
\(336\) −17.4720 23.2753i −0.953178 1.26977i
\(337\) 17.1802 0.935868 0.467934 0.883764i \(-0.344999\pi\)
0.467934 + 0.883764i \(0.344999\pi\)
\(338\) 3.38344 23.9180i 0.184035 1.30097i
\(339\) 4.89627 + 8.48060i 0.265929 + 0.460603i
\(340\) 0.120610 0.208902i 0.00654098 0.0113293i
\(341\) 5.35683 0.290089
\(342\) −2.84175 + 4.92206i −0.153664 + 0.266155i
\(343\) −17.3266 + 6.54142i −0.935547 + 0.353203i
\(344\) 2.70879 4.69176i 0.146048 0.252963i
\(345\) −0.931602 1.61358i −0.0501558 0.0868723i
\(346\) 12.5358 + 21.7126i 0.673928 + 1.16728i
\(347\) −7.70278 −0.413507 −0.206753 0.978393i \(-0.566290\pi\)
−0.206753 + 0.978393i \(0.566290\pi\)
\(348\) −27.4571 −1.47186
\(349\) −11.1850 19.3730i −0.598721 1.03702i −0.993010 0.118029i \(-0.962343\pi\)
0.394289 0.918986i \(-0.370991\pi\)
\(350\) 24.2133 2.92776i 1.29426 0.156495i
\(351\) 4.60409 3.99863i 0.245748 0.213431i
\(352\) −14.3806 + 24.9080i −0.766490 + 1.32760i
\(353\) 11.1311 19.2797i 0.592451 1.02616i −0.401450 0.915881i \(-0.631494\pi\)
0.993901 0.110275i \(-0.0351731\pi\)
\(354\) −12.9121 + 22.3644i −0.686270 + 1.18865i
\(355\) −0.589165 1.02046i −0.0312697 0.0541606i
\(356\) −17.4101 −0.922735
\(357\) 3.06555 + 4.08375i 0.162246 + 0.216135i
\(358\) −9.72670 + 16.8471i −0.514072 + 0.890399i
\(359\) 1.37921 2.38887i 0.0727920 0.126079i −0.827332 0.561713i \(-0.810142\pi\)
0.900124 + 0.435634i \(0.143476\pi\)
\(360\) 0.454108 0.0239336
\(361\) 8.58638 14.8721i 0.451915 0.782740i
\(362\) 23.2659 1.22283
\(363\) 14.9006 0.782081
\(364\) 4.25227 + 13.1900i 0.222880 + 0.691342i
\(365\) −0.766844 −0.0401385
\(366\) −48.4491 −2.53248
\(367\) 7.07485 12.2540i 0.369304 0.639654i −0.620153 0.784481i \(-0.712929\pi\)
0.989457 + 0.144827i \(0.0462626\pi\)
\(368\) 19.7324 1.02862
\(369\) −6.10597 + 10.5759i −0.317864 + 0.550557i
\(370\) 0.558320 0.967039i 0.0290257 0.0502740i
\(371\) −12.2084 + 1.47619i −0.633830 + 0.0766397i
\(372\) −4.26823 −0.221298
\(373\) 2.52142 + 4.36723i 0.130554 + 0.226127i 0.923890 0.382657i \(-0.124991\pi\)
−0.793336 + 0.608784i \(0.791658\pi\)
\(374\) 3.26940 5.66276i 0.169056 0.292814i
\(375\) −2.25499 + 3.90576i −0.116447 + 0.201693i
\(376\) −5.93034 + 10.2716i −0.305834 + 0.529720i
\(377\) −28.0820 9.68358i −1.44630 0.498730i
\(378\) −3.26297 + 7.64787i −0.167829 + 0.393364i
\(379\) 3.02982 + 5.24780i 0.155631 + 0.269561i 0.933289 0.359127i \(-0.116925\pi\)
−0.777657 + 0.628688i \(0.783592\pi\)
\(380\) −0.387575 −0.0198822
\(381\) −5.02456 −0.257416
\(382\) −12.1837 21.1028i −0.623371 1.07971i
\(383\) 2.27052 + 3.93266i 0.116018 + 0.200950i 0.918186 0.396149i \(-0.129654\pi\)
−0.802168 + 0.597098i \(0.796320\pi\)
\(384\) −8.98165 + 15.5567i −0.458343 + 0.793873i
\(385\) −2.16831 + 0.262182i −0.110507 + 0.0133620i
\(386\) −0.967705 + 1.67611i −0.0492549 + 0.0853120i
\(387\) 12.0554 0.612811
\(388\) −14.1446 + 24.4992i −0.718085 + 1.24376i
\(389\) −2.25383 3.90374i −0.114273 0.197927i 0.803216 0.595688i \(-0.203121\pi\)
−0.917489 + 0.397761i \(0.869787\pi\)
\(390\) −2.86766 0.988862i −0.145210 0.0500730i
\(391\) −3.46213 −0.175088
\(392\) 4.92567 + 5.13843i 0.248784 + 0.259530i
\(393\) −2.61078 4.52201i −0.131697 0.228105i
\(394\) −1.37349 2.37896i −0.0691955 0.119850i
\(395\) −1.05918 1.83456i −0.0532932 0.0923065i
\(396\) −13.7496 −0.690945
\(397\) −2.00174 3.46712i −0.100465 0.174010i 0.811412 0.584475i \(-0.198700\pi\)
−0.911876 + 0.410465i \(0.865366\pi\)
\(398\) 26.1998 1.31328
\(399\) 3.21966 7.54637i 0.161185 0.377791i
\(400\) −11.8941 20.6012i −0.594706 1.03006i
\(401\) 12.6135 0.629887 0.314944 0.949110i \(-0.398014\pi\)
0.314944 + 0.949110i \(0.398014\pi\)
\(402\) −28.5541 49.4571i −1.42415 2.46670i
\(403\) −4.36537 1.50532i −0.217455 0.0749853i
\(404\) 12.3005 21.3051i 0.611972 1.05997i
\(405\) −1.05275 1.82342i −0.0523116 0.0906064i
\(406\) 40.2101 4.86201i 1.99559 0.241297i
\(407\) 6.36790 11.0295i 0.315645 0.546713i
\(408\) 0.981272 1.69961i 0.0485802 0.0841434i
\(409\) 20.6952 1.02331 0.511657 0.859190i \(-0.329032\pi\)
0.511657 + 0.859190i \(0.329032\pi\)
\(410\) −1.97923 −0.0977472
\(411\) −15.4253 + 26.7174i −0.760873 + 1.31787i
\(412\) 5.25482 9.10162i 0.258886 0.448404i
\(413\) 6.28990 14.7425i 0.309506 0.725432i
\(414\) 8.65126 + 14.9844i 0.425186 + 0.736444i
\(415\) 0.303336 0.525393i 0.0148902 0.0257905i
\(416\) 18.7184 16.2569i 0.917746 0.797058i
\(417\) −4.64021 8.03708i −0.227232 0.393577i
\(418\) −10.5061 −0.513869
\(419\) 10.9088 + 18.8945i 0.532928 + 0.923058i 0.999261 + 0.0384484i \(0.0122415\pi\)
−0.466333 + 0.884609i \(0.654425\pi\)
\(420\) 1.72768 0.208902i 0.0843019 0.0101934i
\(421\) 9.42727 0.459457 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(422\) −24.5920 42.5947i −1.19712 2.07348i
\(423\) −26.3928 −1.28326
\(424\) 2.36315 + 4.09310i 0.114765 + 0.198779i
\(425\) 2.08688 + 3.61458i 0.101228 + 0.175333i
\(426\) 12.7251 + 22.0406i 0.616535 + 1.06787i
\(427\) 29.8534 3.60973i 1.44471 0.174687i
\(428\) −14.3133 −0.691861
\(429\) −32.7070 11.2784i −1.57911 0.544528i
\(430\) 0.976930 + 1.69209i 0.0471118 + 0.0816000i
\(431\) −10.2138 + 17.6908i −0.491980 + 0.852134i −0.999957 0.00923613i \(-0.997060\pi\)
0.507977 + 0.861370i \(0.330393\pi\)
\(432\) 8.10983 0.390184
\(433\) −13.1743 + 22.8186i −0.633117 + 1.09659i 0.353794 + 0.935323i \(0.384891\pi\)
−0.986911 + 0.161267i \(0.948442\pi\)
\(434\) 6.25069 0.755803i 0.300043 0.0362797i
\(435\) −1.86507 + 3.23039i −0.0894231 + 0.154885i
\(436\) 10.0356 + 17.3822i 0.480619 + 0.832457i
\(437\) 2.78136 + 4.81745i 0.133050 + 0.230450i
\(438\) 16.5628 0.791399
\(439\) 25.1310 1.19944 0.599720 0.800210i \(-0.295279\pi\)
0.599720 + 0.800210i \(0.295279\pi\)
\(440\) 0.419714 + 0.726967i 0.0200091 + 0.0346568i
\(441\) −4.42195 + 15.2095i −0.210569 + 0.724260i
\(442\) −4.25558 + 3.69595i −0.202417 + 0.175799i
\(443\) −9.25995 + 16.0387i −0.439953 + 0.762022i −0.997685 0.0679994i \(-0.978338\pi\)
0.557732 + 0.830021i \(0.311672\pi\)
\(444\) −5.07384 + 8.78815i −0.240794 + 0.417067i
\(445\) −1.18261 + 2.04834i −0.0560611 + 0.0971006i
\(446\) 0.676415 + 1.17159i 0.0320292 + 0.0554762i
\(447\) 35.2184 1.66577
\(448\) −3.30898 + 7.75573i −0.156335 + 0.366424i
\(449\) −5.82155 + 10.0832i −0.274736 + 0.475856i −0.970068 0.242832i \(-0.921924\pi\)
0.695333 + 0.718688i \(0.255257\pi\)
\(450\) 10.4295 18.0644i 0.491651 0.851564i
\(451\) −22.5740 −1.06297
\(452\) 3.10066 5.37050i 0.145843 0.252607i
\(453\) 14.0422 0.659759
\(454\) −5.29939 −0.248713
\(455\) 1.84067 + 0.395660i 0.0862920 + 0.0185488i
\(456\) −3.15328 −0.147666
\(457\) 20.5184 0.959812 0.479906 0.877320i \(-0.340671\pi\)
0.479906 + 0.877320i \(0.340671\pi\)
\(458\) −2.94845 + 5.10687i −0.137772 + 0.238629i
\(459\) −1.42291 −0.0664156
\(460\) −0.589955 + 1.02183i −0.0275068 + 0.0476431i
\(461\) −1.02038 + 1.76734i −0.0475236 + 0.0823134i −0.888809 0.458278i \(-0.848466\pi\)
0.841285 + 0.540592i \(0.181800\pi\)
\(462\) 46.8325 5.66276i 2.17885 0.263456i
\(463\) 3.03155 0.140888 0.0704441 0.997516i \(-0.477558\pi\)
0.0704441 + 0.997516i \(0.477558\pi\)
\(464\) −19.7521 34.2116i −0.916968 1.58824i
\(465\) −0.289926 + 0.502167i −0.0134450 + 0.0232874i
\(466\) −12.4563 + 21.5749i −0.577025 + 0.999436i
\(467\) 6.46371 11.1955i 0.299105 0.518065i −0.676827 0.736142i \(-0.736645\pi\)
0.975931 + 0.218078i \(0.0699787\pi\)
\(468\) 11.2048 + 3.86378i 0.517943 + 0.178603i
\(469\) 21.2793 + 28.3470i 0.982585 + 1.30894i
\(470\) −2.13879 3.70449i −0.0986549 0.170875i
\(471\) 10.4075 0.479550
\(472\) −6.16022 −0.283547
\(473\) 11.1423 + 19.2991i 0.512326 + 0.887374i
\(474\) 22.8768 + 39.6238i 1.05077 + 1.81998i
\(475\) 3.35305 5.80766i 0.153849 0.266474i
\(476\) 1.26898 2.97429i 0.0581637 0.136326i
\(477\) −5.25858 + 9.10814i −0.240774 + 0.417033i
\(478\) −28.9015 −1.32192
\(479\) −18.2911 + 31.6810i −0.835740 + 1.44754i 0.0576873 + 0.998335i \(0.481627\pi\)
−0.893427 + 0.449209i \(0.851706\pi\)
\(480\) −1.55664 2.69618i −0.0710505 0.123063i
\(481\) −8.28872 + 7.19872i −0.377933 + 0.328233i
\(482\) −14.0769 −0.641187
\(483\) −14.9949 19.9754i −0.682293 0.908912i
\(484\) −4.71806 8.17191i −0.214457 0.371451i
\(485\) 1.92159 + 3.32829i 0.0872550 + 0.151130i
\(486\) 18.0239 + 31.2183i 0.817580 + 1.41609i
\(487\) 36.7496 1.66528 0.832642 0.553812i \(-0.186827\pi\)
0.832642 + 0.553812i \(0.186827\pi\)
\(488\) −5.77864 10.0089i −0.261587 0.453081i
\(489\) 4.18103 0.189073
\(490\) −2.49313 + 0.611861i −0.112628 + 0.0276411i
\(491\) 4.09899 + 7.09965i 0.184985 + 0.320403i 0.943571 0.331169i \(-0.107443\pi\)
−0.758587 + 0.651572i \(0.774110\pi\)
\(492\) 17.9866 0.810900
\(493\) 3.46560 + 6.00259i 0.156083 + 0.270343i
\(494\) 8.56159 + 2.95231i 0.385204 + 0.132831i
\(495\) −0.933965 + 1.61768i −0.0419786 + 0.0727091i
\(496\) −3.07048 5.31823i −0.137869 0.238795i
\(497\) −9.48313 12.6329i −0.425376 0.566662i
\(498\) −6.55163 + 11.3478i −0.293585 + 0.508505i
\(499\) 21.6266 37.4584i 0.968141 1.67687i 0.267211 0.963638i \(-0.413898\pi\)
0.700929 0.713231i \(-0.252769\pi\)
\(500\) 2.85604 0.127726
\(501\) −24.5648 −1.09747
\(502\) −1.18436 + 2.05137i −0.0528605 + 0.0915571i
\(503\) −0.00909609 + 0.0157549i −0.000405575 + 0.000702476i −0.866228 0.499649i \(-0.833462\pi\)
0.865823 + 0.500351i \(0.166796\pi\)
\(504\) 6.04356 0.730758i 0.269201 0.0325505i
\(505\) −1.67106 2.89436i −0.0743612 0.128797i
\(506\) −15.9920 + 27.6990i −0.710933 + 1.23137i
\(507\) 23.4842 + 18.3820i 1.04297 + 0.816372i
\(508\) 1.59095 + 2.75560i 0.0705869 + 0.122260i
\(509\) 43.1006 1.91040 0.955200 0.295960i \(-0.0956394\pi\)
0.955200 + 0.295960i \(0.0956394\pi\)
\(510\) 0.353897 + 0.612968i 0.0156708 + 0.0271427i
\(511\) −10.2056 + 1.23402i −0.451471 + 0.0545897i
\(512\) 23.2197 1.02617
\(513\) 1.14311 + 1.97993i 0.0504697 + 0.0874161i
\(514\) −15.7576 −0.695036
\(515\) −0.713884 1.23648i −0.0314575 0.0544859i
\(516\) −8.87804 15.3772i −0.390834 0.676944i
\(517\) −24.3939 42.2514i −1.07284 1.85822i
\(518\) 5.87430 13.7684i 0.258102 0.604949i
\(519\) −30.9531 −1.35869
\(520\) −0.137748 0.710362i −0.00604065 0.0311514i
\(521\) −10.4770 18.1467i −0.459006 0.795022i 0.539903 0.841727i \(-0.318461\pi\)
−0.998909 + 0.0467056i \(0.985128\pi\)
\(522\) 17.3198 29.9988i 0.758068 1.31301i
\(523\) −34.7403 −1.51909 −0.759543 0.650457i \(-0.774577\pi\)
−0.759543 + 0.650457i \(0.774577\pi\)
\(524\) −1.65333 + 2.86365i −0.0722260 + 0.125099i
\(525\) −11.8164 + 27.6958i −0.515712 + 1.20875i
\(526\) −11.8814 + 20.5791i −0.518052 + 0.897292i
\(527\) 0.538730 + 0.933107i 0.0234674 + 0.0406468i
\(528\) −23.0052 39.8462i −1.00117 1.73408i
\(529\) −6.06520 −0.263704
\(530\) −1.70455 −0.0740410
\(531\) −6.85398 11.8714i −0.297438 0.515177i
\(532\) −5.15809 + 0.623691i −0.223631 + 0.0270404i
\(533\) 18.3960 + 6.34352i 0.796819 + 0.274769i
\(534\) 25.5427 44.2413i 1.10534 1.91451i
\(535\) −0.972255 + 1.68400i −0.0420343 + 0.0728055i
\(536\) 6.81142 11.7977i 0.294209 0.509584i
\(537\) −12.0085 20.7993i −0.518205 0.897557i
\(538\) −8.75513 −0.377460
\(539\) −28.4353 + 6.97856i −1.22480 + 0.300588i
\(540\) −0.242466 + 0.419964i −0.0104341 + 0.0180724i
\(541\) 1.64923 2.85655i 0.0709059 0.122813i −0.828393 0.560148i \(-0.810744\pi\)
0.899299 + 0.437335i \(0.144078\pi\)
\(542\) −33.4678 −1.43756
\(543\) −14.3619 + 24.8756i −0.616330 + 1.06752i
\(544\) −5.78497 −0.248029
\(545\) 2.72674 0.116801
\(546\) −39.7559 8.54570i −1.70140 0.365722i
\(547\) 21.9417 0.938161 0.469080 0.883155i \(-0.344585\pi\)
0.469080 + 0.883155i \(0.344585\pi\)
\(548\) 19.5367 0.834567
\(549\) 12.8589 22.2722i 0.548803 0.950554i
\(550\) 38.5583 1.64413
\(551\) 5.56828 9.64455i 0.237217 0.410871i
\(552\) −4.79983 + 8.31354i −0.204294 + 0.353848i
\(553\) −17.0484 22.7110i −0.724973 0.965768i
\(554\) −48.5368 −2.06213
\(555\) 0.689297 + 1.19390i 0.0292590 + 0.0506781i
\(556\) −2.93850 + 5.08963i −0.124620 + 0.215848i
\(557\) 7.14329 12.3725i 0.302671 0.524241i −0.674069 0.738668i \(-0.735455\pi\)
0.976740 + 0.214427i \(0.0687884\pi\)
\(558\) 2.69238 4.66334i 0.113978 0.197415i
\(559\) −3.65686 18.8583i −0.154669 0.797621i
\(560\) 1.50315 + 2.00241i 0.0635196 + 0.0846172i
\(561\) 4.03637 + 6.99119i 0.170416 + 0.295168i
\(562\) −6.80453 −0.287032
\(563\) 6.78784 0.286073 0.143037 0.989717i \(-0.454313\pi\)
0.143037 + 0.989717i \(0.454313\pi\)
\(564\) 19.4366 + 33.6652i 0.818430 + 1.41756i
\(565\) −0.421234 0.729599i −0.0177215 0.0306945i
\(566\) −7.10307 + 12.3029i −0.298564 + 0.517128i
\(567\) −16.9449 22.5731i −0.711621 0.947981i
\(568\) −3.03552 + 5.25767i −0.127367 + 0.220607i
\(569\) −17.3212 −0.726143 −0.363072 0.931761i \(-0.618272\pi\)
−0.363072 + 0.931761i \(0.618272\pi\)
\(570\) 0.568618 0.984875i 0.0238168 0.0412519i
\(571\) 6.50581 + 11.2684i 0.272260 + 0.471568i 0.969440 0.245328i \(-0.0788957\pi\)
−0.697180 + 0.716896i \(0.745562\pi\)
\(572\) 4.17078 + 21.5086i 0.174389 + 0.899318i
\(573\) 30.0837 1.25676
\(574\) −26.3408 + 3.18501i −1.09944 + 0.132940i
\(575\) −10.2078 17.6805i −0.425696 0.737327i
\(576\) 3.60574 + 6.24532i 0.150239 + 0.260222i
\(577\) 0.365767 + 0.633528i 0.0152271 + 0.0263741i 0.873539 0.486755i \(-0.161820\pi\)
−0.858311 + 0.513129i \(0.828486\pi\)
\(578\) −30.2735 −1.25921
\(579\) −1.19472 2.06931i −0.0496508 0.0859978i
\(580\) 2.36218 0.0980842
\(581\) 3.19151 7.48039i 0.132406 0.310339i
\(582\) −41.5037 71.8865i −1.72038 2.97979i
\(583\) −19.4412 −0.805173
\(584\) 1.97548 + 3.42163i 0.0817459 + 0.141588i
\(585\) 1.21569 1.05582i 0.0502625 0.0436527i
\(586\) 15.9369 27.6035i 0.658347 1.14029i
\(587\) 4.26142 + 7.38099i 0.175888 + 0.304646i 0.940468 0.339882i \(-0.110387\pi\)
−0.764581 + 0.644528i \(0.777054\pi\)
\(588\) 22.6568 5.56040i 0.934351 0.229307i
\(589\) 0.865594 1.49925i 0.0356662 0.0617756i
\(590\) 1.11085 1.92404i 0.0457329 0.0792117i
\(591\) 3.39140 0.139503
\(592\) −14.6001 −0.600059
\(593\) 15.6547 27.1147i 0.642860 1.11347i −0.341932 0.939725i \(-0.611081\pi\)
0.984791 0.173741i \(-0.0555854\pi\)
\(594\) −6.57259 + 11.3841i −0.269677 + 0.467093i
\(595\) −0.263734 0.351332i −0.0108120 0.0144032i
\(596\) −11.1514 19.3147i −0.456777 0.791161i
\(597\) −16.1730 + 28.0125i −0.661917 + 1.14647i
\(598\) 20.8159 18.0785i 0.851225 0.739285i
\(599\) 0.375116 + 0.649720i 0.0153268 + 0.0265468i 0.873587 0.486668i \(-0.161788\pi\)
−0.858260 + 0.513215i \(0.828454\pi\)
\(600\) 11.5728 0.472458
\(601\) 4.77652 + 8.27318i 0.194838 + 0.337470i 0.946848 0.321683i \(-0.104248\pi\)
−0.752009 + 0.659153i \(0.770915\pi\)
\(602\) 15.7245 + 20.9473i 0.640884 + 0.853750i
\(603\) 30.3141 1.23449
\(604\) −4.44624 7.70111i −0.180915 0.313354i
\(605\) −1.28193 −0.0521177
\(606\) 36.0925 + 62.5141i 1.46616 + 2.53946i
\(607\) −11.1197 19.2599i −0.451336 0.781737i 0.547133 0.837045i \(-0.315719\pi\)
−0.998469 + 0.0553087i \(0.982386\pi\)
\(608\) 4.64745 + 8.04961i 0.188479 + 0.326455i
\(609\) −19.6231 + 45.9934i −0.795168 + 1.86374i
\(610\) 4.16815 0.168764
\(611\) 8.00594 + 41.2863i 0.323886 + 1.67027i
\(612\) −1.38278 2.39505i −0.0558957 0.0968143i
\(613\) 4.13993 7.17057i 0.167210 0.289617i −0.770228 0.637769i \(-0.779857\pi\)
0.937438 + 0.348152i \(0.113191\pi\)
\(614\) −52.1578 −2.10492
\(615\) 1.22177 2.11617i 0.0492665 0.0853321i
\(616\) 6.75567 + 8.99952i 0.272194 + 0.362601i
\(617\) −10.1656 + 17.6073i −0.409252 + 0.708845i −0.994806 0.101789i \(-0.967543\pi\)
0.585554 + 0.810633i \(0.300877\pi\)
\(618\) 15.4189 + 26.7063i 0.620238 + 1.07428i
\(619\) −2.67049 4.62542i −0.107336 0.185911i 0.807354 0.590067i \(-0.200899\pi\)
−0.914690 + 0.404156i \(0.867565\pi\)
\(620\) 0.367203 0.0147472
\(621\) 6.96005 0.279297
\(622\) 21.8651 + 37.8714i 0.876709 + 1.51850i
\(623\) −12.4427 + 29.1636i −0.498506 + 1.16842i
\(624\) 7.55018 + 38.9360i 0.302249 + 1.55869i
\(625\) −12.2086 + 21.1459i −0.488345 + 0.845838i
\(626\) 3.11112 5.38862i 0.124345 0.215372i
\(627\) 6.48536 11.2330i 0.259000 0.448601i
\(628\) −3.29536 5.70773i −0.131499 0.227763i
\(629\) 2.56165 0.102140
\(630\) −0.861570 + 2.01938i −0.0343258 + 0.0804541i
\(631\) −3.23331 + 5.60026i −0.128716 + 0.222943i −0.923179 0.384369i \(-0.874419\pi\)
0.794463 + 0.607312i \(0.207752\pi\)
\(632\) −5.45714 + 9.45205i −0.217074 + 0.375982i
\(633\) 60.7222 2.41349
\(634\) 6.76217 11.7124i 0.268560 0.465160i
\(635\) 0.432271 0.0171541
\(636\) 15.4904 0.614236
\(637\) 25.1335 + 2.30365i 0.995826 + 0.0912741i
\(638\) 64.0322 2.53506
\(639\) −13.5095 −0.534428
\(640\) 0.772706 1.33837i 0.0305439 0.0529035i
\(641\) 23.3289 0.921434 0.460717 0.887547i \(-0.347592\pi\)
0.460717 + 0.887547i \(0.347592\pi\)
\(642\) 20.9993 36.3719i 0.828778 1.43549i
\(643\) 1.79439 3.10797i 0.0707637 0.122566i −0.828472 0.560030i \(-0.810790\pi\)
0.899236 + 0.437463i \(0.144123\pi\)
\(644\) −6.20714 + 14.5485i −0.244596 + 0.573293i
\(645\) −2.41222 −0.0949810
\(646\) −1.05658 1.83006i −0.0415707 0.0720026i
\(647\) 19.8262 34.3400i 0.779448 1.35004i −0.152812 0.988255i \(-0.548833\pi\)
0.932260 0.361788i \(-0.117834\pi\)
\(648\) −5.42402 + 9.39467i −0.213076 + 0.369058i
\(649\) 12.6697 21.9446i 0.497331 0.861402i
\(650\) −31.4218 10.8352i −1.23246 0.424993i
\(651\) −3.05042 + 7.14970i −0.119556 + 0.280219i
\(652\) −1.32386 2.29299i −0.0518464 0.0898005i
\(653\) 18.1355 0.709699 0.354849 0.934923i \(-0.384532\pi\)
0.354849 + 0.934923i \(0.384532\pi\)
\(654\) −58.8938 −2.30293
\(655\) 0.224610 + 0.389035i 0.00877623 + 0.0152009i
\(656\) 12.9392 + 22.4114i 0.505192 + 0.875017i
\(657\) −4.39592 + 7.61395i −0.171501 + 0.297048i
\(658\) −34.4256 45.8599i −1.34205 1.78780i
\(659\) −6.74052 + 11.6749i −0.262573 + 0.454791i −0.966925 0.255061i \(-0.917905\pi\)
0.704352 + 0.709851i \(0.251238\pi\)
\(660\) 2.75122 0.107091
\(661\) −5.15611 + 8.93064i −0.200549 + 0.347362i −0.948706 0.316161i \(-0.897606\pi\)
0.748156 + 0.663523i \(0.230939\pi\)
\(662\) 13.3076 + 23.0494i 0.517213 + 0.895839i
\(663\) −1.32471 6.83150i −0.0514476 0.265314i
\(664\) −3.12571 −0.121301
\(665\) −0.276992 + 0.649226i −0.0107413 + 0.0251759i
\(666\) −6.40111 11.0870i −0.248038 0.429614i
\(667\) −16.9517 29.3613i −0.656374 1.13687i
\(668\) 7.77805 + 13.4720i 0.300942 + 0.521247i
\(669\) −1.67019 −0.0645733
\(670\) 2.45655 + 4.25487i 0.0949049 + 0.164380i
\(671\) 47.5397 1.83525
\(672\) −25.0554 33.3774i −0.966535 1.28756i
\(673\) 4.61528 + 7.99390i 0.177906 + 0.308142i 0.941163 0.337953i \(-0.109734\pi\)
−0.763257 + 0.646095i \(0.776401\pi\)
\(674\) 31.9237 1.22965
\(675\) −4.19533 7.26652i −0.161478 0.279689i
\(676\) 2.64527 18.6997i 0.101741 0.719221i
\(677\) 10.5467 18.2674i 0.405343 0.702075i −0.589018 0.808120i \(-0.700485\pi\)
0.994361 + 0.106045i \(0.0338187\pi\)
\(678\) 9.09807 + 15.7583i 0.349409 + 0.605194i
\(679\) 30.9297 + 41.2027i 1.18697 + 1.58122i
\(680\) −0.0844203 + 0.146220i −0.00323737 + 0.00560729i
\(681\) 3.27129 5.66604i 0.125356 0.217123i
\(682\) 9.95385 0.381153
\(683\) −38.2212 −1.46249 −0.731246 0.682113i \(-0.761061\pi\)
−0.731246 + 0.682113i \(0.761061\pi\)
\(684\) −2.22176 + 3.84821i −0.0849512 + 0.147140i
\(685\) 1.32706 2.29854i 0.0507044 0.0878226i
\(686\) −32.1955 + 12.1550i −1.22923 + 0.464081i
\(687\) −3.64013 6.30490i −0.138880 0.240547i
\(688\) 12.7734 22.1241i 0.486980 0.843474i
\(689\) 15.8430 + 5.46317i 0.603570 + 0.208130i
\(690\) −1.73107 2.99830i −0.0659006 0.114143i
\(691\) −26.2322 −0.997920 −0.498960 0.866625i \(-0.666285\pi\)
−0.498960 + 0.866625i \(0.666285\pi\)
\(692\) 9.80084 + 16.9755i 0.372572 + 0.645313i
\(693\) −9.82661 + 23.0320i −0.373282 + 0.874913i
\(694\) −14.3130 −0.543314
\(695\) 0.399204 + 0.691442i 0.0151427 + 0.0262279i
\(696\) 19.2185 0.728476
\(697\) −2.27024 3.93218i −0.0859916 0.148942i
\(698\) −20.7836 35.9982i −0.786670 1.36255i
\(699\) −15.3784 26.6361i −0.581664 1.00747i
\(700\) 18.9306 2.28900i 0.715511 0.0865161i
\(701\) −46.7346 −1.76514 −0.882570 0.470180i \(-0.844189\pi\)
−0.882570 + 0.470180i \(0.844189\pi\)
\(702\) 8.55515 7.43011i 0.322893 0.280431i
\(703\) −2.05794 3.56446i −0.0776167 0.134436i
\(704\) −6.66528 + 11.5446i −0.251207 + 0.435104i
\(705\) 5.28105 0.198896
\(706\) 20.6835 35.8248i 0.778433 1.34828i
\(707\) −26.8972 35.8309i −1.01157 1.34756i
\(708\) −10.0950 + 17.4851i −0.379395 + 0.657131i
\(709\) 23.7232 + 41.0898i 0.890944 + 1.54316i 0.838745 + 0.544524i \(0.183290\pi\)
0.0521988 + 0.998637i \(0.483377\pi\)
\(710\) −1.09476 1.89619i −0.0410858 0.0711626i
\(711\) −24.2869 −0.910830
\(712\) 12.1861 0.456695
\(713\) −2.63516 4.56423i −0.0986876 0.170932i
\(714\) 5.69629 + 7.58827i 0.213178 + 0.283984i
\(715\) 2.81384 + 0.970301i 0.105232 + 0.0362872i
\(716\) −7.60461 + 13.1716i −0.284197 + 0.492244i
\(717\) 17.8408 30.9011i 0.666275 1.15402i
\(718\) 2.56280 4.43890i 0.0956428 0.165658i
\(719\) 24.6190 + 42.6413i 0.918133 + 1.59025i 0.802249 + 0.596990i \(0.203637\pi\)
0.115884 + 0.993263i \(0.463030\pi\)
\(720\) 2.14136 0.0798037
\(721\) −11.4906 15.3071i −0.427931 0.570066i
\(722\) 15.9549 27.6347i 0.593779 1.02846i
\(723\) 8.68963 15.0509i 0.323171 0.559748i
\(724\) 18.1900 0.676024
\(725\) −20.4361 + 35.3963i −0.758977 + 1.31459i
\(726\) 27.6878 1.02759
\(727\) −32.0495 −1.18865 −0.594325 0.804225i \(-0.702581\pi\)
−0.594325 + 0.804225i \(0.702581\pi\)
\(728\) −2.97636 9.23227i −0.110311 0.342171i
\(729\) −12.4996 −0.462947
\(730\) −1.42492 −0.0527387
\(731\) −2.24114 + 3.88178i −0.0828917 + 0.143573i
\(732\) −37.8789 −1.40004
\(733\) −14.1005 + 24.4228i −0.520813 + 0.902075i 0.478894 + 0.877873i \(0.341038\pi\)
−0.999707 + 0.0242025i \(0.992295\pi\)
\(734\) 13.1462 22.7699i 0.485236 0.840453i
\(735\) 0.884805 3.04332i 0.0326365 0.112255i
\(736\) 28.2968 1.04303
\(737\) 28.0181 + 48.5288i 1.03206 + 1.78758i
\(738\) −11.3459 + 19.6516i −0.417648 + 0.723387i
\(739\) 21.2685 36.8381i 0.782375 1.35511i −0.148180 0.988960i \(-0.547342\pi\)
0.930555 0.366153i \(-0.119325\pi\)
\(740\) 0.436510 0.756058i 0.0160464 0.0277932i
\(741\) −8.44160 + 7.33149i −0.310110 + 0.269329i
\(742\) −22.6852 + 2.74299i −0.832801 + 0.100698i
\(743\) −7.95711 13.7821i −0.291918 0.505617i 0.682345 0.731030i \(-0.260960\pi\)
−0.974263 + 0.225413i \(0.927627\pi\)
\(744\) 2.98753 0.109528
\(745\) −3.02989 −0.111007
\(746\) 4.68521 + 8.11502i 0.171538 + 0.297112i
\(747\) −3.47773 6.02360i −0.127243 0.220392i
\(748\) 2.55611 4.42731i 0.0934605 0.161878i
\(749\) −10.2295 + 23.9762i −0.373777 + 0.876072i
\(750\) −4.19014 + 7.25754i −0.153002 + 0.265008i
\(751\) 18.1996 0.664114 0.332057 0.943259i \(-0.392257\pi\)
0.332057 + 0.943259i \(0.392257\pi\)
\(752\) −27.9646 + 48.4362i −1.01977 + 1.76629i
\(753\) −1.46220 2.53260i −0.0532855 0.0922931i
\(754\) −52.1809 17.9937i −1.90032 0.655290i
\(755\) −1.20807 −0.0439662
\(756\) −2.55108 + 5.97932i −0.0927818 + 0.217466i
\(757\) 22.4502 + 38.8849i 0.815967 + 1.41330i 0.908632 + 0.417598i \(0.137128\pi\)
−0.0926649 + 0.995697i \(0.529539\pi\)
\(758\) 5.62989 + 9.75126i 0.204487 + 0.354182i
\(759\) −19.7436 34.1970i −0.716648 1.24127i
\(760\) 0.271282 0.00984042
\(761\) 13.2444 + 22.9399i 0.480108 + 0.831572i 0.999740 0.0228184i \(-0.00726396\pi\)
−0.519631 + 0.854391i \(0.673931\pi\)
\(762\) −9.33644 −0.338223
\(763\) 36.2892 4.38791i 1.31376 0.158853i
\(764\) −9.52554 16.4987i −0.344622 0.596903i
\(765\) −0.375711 −0.0135839
\(766\) 4.21900 + 7.30752i 0.152439 + 0.264031i
\(767\) −16.4914 + 14.3227i −0.595471 + 0.517164i
\(768\) −24.0006 + 41.5703i −0.866049 + 1.50004i
\(769\) −6.98127 12.0919i −0.251751 0.436045i 0.712257 0.701919i \(-0.247673\pi\)
−0.964008 + 0.265873i \(0.914340\pi\)
\(770\) −4.02907 + 0.487176i −0.145198 + 0.0175566i
\(771\) 9.72707 16.8478i 0.350312 0.606758i
\(772\) −0.756579 + 1.31043i −0.0272299 + 0.0471635i
\(773\) 12.8113 0.460790 0.230395 0.973097i \(-0.425998\pi\)
0.230395 + 0.973097i \(0.425998\pi\)
\(774\) 22.4009 0.805184
\(775\) −3.17681 + 5.50239i −0.114114 + 0.197652i
\(776\) 9.90048 17.1481i 0.355406 0.615582i