Properties

Label 91.2.h.b.16.2
Level $91$
Weight $2$
Character 91.16
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 7 x^{10} - 2 x^{9} + 33 x^{8} - 11 x^{7} + 55 x^{6} + 17 x^{5} + 47 x^{4} + x^{3} + 8 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 16.2
Root \(1.16700 + 2.02131i\) of defining polynomial
Character \(\chi\) \(=\) 91.16
Dual form 91.2.h.b.74.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.90556 q^{2} +(-0.214224 + 0.371047i) q^{3} +1.63116 q^{4} +(0.736565 - 1.27577i) q^{5} +(0.408216 - 0.707051i) q^{6} +(1.58334 + 2.11968i) q^{7} +0.702849 q^{8} +(1.40822 + 2.43910i) q^{9} +O(q^{10})\) \(q-1.90556 q^{2} +(-0.214224 + 0.371047i) q^{3} +1.63116 q^{4} +(0.736565 - 1.27577i) q^{5} +(0.408216 - 0.707051i) q^{6} +(1.58334 + 2.11968i) q^{7} +0.702849 q^{8} +(1.40822 + 2.43910i) q^{9} +(-1.40357 + 2.43105i) q^{10} +(2.19681 - 3.80498i) q^{11} +(-0.349433 + 0.605236i) q^{12} +(2.69752 + 2.39236i) q^{13} +(-3.01715 - 4.03917i) q^{14} +(0.315580 + 0.546600i) q^{15} -4.60164 q^{16} -1.20271 q^{17} +(-2.68344 - 4.64786i) q^{18} +(-1.62105 - 2.80773i) q^{19} +(1.20145 - 2.08098i) q^{20} +(-1.12569 + 0.133408i) q^{21} +(-4.18615 + 7.25062i) q^{22} -4.43710 q^{23} +(-0.150567 + 0.260790i) q^{24} +(1.41494 + 2.45075i) q^{25} +(-5.14029 - 4.55878i) q^{26} -2.49204 q^{27} +(2.58268 + 3.45753i) q^{28} +(-0.0837807 - 0.145112i) q^{29} +(-0.601356 - 1.04158i) q^{30} +(-2.62272 - 4.54268i) q^{31} +7.36300 q^{32} +(0.941217 + 1.63024i) q^{33} +2.29184 q^{34} +(3.87045 - 0.458697i) q^{35} +(2.29702 + 3.97856i) q^{36} +7.05055 q^{37} +(3.08900 + 5.35031i) q^{38} +(-1.46555 + 0.488407i) q^{39} +(0.517694 - 0.896672i) q^{40} +(-2.58195 - 4.47206i) q^{41} +(2.14507 - 0.254217i) q^{42} +(-0.0113752 + 0.0197024i) q^{43} +(3.58334 - 6.20653i) q^{44} +4.14897 q^{45} +8.45516 q^{46} +(-5.84178 + 10.1183i) q^{47} +(0.985780 - 1.70742i) q^{48} +(-1.98606 + 6.71235i) q^{49} +(-2.69626 - 4.67006i) q^{50} +(0.257649 - 0.446262i) q^{51} +(4.40009 + 3.90231i) q^{52} +(0.0708929 + 0.122790i) q^{53} +4.74873 q^{54} +(-3.23618 - 5.60523i) q^{55} +(1.11285 + 1.48981i) q^{56} +1.38907 q^{57} +(0.159649 + 0.276520i) q^{58} -5.34354 q^{59} +(0.514760 + 0.891591i) q^{60} +(-5.77287 - 9.99891i) q^{61} +(4.99774 + 8.65635i) q^{62} +(-2.94042 + 6.84690i) q^{63} -4.82736 q^{64} +(5.03899 - 1.67929i) q^{65} +(-1.79355 - 3.10651i) q^{66} +(-2.06773 + 3.58141i) q^{67} -1.96181 q^{68} +(0.950533 - 1.64637i) q^{69} +(-7.37537 + 0.874075i) q^{70} +(4.98486 - 8.63403i) q^{71} +(0.989763 + 1.71432i) q^{72} +(-7.62080 - 13.1996i) q^{73} -13.4352 q^{74} -1.21246 q^{75} +(-2.64418 - 4.57986i) q^{76} +(11.5436 - 1.36807i) q^{77} +(2.79269 - 0.930689i) q^{78} +(-0.387251 + 0.670738i) q^{79} +(-3.38941 + 5.87062i) q^{80} +(-3.69080 + 6.39265i) q^{81} +(4.92006 + 8.52179i) q^{82} -16.0186 q^{83} +(-1.83618 + 0.217610i) q^{84} +(-0.885875 + 1.53438i) q^{85} +(0.0216761 - 0.0375441i) q^{86} +0.0717913 q^{87} +(1.54402 - 2.67433i) q^{88} +6.55760 q^{89} -7.90611 q^{90} +(-0.799921 + 9.50579i) q^{91} -7.23762 q^{92} +2.24739 q^{93} +(11.1319 - 19.2809i) q^{94} -4.77602 q^{95} +(-1.57733 + 2.73202i) q^{96} +(-1.74583 + 3.02387i) q^{97} +(3.78455 - 12.7908i) q^{98} +12.3743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 4q^{2} + q^{3} + 8q^{4} + q^{5} - 9q^{6} - 3q^{7} - 6q^{8} + 3q^{9} + O(q^{10}) \) \( 12q - 4q^{2} + q^{3} + 8q^{4} + q^{5} - 9q^{6} - 3q^{7} - 6q^{8} + 3q^{9} + 4q^{10} + 4q^{11} + 5q^{12} - 2q^{13} - 2q^{14} - 2q^{15} - 16q^{16} - 10q^{17} + 3q^{18} - q^{19} - q^{20} - 9q^{21} - 5q^{22} + 2q^{23} - 11q^{24} + 7q^{25} - 16q^{26} - 8q^{27} - q^{28} + 3q^{29} - 5q^{30} + 16q^{31} - 16q^{32} + 16q^{33} + 32q^{34} + 20q^{35} - 21q^{36} + 26q^{37} - 17q^{38} - 20q^{39} - 5q^{40} - 8q^{41} + 50q^{42} - 11q^{43} + 21q^{44} + 14q^{45} - 32q^{46} - q^{47} + 21q^{48} - 3q^{49} + 6q^{50} - 20q^{51} + 41q^{52} - 2q^{53} + 36q^{54} + 9q^{55} + 9q^{56} + 42q^{57} - 8q^{58} - 26q^{59} + 20q^{60} - 5q^{61} + 5q^{62} - 40q^{63} - 30q^{64} - 5q^{65} + 18q^{66} - 11q^{67} - 58q^{68} + 23q^{69} - 39q^{70} + 6q^{71} + 25q^{72} - 30q^{73} + 6q^{74} + 6q^{75} - 9q^{76} + 11q^{77} + 16q^{78} + 7q^{79} - 7q^{80} - 6q^{81} + q^{82} - 54q^{83} - 46q^{84} - q^{85} - 7q^{86} - 32q^{87} - 8q^{89} - 16q^{90} - 23q^{91} + 54q^{92} + 14q^{93} + 45q^{94} + 12q^{95} + 19q^{96} - 35q^{97} + 20q^{98} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.90556 −1.34743 −0.673717 0.738989i \(-0.735303\pi\)
−0.673717 + 0.738989i \(0.735303\pi\)
\(3\) −0.214224 + 0.371047i −0.123682 + 0.214224i −0.921217 0.389049i \(-0.872804\pi\)
0.797535 + 0.603273i \(0.206137\pi\)
\(4\) 1.63116 0.815580
\(5\) 0.736565 1.27577i 0.329402 0.570541i −0.652991 0.757365i \(-0.726486\pi\)
0.982393 + 0.186825i \(0.0598196\pi\)
\(6\) 0.408216 0.707051i 0.166654 0.288653i
\(7\) 1.58334 + 2.11968i 0.598447 + 0.801162i
\(8\) 0.702849 0.248495
\(9\) 1.40822 + 2.43910i 0.469405 + 0.813034i
\(10\) −1.40357 + 2.43105i −0.443847 + 0.768766i
\(11\) 2.19681 3.80498i 0.662362 1.14725i −0.317631 0.948214i \(-0.602887\pi\)
0.979993 0.199031i \(-0.0637794\pi\)
\(12\) −0.349433 + 0.605236i −0.100873 + 0.174717i
\(13\) 2.69752 + 2.39236i 0.748158 + 0.663520i
\(14\) −3.01715 4.03917i −0.806368 1.07951i
\(15\) 0.315580 + 0.546600i 0.0814823 + 0.141131i
\(16\) −4.60164 −1.15041
\(17\) −1.20271 −0.291700 −0.145850 0.989307i \(-0.546592\pi\)
−0.145850 + 0.989307i \(0.546592\pi\)
\(18\) −2.68344 4.64786i −0.632493 1.09551i
\(19\) −1.62105 2.80773i −0.371893 0.644138i 0.617963 0.786207i \(-0.287958\pi\)
−0.989857 + 0.142068i \(0.954625\pi\)
\(20\) 1.20145 2.08098i 0.268653 0.465321i
\(21\) −1.12569 + 0.133408i −0.245645 + 0.0291121i
\(22\) −4.18615 + 7.25062i −0.892490 + 1.54584i
\(23\) −4.43710 −0.925200 −0.462600 0.886567i \(-0.653083\pi\)
−0.462600 + 0.886567i \(0.653083\pi\)
\(24\) −0.150567 + 0.260790i −0.0307343 + 0.0532334i
\(25\) 1.41494 + 2.45075i 0.282989 + 0.490151i
\(26\) −5.14029 4.55878i −1.00809 0.894050i
\(27\) −2.49204 −0.479593
\(28\) 2.58268 + 3.45753i 0.488081 + 0.653412i
\(29\) −0.0837807 0.145112i −0.0155577 0.0269467i 0.858142 0.513413i \(-0.171619\pi\)
−0.873699 + 0.486466i \(0.838286\pi\)
\(30\) −0.601356 1.04158i −0.109792 0.190165i
\(31\) −2.62272 4.54268i −0.471054 0.815889i 0.528398 0.848997i \(-0.322793\pi\)
−0.999452 + 0.0331076i \(0.989460\pi\)
\(32\) 7.36300 1.30161
\(33\) 0.941217 + 1.63024i 0.163845 + 0.283788i
\(34\) 2.29184 0.393047
\(35\) 3.87045 0.458697i 0.654225 0.0775340i
\(36\) 2.29702 + 3.97856i 0.382837 + 0.663094i
\(37\) 7.05055 1.15910 0.579552 0.814936i \(-0.303228\pi\)
0.579552 + 0.814936i \(0.303228\pi\)
\(38\) 3.08900 + 5.35031i 0.501102 + 0.867934i
\(39\) −1.46555 + 0.488407i −0.234676 + 0.0782077i
\(40\) 0.517694 0.896672i 0.0818546 0.141776i
\(41\) −2.58195 4.47206i −0.403233 0.698419i 0.590881 0.806758i \(-0.298780\pi\)
−0.994114 + 0.108339i \(0.965447\pi\)
\(42\) 2.14507 0.254217i 0.330991 0.0392266i
\(43\) −0.0113752 + 0.0197024i −0.00173470 + 0.00300459i −0.866891 0.498497i \(-0.833886\pi\)
0.865157 + 0.501502i \(0.167219\pi\)
\(44\) 3.58334 6.20653i 0.540209 0.935670i
\(45\) 4.14897 0.618492
\(46\) 8.45516 1.24665
\(47\) −5.84178 + 10.1183i −0.852111 + 1.47590i 0.0271891 + 0.999630i \(0.491344\pi\)
−0.879300 + 0.476269i \(0.841989\pi\)
\(48\) 0.985780 1.70742i 0.142285 0.246445i
\(49\) −1.98606 + 6.71235i −0.283722 + 0.958906i
\(50\) −2.69626 4.67006i −0.381309 0.660446i
\(51\) 0.257649 0.446262i 0.0360781 0.0624892i
\(52\) 4.40009 + 3.90231i 0.610183 + 0.541154i
\(53\) 0.0708929 + 0.122790i 0.00973788 + 0.0168665i 0.870853 0.491543i \(-0.163567\pi\)
−0.861115 + 0.508410i \(0.830234\pi\)
\(54\) 4.74873 0.646220
\(55\) −3.23618 5.60523i −0.436367 0.755809i
\(56\) 1.11285 + 1.48981i 0.148711 + 0.199084i
\(57\) 1.38907 0.183986
\(58\) 0.159649 + 0.276520i 0.0209630 + 0.0363089i
\(59\) −5.34354 −0.695670 −0.347835 0.937556i \(-0.613083\pi\)
−0.347835 + 0.937556i \(0.613083\pi\)
\(60\) 0.514760 + 0.891591i 0.0664553 + 0.115104i
\(61\) −5.77287 9.99891i −0.739141 1.28023i −0.952883 0.303339i \(-0.901898\pi\)
0.213742 0.976890i \(-0.431435\pi\)
\(62\) 4.99774 + 8.65635i 0.634714 + 1.09936i
\(63\) −2.94042 + 6.84690i −0.370458 + 0.862628i
\(64\) −4.82736 −0.603420
\(65\) 5.03899 1.67929i 0.625010 0.208290i
\(66\) −1.79355 3.10651i −0.220770 0.382385i
\(67\) −2.06773 + 3.58141i −0.252613 + 0.437539i −0.964245 0.265014i \(-0.914623\pi\)
0.711631 + 0.702553i \(0.247957\pi\)
\(68\) −1.96181 −0.237905
\(69\) 0.950533 1.64637i 0.114431 0.198200i
\(70\) −7.37537 + 0.874075i −0.881526 + 0.104472i
\(71\) 4.98486 8.63403i 0.591594 1.02467i −0.402424 0.915453i \(-0.631832\pi\)
0.994018 0.109217i \(-0.0348344\pi\)
\(72\) 0.989763 + 1.71432i 0.116645 + 0.202035i
\(73\) −7.62080 13.1996i −0.891947 1.54490i −0.837539 0.546378i \(-0.816006\pi\)
−0.0544080 0.998519i \(-0.517327\pi\)
\(74\) −13.4352 −1.56182
\(75\) −1.21246 −0.140003
\(76\) −2.64418 4.57986i −0.303309 0.525346i
\(77\) 11.5436 1.36807i 1.31552 0.155906i
\(78\) 2.79269 0.930689i 0.316210 0.105380i
\(79\) −0.387251 + 0.670738i −0.0435691 + 0.0754639i −0.886988 0.461793i \(-0.847206\pi\)
0.843418 + 0.537257i \(0.180540\pi\)
\(80\) −3.38941 + 5.87062i −0.378947 + 0.656356i
\(81\) −3.69080 + 6.39265i −0.410088 + 0.710294i
\(82\) 4.92006 + 8.52179i 0.543329 + 0.941074i
\(83\) −16.0186 −1.75827 −0.879136 0.476571i \(-0.841879\pi\)
−0.879136 + 0.476571i \(0.841879\pi\)
\(84\) −1.83618 + 0.217610i −0.200343 + 0.0237432i
\(85\) −0.885875 + 1.53438i −0.0960866 + 0.166427i
\(86\) 0.0216761 0.0375441i 0.00233740 0.00404849i
\(87\) 0.0717913 0.00769683
\(88\) 1.54402 2.67433i 0.164593 0.285084i
\(89\) 6.55760 0.695104 0.347552 0.937661i \(-0.387013\pi\)
0.347552 + 0.937661i \(0.387013\pi\)
\(90\) −7.90611 −0.833378
\(91\) −0.799921 + 9.50579i −0.0838545 + 0.996478i
\(92\) −7.23762 −0.754574
\(93\) 2.24739 0.233044
\(94\) 11.1319 19.2809i 1.14816 1.98868i
\(95\) −4.77602 −0.490010
\(96\) −1.57733 + 2.73202i −0.160986 + 0.278835i
\(97\) −1.74583 + 3.02387i −0.177262 + 0.307027i −0.940942 0.338568i \(-0.890057\pi\)
0.763680 + 0.645595i \(0.223391\pi\)
\(98\) 3.78455 12.7908i 0.382297 1.29206i
\(99\) 12.3743 1.24367
\(100\) 2.30800 + 3.99757i 0.230800 + 0.399757i
\(101\) −1.28890 + 2.23244i −0.128250 + 0.222136i −0.922999 0.384803i \(-0.874269\pi\)
0.794749 + 0.606939i \(0.207603\pi\)
\(102\) −0.490966 + 0.850379i −0.0486129 + 0.0842000i
\(103\) 8.43173 14.6042i 0.830803 1.43899i −0.0665997 0.997780i \(-0.521215\pi\)
0.897402 0.441213i \(-0.145452\pi\)
\(104\) 1.89595 + 1.68146i 0.185913 + 0.164881i
\(105\) −0.658944 + 1.53438i −0.0643064 + 0.149740i
\(106\) −0.135091 0.233984i −0.0131212 0.0227265i
\(107\) 8.68265 0.839383 0.419692 0.907667i \(-0.362138\pi\)
0.419692 + 0.907667i \(0.362138\pi\)
\(108\) −4.06491 −0.391146
\(109\) 6.02026 + 10.4274i 0.576637 + 0.998764i 0.995862 + 0.0908816i \(0.0289685\pi\)
−0.419225 + 0.907882i \(0.637698\pi\)
\(110\) 6.16674 + 10.6811i 0.587976 + 1.01840i
\(111\) −1.51040 + 2.61608i −0.143360 + 0.248307i
\(112\) −7.28597 9.75398i −0.688459 0.921665i
\(113\) −4.68616 + 8.11667i −0.440837 + 0.763552i −0.997752 0.0670176i \(-0.978652\pi\)
0.556915 + 0.830570i \(0.311985\pi\)
\(114\) −2.64695 −0.247910
\(115\) −3.26821 + 5.66071i −0.304763 + 0.527864i
\(116\) −0.136660 0.236701i −0.0126885 0.0219772i
\(117\) −2.03651 + 9.94849i −0.188275 + 0.919738i
\(118\) 10.1824 0.937369
\(119\) −1.90430 2.54936i −0.174567 0.233699i
\(120\) 0.221805 + 0.384177i 0.0202479 + 0.0350704i
\(121\) −4.15192 7.19134i −0.377448 0.653758i
\(122\) 11.0006 + 19.0535i 0.995944 + 1.72503i
\(123\) 2.21246 0.199491
\(124\) −4.27807 7.40983i −0.384182 0.665423i
\(125\) 11.5344 1.03167
\(126\) 5.60315 13.0472i 0.499168 1.16233i
\(127\) −7.94269 13.7571i −0.704800 1.22075i −0.966764 0.255672i \(-0.917703\pi\)
0.261964 0.965078i \(-0.415630\pi\)
\(128\) −5.52717 −0.488537
\(129\) −0.00487367 0.00844145i −0.000429103 0.000743228i
\(130\) −9.60210 + 3.19998i −0.842160 + 0.280657i
\(131\) −0.928725 + 1.60860i −0.0811430 + 0.140544i −0.903741 0.428079i \(-0.859190\pi\)
0.822598 + 0.568623i \(0.192524\pi\)
\(132\) 1.53527 + 2.65917i 0.133628 + 0.231451i
\(133\) 3.38482 7.88170i 0.293501 0.683430i
\(134\) 3.94018 6.82459i 0.340380 0.589555i
\(135\) −1.83555 + 3.17926i −0.157979 + 0.273627i
\(136\) −0.845324 −0.0724859
\(137\) −12.8002 −1.09360 −0.546798 0.837264i \(-0.684153\pi\)
−0.546798 + 0.837264i \(0.684153\pi\)
\(138\) −1.81130 + 3.13726i −0.154188 + 0.267061i
\(139\) 0.169365 0.293348i 0.0143653 0.0248815i −0.858753 0.512389i \(-0.828761\pi\)
0.873119 + 0.487508i \(0.162094\pi\)
\(140\) 6.31332 0.748208i 0.533573 0.0632351i
\(141\) −2.50290 4.33514i −0.210782 0.365085i
\(142\) −9.49894 + 16.4527i −0.797134 + 1.38068i
\(143\) 15.0288 5.00848i 1.25677 0.418830i
\(144\) −6.48010 11.2239i −0.540009 0.935322i
\(145\) −0.246840 −0.0204989
\(146\) 14.5219 + 25.1526i 1.20184 + 2.08165i
\(147\) −2.06513 2.17486i −0.170329 0.179380i
\(148\) 11.5006 0.945341
\(149\) −1.96158 3.39756i −0.160699 0.278339i 0.774421 0.632671i \(-0.218041\pi\)
−0.935120 + 0.354332i \(0.884708\pi\)
\(150\) 2.31041 0.188644
\(151\) 1.05939 + 1.83492i 0.0862122 + 0.149324i 0.905907 0.423476i \(-0.139190\pi\)
−0.819695 + 0.572800i \(0.805857\pi\)
\(152\) −1.13935 1.97341i −0.0924135 0.160065i
\(153\) −1.69368 2.93354i −0.136926 0.237162i
\(154\) −21.9971 + 2.60693i −1.77257 + 0.210073i
\(155\) −7.72721 −0.620664
\(156\) −2.39054 + 0.796669i −0.191397 + 0.0637846i
\(157\) 11.0564 + 19.1502i 0.882397 + 1.52836i 0.848668 + 0.528925i \(0.177405\pi\)
0.0337285 + 0.999431i \(0.489262\pi\)
\(158\) 0.737929 1.27813i 0.0587065 0.101683i
\(159\) −0.0607478 −0.00481761
\(160\) 5.42333 9.39348i 0.428752 0.742620i
\(161\) −7.02545 9.40522i −0.553683 0.741235i
\(162\) 7.03303 12.1816i 0.552567 0.957074i
\(163\) −1.92607 3.33605i −0.150861 0.261299i 0.780683 0.624927i \(-0.214871\pi\)
−0.931544 + 0.363628i \(0.881538\pi\)
\(164\) −4.21157 7.29465i −0.328868 0.569616i
\(165\) 2.77307 0.215883
\(166\) 30.5244 2.36916
\(167\) −1.06947 1.85238i −0.0827582 0.143341i 0.821676 0.569956i \(-0.193040\pi\)
−0.904434 + 0.426614i \(0.859706\pi\)
\(168\) −0.791188 + 0.0937658i −0.0610415 + 0.00723419i
\(169\) 1.55326 + 12.9069i 0.119482 + 0.992836i
\(170\) 1.68809 2.92385i 0.129470 0.224249i
\(171\) 4.56557 7.90779i 0.349138 0.604724i
\(172\) −0.0185547 + 0.0321378i −0.00141479 + 0.00245048i
\(173\) 8.30664 + 14.3875i 0.631542 + 1.09386i 0.987237 + 0.159260i \(0.0509110\pi\)
−0.355695 + 0.934602i \(0.615756\pi\)
\(174\) −0.136803 −0.0103710
\(175\) −2.95447 + 6.87961i −0.223337 + 0.520049i
\(176\) −10.1089 + 17.5091i −0.761988 + 1.31980i
\(177\) 1.14471 1.98270i 0.0860419 0.149029i
\(178\) −12.4959 −0.936607
\(179\) 0.269748 0.467217i 0.0201619 0.0349214i −0.855768 0.517359i \(-0.826915\pi\)
0.875930 + 0.482438i \(0.160248\pi\)
\(180\) 6.76763 0.504430
\(181\) 2.77164 0.206014 0.103007 0.994681i \(-0.467154\pi\)
0.103007 + 0.994681i \(0.467154\pi\)
\(182\) 1.52430 18.1139i 0.112988 1.34269i
\(183\) 4.94675 0.365674
\(184\) −3.11861 −0.229907
\(185\) 5.19319 8.99486i 0.381811 0.661316i
\(186\) −4.28254 −0.314011
\(187\) −2.64213 + 4.57629i −0.193211 + 0.334652i
\(188\) −9.52887 + 16.5045i −0.694964 + 1.20371i
\(189\) −3.94575 5.28231i −0.287011 0.384232i
\(190\) 9.10100 0.660256
\(191\) 10.1204 + 17.5290i 0.732284 + 1.26835i 0.955905 + 0.293677i \(0.0948790\pi\)
−0.223621 + 0.974676i \(0.571788\pi\)
\(192\) 1.03414 1.79118i 0.0746323 0.129267i
\(193\) 8.18856 14.1830i 0.589425 1.02091i −0.404882 0.914369i \(-0.632688\pi\)
0.994308 0.106546i \(-0.0339791\pi\)
\(194\) 3.32678 5.76216i 0.238849 0.413699i
\(195\) −0.456378 + 2.22944i −0.0326819 + 0.159654i
\(196\) −3.23958 + 10.9489i −0.231398 + 0.782064i
\(197\) −9.86676 17.0897i −0.702977 1.21759i −0.967417 0.253190i \(-0.918520\pi\)
0.264439 0.964402i \(-0.414813\pi\)
\(198\) −23.5800 −1.67576
\(199\) −14.1175 −1.00076 −0.500380 0.865806i \(-0.666806\pi\)
−0.500380 + 0.865806i \(0.666806\pi\)
\(200\) 0.994491 + 1.72251i 0.0703212 + 0.121800i
\(201\) −0.885913 1.53445i −0.0624875 0.108232i
\(202\) 2.45607 4.25404i 0.172809 0.299313i
\(203\) 0.174938 0.407351i 0.0122782 0.0285904i
\(204\) 0.420267 0.727924i 0.0294246 0.0509649i
\(205\) −7.60709 −0.531302
\(206\) −16.0672 + 27.8291i −1.11945 + 1.93895i
\(207\) −6.24840 10.8225i −0.434294 0.752219i
\(208\) −12.4130 11.0088i −0.860688 0.763320i
\(209\) −14.2445 −0.985313
\(210\) 1.25566 2.92385i 0.0866486 0.201765i
\(211\) 2.31317 + 4.00652i 0.159245 + 0.275820i 0.934597 0.355709i \(-0.115761\pi\)
−0.775352 + 0.631530i \(0.782427\pi\)
\(212\) 0.115638 + 0.200290i 0.00794202 + 0.0137560i
\(213\) 2.13575 + 3.69923i 0.146339 + 0.253467i
\(214\) −16.5453 −1.13101
\(215\) 0.0167571 + 0.0290242i 0.00114283 + 0.00197943i
\(216\) −1.75152 −0.119176
\(217\) 5.47635 12.7519i 0.371759 0.865657i
\(218\) −11.4720 19.8700i −0.776980 1.34577i
\(219\) 6.53022 0.441272
\(220\) −5.27873 9.14303i −0.355892 0.616423i
\(221\) −3.24434 2.87731i −0.218238 0.193549i
\(222\) 2.87815 4.98510i 0.193169 0.334578i
\(223\) 10.6761 + 18.4916i 0.714926 + 1.23829i 0.962988 + 0.269545i \(0.0868732\pi\)
−0.248061 + 0.968744i \(0.579793\pi\)
\(224\) 11.6581 + 15.6072i 0.778943 + 1.04280i
\(225\) −3.98509 + 6.90239i −0.265673 + 0.460159i
\(226\) 8.92976 15.4668i 0.593999 1.02884i
\(227\) −10.4490 −0.693526 −0.346763 0.937953i \(-0.612719\pi\)
−0.346763 + 0.937953i \(0.612719\pi\)
\(228\) 2.26579 0.150056
\(229\) −7.22901 + 12.5210i −0.477706 + 0.827412i −0.999673 0.0255538i \(-0.991865\pi\)
0.521967 + 0.852966i \(0.325198\pi\)
\(230\) 6.22778 10.7868i 0.410648 0.711262i
\(231\) −1.96530 + 4.57629i −0.129307 + 0.301098i
\(232\) −0.0588852 0.101992i −0.00386600 0.00669611i
\(233\) 4.64413 8.04388i 0.304247 0.526972i −0.672846 0.739783i \(-0.734928\pi\)
0.977093 + 0.212811i \(0.0682617\pi\)
\(234\) 3.88068 18.9574i 0.253688 1.23929i
\(235\) 8.60570 + 14.9055i 0.561374 + 0.972328i
\(236\) −8.71616 −0.567374
\(237\) −0.165917 0.287376i −0.0107774 0.0186671i
\(238\) 3.62876 + 4.85796i 0.235218 + 0.314895i
\(239\) 19.6332 1.26997 0.634983 0.772526i \(-0.281007\pi\)
0.634983 + 0.772526i \(0.281007\pi\)
\(240\) −1.45218 2.51525i −0.0937380 0.162359i
\(241\) 7.31105 0.470946 0.235473 0.971881i \(-0.424336\pi\)
0.235473 + 0.971881i \(0.424336\pi\)
\(242\) 7.91174 + 13.7035i 0.508586 + 0.880897i
\(243\) −5.31937 9.21341i −0.341238 0.591041i
\(244\) −9.41648 16.3098i −0.602828 1.04413i
\(245\) 7.10053 + 7.47783i 0.453637 + 0.477741i
\(246\) −4.21597 −0.268801
\(247\) 2.34429 11.4520i 0.149164 0.728676i
\(248\) −1.84337 3.19282i −0.117054 0.202744i
\(249\) 3.43157 5.94365i 0.217467 0.376664i
\(250\) −21.9796 −1.39011
\(251\) 5.93191 10.2744i 0.374419 0.648512i −0.615821 0.787886i \(-0.711176\pi\)
0.990240 + 0.139374i \(0.0445089\pi\)
\(252\) −4.79629 + 11.1684i −0.302138 + 0.703542i
\(253\) −9.74746 + 16.8831i −0.612817 + 1.06143i
\(254\) 15.1353 + 26.2151i 0.949672 + 1.64488i
\(255\) −0.379551 0.657402i −0.0237684 0.0411681i
\(256\) 20.1871 1.26169
\(257\) −15.1722 −0.946413 −0.473206 0.880952i \(-0.656904\pi\)
−0.473206 + 0.880952i \(0.656904\pi\)
\(258\) 0.00928708 + 0.0160857i 0.000578188 + 0.00100145i
\(259\) 11.1634 + 14.9449i 0.693662 + 0.928630i
\(260\) 8.21940 2.73919i 0.509745 0.169877i
\(261\) 0.235963 0.408699i 0.0146057 0.0252979i
\(262\) 1.76974 3.06528i 0.109335 0.189374i
\(263\) −8.59820 + 14.8925i −0.530187 + 0.918312i 0.469192 + 0.883096i \(0.344545\pi\)
−0.999380 + 0.0352156i \(0.988788\pi\)
\(264\) 0.661533 + 1.14581i 0.0407145 + 0.0705196i
\(265\) 0.208869 0.0128307
\(266\) −6.44997 + 15.0190i −0.395473 + 0.920877i
\(267\) −1.40479 + 2.43317i −0.0859719 + 0.148908i
\(268\) −3.37279 + 5.84185i −0.206026 + 0.356848i
\(269\) 18.9220 1.15370 0.576849 0.816851i \(-0.304282\pi\)
0.576849 + 0.816851i \(0.304282\pi\)
\(270\) 3.49774 6.05827i 0.212866 0.368695i
\(271\) 32.1334 1.95196 0.975982 0.217853i \(-0.0699054\pi\)
0.975982 + 0.217853i \(0.0699054\pi\)
\(272\) 5.53444 0.335575
\(273\) −3.35573 2.33318i −0.203098 0.141210i
\(274\) 24.3916 1.47355
\(275\) 12.4334 0.749764
\(276\) 1.55047 2.68549i 0.0933273 0.161648i
\(277\) 18.4054 1.10587 0.552936 0.833224i \(-0.313507\pi\)
0.552936 + 0.833224i \(0.313507\pi\)
\(278\) −0.322734 + 0.558992i −0.0193563 + 0.0335261i
\(279\) 7.38671 12.7942i 0.442231 0.765966i
\(280\) 2.72034 0.322395i 0.162571 0.0192668i
\(281\) −14.2252 −0.848603 −0.424302 0.905521i \(-0.639480\pi\)
−0.424302 + 0.905521i \(0.639480\pi\)
\(282\) 4.76942 + 8.26087i 0.284015 + 0.491928i
\(283\) 5.71446 9.89773i 0.339689 0.588359i −0.644685 0.764448i \(-0.723011\pi\)
0.984374 + 0.176089i \(0.0563448\pi\)
\(284\) 8.13109 14.0835i 0.482492 0.835700i
\(285\) 1.02314 1.77213i 0.0606055 0.104972i
\(286\) −28.6383 + 9.54396i −1.69342 + 0.564346i
\(287\) 5.39123 12.5537i 0.318234 0.741022i
\(288\) 10.3687 + 17.9591i 0.610981 + 1.05825i
\(289\) −15.5535 −0.914911
\(290\) 0.470368 0.0276210
\(291\) −0.747997 1.29557i −0.0438483 0.0759476i
\(292\) −12.4307 21.5307i −0.727453 1.25999i
\(293\) 6.60231 11.4355i 0.385711 0.668071i −0.606156 0.795345i \(-0.707289\pi\)
0.991868 + 0.127274i \(0.0406228\pi\)
\(294\) 3.93523 + 4.14433i 0.229507 + 0.241702i
\(295\) −3.93586 + 6.81712i −0.229155 + 0.396908i
\(296\) 4.95547 0.288031
\(297\) −5.47452 + 9.48215i −0.317664 + 0.550210i
\(298\) 3.73791 + 6.47425i 0.216531 + 0.375043i
\(299\) −11.9692 10.6151i −0.692196 0.613889i
\(300\) −1.97771 −0.114183
\(301\) −0.0597736 + 0.00708392i −0.00344529 + 0.000408310i
\(302\) −2.01874 3.49656i −0.116165 0.201204i
\(303\) −0.552225 0.956482i −0.0317245 0.0549484i
\(304\) 7.45947 + 12.9202i 0.427830 + 0.741023i
\(305\) −17.0084 −0.973898
\(306\) 3.22740 + 5.59003i 0.184498 + 0.319561i
\(307\) −6.65903 −0.380051 −0.190026 0.981779i \(-0.560857\pi\)
−0.190026 + 0.981779i \(0.560857\pi\)
\(308\) 18.8295 2.23153i 1.07291 0.127153i
\(309\) 3.61255 + 6.25713i 0.205511 + 0.355955i
\(310\) 14.7247 0.836304
\(311\) 1.02298 + 1.77186i 0.0580081 + 0.100473i 0.893571 0.448922i \(-0.148192\pi\)
−0.835563 + 0.549395i \(0.814858\pi\)
\(312\) −1.03006 + 0.343276i −0.0583156 + 0.0194342i
\(313\) −4.70883 + 8.15594i −0.266159 + 0.461001i −0.967867 0.251464i \(-0.919088\pi\)
0.701708 + 0.712465i \(0.252421\pi\)
\(314\) −21.0686 36.4919i −1.18897 2.05936i
\(315\) 6.56924 + 8.79448i 0.370135 + 0.495513i
\(316\) −0.631667 + 1.09408i −0.0355341 + 0.0615468i
\(317\) 16.6856 28.9004i 0.937159 1.62321i 0.166421 0.986055i \(-0.446779\pi\)
0.770738 0.637153i \(-0.219888\pi\)
\(318\) 0.115758 0.00649141
\(319\) −0.736200 −0.0412193
\(320\) −3.55567 + 6.15860i −0.198768 + 0.344276i
\(321\) −1.86003 + 3.22167i −0.103817 + 0.179816i
\(322\) 13.3874 + 17.9222i 0.746051 + 0.998766i
\(323\) 1.94965 + 3.37689i 0.108481 + 0.187895i
\(324\) −6.02027 + 10.4274i −0.334460 + 0.579301i
\(325\) −2.04624 + 9.99602i −0.113505 + 0.554479i
\(326\) 3.67024 + 6.35704i 0.203276 + 0.352084i
\(327\) −5.15873 −0.285279
\(328\) −1.81472 3.14318i −0.100201 0.173553i
\(329\) −30.6970 + 3.63798i −1.69238 + 0.200568i
\(330\) −5.28425 −0.290888
\(331\) −9.53298 16.5116i −0.523980 0.907560i −0.999610 0.0279144i \(-0.991113\pi\)
0.475631 0.879645i \(-0.342220\pi\)
\(332\) −26.1289 −1.43401
\(333\) 9.92870 + 17.1970i 0.544089 + 0.942390i
\(334\) 2.03794 + 3.52982i 0.111511 + 0.193143i
\(335\) 3.04603 + 5.27588i 0.166423 + 0.288252i
\(336\) 5.18001 0.613897i 0.282593 0.0334908i
\(337\) −31.2849 −1.70420 −0.852098 0.523382i \(-0.824670\pi\)
−0.852098 + 0.523382i \(0.824670\pi\)
\(338\) −2.95983 24.5948i −0.160994 1.33778i
\(339\) −2.00777 3.47757i −0.109047 0.188876i
\(340\) −1.44500 + 2.50282i −0.0783663 + 0.135734i
\(341\) −23.0464 −1.24803
\(342\) −8.69996 + 15.0688i −0.470440 + 0.814826i
\(343\) −17.3726 + 6.41814i −0.938033 + 0.346547i
\(344\) −0.00799504 + 0.0138478i −0.000431064 + 0.000746624i
\(345\) −1.40026 2.42532i −0.0753874 0.130575i
\(346\) −15.8288 27.4163i −0.850961 1.47391i
\(347\) 11.6752 0.626757 0.313378 0.949628i \(-0.398539\pi\)
0.313378 + 0.949628i \(0.398539\pi\)
\(348\) 0.117103 0.00627738
\(349\) −11.9952 20.7763i −0.642089 1.11213i −0.984966 0.172750i \(-0.944735\pi\)
0.342877 0.939380i \(-0.388599\pi\)
\(350\) 5.62992 13.1095i 0.300932 0.700732i
\(351\) −6.72233 5.96184i −0.358811 0.318219i
\(352\) 16.1751 28.0161i 0.862135 1.49326i
\(353\) −6.39668 + 11.0794i −0.340461 + 0.589696i −0.984518 0.175282i \(-0.943916\pi\)
0.644057 + 0.764977i \(0.277250\pi\)
\(354\) −2.18132 + 3.77816i −0.115936 + 0.200807i
\(355\) −7.34334 12.7190i −0.389744 0.675057i
\(356\) 10.6965 0.566912
\(357\) 1.35388 0.160452i 0.0716548 0.00849200i
\(358\) −0.514021 + 0.890310i −0.0271668 + 0.0470544i
\(359\) −6.16986 + 10.6865i −0.325633 + 0.564012i −0.981640 0.190742i \(-0.938911\pi\)
0.656008 + 0.754754i \(0.272244\pi\)
\(360\) 2.91610 0.153692
\(361\) 4.24442 7.35155i 0.223390 0.386924i
\(362\) −5.28152 −0.277591
\(363\) 3.55776 0.186734
\(364\) −1.30480 + 15.5055i −0.0683900 + 0.812707i
\(365\) −22.4528 −1.17524
\(366\) −9.42633 −0.492722
\(367\) −1.01538 + 1.75870i −0.0530026 + 0.0918032i −0.891309 0.453396i \(-0.850212\pi\)
0.838307 + 0.545199i \(0.183546\pi\)
\(368\) 20.4179 1.06436
\(369\) 7.27188 12.5953i 0.378559 0.655684i
\(370\) −9.89593 + 17.1403i −0.514465 + 0.891079i
\(371\) −0.148028 + 0.344689i −0.00768521 + 0.0178953i
\(372\) 3.66586 0.190066
\(373\) 1.93700 + 3.35498i 0.100294 + 0.173714i 0.911806 0.410622i \(-0.134688\pi\)
−0.811512 + 0.584336i \(0.801355\pi\)
\(374\) 5.03473 8.72040i 0.260340 0.450921i
\(375\) −2.47095 + 4.27981i −0.127599 + 0.221009i
\(376\) −4.10588 + 7.11160i −0.211745 + 0.366753i
\(377\) 0.121160 0.591877i 0.00624007 0.0304832i
\(378\) 7.51886 + 10.0658i 0.386728 + 0.517727i
\(379\) 7.28396 + 12.6162i 0.374152 + 0.648050i 0.990200 0.139659i \(-0.0446006\pi\)
−0.616048 + 0.787709i \(0.711267\pi\)
\(380\) −7.79045 −0.399642
\(381\) 6.80606 0.348685
\(382\) −19.2850 33.4025i −0.986705 1.70902i
\(383\) 13.3909 + 23.1937i 0.684243 + 1.18514i 0.973674 + 0.227945i \(0.0732008\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(384\) 1.18405 2.05084i 0.0604234 0.104656i
\(385\) 6.75730 15.7347i 0.344384 0.801912i
\(386\) −15.6038 + 27.0266i −0.794212 + 1.37562i
\(387\) −0.0640749 −0.00325711
\(388\) −2.84773 + 4.93241i −0.144571 + 0.250405i
\(389\) −6.00738 10.4051i −0.304586 0.527559i 0.672583 0.740022i \(-0.265185\pi\)
−0.977169 + 0.212463i \(0.931852\pi\)
\(390\) 0.869656 4.24834i 0.0440368 0.215123i
\(391\) 5.33655 0.269881
\(392\) −1.39590 + 4.71776i −0.0705035 + 0.238283i
\(393\) −0.397910 0.689200i −0.0200719 0.0347655i
\(394\) 18.8017 + 32.5655i 0.947216 + 1.64063i
\(395\) 0.570470 + 0.988084i 0.0287035 + 0.0497159i
\(396\) 20.1845 1.01431
\(397\) 0.828825 + 1.43557i 0.0415975 + 0.0720491i 0.886075 0.463543i \(-0.153422\pi\)
−0.844477 + 0.535592i \(0.820089\pi\)
\(398\) 26.9017 1.34846
\(399\) 2.19937 + 2.94437i 0.110106 + 0.147403i
\(400\) −6.51106 11.2775i −0.325553 0.563874i
\(401\) −20.4828 −1.02286 −0.511430 0.859325i \(-0.670884\pi\)
−0.511430 + 0.859325i \(0.670884\pi\)
\(402\) 1.68816 + 2.92398i 0.0841978 + 0.145835i
\(403\) 3.79287 18.5285i 0.188936 0.922968i
\(404\) −2.10240 + 3.64146i −0.104598 + 0.181169i
\(405\) 5.43702 + 9.41720i 0.270168 + 0.467944i
\(406\) −0.333355 + 0.776231i −0.0165441 + 0.0385237i
\(407\) 15.4887 26.8272i 0.767746 1.32978i
\(408\) 0.181089 0.313655i 0.00896522 0.0155282i
\(409\) 14.8659 0.735070 0.367535 0.930010i \(-0.380202\pi\)
0.367535 + 0.930010i \(0.380202\pi\)
\(410\) 14.4958 0.715895
\(411\) 2.74211 4.74948i 0.135258 0.234274i
\(412\) 13.7535 23.8217i 0.677586 1.17361i
\(413\) −8.46065 11.3266i −0.416321 0.557344i
\(414\) 11.9067 + 20.6230i 0.585182 + 1.01357i
\(415\) −11.7988 + 20.4360i −0.579178 + 1.00317i
\(416\) 19.8619 + 17.6149i 0.973808 + 0.863643i
\(417\) 0.0725639 + 0.125684i 0.00355347 + 0.00615479i
\(418\) 27.1438 1.32764
\(419\) 11.8087 + 20.4533i 0.576895 + 0.999211i 0.995833 + 0.0911962i \(0.0290690\pi\)
−0.418938 + 0.908015i \(0.637598\pi\)
\(420\) −1.07484 + 2.50282i −0.0524470 + 0.122125i
\(421\) 26.0822 1.27117 0.635585 0.772031i \(-0.280759\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(422\) −4.40788 7.63467i −0.214572 0.371650i
\(423\) −32.9059 −1.59994
\(424\) 0.0498269 + 0.0863028i 0.00241981 + 0.00419123i
\(425\) −1.70177 2.94755i −0.0825479 0.142977i
\(426\) −4.06980 7.04910i −0.197182 0.341530i
\(427\) 12.0540 28.0683i 0.583335 1.35832i
\(428\) 14.1628 0.684584
\(429\) −1.36115 + 6.64932i −0.0657169 + 0.321032i
\(430\) −0.0319317 0.0553074i −0.00153988 0.00266716i
\(431\) 6.65859 11.5330i 0.320733 0.555526i −0.659906 0.751348i \(-0.729404\pi\)
0.980640 + 0.195822i \(0.0627374\pi\)
\(432\) 11.4675 0.551728
\(433\) −10.2110 + 17.6860i −0.490711 + 0.849937i −0.999943 0.0106929i \(-0.996596\pi\)
0.509232 + 0.860629i \(0.329930\pi\)
\(434\) −10.4355 + 24.2996i −0.500921 + 1.16642i
\(435\) 0.0528790 0.0915890i 0.00253535 0.00439136i
\(436\) 9.82001 + 17.0087i 0.470293 + 0.814571i
\(437\) 7.19275 + 12.4582i 0.344076 + 0.595957i
\(438\) −12.4437 −0.594585
\(439\) −9.77074 −0.466332 −0.233166 0.972437i \(-0.574909\pi\)
−0.233166 + 0.972437i \(0.574909\pi\)
\(440\) −2.27455 3.93963i −0.108435 0.187814i
\(441\) −19.1689 + 4.60824i −0.912804 + 0.219440i
\(442\) 6.18229 + 5.48290i 0.294061 + 0.260795i
\(443\) −10.5819 + 18.3285i −0.502763 + 0.870811i 0.497232 + 0.867618i \(0.334350\pi\)
−0.999995 + 0.00319331i \(0.998984\pi\)
\(444\) −2.46370 + 4.26725i −0.116922 + 0.202514i
\(445\) 4.83010 8.36597i 0.228968 0.396585i
\(446\) −20.3440 35.2368i −0.963317 1.66851i
\(447\) 1.68087 0.0795023
\(448\) −7.64337 10.2324i −0.361115 0.483438i
\(449\) 9.07320 15.7152i 0.428191 0.741648i −0.568522 0.822668i \(-0.692484\pi\)
0.996712 + 0.0810200i \(0.0258178\pi\)
\(450\) 7.59384 13.1529i 0.357977 0.620034i
\(451\) −22.6882 −1.06834
\(452\) −7.64387 + 13.2396i −0.359538 + 0.622737i
\(453\) −0.907789 −0.0426517
\(454\) 19.9112 0.934480
\(455\) 11.5380 + 8.02215i 0.540910 + 0.376084i
\(456\) 0.976304 0.0457196
\(457\) −18.0198 −0.842932 −0.421466 0.906844i \(-0.638484\pi\)
−0.421466 + 0.906844i \(0.638484\pi\)
\(458\) 13.7753 23.8595i 0.643678 1.11488i
\(459\) 2.99720 0.139897
\(460\) −5.33098 + 9.23352i −0.248558 + 0.430515i
\(461\) 14.8873 25.7855i 0.693370 1.20095i −0.277357 0.960767i \(-0.589458\pi\)
0.970727 0.240185i \(-0.0772082\pi\)
\(462\) 3.74500 8.72040i 0.174233 0.405710i
\(463\) 17.7067 0.822900 0.411450 0.911432i \(-0.365023\pi\)
0.411450 + 0.911432i \(0.365023\pi\)
\(464\) 0.385529 + 0.667755i 0.0178977 + 0.0309997i
\(465\) 1.65535 2.86715i 0.0767651 0.132961i
\(466\) −8.84968 + 15.3281i −0.409953 + 0.710060i
\(467\) 2.91461 5.04825i 0.134872 0.233605i −0.790677 0.612234i \(-0.790271\pi\)
0.925549 + 0.378629i \(0.123604\pi\)
\(468\) −3.32186 + 16.2276i −0.153553 + 0.750120i
\(469\) −10.8654 + 1.28768i −0.501715 + 0.0594596i
\(470\) −16.3987 28.4033i −0.756414 1.31015i
\(471\) −9.47418 −0.436547
\(472\) −3.75570 −0.172870
\(473\) 0.0499782 + 0.0865648i 0.00229800 + 0.00398025i
\(474\) 0.316164 + 0.547612i 0.0145219 + 0.0251527i
\(475\) 4.58738 7.94557i 0.210483 0.364568i
\(476\) −3.10622 4.15841i −0.142373 0.190600i
\(477\) −0.199665 + 0.345830i −0.00914203 + 0.0158345i
\(478\) −37.4122 −1.71120
\(479\) −7.24565 + 12.5498i −0.331062 + 0.573417i −0.982720 0.185096i \(-0.940740\pi\)
0.651658 + 0.758513i \(0.274074\pi\)
\(480\) 2.32361 + 4.02461i 0.106058 + 0.183698i
\(481\) 19.0190 + 16.8674i 0.867193 + 0.769088i
\(482\) −13.9316 −0.634569
\(483\) 4.99479 0.591946i 0.227271 0.0269345i
\(484\) −6.77245 11.7302i −0.307839 0.533192i
\(485\) 2.57183 + 4.45455i 0.116781 + 0.202271i
\(486\) 10.1364 + 17.5567i 0.459795 + 0.796389i
\(487\) −17.9601 −0.813851 −0.406926 0.913461i \(-0.633399\pi\)
−0.406926 + 0.913461i \(0.633399\pi\)
\(488\) −4.05746 7.02772i −0.183672 0.318130i
\(489\) 1.65044 0.0746354
\(490\) −13.5305 14.2494i −0.611245 0.643724i
\(491\) 18.1505 + 31.4375i 0.819119 + 1.41876i 0.906332 + 0.422566i \(0.138870\pi\)
−0.0872134 + 0.996190i \(0.527796\pi\)
\(492\) 3.60887 0.162701
\(493\) 0.100764 + 0.174528i 0.00453818 + 0.00786036i
\(494\) −4.46719 + 21.8226i −0.200988 + 0.981844i
\(495\) 9.11449 15.7868i 0.409666 0.709562i
\(496\) 12.0688 + 20.9038i 0.541905 + 0.938607i
\(497\) 26.1941 3.10433i 1.17496 0.139248i
\(498\) −6.53906 + 11.3260i −0.293022 + 0.507530i
\(499\) −11.8538 + 20.5314i −0.530649 + 0.919112i 0.468711 + 0.883352i \(0.344719\pi\)
−0.999360 + 0.0357602i \(0.988615\pi\)
\(500\) 18.8145 0.841410
\(501\) 0.916426 0.0409429
\(502\) −11.3036 + 19.5784i −0.504505 + 0.873828i
\(503\) −13.8876 + 24.0540i −0.619217 + 1.07252i 0.370411 + 0.928868i \(0.379217\pi\)
−0.989629 + 0.143648i \(0.954117\pi\)
\(504\) −2.06667 + 4.81233i −0.0920568 + 0.214358i
\(505\) 1.89871 + 3.28867i 0.0844916 + 0.146344i
\(506\) 18.5744 32.1717i 0.825731 1.43021i
\(507\) −5.12180 2.18863i −0.227467 0.0972003i
\(508\) −12.9558 22.4401i −0.574820 0.995618i
\(509\) 8.70416 0.385805 0.192902 0.981218i \(-0.438210\pi\)
0.192902 + 0.981218i \(0.438210\pi\)
\(510\) 0.723257 + 1.25272i 0.0320264 + 0.0554713i
\(511\) 15.9126 37.0531i 0.703931 1.63913i
\(512\) −27.4134 −1.21151
\(513\) 4.03971 + 6.99698i 0.178357 + 0.308924i
\(514\) 28.9114 1.27523
\(515\) −12.4210 21.5139i −0.547336 0.948014i
\(516\) −0.00794974 0.0137693i −0.000349968 0.000606162i
\(517\) 25.6665 + 44.4557i 1.12881 + 1.95516i
\(518\) −21.2726 28.4784i −0.934664 1.25127i
\(519\) −7.11792 −0.312442
\(520\) 3.54165 1.18028i 0.155312 0.0517589i
\(521\) 4.28573 + 7.42310i 0.187761 + 0.325212i 0.944504 0.328501i \(-0.106544\pi\)
−0.756742 + 0.653713i \(0.773210\pi\)
\(522\) −0.449641 + 0.778801i −0.0196803 + 0.0340872i
\(523\) 29.9493 1.30959 0.654796 0.755806i \(-0.272755\pi\)
0.654796 + 0.755806i \(0.272755\pi\)
\(524\) −1.51490 + 2.62388i −0.0661786 + 0.114625i
\(525\) −1.91974 2.57002i −0.0837842 0.112165i
\(526\) 16.3844 28.3786i 0.714393 1.23736i
\(527\) 3.15437 + 5.46353i 0.137407 + 0.237995i
\(528\) −4.33114 7.50175i −0.188489 0.326472i
\(529\) −3.31212 −0.144005
\(530\) −0.398012 −0.0172885
\(531\) −7.52486 13.0334i −0.326551 0.565603i
\(532\) 5.52118 12.8563i 0.239373 0.557391i
\(533\) 3.73391 18.2404i 0.161734 0.790081i
\(534\) 2.67692 4.63656i 0.115842 0.200643i
\(535\) 6.39534 11.0770i 0.276494 0.478902i
\(536\) −1.45330 + 2.51719i −0.0627730 + 0.108726i
\(537\) 0.115573 + 0.200178i 0.00498734 + 0.00863832i
\(538\) −36.0571 −1.55453
\(539\) 21.1774 + 22.3026i 0.912174 + 0.960643i
\(540\) −2.99407 + 5.18588i −0.128844 + 0.223165i
\(541\) −5.24095 + 9.07760i −0.225326 + 0.390276i −0.956417 0.292003i \(-0.905678\pi\)
0.731091 + 0.682280i \(0.239011\pi\)
\(542\) −61.2321 −2.63014
\(543\) −0.593751 + 1.02841i −0.0254803 + 0.0441331i
\(544\) −8.85557 −0.379679
\(545\) 17.7373 0.759781
\(546\) 6.39454 + 4.44601i 0.273661 + 0.190271i
\(547\) 15.2216 0.650829 0.325415 0.945571i \(-0.394496\pi\)
0.325415 + 0.945571i \(0.394496\pi\)
\(548\) −20.8792 −0.891915
\(549\) 16.2589 28.1613i 0.693914 1.20189i
\(550\) −23.6927 −1.01026
\(551\) −0.271625 + 0.470468i −0.0115716 + 0.0200426i
\(552\) 0.668081 1.15715i 0.0284354 0.0492516i
\(553\) −2.03490 + 0.241161i −0.0865326 + 0.0102552i
\(554\) −35.0726 −1.49009
\(555\) 2.22501 + 3.85383i 0.0944464 + 0.163586i
\(556\) 0.276261 0.478497i 0.0117161 0.0202928i
\(557\) −5.92986 + 10.2708i −0.251256 + 0.435189i −0.963872 0.266366i \(-0.914177\pi\)
0.712616 + 0.701555i \(0.247510\pi\)
\(558\) −14.0758 + 24.3800i −0.595877 + 1.03209i
\(559\) −0.0778200 + 0.0259342i −0.00329144 + 0.00109690i
\(560\) −17.8104 + 2.11076i −0.752627 + 0.0891958i
\(561\) −1.13201 1.96070i −0.0477936 0.0827809i
\(562\) 27.1069 1.14344
\(563\) 7.69349 0.324242 0.162121 0.986771i \(-0.448166\pi\)
0.162121 + 0.986771i \(0.448166\pi\)
\(564\) −4.08262 7.07131i −0.171909 0.297756i
\(565\) 6.90332 + 11.9569i 0.290425 + 0.503031i
\(566\) −10.8892 + 18.8607i −0.457709 + 0.792775i
\(567\) −19.3941 + 2.29845i −0.814477 + 0.0965258i
\(568\) 3.50360 6.06841i 0.147008 0.254625i
\(569\) 37.4196 1.56871 0.784355 0.620312i \(-0.212994\pi\)
0.784355 + 0.620312i \(0.212994\pi\)
\(570\) −1.94965 + 3.37689i −0.0816619 + 0.141443i
\(571\) −7.08285 12.2679i −0.296408 0.513394i 0.678903 0.734228i \(-0.262456\pi\)
−0.975311 + 0.220834i \(0.929122\pi\)
\(572\) 24.5144 8.16963i 1.02500 0.341589i
\(573\) −8.67209 −0.362282
\(574\) −10.2733 + 23.9218i −0.428799 + 0.998478i
\(575\) −6.27825 10.8742i −0.261821 0.453488i
\(576\) −6.79797 11.7744i −0.283249 0.490601i
\(577\) 7.48776 + 12.9692i 0.311720 + 0.539914i 0.978735 0.205130i \(-0.0657617\pi\)
−0.667015 + 0.745044i \(0.732428\pi\)
\(578\) 29.6381 1.23278
\(579\) 3.50837 + 6.07667i 0.145803 + 0.252538i
\(580\) −0.402635 −0.0167185
\(581\) −25.3629 33.9543i −1.05223 1.40866i
\(582\) 1.42535 + 2.46878i 0.0590828 + 0.102334i
\(583\) 0.622952 0.0258000
\(584\) −5.35627 9.27732i −0.221644 0.383898i
\(585\) 11.1919 + 9.92582i 0.462730 + 0.410382i
\(586\) −12.5811 + 21.7911i −0.519720 + 0.900182i
\(587\) 6.58821 + 11.4111i 0.271925 + 0.470987i 0.969355 0.245666i \(-0.0790066\pi\)
−0.697430 + 0.716653i \(0.745673\pi\)
\(588\) −3.36856 3.54755i −0.138917 0.146298i
\(589\) −8.50309 + 14.7278i −0.350364 + 0.606848i
\(590\) 7.50003 12.9904i 0.308771 0.534807i
\(591\) 8.45478 0.347783
\(592\) −32.4441 −1.33344
\(593\) 22.0663 38.2200i 0.906156 1.56951i 0.0867989 0.996226i \(-0.472336\pi\)
0.819357 0.573283i \(-0.194330\pi\)
\(594\) 10.4320 18.0688i 0.428032 0.741372i
\(595\) −4.65503 + 0.551680i −0.190838 + 0.0226167i
\(596\) −3.19965 5.54195i −0.131063 0.227007i
\(597\) 3.02429 5.23823i 0.123776 0.214387i
\(598\) 22.8080 + 20.2278i 0.932689 + 0.827175i
\(599\) 3.01349 + 5.21952i 0.123128 + 0.213264i 0.921000 0.389564i \(-0.127374\pi\)
−0.797872 + 0.602827i \(0.794041\pi\)
\(600\) −0.852175 −0.0347899
\(601\) −1.86260 3.22612i −0.0759770 0.131596i 0.825534 0.564353i \(-0.190874\pi\)
−0.901511 + 0.432757i \(0.857541\pi\)
\(602\) 0.113902 0.0134988i 0.00464230 0.000550172i
\(603\) −11.6472 −0.474312
\(604\) 1.72804 + 2.99305i 0.0703129 + 0.121786i
\(605\) −12.2326 −0.497328
\(606\) 1.05230 + 1.82263i 0.0427467 + 0.0740394i
\(607\) 3.00825 + 5.21045i 0.122101 + 0.211486i 0.920596 0.390516i \(-0.127703\pi\)
−0.798495 + 0.602002i \(0.794370\pi\)
\(608\) −11.9358 20.6733i −0.484059 0.838415i
\(609\) 0.113670 + 0.152174i 0.00460615 + 0.00616641i
\(610\) 32.4105 1.31226
\(611\) −39.9648 + 13.3186i −1.61680 + 0.538813i
\(612\) −2.76266 4.78506i −0.111674 0.193425i
\(613\) −4.90413 + 8.49420i −0.198076 + 0.343077i −0.947904 0.318555i \(-0.896803\pi\)
0.749829 + 0.661632i \(0.230136\pi\)
\(614\) 12.6892 0.512094
\(615\) 1.62962 2.82258i 0.0657126 0.113818i
\(616\) 8.11342 0.961543i 0.326899 0.0387417i
\(617\) −16.8838 + 29.2436i −0.679716 + 1.17730i 0.295350 + 0.955389i \(0.404564\pi\)
−0.975066 + 0.221914i \(0.928770\pi\)
\(618\) −6.88394 11.9233i −0.276913 0.479627i
\(619\) −2.04671 3.54501i −0.0822644 0.142486i 0.821958 0.569548i \(-0.192882\pi\)
−0.904222 + 0.427062i \(0.859549\pi\)
\(620\) −12.6043 −0.506201
\(621\) 11.0574 0.443719
\(622\) −1.94936 3.37639i −0.0781621 0.135381i
\(623\) 10.3829 + 13.9000i 0.415983 + 0.556891i
\(624\) 6.74393 2.24747i 0.269973 0.0899709i
\(625\) 1.42115 2.46150i 0.0568459 0.0984599i
\(626\) 8.97297 15.5416i 0.358632 0.621169i
\(627\) 3.05151 5.28537i 0.121866 0.211077i
\(628\) 18.0347 + 31.2371i 0.719665 + 1.24650i
\(629\) −8.47978 −0.338111
\(630\) −12.5181 16.7584i −0.498732 0.667671i
\(631\) 13.3868 23.1866i 0.532921 0.923046i −0.466340 0.884605i \(-0.654428\pi\)
0.999261 0.0384402i \(-0.0122389\pi\)
\(632\) −0.272179 + 0.471427i −0.0108267 + 0.0187524i
\(633\) −1.98214 −0.0787831
\(634\) −31.7955 + 55.0714i −1.26276 + 2.18717i
\(635\) −23.4012 −0.928650
\(636\) −0.0990892 −0.00392914
\(637\) −21.4158 + 13.3553i −0.848523 + 0.529158i
\(638\) 1.40287 0.0555403
\(639\) 28.0790 1.11079
\(640\) −4.07112 + 7.05139i −0.160925 + 0.278731i
\(641\) −18.5722 −0.733558 −0.366779 0.930308i \(-0.619539\pi\)
−0.366779 + 0.930308i \(0.619539\pi\)
\(642\) 3.54440 6.13908i 0.139886 0.242290i
\(643\) 1.96695 3.40686i 0.0775690 0.134353i −0.824632 0.565670i \(-0.808618\pi\)
0.902201 + 0.431317i \(0.141951\pi\)
\(644\) −11.4596 15.3414i −0.451572 0.604536i
\(645\) −0.0143591 −0.000565389
\(646\) −3.71518 6.43487i −0.146172 0.253177i
\(647\) 0.0985378 0.170672i 0.00387392 0.00670983i −0.864082 0.503351i \(-0.832100\pi\)
0.867956 + 0.496641i \(0.165434\pi\)
\(648\) −2.59407 + 4.49306i −0.101905 + 0.176504i
\(649\) −11.7387 + 20.3321i −0.460785 + 0.798104i
\(650\) 3.89922 19.0480i 0.152940 0.747125i
\(651\) 3.55839 + 4.76375i 0.139464 + 0.186706i
\(652\) −3.14172 5.44163i −0.123039 0.213110i
\(653\) −14.4673 −0.566148 −0.283074 0.959098i \(-0.591354\pi\)
−0.283074 + 0.959098i \(0.591354\pi\)
\(654\) 9.83028 0.384394
\(655\) 1.36813 + 2.36967i 0.0534573 + 0.0925908i
\(656\) 11.8812 + 20.5788i 0.463883 + 0.803468i
\(657\) 21.4635 37.1758i 0.837369 1.45037i
\(658\) 58.4949 6.93238i 2.28037 0.270252i
\(659\) 11.7066 20.2764i 0.456024 0.789857i −0.542722 0.839912i \(-0.682606\pi\)
0.998746 + 0.0500552i \(0.0159397\pi\)
\(660\) 4.52332 0.176070
\(661\) 2.02409 3.50582i 0.0787278 0.136361i −0.823973 0.566628i \(-0.808248\pi\)
0.902701 + 0.430268i \(0.141581\pi\)
\(662\) 18.1657 + 31.4638i 0.706028 + 1.22288i
\(663\) 1.76263 0.587412i 0.0684550 0.0228132i
\(664\) −11.2587 −0.436921
\(665\) −7.56208 10.1236i −0.293245 0.392577i
\(666\) −18.9197 32.7699i −0.733125 1.26981i
\(667\) 0.371744 + 0.643879i 0.0143940 + 0.0249311i
\(668\) −1.74448 3.02153i −0.0674959 0.116906i
\(669\) −9.14832 −0.353695
\(670\) −5.80440 10.0535i −0.224243 0.388401i
\(671\) −50.7276 −1.95832
\(672\) −8.28844 + 0.982285i −0.319734 + 0.0378925i
\(673\) −3.64704 6.31685i −0.140583 0.243497i 0.787133 0.616783i \(-0.211564\pi\)
−0.927716 + 0.373286i \(0.878231\pi\)
\(674\) 59.6152 2.29629
\(675\) −3.52609 6.10737i −0.135719 0.235073i
\(676\) 2.53362 + 21.0532i 0.0974468 + 0.809737i
\(677\) 7.87553 13.6408i 0.302681 0.524259i −0.674061 0.738676i \(-0.735452\pi\)
0.976742 + 0.214416i \(0.0687849\pi\)
\(678\) 3.82593 + 6.62671i 0.146934 + 0.254497i
\(679\) −9.17387 + 1.08722i −0.352061 + 0.0417236i
\(680\) −0.622636 + 1.07844i −0.0238770 + 0.0413562i
\(681\) 2.23843 3.87707i 0.0857767 0.148570i
\(682\) 43.9163 1.68164
\(683\) 41.4854 1.58739 0.793697 0.608314i \(-0.208154\pi\)
0.793697 + 0.608314i \(0.208154\pi\)
\(684\) 7.44717 12.8989i 0.284750 0.493201i
\(685\) −9.42819 + 16.3301i −0.360233 + 0.623941i
\(686\) 33.1045 12.2301i 1.26394 0.466949i
\(687\) −3.09725 5.36460i −0.118168 0.204672i
\(688\) 0.0523445 0.0906634i 0.00199562 0.00345651i
\(689\) −0.102522 + 0.500830i −0.00390579 + 0.0190801i
\(690\) 2.66828 + 4.62159i 0.101580 + 0.175941i
\(691\) −46.8216 −1.78118 −0.890589 0.454809i \(-0.849708\pi\)
−0.890589 + 0.454809i \(0.849708\pi\)
\(692\) 13.5494 + 23.4683i 0.515073 + 0.892132i
\(693\) 19.5928 + 26.2296i 0.744268 + 0.996378i
\(694\) −22.2478 −0.844514
\(695\) −0.249496 0.432140i −0.00946392 0.0163920i
\(696\) 0.0504584 0.00191262
\(697\) 3.10534 + 5.37860i 0.117623 + 0.203729i
\(698\) 22.8576 + 39.5905i 0.865172 + 1.49852i
\(699\) 1.98977 + 3.44638i 0.0752600 + 0.130354i
\(700\) −4.81921 + 11.2217i −0.182149 + 0.424142i
\(701\) 29.8626 1.12790 0.563948 0.825810i \(-0.309282\pi\)
0.563948 + 0.825810i \(0.309282\pi\)
\(702\) 12.8098 + 11.3606i 0.483475 + 0.428780i
\(703\) −11.4293 19.7961i −0.431063 0.746623i
\(704\) −10.6048 + 18.3680i −0.399683 + 0.692271i
\(705\) −7.37418 −0.277728
\(706\) 12.1893 21.1124i 0.458749 0.794576i
\(707\) −6.77281 + 0.802663i −0.254718 + 0.0301873i
\(708\) 1.86721 3.23410i 0.0701740 0.121545i
\(709\) −13.4666 23.3249i −0.505750 0.875984i −0.999978 0.00665185i \(-0.997883\pi\)
0.494228 0.869332i \(-0.335451\pi\)
\(710\) 13.9932 + 24.2369i 0.525155 + 0.909595i
\(711\) −2.18133 −0.0818063
\(712\) 4.60900 0.172729
\(713\) 11.6373 + 20.1563i 0.435819 + 0.754861i
\(714\) −2.57990 + 0.305750i −0.0965502 + 0.0114424i
\(715\) 4.68004 22.8623i 0.175023 0.855003i
\(716\) 0.440002 0.762105i 0.0164436 0.0284812i
\(717\) −4.20590 + 7.28483i −0.157072 + 0.272057i
\(718\) 11.7570 20.3638i 0.438769 0.759969i
\(719\) 7.24938 + 12.5563i 0.270356 + 0.468271i 0.968953 0.247245i \(-0.0795252\pi\)
−0.698597 + 0.715516i \(0.746192\pi\)
\(720\) −19.0921 −0.711519
\(721\) 44.3064 5.25087i 1.65006 0.195553i
\(722\) −8.08799 + 14.0088i −0.301004 + 0.521354i
\(723\) −1.56620 + 2.71274i −0.0582476 + 0.100888i
\(724\) 4.52098 0.168021
\(725\) 0.237090 0.410652i 0.00880530 0.0152512i
\(726\) −6.77953 −0.251612
\(727\) −6.26424 −0.232328 −0.116164 0.993230i \(-0.537060\pi\)
−0.116164 + 0.993230i \(0.537060\pi\)
\(728\) −0.562223 + 6.68113i −0.0208374 + 0.247619i
\(729\) −17.5866 −0.651357
\(730\) 42.7852 1.58355
\(731\) 0.0136811 0.0236963i 0.000506013 0.000876440i
\(732\) 8.06893 0.298236
\(733\) 5.99189 10.3783i 0.221316 0.383330i −0.733892 0.679266i \(-0.762298\pi\)
0.955208 + 0.295936i \(0.0956316\pi\)
\(734\) 1.93487 3.35130i 0.0714175 0.123699i
\(735\) −4.29573 + 1.03270i −0.158450 + 0.0380917i
\(736\) −32.6704 −1.20425
\(737\) 9.08480 + 15.7353i 0.334643 + 0.579619i
\(738\) −13.8570 + 24.0010i −0.510084 + 0.883491i
\(739\) −6.76269 + 11.7133i −0.248770 + 0.430882i −0.963185 0.268840i \(-0.913360\pi\)
0.714415 + 0.699722i \(0.246693\pi\)
\(740\) 8.47091 14.6721i 0.311397 0.539355i
\(741\) 3.74704 + 3.32314i 0.137651 + 0.122079i
\(742\) 0.282075 0.656825i 0.0103553 0.0241128i
\(743\) 19.2299 + 33.3072i 0.705477 + 1.22192i 0.966519 + 0.256594i \(0.0826003\pi\)
−0.261043 + 0.965327i \(0.584066\pi\)
\(744\) 1.57958 0.0579101
\(745\) −5.77932 −0.211738
\(746\) −3.69107 6.39312i −0.135140 0.234069i
\(747\) −22.5577 39.0710i −0.825342 1.42953i
\(748\) −4.30973 + 7.46466i −0.157579 + 0.272935i
\(749\) 13.7476 + 18.4044i 0.502326 + 0.672482i
\(750\) 4.70855 8.15544i 0.171932 0.297795i
\(751\) 11.7115 0.427357 0.213679 0.976904i \(-0.431455\pi\)
0.213679 + 0.976904i \(0.431455\pi\)
\(752\) 26.8817 46.5605i 0.980276 1.69789i
\(753\) 2.54151 + 4.40203i 0.0926178 + 0.160419i
\(754\) −0.230878 + 1.12786i −0.00840809 + 0.0410742i
\(755\) 3.12125 0.113594
\(756\) −6.43614 8.61629i −0.234080 0.313371i
\(757\) −4.65791 8.06773i −0.169295 0.293227i 0.768877 0.639396i \(-0.220816\pi\)
−0.938172 + 0.346169i \(0.887482\pi\)
\(758\) −13.8800 24.0409i −0.504145 0.873205i
\(759\) −4.17627 7.23352i −0.151589 0.262560i
\(760\) −3.35682 −0.121765
\(761\) 21.9691 + 38.0515i 0.796378 + 1.37937i 0.921960 + 0.387284i \(0.126587\pi\)
−0.125582 + 0.992083i \(0.540080\pi\)
\(762\) −12.9693 −0.469830
\(763\) −12.5706 + 29.2712i −0.455086 + 1.05969i
\(764\) 16.5079 + 28.5926i 0.597236 + 1.03444i
\(765\) −4.99002 −0.180414
\(766\) −25.5172 44.1971i −0.921973 1.59690i
\(767\) −14.4143 12.7837i −0.520471 0.461591i
\(768\) −4.32455 + 7.49035i −0.156049 + 0.270285i
\(769\) −12.6771 21.9573i −0.457147 0.791802i 0.541662 0.840597i \(-0.317795\pi\)
−0.998809 + 0.0487946i \(0.984462\pi\)
\(770\) −12.8764 + 29.9833i −0.464035 + 1.08052i
\(771\) 3.25024 5.62957i 0.117054 0.202744i
\(772\) 13.3568 23.1347i 0.480723 0.832637i
\(773\) −23.1084 −0.831152 −0.415576 0.909559i \(-0.636420\pi\)
−0.415576 + 0.909559i \(0.636420\pi\)
\(774\) 0.122099 0.00438874
\(775\) 7.42200 12.8553i 0.266606 0.461775i
\(776\) −1.22705 + 2.12532i −0.0440487 + 0.0762946i