Properties

Label 91.2.h.b.74.4
Level $91$
Weight $2$
Character 91.74
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 7 x^{10} - 2 x^{9} + 33 x^{8} - 11 x^{7} + 55 x^{6} + 17 x^{5} + 47 x^{4} + x^{3} + 8 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 74.4
Root \(-0.437442 + 0.757672i\) of defining polynomial
Character \(\chi\) \(=\) 91.74
Dual form 91.2.h.b.16.4

$q$-expansion

\(f(q)\) \(=\) \(q-0.268125 q^{2} +(0.571504 + 0.989875i) q^{3} -1.92811 q^{4} +(1.28088 + 2.21854i) q^{5} +(-0.153235 - 0.265410i) q^{6} +(1.80416 + 1.93520i) q^{7} +1.05323 q^{8} +(0.846765 - 1.46664i) q^{9} +O(q^{10})\) \(q-0.268125 q^{2} +(0.571504 + 0.989875i) q^{3} -1.92811 q^{4} +(1.28088 + 2.21854i) q^{5} +(-0.153235 - 0.265410i) q^{6} +(1.80416 + 1.93520i) q^{7} +1.05323 q^{8} +(0.846765 - 1.46664i) q^{9} +(-0.343436 - 0.594848i) q^{10} +(-1.97300 - 3.41734i) q^{11} +(-1.10192 - 1.90859i) q^{12} +(-3.15374 + 1.74755i) q^{13} +(-0.483741 - 0.518876i) q^{14} +(-1.46405 + 2.53582i) q^{15} +3.57382 q^{16} +0.785100 q^{17} +(-0.227039 + 0.393243i) q^{18} +(3.74764 - 6.49110i) q^{19} +(-2.46967 - 4.27760i) q^{20} +(-0.884522 + 2.89187i) q^{21} +(0.529011 + 0.916274i) q^{22} -7.95518 q^{23} +(0.601923 + 1.04256i) q^{24} +(-0.781294 + 1.35324i) q^{25} +(0.845598 - 0.468561i) q^{26} +5.36475 q^{27} +(-3.47862 - 3.73128i) q^{28} +(-1.17586 + 2.03666i) q^{29} +(0.392550 - 0.679916i) q^{30} +(1.27718 - 2.21215i) q^{31} -3.06468 q^{32} +(2.25516 - 3.90605i) q^{33} -0.210505 q^{34} +(-1.98242 + 6.48137i) q^{35} +(-1.63266 + 2.82784i) q^{36} +6.75716 q^{37} +(-1.00484 + 1.74043i) q^{38} +(-3.53223 - 2.12308i) q^{39} +(1.34905 + 2.33663i) q^{40} +(1.21874 - 2.11091i) q^{41} +(0.237163 - 0.775383i) q^{42} +(1.12473 + 1.94809i) q^{43} +(3.80416 + 6.58900i) q^{44} +4.33841 q^{45} +2.13298 q^{46} +(-0.658276 - 1.14017i) q^{47} +(2.04246 + 3.53764i) q^{48} +(-0.490011 + 6.98283i) q^{49} +(0.209485 - 0.362838i) q^{50} +(0.448688 + 0.777151i) q^{51} +(6.08076 - 3.36946i) q^{52} +(-4.63977 + 8.03632i) q^{53} -1.43842 q^{54} +(5.05434 - 8.75438i) q^{55} +(1.90019 + 2.03820i) q^{56} +8.56716 q^{57} +(0.315279 - 0.546079i) q^{58} -8.96671 q^{59} +(2.82286 - 4.88933i) q^{60} +(-4.72273 + 8.18002i) q^{61} +(-0.342445 + 0.593132i) q^{62} +(4.36595 - 1.00739i) q^{63} -6.32592 q^{64} +(-7.91657 - 4.75832i) q^{65} +(-0.604665 + 1.04731i) q^{66} +(0.676281 + 1.17135i) q^{67} -1.51376 q^{68} +(-4.54642 - 7.87463i) q^{69} +(0.531538 - 1.73782i) q^{70} +(-6.15808 - 10.6661i) q^{71} +(0.891834 - 1.54470i) q^{72} +(-0.384295 + 0.665619i) q^{73} -1.81176 q^{74} -1.78605 q^{75} +(-7.22585 + 12.5155i) q^{76} +(3.05363 - 9.98358i) q^{77} +(0.947080 + 0.569251i) q^{78} +(-3.09642 - 5.36316i) q^{79} +(4.57763 + 7.92868i) q^{80} +(0.525682 + 0.910507i) q^{81} +(-0.326774 + 0.565989i) q^{82} -1.07292 q^{83} +(1.70545 - 5.57584i) q^{84} +(1.00562 + 1.74178i) q^{85} +(-0.301568 - 0.522332i) q^{86} -2.68805 q^{87} +(-2.07801 - 3.59923i) q^{88} +7.66299 q^{89} -1.16324 q^{90} +(-9.07171 - 2.95027i) q^{91} +15.3384 q^{92} +2.91966 q^{93} +(0.176501 + 0.305708i) q^{94} +19.2010 q^{95} +(-1.75148 - 3.03365i) q^{96} +(1.18601 + 2.05423i) q^{97} +(0.131384 - 1.87227i) q^{98} -6.68267 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 4q^{2} + q^{3} + 8q^{4} + q^{5} - 9q^{6} - 3q^{7} - 6q^{8} + 3q^{9} + O(q^{10}) \) \( 12q - 4q^{2} + q^{3} + 8q^{4} + q^{5} - 9q^{6} - 3q^{7} - 6q^{8} + 3q^{9} + 4q^{10} + 4q^{11} + 5q^{12} - 2q^{13} - 2q^{14} - 2q^{15} - 16q^{16} - 10q^{17} + 3q^{18} - q^{19} - q^{20} - 9q^{21} - 5q^{22} + 2q^{23} - 11q^{24} + 7q^{25} - 16q^{26} - 8q^{27} - q^{28} + 3q^{29} - 5q^{30} + 16q^{31} - 16q^{32} + 16q^{33} + 32q^{34} + 20q^{35} - 21q^{36} + 26q^{37} - 17q^{38} - 20q^{39} - 5q^{40} - 8q^{41} + 50q^{42} - 11q^{43} + 21q^{44} + 14q^{45} - 32q^{46} - q^{47} + 21q^{48} - 3q^{49} + 6q^{50} - 20q^{51} + 41q^{52} - 2q^{53} + 36q^{54} + 9q^{55} + 9q^{56} + 42q^{57} - 8q^{58} - 26q^{59} + 20q^{60} - 5q^{61} + 5q^{62} - 40q^{63} - 30q^{64} - 5q^{65} + 18q^{66} - 11q^{67} - 58q^{68} + 23q^{69} - 39q^{70} + 6q^{71} + 25q^{72} - 30q^{73} + 6q^{74} + 6q^{75} - 9q^{76} + 11q^{77} + 16q^{78} + 7q^{79} - 7q^{80} - 6q^{81} + q^{82} - 54q^{83} - 46q^{84} - q^{85} - 7q^{86} - 32q^{87} - 8q^{89} - 16q^{90} - 23q^{91} + 54q^{92} + 14q^{93} + 45q^{94} + 12q^{95} + 19q^{96} - 35q^{97} + 20q^{98} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.268125 −0.189593 −0.0947966 0.995497i \(-0.530220\pi\)
−0.0947966 + 0.995497i \(0.530220\pi\)
\(3\) 0.571504 + 0.989875i 0.329958 + 0.571504i 0.982503 0.186246i \(-0.0596320\pi\)
−0.652545 + 0.757750i \(0.726299\pi\)
\(4\) −1.92811 −0.964054
\(5\) 1.28088 + 2.21854i 0.572826 + 0.992163i 0.996274 + 0.0862431i \(0.0274862\pi\)
−0.423448 + 0.905920i \(0.639180\pi\)
\(6\) −0.153235 0.265410i −0.0625578 0.108353i
\(7\) 1.80416 + 1.93520i 0.681909 + 0.731437i
\(8\) 1.05323 0.372371
\(9\) 0.846765 1.46664i 0.282255 0.488880i
\(10\) −0.343436 0.594848i −0.108604 0.188107i
\(11\) −1.97300 3.41734i −0.594882 1.03037i −0.993563 0.113277i \(-0.963865\pi\)
0.398681 0.917090i \(-0.369468\pi\)
\(12\) −1.10192 1.90859i −0.318098 0.550961i
\(13\) −3.15374 + 1.74755i −0.874690 + 0.484682i
\(14\) −0.483741 0.518876i −0.129285 0.138676i
\(15\) −1.46405 + 2.53582i −0.378017 + 0.654745i
\(16\) 3.57382 0.893455
\(17\) 0.785100 0.190415 0.0952073 0.995457i \(-0.469649\pi\)
0.0952073 + 0.995457i \(0.469649\pi\)
\(18\) −0.227039 + 0.393243i −0.0535136 + 0.0926883i
\(19\) 3.74764 6.49110i 0.859767 1.48916i −0.0123849 0.999923i \(-0.503942\pi\)
0.872151 0.489236i \(-0.162724\pi\)
\(20\) −2.46967 4.27760i −0.552235 0.956500i
\(21\) −0.884522 + 2.89187i −0.193018 + 0.631058i
\(22\) 0.529011 + 0.916274i 0.112786 + 0.195350i
\(23\) −7.95518 −1.65877 −0.829384 0.558678i \(-0.811309\pi\)
−0.829384 + 0.558678i \(0.811309\pi\)
\(24\) 0.601923 + 1.04256i 0.122867 + 0.212812i
\(25\) −0.781294 + 1.35324i −0.156259 + 0.270648i
\(26\) 0.845598 0.468561i 0.165835 0.0918924i
\(27\) 5.36475 1.03245
\(28\) −3.47862 3.73128i −0.657397 0.705146i
\(29\) −1.17586 + 2.03666i −0.218353 + 0.378198i −0.954304 0.298836i \(-0.903402\pi\)
0.735952 + 0.677034i \(0.236735\pi\)
\(30\) 0.392550 0.679916i 0.0716695 0.124135i
\(31\) 1.27718 2.21215i 0.229389 0.397313i −0.728238 0.685324i \(-0.759661\pi\)
0.957627 + 0.288011i \(0.0929939\pi\)
\(32\) −3.06468 −0.541764
\(33\) 2.25516 3.90605i 0.392573 0.679956i
\(34\) −0.210505 −0.0361013
\(35\) −1.98242 + 6.48137i −0.335091 + 1.09555i
\(36\) −1.63266 + 2.82784i −0.272109 + 0.471307i
\(37\) 6.75716 1.11087 0.555435 0.831560i \(-0.312552\pi\)
0.555435 + 0.831560i \(0.312552\pi\)
\(38\) −1.00484 + 1.74043i −0.163006 + 0.282334i
\(39\) −3.53223 2.12308i −0.565609 0.339965i
\(40\) 1.34905 + 2.33663i 0.213304 + 0.369453i
\(41\) 1.21874 2.11091i 0.190335 0.329669i −0.755027 0.655694i \(-0.772376\pi\)
0.945361 + 0.326025i \(0.105709\pi\)
\(42\) 0.237163 0.775383i 0.0365950 0.119644i
\(43\) 1.12473 + 1.94809i 0.171520 + 0.297081i 0.938951 0.344050i \(-0.111799\pi\)
−0.767432 + 0.641131i \(0.778466\pi\)
\(44\) 3.80416 + 6.58900i 0.573499 + 0.993329i
\(45\) 4.33841 0.646732
\(46\) 2.13298 0.314491
\(47\) −0.658276 1.14017i −0.0960195 0.166311i 0.814014 0.580845i \(-0.197278\pi\)
−0.910034 + 0.414534i \(0.863944\pi\)
\(48\) 2.04246 + 3.53764i 0.294803 + 0.510614i
\(49\) −0.490011 + 6.98283i −0.0700016 + 0.997547i
\(50\) 0.209485 0.362838i 0.0296256 0.0513130i
\(51\) 0.448688 + 0.777151i 0.0628289 + 0.108823i
\(52\) 6.08076 3.36946i 0.843249 0.467260i
\(53\) −4.63977 + 8.03632i −0.637321 + 1.10387i 0.348697 + 0.937236i \(0.386624\pi\)
−0.986018 + 0.166637i \(0.946709\pi\)
\(54\) −1.43842 −0.195745
\(55\) 5.05434 8.75438i 0.681528 1.18044i
\(56\) 1.90019 + 2.03820i 0.253923 + 0.272366i
\(57\) 8.56716 1.13475
\(58\) 0.315279 0.546079i 0.0413981 0.0717037i
\(59\) −8.96671 −1.16737 −0.583683 0.811982i \(-0.698389\pi\)
−0.583683 + 0.811982i \(0.698389\pi\)
\(60\) 2.82286 4.88933i 0.364429 0.631210i
\(61\) −4.72273 + 8.18002i −0.604684 + 1.04734i 0.387417 + 0.921905i \(0.373367\pi\)
−0.992101 + 0.125439i \(0.959966\pi\)
\(62\) −0.342445 + 0.593132i −0.0434906 + 0.0753279i
\(63\) 4.36595 1.00739i 0.550057 0.126920i
\(64\) −6.32592 −0.790741
\(65\) −7.91657 4.75832i −0.981929 0.590197i
\(66\) −0.604665 + 1.04731i −0.0744291 + 0.128915i
\(67\) 0.676281 + 1.17135i 0.0826209 + 0.143104i 0.904375 0.426739i \(-0.140338\pi\)
−0.821754 + 0.569842i \(0.807004\pi\)
\(68\) −1.51376 −0.183570
\(69\) −4.54642 7.87463i −0.547324 0.947994i
\(70\) 0.531538 1.73782i 0.0635309 0.207709i
\(71\) −6.15808 10.6661i −0.730829 1.26583i −0.956529 0.291637i \(-0.905800\pi\)
0.225700 0.974197i \(-0.427533\pi\)
\(72\) 0.891834 1.54470i 0.105104 0.182045i
\(73\) −0.384295 + 0.665619i −0.0449783 + 0.0779048i −0.887638 0.460542i \(-0.847655\pi\)
0.842660 + 0.538446i \(0.180989\pi\)
\(74\) −1.81176 −0.210613
\(75\) −1.78605 −0.206236
\(76\) −7.22585 + 12.5155i −0.828862 + 1.43563i
\(77\) 3.05363 9.98358i 0.347993 1.13773i
\(78\) 0.947080 + 0.569251i 0.107236 + 0.0644550i
\(79\) −3.09642 5.36316i −0.348375 0.603402i 0.637586 0.770379i \(-0.279933\pi\)
−0.985961 + 0.166976i \(0.946600\pi\)
\(80\) 4.57763 + 7.92868i 0.511794 + 0.886454i
\(81\) 0.525682 + 0.910507i 0.0584091 + 0.101167i
\(82\) −0.326774 + 0.565989i −0.0360861 + 0.0625030i
\(83\) −1.07292 −0.117768 −0.0588841 0.998265i \(-0.518754\pi\)
−0.0588841 + 0.998265i \(0.518754\pi\)
\(84\) 1.70545 5.57584i 0.186080 0.608374i
\(85\) 1.00562 + 1.74178i 0.109074 + 0.188922i
\(86\) −0.301568 0.522332i −0.0325190 0.0563245i
\(87\) −2.68805 −0.288189
\(88\) −2.07801 3.59923i −0.221517 0.383679i
\(89\) 7.66299 0.812275 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(90\) −1.16324 −0.122616
\(91\) −9.07171 2.95027i −0.950973 0.309272i
\(92\) 15.3384 1.59914
\(93\) 2.91966 0.302755
\(94\) 0.176501 + 0.305708i 0.0182046 + 0.0315314i
\(95\) 19.2010 1.96999
\(96\) −1.75148 3.03365i −0.178760 0.309621i
\(97\) 1.18601 + 2.05423i 0.120421 + 0.208575i 0.919934 0.392074i \(-0.128242\pi\)
−0.799513 + 0.600649i \(0.794909\pi\)
\(98\) 0.131384 1.87227i 0.0132718 0.189128i
\(99\) −6.68267 −0.671634
\(100\) 1.50642 2.60920i 0.150642 0.260920i
\(101\) 0.398665 + 0.690508i 0.0396686 + 0.0687081i 0.885178 0.465252i \(-0.154036\pi\)
−0.845509 + 0.533961i \(0.820703\pi\)
\(102\) −0.120305 0.208374i −0.0119119 0.0206321i
\(103\) −1.08309 1.87597i −0.106720 0.184844i 0.807720 0.589567i \(-0.200701\pi\)
−0.914440 + 0.404722i \(0.867368\pi\)
\(104\) −3.32160 + 1.84056i −0.325710 + 0.180482i
\(105\) −7.54871 + 1.74178i −0.736678 + 0.169980i
\(106\) 1.24404 2.15474i 0.120832 0.209287i
\(107\) −11.5262 −1.11428 −0.557141 0.830418i \(-0.688102\pi\)
−0.557141 + 0.830418i \(0.688102\pi\)
\(108\) −10.3438 −0.995334
\(109\) −4.03912 + 6.99595i −0.386877 + 0.670091i −0.992028 0.126020i \(-0.959780\pi\)
0.605151 + 0.796111i \(0.293113\pi\)
\(110\) −1.35520 + 2.34727i −0.129213 + 0.223803i
\(111\) 3.86174 + 6.68874i 0.366541 + 0.634867i
\(112\) 6.44775 + 6.91607i 0.609255 + 0.653507i
\(113\) −4.02067 6.96401i −0.378233 0.655119i 0.612572 0.790415i \(-0.290135\pi\)
−0.990805 + 0.135296i \(0.956802\pi\)
\(114\) −2.29707 −0.215141
\(115\) −10.1896 17.6489i −0.950186 1.64577i
\(116\) 2.26719 3.92690i 0.210504 0.364603i
\(117\) −0.107456 + 6.10517i −0.00993431 + 0.564423i
\(118\) 2.40420 0.221325
\(119\) 1.41645 + 1.51933i 0.129845 + 0.139276i
\(120\) −1.54198 + 2.67079i −0.140763 + 0.243808i
\(121\) −2.28546 + 3.95854i −0.207769 + 0.359867i
\(122\) 1.26628 2.19327i 0.114644 0.198569i
\(123\) 2.78605 0.251210
\(124\) −2.46255 + 4.26526i −0.221143 + 0.383032i
\(125\) 8.80581 0.787615
\(126\) −1.17062 + 0.270107i −0.104287 + 0.0240631i
\(127\) −0.894023 + 1.54849i −0.0793317 + 0.137406i −0.902962 0.429721i \(-0.858612\pi\)
0.823630 + 0.567127i \(0.191945\pi\)
\(128\) 7.82550 0.691683
\(129\) −1.28558 + 2.22668i −0.113189 + 0.196049i
\(130\) 2.12263 + 1.27583i 0.186167 + 0.111897i
\(131\) 3.19545 + 5.53469i 0.279188 + 0.483568i 0.971183 0.238334i \(-0.0766014\pi\)
−0.691995 + 0.721902i \(0.743268\pi\)
\(132\) −4.34819 + 7.53129i −0.378461 + 0.655514i
\(133\) 19.3229 4.45855i 1.67551 0.386605i
\(134\) −0.181328 0.314069i −0.0156644 0.0271315i
\(135\) 6.87158 + 11.9019i 0.591412 + 1.02436i
\(136\) 0.826887 0.0709050
\(137\) 10.0365 0.857480 0.428740 0.903428i \(-0.358958\pi\)
0.428740 + 0.903428i \(0.358958\pi\)
\(138\) 1.21901 + 2.11139i 0.103769 + 0.179733i
\(139\) 2.77278 + 4.80260i 0.235184 + 0.407351i 0.959326 0.282300i \(-0.0910972\pi\)
−0.724142 + 0.689651i \(0.757764\pi\)
\(140\) 3.82233 12.4968i 0.323046 1.05617i
\(141\) 0.752416 1.30322i 0.0633648 0.109751i
\(142\) 1.65114 + 2.85985i 0.138560 + 0.239993i
\(143\) 12.1943 + 7.32949i 1.01974 + 0.612922i
\(144\) 3.02619 5.24151i 0.252182 0.436793i
\(145\) −6.02455 −0.500312
\(146\) 0.103039 0.178469i 0.00852759 0.0147702i
\(147\) −7.19217 + 3.50567i −0.593200 + 0.289143i
\(148\) −13.0285 −1.07094
\(149\) −9.23254 + 15.9912i −0.756359 + 1.31005i 0.188337 + 0.982104i \(0.439690\pi\)
−0.944696 + 0.327947i \(0.893643\pi\)
\(150\) 0.478886 0.0391009
\(151\) −0.803678 + 1.39201i −0.0654024 + 0.113280i −0.896872 0.442289i \(-0.854166\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(152\) 3.94710 6.83658i 0.320152 0.554520i
\(153\) 0.664795 1.15146i 0.0537455 0.0930900i
\(154\) −0.818755 + 2.67685i −0.0659771 + 0.215707i
\(155\) 6.54366 0.525600
\(156\) 6.81052 + 4.09353i 0.545278 + 0.327744i
\(157\) 0.822967 1.42542i 0.0656799 0.113761i −0.831315 0.555801i \(-0.812412\pi\)
0.896995 + 0.442040i \(0.145745\pi\)
\(158\) 0.830229 + 1.43800i 0.0660494 + 0.114401i
\(159\) −10.6066 −0.841158
\(160\) −3.92548 6.79913i −0.310337 0.537519i
\(161\) −14.3524 15.3949i −1.13113 1.21329i
\(162\) −0.140949 0.244130i −0.0110740 0.0191807i
\(163\) 3.27409 5.67090i 0.256447 0.444179i −0.708841 0.705369i \(-0.750782\pi\)
0.965287 + 0.261190i \(0.0841148\pi\)
\(164\) −2.34986 + 4.07007i −0.183493 + 0.317819i
\(165\) 11.5543 0.899503
\(166\) 0.287677 0.0223281
\(167\) −4.77440 + 8.26950i −0.369454 + 0.639913i −0.989480 0.144668i \(-0.953789\pi\)
0.620026 + 0.784581i \(0.287122\pi\)
\(168\) −0.931600 + 3.04579i −0.0718745 + 0.234988i
\(169\) 6.89216 11.0226i 0.530166 0.847894i
\(170\) −0.269631 0.467015i −0.0206798 0.0358184i
\(171\) −6.34673 10.9929i −0.485347 0.840646i
\(172\) −2.16860 3.75613i −0.165354 0.286402i
\(173\) −5.56582 + 9.64028i −0.423161 + 0.732937i −0.996247 0.0865588i \(-0.972413\pi\)
0.573085 + 0.819496i \(0.305746\pi\)
\(174\) 0.720733 0.0546386
\(175\) −4.02837 + 0.929502i −0.304516 + 0.0702638i
\(176\) −7.05115 12.2130i −0.531501 0.920586i
\(177\) −5.12451 8.87592i −0.385182 0.667155i
\(178\) −2.05464 −0.154002
\(179\) 6.32173 + 10.9496i 0.472508 + 0.818409i 0.999505 0.0314588i \(-0.0100153\pi\)
−0.526997 + 0.849867i \(0.676682\pi\)
\(180\) −8.36493 −0.623485
\(181\) 14.9158 1.10868 0.554341 0.832289i \(-0.312970\pi\)
0.554341 + 0.832289i \(0.312970\pi\)
\(182\) 2.43235 + 0.791042i 0.180298 + 0.0586359i
\(183\) −10.7963 −0.798082
\(184\) −8.37859 −0.617678
\(185\) 8.65509 + 14.9911i 0.636335 + 1.10216i
\(186\) −0.782836 −0.0574003
\(187\) −1.54900 2.68295i −0.113274 0.196197i
\(188\) 1.26923 + 2.19837i 0.0925680 + 0.160332i
\(189\) 9.67886 + 10.3819i 0.704034 + 0.755170i
\(190\) −5.14829 −0.373496
\(191\) 7.06528 12.2374i 0.511226 0.885469i −0.488690 0.872458i \(-0.662525\pi\)
0.999915 0.0130110i \(-0.00414165\pi\)
\(192\) −3.61529 6.26187i −0.260911 0.451912i
\(193\) −1.94727 3.37277i −0.140167 0.242777i 0.787392 0.616452i \(-0.211431\pi\)
−0.927560 + 0.373675i \(0.878097\pi\)
\(194\) −0.317999 0.550790i −0.0228310 0.0395444i
\(195\) 0.185791 10.5558i 0.0133048 0.755917i
\(196\) 0.944795 13.4637i 0.0674853 0.961689i
\(197\) 5.85445 10.1402i 0.417112 0.722459i −0.578536 0.815657i \(-0.696376\pi\)
0.995648 + 0.0931979i \(0.0297089\pi\)
\(198\) 1.79179 0.127337
\(199\) 3.49684 0.247884 0.123942 0.992289i \(-0.460446\pi\)
0.123942 + 0.992289i \(0.460446\pi\)
\(200\) −0.822878 + 1.42527i −0.0581863 + 0.100782i
\(201\) −0.772995 + 1.33887i −0.0545229 + 0.0944364i
\(202\) −0.106892 0.185143i −0.00752090 0.0130266i
\(203\) −6.06279 + 1.39892i −0.425524 + 0.0981850i
\(204\) −0.865120 1.49843i −0.0605705 0.104911i
\(205\) 6.24421 0.436114
\(206\) 0.290403 + 0.502994i 0.0202334 + 0.0350452i
\(207\) −6.73617 + 11.6674i −0.468196 + 0.810939i
\(208\) −11.2709 + 6.24542i −0.781497 + 0.433042i
\(209\) −29.5764 −2.04584
\(210\) 2.02400 0.467015i 0.139669 0.0322271i
\(211\) −9.50258 + 16.4589i −0.654184 + 1.13308i 0.327913 + 0.944708i \(0.393655\pi\)
−0.982098 + 0.188373i \(0.939679\pi\)
\(212\) 8.94598 15.4949i 0.614412 1.06419i
\(213\) 7.03874 12.1915i 0.482286 0.835345i
\(214\) 3.09047 0.211260
\(215\) −2.88128 + 4.99053i −0.196502 + 0.340351i
\(216\) 5.65029 0.384453
\(217\) 6.58519 1.51946i 0.447032 0.103148i
\(218\) 1.08299 1.87579i 0.0733492 0.127045i
\(219\) −0.878506 −0.0593639
\(220\) −9.74533 + 16.8794i −0.657030 + 1.13801i
\(221\) −2.47600 + 1.37200i −0.166554 + 0.0922906i
\(222\) −1.03543 1.79342i −0.0694936 0.120366i
\(223\) 5.98311 10.3630i 0.400658 0.693961i −0.593147 0.805094i \(-0.702115\pi\)
0.993805 + 0.111133i \(0.0354481\pi\)
\(224\) −5.52918 5.93078i −0.369434 0.396267i
\(225\) 1.32315 + 2.29175i 0.0882097 + 0.152784i
\(226\) 1.07804 + 1.86723i 0.0717104 + 0.124206i
\(227\) 15.3842 1.02108 0.510542 0.859853i \(-0.329445\pi\)
0.510542 + 0.859853i \(0.329445\pi\)
\(228\) −16.5184 −1.09396
\(229\) −4.33084 7.50123i −0.286190 0.495695i 0.686707 0.726934i \(-0.259055\pi\)
−0.972897 + 0.231239i \(0.925722\pi\)
\(230\) 2.73209 + 4.73212i 0.180149 + 0.312027i
\(231\) 11.6277 2.68295i 0.765044 0.176525i
\(232\) −1.23845 + 2.14506i −0.0813082 + 0.140830i
\(233\) −10.1253 17.5376i −0.663333 1.14893i −0.979734 0.200301i \(-0.935808\pi\)
0.316402 0.948625i \(-0.397525\pi\)
\(234\) 0.0288117 1.63695i 0.00188348 0.107011i
\(235\) 1.68634 2.92083i 0.110005 0.190534i
\(236\) 17.2888 1.12540
\(237\) 3.53924 6.13014i 0.229898 0.398195i
\(238\) −0.379785 0.407370i −0.0246178 0.0264059i
\(239\) 16.5526 1.07070 0.535350 0.844630i \(-0.320180\pi\)
0.535350 + 0.844630i \(0.320180\pi\)
\(240\) −5.23227 + 9.06256i −0.337742 + 0.584985i
\(241\) −16.4008 −1.05647 −0.528233 0.849100i \(-0.677145\pi\)
−0.528233 + 0.849100i \(0.677145\pi\)
\(242\) 0.612791 1.06138i 0.0393917 0.0682284i
\(243\) 7.44626 12.8973i 0.477678 0.827362i
\(244\) 9.10595 15.7720i 0.582949 1.00970i
\(245\) −16.1194 + 7.85704i −1.02983 + 0.501968i
\(246\) −0.747011 −0.0476277
\(247\) −0.475582 + 27.0204i −0.0302605 + 1.71927i
\(248\) 1.34516 2.32989i 0.0854178 0.147948i
\(249\) −0.613178 1.06206i −0.0388586 0.0673051i
\(250\) −2.36106 −0.149326
\(251\) 10.2154 + 17.6935i 0.644788 + 1.11681i 0.984350 + 0.176222i \(0.0563876\pi\)
−0.339563 + 0.940583i \(0.610279\pi\)
\(252\) −8.41802 + 1.94236i −0.530285 + 0.122357i
\(253\) 15.6956 + 27.1855i 0.986772 + 1.70914i
\(254\) 0.239710 0.415190i 0.0150407 0.0260513i
\(255\) −1.14943 + 1.99087i −0.0719800 + 0.124673i
\(256\) 10.5536 0.659602
\(257\) 13.7779 0.859442 0.429721 0.902962i \(-0.358612\pi\)
0.429721 + 0.902962i \(0.358612\pi\)
\(258\) 0.344695 0.597030i 0.0214598 0.0371695i
\(259\) 12.1910 + 13.0765i 0.757511 + 0.812532i
\(260\) 15.2640 + 9.17456i 0.946633 + 0.568982i
\(261\) 1.99136 + 3.44914i 0.123262 + 0.213496i
\(262\) −0.856782 1.48399i −0.0529321 0.0916812i
\(263\) −12.9587 22.4451i −0.799065 1.38402i −0.920225 0.391389i \(-0.871995\pi\)
0.121160 0.992633i \(-0.461338\pi\)
\(264\) 2.37519 4.11395i 0.146183 0.253196i
\(265\) −23.7719 −1.46030
\(266\) −5.18096 + 1.19545i −0.317665 + 0.0732977i
\(267\) 4.37943 + 7.58540i 0.268017 + 0.464219i
\(268\) −1.30394 2.25850i −0.0796510 0.137960i
\(269\) −30.0666 −1.83319 −0.916596 0.399814i \(-0.869075\pi\)
−0.916596 + 0.399814i \(0.869075\pi\)
\(270\) −1.84245 3.19121i −0.112128 0.194211i
\(271\) 14.4505 0.877808 0.438904 0.898534i \(-0.355367\pi\)
0.438904 + 0.898534i \(0.355367\pi\)
\(272\) 2.80581 0.170127
\(273\) −2.26412 10.6659i −0.137031 0.645533i
\(274\) −2.69105 −0.162572
\(275\) 6.16598 0.371822
\(276\) 8.76599 + 15.1831i 0.527651 + 0.913918i
\(277\) −15.3255 −0.920819 −0.460409 0.887707i \(-0.652297\pi\)
−0.460409 + 0.887707i \(0.652297\pi\)
\(278\) −0.743453 1.28770i −0.0445894 0.0772310i
\(279\) −2.16295 3.74634i −0.129492 0.224287i
\(280\) −2.08794 + 6.82634i −0.124778 + 0.407952i
\(281\) 5.29279 0.315741 0.157871 0.987460i \(-0.449537\pi\)
0.157871 + 0.987460i \(0.449537\pi\)
\(282\) −0.201742 + 0.349427i −0.0120135 + 0.0208081i
\(283\) 15.3923 + 26.6602i 0.914975 + 1.58478i 0.806938 + 0.590636i \(0.201123\pi\)
0.108036 + 0.994147i \(0.465544\pi\)
\(284\) 11.8734 + 20.5654i 0.704559 + 1.22033i
\(285\) 10.9735 + 19.0066i 0.650013 + 1.12586i
\(286\) −3.26960 1.96522i −0.193335 0.116206i
\(287\) 6.28384 1.44992i 0.370923 0.0855864i
\(288\) −2.59507 + 4.49479i −0.152916 + 0.264858i
\(289\) −16.3836 −0.963742
\(290\) 1.61533 0.0948557
\(291\) −1.35562 + 2.34800i −0.0794677 + 0.137642i
\(292\) 0.740963 1.28339i 0.0433616 0.0751044i
\(293\) 8.75864 + 15.1704i 0.511685 + 0.886265i 0.999908 + 0.0135461i \(0.00431197\pi\)
−0.488223 + 0.872719i \(0.662355\pi\)
\(294\) 1.92840 0.939958i 0.112467 0.0548195i
\(295\) −11.4853 19.8930i −0.668697 1.15822i
\(296\) 7.11681 0.413656
\(297\) −10.5847 18.3332i −0.614184 1.06380i
\(298\) 2.47548 4.28765i 0.143400 0.248377i
\(299\) 25.0886 13.9020i 1.45091 0.803976i
\(300\) 3.44370 0.198822
\(301\) −1.74075 + 5.69124i −0.100335 + 0.328038i
\(302\) 0.215486 0.373233i 0.0123998 0.0214772i
\(303\) −0.455678 + 0.789257i −0.0261780 + 0.0453416i
\(304\) 13.3934 23.1980i 0.768163 1.33050i
\(305\) −24.1970 −1.38551
\(306\) −0.178248 + 0.308735i −0.0101898 + 0.0176492i
\(307\) −8.63573 −0.492867 −0.246434 0.969160i \(-0.579259\pi\)
−0.246434 + 0.969160i \(0.579259\pi\)
\(308\) −5.88773 + 19.2494i −0.335484 + 1.09684i
\(309\) 1.23798 2.14425i 0.0704262 0.121982i
\(310\) −1.75452 −0.0996501
\(311\) 8.21130 14.2224i 0.465620 0.806478i −0.533609 0.845731i \(-0.679165\pi\)
0.999229 + 0.0392535i \(0.0124980\pi\)
\(312\) −3.72023 2.23608i −0.210617 0.126593i
\(313\) −5.02308 8.70024i −0.283921 0.491766i 0.688426 0.725307i \(-0.258302\pi\)
−0.972347 + 0.233541i \(0.924969\pi\)
\(314\) −0.220658 + 0.382191i −0.0124525 + 0.0215683i
\(315\) 7.82719 + 8.39570i 0.441012 + 0.473044i
\(316\) 5.97024 + 10.3408i 0.335852 + 0.581713i
\(317\) −5.07249 8.78581i −0.284899 0.493460i 0.687685 0.726009i \(-0.258627\pi\)
−0.972585 + 0.232549i \(0.925294\pi\)
\(318\) 2.84390 0.159478
\(319\) 9.27992 0.519576
\(320\) −8.10273 14.0343i −0.452957 0.784544i
\(321\) −6.58729 11.4095i −0.367667 0.636817i
\(322\) 3.84824 + 4.12775i 0.214454 + 0.230031i
\(323\) 2.94227 5.09616i 0.163712 0.283558i
\(324\) −1.01357 1.75556i −0.0563095 0.0975310i
\(325\) 0.0991476 5.63312i 0.00549972 0.312469i
\(326\) −0.877867 + 1.52051i −0.0486206 + 0.0842133i
\(327\) −9.23349 −0.510613
\(328\) 1.28360 2.22327i 0.0708751 0.122759i
\(329\) 1.01882 3.33094i 0.0561693 0.183641i
\(330\) −3.09801 −0.170540
\(331\) −1.15958 + 2.00845i −0.0637363 + 0.110395i −0.896133 0.443786i \(-0.853635\pi\)
0.832396 + 0.554181i \(0.186968\pi\)
\(332\) 2.06871 0.113535
\(333\) 5.72172 9.91032i 0.313549 0.543082i
\(334\) 1.28014 2.21726i 0.0700460 0.121323i
\(335\) −1.73247 + 3.00072i −0.0946547 + 0.163947i
\(336\) −3.16112 + 10.3350i −0.172453 + 0.563822i
\(337\) −15.9998 −0.871565 −0.435783 0.900052i \(-0.643528\pi\)
−0.435783 + 0.900052i \(0.643528\pi\)
\(338\) −1.84796 + 2.95544i −0.100516 + 0.160755i
\(339\) 4.59567 7.95993i 0.249602 0.432324i
\(340\) −1.93894 3.35834i −0.105154 0.182132i
\(341\) −10.0795 −0.545837
\(342\) 1.70172 + 2.94747i 0.0920185 + 0.159381i
\(343\) −14.3972 + 11.6499i −0.777378 + 0.629034i
\(344\) 1.18459 + 2.05178i 0.0638690 + 0.110624i
\(345\) 11.6468 20.1729i 0.627043 1.08607i
\(346\) 1.49234 2.58480i 0.0802285 0.138960i
\(347\) −22.8208 −1.22509 −0.612543 0.790437i \(-0.709853\pi\)
−0.612543 + 0.790437i \(0.709853\pi\)
\(348\) 5.18285 0.277830
\(349\) 11.3511 19.6607i 0.607612 1.05241i −0.384021 0.923324i \(-0.625461\pi\)
0.991633 0.129090i \(-0.0412056\pi\)
\(350\) 1.08011 0.249223i 0.0577342 0.0133215i
\(351\) −16.9190 + 9.37515i −0.903071 + 0.500408i
\(352\) 6.04662 + 10.4731i 0.322286 + 0.558216i
\(353\) 13.6322 + 23.6116i 0.725568 + 1.25672i 0.958740 + 0.284286i \(0.0917564\pi\)
−0.233171 + 0.972436i \(0.574910\pi\)
\(354\) 1.37401 + 2.37986i 0.0730279 + 0.126488i
\(355\) 15.7755 27.3239i 0.837276 1.45020i
\(356\) −14.7751 −0.783077
\(357\) −0.694438 + 2.27041i −0.0367535 + 0.120163i
\(358\) −1.69502 2.93585i −0.0895844 0.155165i
\(359\) 7.21309 + 12.4934i 0.380692 + 0.659378i 0.991161 0.132662i \(-0.0423524\pi\)
−0.610469 + 0.792040i \(0.709019\pi\)
\(360\) 4.56932 0.240824
\(361\) −18.5895 32.1980i −0.978397 1.69463i
\(362\) −3.99930 −0.210199
\(363\) −5.22461 −0.274221
\(364\) 17.4912 + 5.68844i 0.916790 + 0.298155i
\(365\) −1.96894 −0.103059
\(366\) 2.89475 0.151311
\(367\) 5.69586 + 9.86553i 0.297322 + 0.514976i 0.975522 0.219901i \(-0.0705733\pi\)
−0.678201 + 0.734877i \(0.737240\pi\)
\(368\) −28.4304 −1.48204
\(369\) −2.06397 3.57489i −0.107446 0.186102i
\(370\) −2.32065 4.01948i −0.120645 0.208963i
\(371\) −23.9228 + 5.51991i −1.24201 + 0.286580i
\(372\) −5.62943 −0.291872
\(373\) 15.4815 26.8147i 0.801599 1.38841i −0.116964 0.993136i \(-0.537316\pi\)
0.918563 0.395274i \(-0.129351\pi\)
\(374\) 0.415327 + 0.719367i 0.0214760 + 0.0371976i
\(375\) 5.03256 + 8.71665i 0.259880 + 0.450126i
\(376\) −0.693313 1.20085i −0.0357549 0.0619293i
\(377\) 0.149219 8.47796i 0.00768518 0.436637i
\(378\) −2.59515 2.78364i −0.133480 0.143175i
\(379\) −5.29330 + 9.16826i −0.271898 + 0.470942i −0.969348 0.245692i \(-0.920985\pi\)
0.697450 + 0.716634i \(0.254318\pi\)
\(380\) −37.0217 −1.89917
\(381\) −2.04375 −0.104705
\(382\) −1.89438 + 3.28116i −0.0969249 + 0.167879i
\(383\) −15.3758 + 26.6317i −0.785668 + 1.36082i 0.142931 + 0.989733i \(0.454347\pi\)
−0.928599 + 0.371084i \(0.878986\pi\)
\(384\) 4.47231 + 7.74627i 0.228227 + 0.395300i
\(385\) 26.0603 6.01313i 1.32816 0.306458i
\(386\) 0.522112 + 0.904324i 0.0265748 + 0.0460289i
\(387\) 3.80953 0.193649
\(388\) −2.28675 3.96077i −0.116092 0.201078i
\(389\) 8.18978 14.1851i 0.415239 0.719214i −0.580215 0.814463i \(-0.697031\pi\)
0.995453 + 0.0952492i \(0.0303648\pi\)
\(390\) −0.0498153 + 2.83028i −0.00252249 + 0.143317i
\(391\) −6.24561 −0.315854
\(392\) −0.516092 + 7.35449i −0.0260666 + 0.371458i
\(393\) −3.65243 + 6.32620i −0.184241 + 0.319114i
\(394\) −1.56972 + 2.71884i −0.0790816 + 0.136973i
\(395\) 7.93227 13.7391i 0.399116 0.691289i
\(396\) 12.8849 0.647492
\(397\) 7.94133 13.7548i 0.398564 0.690333i −0.594985 0.803737i \(-0.702842\pi\)
0.993549 + 0.113404i \(0.0361755\pi\)
\(398\) −0.937591 −0.0469972
\(399\) 15.4565 + 16.5792i 0.773795 + 0.829997i
\(400\) −2.79221 + 4.83624i −0.139610 + 0.241812i
\(401\) 6.63573 0.331373 0.165686 0.986178i \(-0.447016\pi\)
0.165686 + 0.986178i \(0.447016\pi\)
\(402\) 0.207259 0.358984i 0.0103372 0.0179045i
\(403\) −0.162077 + 9.20847i −0.00807362 + 0.458707i
\(404\) −0.768670 1.33137i −0.0382427 0.0662384i
\(405\) −1.34667 + 2.33250i −0.0669164 + 0.115903i
\(406\) 1.62559 0.375086i 0.0806765 0.0186152i
\(407\) −13.3319 23.0915i −0.660836 1.14460i
\(408\) 0.472570 + 0.818515i 0.0233957 + 0.0405225i
\(409\) 5.87235 0.290369 0.145184 0.989405i \(-0.453622\pi\)
0.145184 + 0.989405i \(0.453622\pi\)
\(410\) −1.67423 −0.0826843
\(411\) 5.73593 + 9.93492i 0.282933 + 0.490053i
\(412\) 2.08831 + 3.61707i 0.102884 + 0.178200i
\(413\) −16.1774 17.3524i −0.796037 0.853855i
\(414\) 1.80614 3.12832i 0.0887667 0.153749i
\(415\) −1.37428 2.38032i −0.0674607 0.116845i
\(416\) 9.66521 5.35567i 0.473876 0.262584i
\(417\) −3.16932 + 5.48942i −0.155202 + 0.268818i
\(418\) 7.93017 0.387877
\(419\) 15.0712 26.1040i 0.736274 1.27526i −0.217888 0.975974i \(-0.569917\pi\)
0.954162 0.299290i \(-0.0967499\pi\)
\(420\) 14.5547 3.35834i 0.710198 0.163870i
\(421\) 40.0580 1.95231 0.976153 0.217083i \(-0.0696543\pi\)
0.976153 + 0.217083i \(0.0696543\pi\)
\(422\) 2.54788 4.41306i 0.124029 0.214824i
\(423\) −2.22962 −0.108408
\(424\) −4.88672 + 8.46405i −0.237320 + 0.411051i
\(425\) −0.613394 + 1.06243i −0.0297540 + 0.0515354i
\(426\) −1.88726 + 3.26884i −0.0914382 + 0.158376i
\(427\) −24.3506 + 5.61862i −1.17841 + 0.271904i
\(428\) 22.2238 1.07423
\(429\) −0.286184 + 16.2597i −0.0138171 + 0.785024i
\(430\) 0.772544 1.33809i 0.0372554 0.0645282i
\(431\) 1.95793 + 3.39124i 0.0943104 + 0.163350i 0.909321 0.416096i \(-0.136602\pi\)
−0.815010 + 0.579447i \(0.803269\pi\)
\(432\) 19.1726 0.922445
\(433\) 20.3963 + 35.3274i 0.980182 + 1.69772i 0.661650 + 0.749813i \(0.269856\pi\)
0.318532 + 0.947912i \(0.396810\pi\)
\(434\) −1.76566 + 0.407405i −0.0847542 + 0.0195561i
\(435\) −3.44306 5.96355i −0.165082 0.285930i
\(436\) 7.78785 13.4890i 0.372971 0.646004i
\(437\) −29.8131 + 51.6378i −1.42615 + 2.47017i
\(438\) 0.235549 0.0112550
\(439\) −25.5623 −1.22002 −0.610010 0.792394i \(-0.708835\pi\)
−0.610010 + 0.792394i \(0.708835\pi\)
\(440\) 5.32336 9.22033i 0.253781 0.439562i
\(441\) 9.82637 + 6.63149i 0.467923 + 0.315785i
\(442\) 0.663878 0.367867i 0.0315775 0.0174977i
\(443\) 13.7282 + 23.7779i 0.652247 + 1.12972i 0.982576 + 0.185859i \(0.0595067\pi\)
−0.330330 + 0.943866i \(0.607160\pi\)
\(444\) −7.44586 12.8966i −0.353365 0.612046i
\(445\) 9.81535 + 17.0007i 0.465292 + 0.805910i
\(446\) −1.60422 + 2.77859i −0.0759621 + 0.131570i
\(447\) −21.1057 −0.998267
\(448\) −11.4130 12.2419i −0.539213 0.578377i
\(449\) 7.40181 + 12.8203i 0.349313 + 0.605028i 0.986128 0.165989i \(-0.0530816\pi\)
−0.636815 + 0.771017i \(0.719748\pi\)
\(450\) −0.354769 0.614477i −0.0167240 0.0289667i
\(451\) −9.61827 −0.452907
\(452\) 7.75230 + 13.4274i 0.364637 + 0.631571i
\(453\) −1.83722 −0.0863203
\(454\) −4.12489 −0.193590
\(455\) −5.07444 23.9049i −0.237893 1.12068i
\(456\) 9.02315 0.422548
\(457\) −0.651951 −0.0304970 −0.0152485 0.999884i \(-0.504854\pi\)
−0.0152485 + 0.999884i \(0.504854\pi\)
\(458\) 1.16121 + 2.01127i 0.0542596 + 0.0939805i
\(459\) 4.21186 0.196593
\(460\) 19.6467 + 34.0290i 0.916031 + 1.58661i
\(461\) −6.24774 10.8214i −0.290986 0.504003i 0.683057 0.730365i \(-0.260650\pi\)
−0.974043 + 0.226362i \(0.927317\pi\)
\(462\) −3.11767 + 0.719367i −0.145047 + 0.0334680i
\(463\) −0.309503 −0.0143838 −0.00719190 0.999974i \(-0.502289\pi\)
−0.00719190 + 0.999974i \(0.502289\pi\)
\(464\) −4.20233 + 7.27865i −0.195088 + 0.337903i
\(465\) 3.73973 + 6.47741i 0.173426 + 0.300382i
\(466\) 2.71486 + 4.70227i 0.125763 + 0.217829i
\(467\) −12.2387 21.1980i −0.566338 0.980926i −0.996924 0.0783762i \(-0.975026\pi\)
0.430586 0.902549i \(-0.358307\pi\)
\(468\) 0.207187 11.7714i 0.00957722 0.544134i
\(469\) −1.04668 + 3.42205i −0.0483314 + 0.158016i
\(470\) −0.452151 + 0.783149i −0.0208562 + 0.0361240i
\(471\) 1.88132 0.0866865
\(472\) −9.44396 −0.434694
\(473\) 4.43818 7.68716i 0.204068 0.353456i
\(474\) −0.948959 + 1.64364i −0.0435871 + 0.0754951i
\(475\) 5.85601 + 10.1429i 0.268692 + 0.465389i
\(476\) −2.73106 2.92943i −0.125178 0.134270i
\(477\) 7.85759 + 13.6097i 0.359774 + 0.623147i
\(478\) −4.43817 −0.202997
\(479\) −4.06925 7.04815i −0.185929 0.322038i 0.757960 0.652301i \(-0.226196\pi\)
−0.943889 + 0.330262i \(0.892863\pi\)
\(480\) 4.48686 7.77147i 0.204796 0.354718i
\(481\) −21.3103 + 11.8084i −0.971667 + 0.538419i
\(482\) 4.39746 0.200299
\(483\) 7.03653 23.0053i 0.320173 1.04678i
\(484\) 4.40662 7.63250i 0.200301 0.346932i
\(485\) −3.03826 + 5.26243i −0.137960 + 0.238954i
\(486\) −1.99653 + 3.45809i −0.0905645 + 0.156862i
\(487\) 4.60960 0.208881 0.104440 0.994531i \(-0.466695\pi\)
0.104440 + 0.994531i \(0.466695\pi\)
\(488\) −4.97410 + 8.61540i −0.225167 + 0.390001i
\(489\) 7.48464 0.338467
\(490\) 4.32201 2.10667i 0.195248 0.0951696i
\(491\) −6.50947 + 11.2747i −0.293768 + 0.508822i −0.974698 0.223527i \(-0.928243\pi\)
0.680929 + 0.732349i \(0.261576\pi\)
\(492\) −5.37181 −0.242180
\(493\) −0.923171 + 1.59898i −0.0415775 + 0.0720144i
\(494\) 0.127515 7.24485i 0.00573719 0.325961i
\(495\) −8.55969 14.8258i −0.384729 0.666371i
\(496\) 4.56443 7.90582i 0.204949 0.354982i
\(497\) 9.53090 31.1605i 0.427519 1.39774i
\(498\) 0.164409 + 0.284764i 0.00736733 + 0.0127606i
\(499\) 16.1603 + 27.9905i 0.723436 + 1.25303i 0.959614 + 0.281319i \(0.0907717\pi\)
−0.236178 + 0.971710i \(0.575895\pi\)
\(500\) −16.9786 −0.759304
\(501\) −10.9144 −0.487618
\(502\) −2.73900 4.74408i −0.122247 0.211739i
\(503\) 15.9126 + 27.5615i 0.709509 + 1.22891i 0.965039 + 0.262105i \(0.0844165\pi\)
−0.255531 + 0.966801i \(0.582250\pi\)
\(504\) 4.59832 1.06101i 0.204826 0.0472612i
\(505\) −1.02128 + 1.76891i −0.0454465 + 0.0787156i
\(506\) −4.20838 7.28912i −0.187085 0.324041i
\(507\) 14.8499 + 0.522904i 0.659508 + 0.0232230i
\(508\) 1.72377 2.98566i 0.0764801 0.132467i
\(509\) 2.25575 0.0999845 0.0499922 0.998750i \(-0.484080\pi\)
0.0499922 + 0.998750i \(0.484080\pi\)
\(510\) 0.308191 0.533802i 0.0136469 0.0236372i
\(511\) −1.98144 + 0.457194i −0.0876536 + 0.0202251i
\(512\) −18.4807 −0.816739
\(513\) 20.1051 34.8231i 0.887663 1.53748i
\(514\) −3.69420 −0.162944
\(515\) 2.77461 4.80576i 0.122264 0.211767i
\(516\) 2.47873 4.29329i 0.109120 0.189001i
\(517\) −2.59756 + 4.49911i −0.114241 + 0.197870i
\(518\) −3.26871 3.50613i −0.143619 0.154050i
\(519\) −12.7236 −0.558502
\(520\) −8.33793 5.01158i −0.365642 0.219773i
\(521\) −5.38562 + 9.32817i −0.235948 + 0.408675i −0.959548 0.281546i \(-0.909153\pi\)
0.723600 + 0.690220i \(0.242486\pi\)
\(522\) −0.533934 0.924801i −0.0233697 0.0404775i
\(523\) 7.40793 0.323926 0.161963 0.986797i \(-0.448217\pi\)
0.161963 + 0.986797i \(0.448217\pi\)
\(524\) −6.16118 10.6715i −0.269152 0.466186i
\(525\) −3.22232 3.45637i −0.140634 0.150848i
\(526\) 3.47454 + 6.01809i 0.151497 + 0.262401i
\(527\) 1.00272 1.73676i 0.0436790 0.0756543i
\(528\) 8.05953 13.9595i 0.350746 0.607510i
\(529\) 40.2848 1.75151
\(530\) 6.37385 0.276862
\(531\) −7.59270 + 13.1509i −0.329495 + 0.570702i
\(532\) −37.2567 + 8.59656i −1.61528 + 0.372708i
\(533\) −0.154660 + 8.78707i −0.00669906 + 0.380610i
\(534\) −1.17424 2.03384i −0.0508142 0.0880127i
\(535\) −14.7637 25.5715i −0.638290 1.10555i
\(536\) 0.712276 + 1.23370i 0.0307656 + 0.0532876i
\(537\) −7.22580 + 12.5154i −0.311816 + 0.540081i
\(538\) 8.06161 0.347561
\(539\) 24.8295 12.1026i 1.06948 0.521296i
\(540\) −13.2492 22.9482i −0.570153 0.987534i
\(541\) −16.2741 28.1875i −0.699676 1.21188i −0.968579 0.248708i \(-0.919994\pi\)
0.268902 0.963168i \(-0.413339\pi\)
\(542\) −3.87455 −0.166426
\(543\) 8.52445 + 14.7648i 0.365819 + 0.633617i
\(544\) −2.40608 −0.103160
\(545\) −20.6944 −0.886453
\(546\) 0.607069 + 2.85981i 0.0259801 + 0.122389i
\(547\) −13.4997 −0.577206 −0.288603 0.957449i \(-0.593191\pi\)
−0.288603 + 0.957449i \(0.593191\pi\)
\(548\) −19.3515 −0.826657
\(549\) 7.99810 + 13.8531i 0.341350 + 0.591236i
\(550\) −1.65325 −0.0704950
\(551\) 8.81342 + 15.2653i 0.375464 + 0.650323i
\(552\) −4.78840 8.29376i −0.203808 0.353006i
\(553\) 4.79235 15.6682i 0.203792 0.666280i
\(554\) 4.10915 0.174581
\(555\) −9.89284 + 17.1349i −0.419928 + 0.727336i
\(556\) −5.34623 9.25994i −0.226731 0.392709i
\(557\) 14.8851 + 25.7818i 0.630703 + 1.09241i 0.987408 + 0.158193i \(0.0505668\pi\)
−0.356705 + 0.934217i \(0.616100\pi\)
\(558\) 0.579941 + 1.00449i 0.0245509 + 0.0425233i
\(559\) −6.95148 4.17825i −0.294016 0.176721i
\(560\) −7.08483 + 23.1632i −0.299389 + 0.978826i
\(561\) 1.77052 3.06664i 0.0747516 0.129474i
\(562\) −1.41913 −0.0598624
\(563\) 14.1326 0.595617 0.297809 0.954626i \(-0.403744\pi\)
0.297809 + 0.954626i \(0.403744\pi\)
\(564\) −1.45074 + 2.51275i −0.0610872 + 0.105806i
\(565\) 10.3000 17.8401i 0.433324 0.750538i
\(566\) −4.12705 7.14826i −0.173473 0.300464i
\(567\) −0.813601 + 2.66000i −0.0341680 + 0.111710i
\(568\) −6.48584 11.2338i −0.272140 0.471360i
\(569\) −24.2540 −1.01678 −0.508391 0.861127i \(-0.669759\pi\)
−0.508391 + 0.861127i \(0.669759\pi\)
\(570\) −2.94227 5.09616i −0.123238 0.213455i
\(571\) −0.604159 + 1.04643i −0.0252832 + 0.0437919i −0.878390 0.477944i \(-0.841382\pi\)
0.853107 + 0.521736i \(0.174715\pi\)
\(572\) −23.5119 14.1320i −0.983083 0.590891i
\(573\) 16.1514 0.674732
\(574\) −1.68486 + 0.388761i −0.0703245 + 0.0162266i
\(575\) 6.21533 10.7653i 0.259197 0.448943i
\(576\) −5.35657 + 9.27786i −0.223191 + 0.386577i
\(577\) 7.30518 12.6529i 0.304119 0.526749i −0.672946 0.739692i \(-0.734971\pi\)
0.977065 + 0.212943i \(0.0683047\pi\)
\(578\) 4.39286 0.182719
\(579\) 2.22575 3.85510i 0.0924988 0.160213i
\(580\) 11.6160 0.482328
\(581\) −1.93572 2.07632i −0.0803072 0.0861401i
\(582\) 0.363475 0.629558i 0.0150665 0.0260960i
\(583\) 36.6171 1.51652
\(584\) −0.404749 + 0.701046i −0.0167486 + 0.0290095i
\(585\) −13.6822 + 7.58157i −0.565690 + 0.313459i
\(586\) −2.34841 4.06757i −0.0970120 0.168030i
\(587\) −10.7548 + 18.6278i −0.443897 + 0.768852i −0.997975 0.0636132i \(-0.979738\pi\)
0.554078 + 0.832465i \(0.313071\pi\)
\(588\) 13.8673 6.75931i 0.571877 0.278749i
\(589\) −9.57284 16.5806i −0.394442 0.683193i
\(590\) 3.07949 + 5.33383i 0.126780 + 0.219590i
\(591\) 13.3834 0.550518
\(592\) 24.1489 0.992512
\(593\) 1.32429 + 2.29373i 0.0543820 + 0.0941923i 0.891935 0.452164i \(-0.149348\pi\)
−0.837553 + 0.546356i \(0.816014\pi\)
\(594\) 2.83801 + 4.91558i 0.116445 + 0.201689i
\(595\) −1.55640 + 5.08852i −0.0638062 + 0.208609i
\(596\) 17.8013 30.8328i 0.729171 1.26296i
\(597\) 1.99846 + 3.46143i 0.0817915 + 0.141667i
\(598\) −6.72688 + 3.72749i −0.275082 + 0.152428i
\(599\) 20.1250 34.8576i 0.822287 1.42424i −0.0816889 0.996658i \(-0.526031\pi\)
0.903975 0.427584i \(-0.140635\pi\)
\(600\) −1.88112 −0.0767962
\(601\) −19.1725 + 33.2077i −0.782061 + 1.35457i 0.148679 + 0.988886i \(0.452498\pi\)
−0.930739 + 0.365683i \(0.880835\pi\)
\(602\) 0.466740 1.52597i 0.0190229 0.0621937i
\(603\) 2.29060 0.0932806
\(604\) 1.54958 2.68395i 0.0630515 0.109208i
\(605\) −11.7096 −0.476063
\(606\) 0.122179 0.211620i 0.00496317 0.00859646i
\(607\) −21.2773 + 36.8534i −0.863620 + 1.49583i 0.00479063 + 0.999989i \(0.498475\pi\)
−0.868411 + 0.495845i \(0.834858\pi\)
\(608\) −11.4853 + 19.8931i −0.465791 + 0.806773i
\(609\) −4.84967 5.20191i −0.196518 0.210792i
\(610\) 6.48782 0.262684
\(611\) 4.06853 + 2.44543i 0.164595 + 0.0989314i
\(612\) −1.28180 + 2.22014i −0.0518136 + 0.0897438i
\(613\) −7.63261 13.2201i −0.308278 0.533953i 0.669708 0.742625i \(-0.266419\pi\)
−0.977986 + 0.208672i \(0.933086\pi\)
\(614\) 2.31546 0.0934442
\(615\) 3.56859 + 6.18098i 0.143899 + 0.249241i
\(616\) 3.21616 10.5150i 0.129583 0.423660i
\(617\) −6.99061 12.1081i −0.281431 0.487453i 0.690306 0.723517i \(-0.257476\pi\)
−0.971737 + 0.236064i \(0.924142\pi\)
\(618\) −0.331934 + 0.574926i −0.0133523 + 0.0231269i
\(619\) 4.25792 7.37494i 0.171140 0.296424i −0.767678 0.640835i \(-0.778588\pi\)
0.938819 + 0.344411i \(0.111921\pi\)
\(620\) −12.6169 −0.506707
\(621\) −42.6775 −1.71259
\(622\) −2.20166 + 3.81338i −0.0882784 + 0.152903i
\(623\) 13.8253 + 14.8294i 0.553897 + 0.594129i
\(624\) −12.6236 7.58750i −0.505347 0.303743i
\(625\) 15.1856 + 26.3023i 0.607425 + 1.05209i
\(626\) 1.34682 + 2.33275i 0.0538296 + 0.0932356i
\(627\) −16.9030 29.2769i −0.675042 1.16921i
\(628\) −1.58677 + 2.74837i −0.0633190 + 0.109672i
\(629\) 5.30504 0.211526
\(630\) −2.09867 2.25110i −0.0836129 0.0896859i
\(631\) −18.4146 31.8950i −0.733074 1.26972i −0.955563 0.294786i \(-0.904752\pi\)
0.222490 0.974935i \(-0.428582\pi\)
\(632\) −3.26123 5.64861i −0.129725 0.224690i
\(633\) −21.7231 −0.863414
\(634\) 1.36006 + 2.35570i 0.0540150 + 0.0935567i
\(635\) −4.58053 −0.181773
\(636\) 20.4507 0.810922
\(637\) −10.6574 22.8783i −0.422263 0.906473i
\(638\) −2.48818 −0.0985081
\(639\) −20.8578 −0.825121
\(640\) 10.0235 + 17.3612i 0.396214 + 0.686263i
\(641\) 25.8747 1.02199 0.510996 0.859583i \(-0.329277\pi\)
0.510996 + 0.859583i \(0.329277\pi\)
\(642\) 1.76622 + 3.05918i 0.0697071 + 0.120736i
\(643\) −20.2626 35.0958i −0.799078 1.38404i −0.920217 0.391408i \(-0.871988\pi\)
0.121139 0.992636i \(-0.461345\pi\)
\(644\) 27.6730 + 29.6830i 1.09047 + 1.16967i
\(645\) −6.58666 −0.259350
\(646\) −0.788896 + 1.36641i −0.0310387 + 0.0537606i
\(647\) −0.892002 1.54499i −0.0350682 0.0607399i 0.847959 0.530062i \(-0.177832\pi\)
−0.883027 + 0.469322i \(0.844498\pi\)
\(648\) 0.553661 + 0.958969i 0.0217499 + 0.0376719i
\(649\) 17.6913 + 30.6423i 0.694445 + 1.20281i
\(650\) −0.0265840 + 1.51038i −0.00104271 + 0.0592420i
\(651\) 5.26754 + 5.65014i 0.206451 + 0.221446i
\(652\) −6.31281 + 10.9341i −0.247229 + 0.428213i
\(653\) 12.4042 0.485414 0.242707 0.970100i \(-0.421965\pi\)
0.242707 + 0.970100i \(0.421965\pi\)
\(654\) 2.47573 0.0968088
\(655\) −8.18597 + 14.1785i −0.319852 + 0.554000i
\(656\) 4.35554 7.54402i 0.170055 0.294545i
\(657\) 0.650815 + 1.12725i 0.0253907 + 0.0439780i
\(658\) −0.273171 + 0.893110i −0.0106493 + 0.0348171i
\(659\) 0.564336 + 0.977458i 0.0219834 + 0.0380764i 0.876808 0.480841i \(-0.159669\pi\)
−0.854824 + 0.518917i \(0.826335\pi\)
\(660\) −22.2780 −0.867170
\(661\) 14.4627 + 25.0502i 0.562534 + 0.974338i 0.997274 + 0.0737821i \(0.0235069\pi\)
−0.434740 + 0.900556i \(0.643160\pi\)
\(662\) 0.310913 0.538517i 0.0120840 0.0209301i
\(663\) −2.77315 1.66683i −0.107700 0.0647342i
\(664\) −1.13003 −0.0438535
\(665\) 34.6418 + 37.1579i 1.34335 + 1.44092i
\(666\) −1.53414 + 2.65721i −0.0594467 + 0.102965i
\(667\) 9.35421 16.2020i 0.362196 0.627342i
\(668\) 9.20556 15.9445i 0.356174 0.616911i
\(669\) 13.6775 0.528802
\(670\) 0.464518 0.804568i 0.0179459 0.0310832i
\(671\) 37.2718 1.43886
\(672\) 2.71078 8.86266i 0.104571 0.341885i
\(673\) 3.54980 6.14843i 0.136835 0.237005i −0.789462 0.613799i \(-0.789640\pi\)
0.926297 + 0.376795i \(0.122974\pi\)
\(674\) 4.28995 0.165243
\(675\) −4.19145 + 7.25980i −0.161329 + 0.279430i
\(676\) −13.2888 + 21.2528i −0.511109 + 0.817416i
\(677\) 25.2010 + 43.6494i 0.968552 + 1.67758i 0.699752 + 0.714386i \(0.253294\pi\)
0.268800 + 0.963196i \(0.413373\pi\)
\(678\) −1.23221 + 2.13426i −0.0473229 + 0.0819657i
\(679\) −1.83559 + 6.00132i −0.0704436 + 0.230310i
\(680\) 1.05914 + 1.83449i 0.0406162 + 0.0703493i
\(681\) 8.79213 + 15.2284i 0.336915 + 0.583554i
\(682\) 2.70258 0.103487
\(683\) 27.5282 1.05334 0.526669 0.850070i \(-0.323441\pi\)
0.526669 + 0.850070i \(0.323441\pi\)
\(684\) 12.2372 + 21.1954i 0.467901 + 0.810428i
\(685\) 12.8556 + 22.2665i 0.491186 + 0.850760i
\(686\) 3.86026 3.12362i 0.147386 0.119261i
\(687\) 4.95019 8.57398i 0.188861 0.327118i
\(688\) 4.01958 + 6.96212i 0.153245 + 0.265428i
\(689\) 0.588795 33.4527i 0.0224313 1.27445i
\(690\) −3.12280 + 5.40885i −0.118883 + 0.205912i
\(691\) −24.3338 −0.925702 −0.462851 0.886436i \(-0.653174\pi\)
−0.462851 + 0.886436i \(0.653174\pi\)
\(692\) 10.7315 18.5875i 0.407950 0.706591i
\(693\) −12.0566 12.9323i −0.457993 0.491258i
\(694\) 6.11884 0.232268
\(695\) −7.10319 + 12.3031i −0.269439 + 0.466683i
\(696\) −2.83112 −0.107313
\(697\) 0.956829 1.65728i 0.0362425 0.0627738i
\(698\) −3.04352 + 5.27153i −0.115199 + 0.199531i
\(699\) 11.5733 20.0456i 0.437744 0.758195i
\(700\) 7.76714 1.79218i 0.293570 0.0677381i
\(701\) −20.5588 −0.776495 −0.388248 0.921555i \(-0.626919\pi\)
−0.388248 + 0.921555i \(0.626919\pi\)
\(702\) 4.53642 2.51371i 0.171216 0.0948740i
\(703\) 25.3234 43.8613i 0.955088 1.65426i
\(704\) 12.4811 + 21.6178i 0.470397 + 0.814752i
\(705\) 3.85501 0.145188
\(706\) −3.65513 6.33088i −0.137563 0.238266i
\(707\) −0.617017 + 2.01728i −0.0232053 + 0.0758678i
\(708\) 9.88062 + 17.1137i 0.371336 + 0.643174i
\(709\) −20.4544 + 35.4281i −0.768183 + 1.33053i 0.170364 + 0.985381i \(0.445506\pi\)
−0.938547 + 0.345151i \(0.887828\pi\)
\(710\) −4.22981 + 7.32624i −0.158742 + 0.274949i
\(711\) −10.4878 −0.393322
\(712\) 8.07085 0.302468
\(713\) −10.1602 + 17.5980i −0.380503 + 0.659051i
\(714\) 0.186196 0.608753i 0.00696822 0.0227820i
\(715\) −0.641405 + 36.4418i −0.0239872 + 1.36284i
\(716\) −12.1890 21.1119i −0.455524 0.788990i
\(717\) 9.45989 + 16.3850i 0.353286 + 0.611910i
\(718\) −1.93401 3.34981i −0.0721767 0.125014i
\(719\) 0.599734 1.03877i 0.0223663 0.0387396i −0.854626 0.519245i \(-0.826213\pi\)
0.876992 + 0.480505i \(0.159547\pi\)
\(720\) 15.5047 0.577826
\(721\) 1.67630 5.48054i 0.0624289 0.204106i
\(722\) 4.98433 + 8.63311i 0.185497 + 0.321291i
\(723\) −9.37311 16.2347i −0.348590 0.603775i
\(724\) −28.7593 −1.06883
\(725\) −1.83739 3.18246i −0.0682390 0.118193i
\(726\) 1.40085 0.0519904
\(727\) −2.06230 −0.0764865 −0.0382433 0.999268i \(-0.512176\pi\)
−0.0382433 + 0.999268i \(0.512176\pi\)
\(728\) −9.55455 3.10730i −0.354115 0.115164i
\(729\) 20.1764 0.747273
\(730\) 0.527922 0.0195393
\(731\) 0.883025 + 1.52944i 0.0326599 + 0.0565685i
\(732\) 20.8164 0.769395
\(733\) −15.0310 26.0345i −0.555184 0.961606i −0.997889 0.0649392i \(-0.979315\pi\)
0.442706 0.896667i \(-0.354019\pi\)
\(734\) −1.52720 2.64520i −0.0563702 0.0976360i
\(735\) −16.9898 11.4658i −0.626677 0.422923i
\(736\) 24.3801 0.898662
\(737\) 2.66861 4.62216i 0.0982993 0.170259i
\(738\) 0.553401 + 0.958519i 0.0203710 + 0.0352836i
\(739\) −22.1274 38.3257i −0.813969 1.40984i −0.910066 0.414464i \(-0.863969\pi\)
0.0960970 0.995372i \(-0.469364\pi\)
\(740\) −16.6880 28.9044i −0.613461 1.06255i
\(741\) −27.0186 + 14.9715i −0.992553 + 0.549992i
\(742\) 6.41430 1.48003i 0.235476 0.0543335i
\(743\) 4.31326 7.47078i 0.158238 0.274076i −0.775995 0.630739i \(-0.782752\pi\)
0.934233 + 0.356662i \(0.116085\pi\)
\(744\) 3.07506 0.112737
\(745\) −47.3030 −1.73305
\(746\) −4.15097 + 7.18969i −0.151978 + 0.263233i
\(747\) −0.908511 + 1.57359i −0.0332407 + 0.0575746i
\(748\) 2.98665 + 5.17302i 0.109203 + 0.189144i
\(749\) −20.7952 22.3056i −0.759839 0.815028i
\(750\) −1.34936 2.33715i −0.0492715 0.0853408i
\(751\) 5.72211 0.208803 0.104401 0.994535i \(-0.466707\pi\)
0.104401 + 0.994535i \(0.466707\pi\)
\(752\) −2.35256 4.07476i −0.0857891 0.148591i
\(753\) −11.6763 + 20.2239i −0.425506 + 0.736998i
\(754\) −0.0400094 + 2.27316i −0.00145706 + 0.0827835i
\(755\) −4.11765 −0.149857
\(756\) −18.6619 20.0174i −0.678727 0.728025i
\(757\) 17.3611 30.0703i 0.631000 1.09292i −0.356347 0.934354i \(-0.615978\pi\)
0.987348 0.158571i \(-0.0506887\pi\)
\(758\) 1.41927 2.45824i 0.0515501 0.0892873i
\(759\) −17.9402 + 31.0733i −0.651187 + 1.12789i
\(760\) 20.2230 0.733566
\(761\) 26.5867 46.0496i 0.963768 1.66930i 0.250880 0.968018i \(-0.419280\pi\)
0.712888 0.701278i \(-0.247387\pi\)
\(762\) 0.547981 0.0198513
\(763\) −20.8258 + 4.80532i −0.753944 + 0.173964i
\(764\) −13.6226 + 23.5951i −0.492849 + 0.853640i
\(765\) 3.40609 0.123147
\(766\) 4.12265 7.14063i 0.148957 0.258002i
\(767\) 28.2787 15.6697i 1.02108 0.565801i
\(768\) 6.03145 + 10.4468i 0.217641 + 0.376966i
\(769\) −2.45578 + 4.25354i −0.0885578 + 0.153387i −0.906902 0.421342i \(-0.861559\pi\)
0.818344 + 0.574729i \(0.194892\pi\)
\(770\) −6.98744 + 1.61227i −0.251810 + 0.0581023i
\(771\) 7.87414 + 13.6384i 0.283580 + 0.491175i
\(772\) 3.75455 + 6.50306i 0.135129 + 0.234050i
\(773\) −22.9807 −0.826557 −0.413279 0.910605i \(-0.635616\pi\)
−0.413279 + 0.910605i \(0.635616\pi\)
\(774\) −1.02143 −0.0367146
\(775\) 1.99571 + 3.45667i 0.0716881 + 0.124167i
\(776\) 1.24913 + 2.16356i 0.0448413 + 0.0776674i