Properties

Label 91.2.h
Level $91$
Weight $2$
Character orbit 91.h
Rep. character $\chi_{91}(16,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $14$
Newform subspaces $2$
Sturm bound $18$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(91, [\chi])\).

Total New Old
Modular forms 22 22 0
Cusp forms 14 14 0
Eisenstein series 8 8 0

Trace form

\( 14 q - 2 q^{2} + 4 q^{3} + 6 q^{4} - 2 q^{5} - 6 q^{6} + q^{7} - 12 q^{8} - 3 q^{9} + q^{10} + 7 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 7 q^{15} - 18 q^{16} - 14 q^{17} - 3 q^{18} + 2 q^{20} + 6 q^{21}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(91, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
91.2.h.a 91.h 91.h $2$ $0.727$ \(\Q(\sqrt{-3}) \) None 91.2.g.a \(2\) \(3\) \(-3\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+3\zeta_{6}q^{3}-q^{4}-3\zeta_{6}q^{5}+3\zeta_{6}q^{6}+\cdots\)
91.2.h.b 91.h 91.h $12$ $0.727$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 91.2.g.b \(-4\) \(1\) \(1\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{3}+\beta _{5}-\beta _{11})q^{2}+\beta _{11}q^{3}+(1+\cdots)q^{4}+\cdots\)