Properties

Label 91.2.h.b.74.5
Level $91$
Weight $2$
Character 91.74
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 7 x^{10} - 2 x^{9} + 33 x^{8} - 11 x^{7} + 55 x^{6} + 17 x^{5} + 47 x^{4} + x^{3} + 8 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 74.5
Root \(-1.02197 + 1.77010i\) of defining polynomial
Character \(\chi\) \(=\) 91.74
Dual form 91.2.h.b.16.5

$q$-expansion

\(f(q)\) \(=\) \(q+1.55469 q^{2} +(0.244626 + 0.423704i) q^{3} +0.417051 q^{4} +(0.595756 + 1.03188i) q^{5} +(0.380316 + 0.658727i) q^{6} +(-2.44127 - 1.01990i) q^{7} -2.46099 q^{8} +(1.38032 - 2.39078i) q^{9} +O(q^{10})\) \(q+1.55469 q^{2} +(0.244626 + 0.423704i) q^{3} +0.417051 q^{4} +(0.595756 + 1.03188i) q^{5} +(0.380316 + 0.658727i) q^{6} +(-2.44127 - 1.01990i) q^{7} -2.46099 q^{8} +(1.38032 - 2.39078i) q^{9} +(0.926214 + 1.60425i) q^{10} +(-1.05807 - 1.83263i) q^{11} +(0.102021 + 0.176706i) q^{12} +(2.86133 + 2.19381i) q^{13} +(-3.79541 - 1.58563i) q^{14} +(-0.291474 + 0.504848i) q^{15} -4.66017 q^{16} -0.906303 q^{17} +(2.14596 - 3.71691i) q^{18} +(-3.34514 + 5.79395i) q^{19} +(0.248461 + 0.430346i) q^{20} +(-0.165059 - 1.28387i) q^{21} +(-1.64497 - 2.84917i) q^{22} +3.59733 q^{23} +(-0.602021 - 1.04273i) q^{24} +(1.79015 - 3.10063i) q^{25} +(4.44847 + 3.41068i) q^{26} +2.81840 q^{27} +(-1.01813 - 0.425352i) q^{28} +(-4.25772 + 7.37459i) q^{29} +(-0.453151 + 0.784881i) q^{30} +(2.64390 - 4.57937i) q^{31} -2.32313 q^{32} +(0.517662 - 0.896617i) q^{33} -1.40902 q^{34} +(-0.401982 - 3.12671i) q^{35} +(0.575663 - 0.997077i) q^{36} +4.99159 q^{37} +(-5.20065 + 9.00778i) q^{38} +(-0.229570 + 1.74902i) q^{39} +(-1.46615 - 2.53944i) q^{40} +(-0.768181 + 1.33053i) q^{41} +(-0.256616 - 1.99602i) q^{42} +(-2.71636 - 4.70488i) q^{43} +(-0.441269 - 0.764301i) q^{44} +3.28933 q^{45} +5.59272 q^{46} +(1.59337 + 2.75979i) q^{47} +(-1.14000 - 1.97453i) q^{48} +(4.91959 + 4.97972i) q^{49} +(2.78312 - 4.82051i) q^{50} +(-0.221705 - 0.384004i) q^{51} +(1.19332 + 0.914930i) q^{52} +(1.41239 - 2.44632i) q^{53} +4.38173 q^{54} +(1.26070 - 2.18360i) q^{55} +(6.00794 + 2.50997i) q^{56} -3.27323 q^{57} +(-6.61943 + 11.4652i) q^{58} -10.2460 q^{59} +(-0.121560 + 0.210548i) q^{60} +(4.13423 - 7.16069i) q^{61} +(4.11044 - 7.11949i) q^{62} +(-5.80809 + 4.42874i) q^{63} +5.70861 q^{64} +(-0.559090 + 4.25952i) q^{65} +(0.804802 - 1.39396i) q^{66} +(1.87182 + 3.24208i) q^{67} -0.377975 q^{68} +(0.880000 + 1.52420i) q^{69} +(-0.624956 - 4.86105i) q^{70} +(1.26510 + 2.19122i) q^{71} +(-3.39694 + 5.88368i) q^{72} +(2.86522 - 4.96271i) q^{73} +7.76035 q^{74} +1.75167 q^{75} +(-1.39510 + 2.41638i) q^{76} +(0.713925 + 5.55307i) q^{77} +(-0.356910 + 2.71918i) q^{78} +(-3.03620 - 5.25885i) q^{79} +(-2.77632 - 4.80873i) q^{80} +(-3.45150 - 5.97817i) q^{81} +(-1.19428 + 2.06856i) q^{82} -11.6309 q^{83} +(-0.0688383 - 0.535440i) q^{84} +(-0.539935 - 0.935195i) q^{85} +(-4.22310 - 7.31462i) q^{86} -4.16619 q^{87} +(2.60390 + 4.51008i) q^{88} -17.7511 q^{89} +5.11387 q^{90} +(-4.74780 - 8.27396i) q^{91} +1.50027 q^{92} +2.58707 q^{93} +(2.47719 + 4.29061i) q^{94} -7.97155 q^{95} +(-0.568297 - 0.984319i) q^{96} +(-3.10217 - 5.37312i) q^{97} +(7.64842 + 7.74191i) q^{98} -5.84188 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 4q^{2} + q^{3} + 8q^{4} + q^{5} - 9q^{6} - 3q^{7} - 6q^{8} + 3q^{9} + O(q^{10}) \) \( 12q - 4q^{2} + q^{3} + 8q^{4} + q^{5} - 9q^{6} - 3q^{7} - 6q^{8} + 3q^{9} + 4q^{10} + 4q^{11} + 5q^{12} - 2q^{13} - 2q^{14} - 2q^{15} - 16q^{16} - 10q^{17} + 3q^{18} - q^{19} - q^{20} - 9q^{21} - 5q^{22} + 2q^{23} - 11q^{24} + 7q^{25} - 16q^{26} - 8q^{27} - q^{28} + 3q^{29} - 5q^{30} + 16q^{31} - 16q^{32} + 16q^{33} + 32q^{34} + 20q^{35} - 21q^{36} + 26q^{37} - 17q^{38} - 20q^{39} - 5q^{40} - 8q^{41} + 50q^{42} - 11q^{43} + 21q^{44} + 14q^{45} - 32q^{46} - q^{47} + 21q^{48} - 3q^{49} + 6q^{50} - 20q^{51} + 41q^{52} - 2q^{53} + 36q^{54} + 9q^{55} + 9q^{56} + 42q^{57} - 8q^{58} - 26q^{59} + 20q^{60} - 5q^{61} + 5q^{62} - 40q^{63} - 30q^{64} - 5q^{65} + 18q^{66} - 11q^{67} - 58q^{68} + 23q^{69} - 39q^{70} + 6q^{71} + 25q^{72} - 30q^{73} + 6q^{74} + 6q^{75} - 9q^{76} + 11q^{77} + 16q^{78} + 7q^{79} - 7q^{80} - 6q^{81} + q^{82} - 54q^{83} - 46q^{84} - q^{85} - 7q^{86} - 32q^{87} - 8q^{89} - 16q^{90} - 23q^{91} + 54q^{92} + 14q^{93} + 45q^{94} + 12q^{95} + 19q^{96} - 35q^{97} + 20q^{98} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55469 1.09933 0.549665 0.835385i \(-0.314755\pi\)
0.549665 + 0.835385i \(0.314755\pi\)
\(3\) 0.244626 + 0.423704i 0.141235 + 0.244626i 0.927962 0.372675i \(-0.121559\pi\)
−0.786727 + 0.617301i \(0.788226\pi\)
\(4\) 0.417051 0.208526
\(5\) 0.595756 + 1.03188i 0.266430 + 0.461470i 0.967937 0.251192i \(-0.0808225\pi\)
−0.701507 + 0.712662i \(0.747489\pi\)
\(6\) 0.380316 + 0.658727i 0.155264 + 0.268924i
\(7\) −2.44127 1.01990i −0.922713 0.385488i
\(8\) −2.46099 −0.870091
\(9\) 1.38032 2.39078i 0.460105 0.796926i
\(10\) 0.926214 + 1.60425i 0.292894 + 0.507308i
\(11\) −1.05807 1.83263i −0.319020 0.552559i 0.661264 0.750153i \(-0.270020\pi\)
−0.980284 + 0.197595i \(0.936687\pi\)
\(12\) 0.102021 + 0.176706i 0.0294511 + 0.0510107i
\(13\) 2.86133 + 2.19381i 0.793590 + 0.608453i
\(14\) −3.79541 1.58563i −1.01437 0.423778i
\(15\) −0.291474 + 0.504848i −0.0752584 + 0.130351i
\(16\) −4.66017 −1.16504
\(17\) −0.906303 −0.219811 −0.109905 0.993942i \(-0.535055\pi\)
−0.109905 + 0.993942i \(0.535055\pi\)
\(18\) 2.14596 3.71691i 0.505808 0.876084i
\(19\) −3.34514 + 5.79395i −0.767428 + 1.32922i 0.171525 + 0.985180i \(0.445130\pi\)
−0.938953 + 0.344045i \(0.888203\pi\)
\(20\) 0.248461 + 0.430346i 0.0555575 + 0.0962284i
\(21\) −0.165059 1.28387i −0.0360189 0.280164i
\(22\) −1.64497 2.84917i −0.350708 0.607444i
\(23\) 3.59733 0.750095 0.375048 0.927006i \(-0.377626\pi\)
0.375048 + 0.927006i \(0.377626\pi\)
\(24\) −0.602021 1.04273i −0.122887 0.212847i
\(25\) 1.79015 3.10063i 0.358030 0.620126i
\(26\) 4.44847 + 3.41068i 0.872417 + 0.668890i
\(27\) 2.81840 0.542401
\(28\) −1.01813 0.425352i −0.192409 0.0803840i
\(29\) −4.25772 + 7.37459i −0.790639 + 1.36943i 0.134932 + 0.990855i \(0.456918\pi\)
−0.925572 + 0.378573i \(0.876415\pi\)
\(30\) −0.453151 + 0.784881i −0.0827337 + 0.143299i
\(31\) 2.64390 4.57937i 0.474859 0.822479i −0.524727 0.851271i \(-0.675832\pi\)
0.999585 + 0.0287913i \(0.00916583\pi\)
\(32\) −2.32313 −0.410675
\(33\) 0.517662 0.896617i 0.0901134 0.156081i
\(34\) −1.40902 −0.241644
\(35\) −0.401982 3.12671i −0.0679473 0.528510i
\(36\) 0.575663 0.997077i 0.0959438 0.166180i
\(37\) 4.99159 0.820612 0.410306 0.911948i \(-0.365422\pi\)
0.410306 + 0.911948i \(0.365422\pi\)
\(38\) −5.20065 + 9.00778i −0.843656 + 1.46126i
\(39\) −0.229570 + 1.74902i −0.0367606 + 0.280067i
\(40\) −1.46615 2.53944i −0.231818 0.401521i
\(41\) −0.768181 + 1.33053i −0.119970 + 0.207794i −0.919755 0.392492i \(-0.871613\pi\)
0.799786 + 0.600286i \(0.204946\pi\)
\(42\) −0.256616 1.99602i −0.0395967 0.307992i
\(43\) −2.71636 4.70488i −0.414242 0.717488i 0.581107 0.813827i \(-0.302620\pi\)
−0.995349 + 0.0963397i \(0.969286\pi\)
\(44\) −0.441269 0.764301i −0.0665238 0.115223i
\(45\) 3.28933 0.490344
\(46\) 5.59272 0.824602
\(47\) 1.59337 + 2.75979i 0.232416 + 0.402557i 0.958519 0.285030i \(-0.0920035\pi\)
−0.726102 + 0.687587i \(0.758670\pi\)
\(48\) −1.14000 1.97453i −0.164545 0.284999i
\(49\) 4.91959 + 4.97972i 0.702799 + 0.711389i
\(50\) 2.78312 4.82051i 0.393593 0.681723i
\(51\) −0.221705 0.384004i −0.0310449 0.0537714i
\(52\) 1.19332 + 0.914930i 0.165484 + 0.126878i
\(53\) 1.41239 2.44632i 0.194006 0.336029i −0.752568 0.658514i \(-0.771185\pi\)
0.946574 + 0.322486i \(0.104518\pi\)
\(54\) 4.38173 0.596278
\(55\) 1.26070 2.18360i 0.169993 0.294436i
\(56\) 6.00794 + 2.50997i 0.802844 + 0.335409i
\(57\) −3.27323 −0.433550
\(58\) −6.61943 + 11.4652i −0.869173 + 1.50545i
\(59\) −10.2460 −1.33391 −0.666956 0.745097i \(-0.732403\pi\)
−0.666956 + 0.745097i \(0.732403\pi\)
\(60\) −0.121560 + 0.210548i −0.0156933 + 0.0271816i
\(61\) 4.13423 7.16069i 0.529333 0.916832i −0.470081 0.882623i \(-0.655775\pi\)
0.999415 0.0342093i \(-0.0108913\pi\)
\(62\) 4.11044 7.11949i 0.522026 0.904176i
\(63\) −5.80809 + 4.42874i −0.731750 + 0.557969i
\(64\) 5.70861 0.713576
\(65\) −0.559090 + 4.25952i −0.0693465 + 0.528328i
\(66\) 0.804802 1.39396i 0.0990643 0.171584i
\(67\) 1.87182 + 3.24208i 0.228679 + 0.396083i 0.957417 0.288709i \(-0.0932261\pi\)
−0.728738 + 0.684793i \(0.759893\pi\)
\(68\) −0.377975 −0.0458362
\(69\) 0.880000 + 1.52420i 0.105939 + 0.183493i
\(70\) −0.624956 4.86105i −0.0746965 0.581007i
\(71\) 1.26510 + 2.19122i 0.150140 + 0.260050i 0.931279 0.364307i \(-0.118694\pi\)
−0.781139 + 0.624357i \(0.785361\pi\)
\(72\) −3.39694 + 5.88368i −0.400334 + 0.693398i
\(73\) 2.86522 4.96271i 0.335349 0.580841i −0.648203 0.761468i \(-0.724479\pi\)
0.983552 + 0.180627i \(0.0578125\pi\)
\(74\) 7.76035 0.902123
\(75\) 1.75167 0.202265
\(76\) −1.39510 + 2.41638i −0.160028 + 0.277177i
\(77\) 0.713925 + 5.55307i 0.0813593 + 0.632831i
\(78\) −0.356910 + 2.71918i −0.0404121 + 0.307886i
\(79\) −3.03620 5.25885i −0.341599 0.591667i 0.643131 0.765756i \(-0.277635\pi\)
−0.984730 + 0.174089i \(0.944302\pi\)
\(80\) −2.77632 4.80873i −0.310402 0.537633i
\(81\) −3.45150 5.97817i −0.383500 0.664241i
\(82\) −1.19428 + 2.06856i −0.131886 + 0.228434i
\(83\) −11.6309 −1.27665 −0.638327 0.769766i \(-0.720373\pi\)
−0.638327 + 0.769766i \(0.720373\pi\)
\(84\) −0.0688383 0.535440i −0.00751087 0.0584213i
\(85\) −0.539935 0.935195i −0.0585642 0.101436i
\(86\) −4.22310 7.31462i −0.455388 0.788755i
\(87\) −4.16619 −0.446663
\(88\) 2.60390 + 4.51008i 0.277576 + 0.480776i
\(89\) −17.7511 −1.88162 −0.940808 0.338939i \(-0.889932\pi\)
−0.940808 + 0.338939i \(0.889932\pi\)
\(90\) 5.11387 0.539049
\(91\) −4.74780 8.27396i −0.497705 0.867346i
\(92\) 1.50027 0.156414
\(93\) 2.58707 0.268266
\(94\) 2.47719 + 4.29061i 0.255502 + 0.442543i
\(95\) −7.97155 −0.817863
\(96\) −0.568297 0.984319i −0.0580015 0.100462i
\(97\) −3.10217 5.37312i −0.314978 0.545557i 0.664455 0.747328i \(-0.268664\pi\)
−0.979433 + 0.201771i \(0.935330\pi\)
\(98\) 7.64842 + 7.74191i 0.772607 + 0.782051i
\(99\) −5.84188 −0.587131
\(100\) 0.746584 1.29312i 0.0746584 0.129312i
\(101\) 3.61133 + 6.25501i 0.359341 + 0.622397i 0.987851 0.155405i \(-0.0496682\pi\)
−0.628510 + 0.777802i \(0.716335\pi\)
\(102\) −0.344682 0.597007i −0.0341286 0.0591125i
\(103\) −4.96322 8.59656i −0.489041 0.847044i 0.510879 0.859652i \(-0.329320\pi\)
−0.999921 + 0.0126084i \(0.995987\pi\)
\(104\) −7.04170 5.39894i −0.690496 0.529409i
\(105\) 1.22646 0.935195i 0.119691 0.0912657i
\(106\) 2.19582 3.80327i 0.213277 0.369406i
\(107\) −2.20006 −0.212688 −0.106344 0.994329i \(-0.533915\pi\)
−0.106344 + 0.994329i \(0.533915\pi\)
\(108\) 1.17542 0.113105
\(109\) −6.87291 + 11.9042i −0.658305 + 1.14022i 0.322749 + 0.946485i \(0.395393\pi\)
−0.981054 + 0.193734i \(0.937940\pi\)
\(110\) 1.96000 3.39481i 0.186878 0.323683i
\(111\) 1.22107 + 2.11496i 0.115899 + 0.200743i
\(112\) 11.3767 + 4.75293i 1.07500 + 0.449110i
\(113\) 8.04736 + 13.9384i 0.757032 + 1.31122i 0.944358 + 0.328920i \(0.106685\pi\)
−0.187326 + 0.982298i \(0.559982\pi\)
\(114\) −5.08885 −0.476614
\(115\) 2.14313 + 3.71201i 0.199848 + 0.346147i
\(116\) −1.77569 + 3.07558i −0.164869 + 0.285561i
\(117\) 9.19445 3.81266i 0.850027 0.352480i
\(118\) −15.9293 −1.46641
\(119\) 2.21253 + 0.924342i 0.202822 + 0.0847343i
\(120\) 0.717315 1.24243i 0.0654816 0.113418i
\(121\) 3.26098 5.64818i 0.296453 0.513471i
\(122\) 6.42743 11.1326i 0.581912 1.00790i
\(123\) −0.751668 −0.0677756
\(124\) 1.10264 1.90983i 0.0990202 0.171508i
\(125\) 10.2235 0.914420
\(126\) −9.02976 + 6.88531i −0.804435 + 0.613392i
\(127\) 7.83921 13.5779i 0.695617 1.20484i −0.274355 0.961628i \(-0.588464\pi\)
0.969972 0.243216i \(-0.0782023\pi\)
\(128\) 13.5213 1.19513
\(129\) 1.32899 2.30187i 0.117011 0.202668i
\(130\) −0.869209 + 6.62222i −0.0762347 + 0.580807i
\(131\) 4.76884 + 8.25988i 0.416656 + 0.721669i 0.995601 0.0936976i \(-0.0298687\pi\)
−0.578945 + 0.815367i \(0.696535\pi\)
\(132\) 0.215892 0.373935i 0.0187910 0.0325469i
\(133\) 14.0757 10.7329i 1.22052 0.930658i
\(134\) 2.91009 + 5.04042i 0.251393 + 0.435426i
\(135\) 1.67908 + 2.90825i 0.144512 + 0.250302i
\(136\) 2.23040 0.191255
\(137\) −2.76461 −0.236197 −0.118098 0.993002i \(-0.537680\pi\)
−0.118098 + 0.993002i \(0.537680\pi\)
\(138\) 1.36812 + 2.36966i 0.116462 + 0.201719i
\(139\) 11.3983 + 19.7425i 0.966795 + 1.67454i 0.704714 + 0.709492i \(0.251075\pi\)
0.262081 + 0.965046i \(0.415591\pi\)
\(140\) −0.167647 1.30400i −0.0141688 0.110208i
\(141\) −0.779557 + 1.35023i −0.0656505 + 0.113710i
\(142\) 1.96684 + 3.40666i 0.165053 + 0.285881i
\(143\) 0.992950 7.56496i 0.0830346 0.632614i
\(144\) −6.43251 + 11.1414i −0.536043 + 0.928453i
\(145\) −10.1462 −0.842600
\(146\) 4.45452 7.71546i 0.368659 0.638536i
\(147\) −0.906471 + 3.30262i −0.0747645 + 0.272395i
\(148\) 2.08175 0.171119
\(149\) 7.20581 12.4808i 0.590323 1.02247i −0.403866 0.914818i \(-0.632334\pi\)
0.994189 0.107651i \(-0.0343329\pi\)
\(150\) 2.72329 0.222356
\(151\) −7.62901 + 13.2138i −0.620840 + 1.07533i 0.368489 + 0.929632i \(0.379875\pi\)
−0.989330 + 0.145695i \(0.953458\pi\)
\(152\) 8.23236 14.2589i 0.667732 1.15655i
\(153\) −1.25098 + 2.16677i −0.101136 + 0.175173i
\(154\) 1.10993 + 8.63329i 0.0894407 + 0.695690i
\(155\) 6.30048 0.506067
\(156\) −0.0957425 + 0.729431i −0.00766554 + 0.0584012i
\(157\) 5.70745 9.88559i 0.455504 0.788956i −0.543213 0.839595i \(-0.682792\pi\)
0.998717 + 0.0506387i \(0.0161257\pi\)
\(158\) −4.72034 8.17587i −0.375530 0.650437i
\(159\) 1.38202 0.109602
\(160\) −1.38402 2.39719i −0.109416 0.189514i
\(161\) −8.78205 3.66893i −0.692122 0.289152i
\(162\) −5.36600 9.29418i −0.421592 0.730220i
\(163\) 7.20385 12.4774i 0.564249 0.977308i −0.432870 0.901456i \(-0.642499\pi\)
0.997119 0.0758514i \(-0.0241675\pi\)
\(164\) −0.320371 + 0.554899i −0.0250168 + 0.0433303i
\(165\) 1.23360 0.0960357
\(166\) −18.0824 −1.40346
\(167\) −3.88595 + 6.73066i −0.300704 + 0.520834i −0.976296 0.216442i \(-0.930555\pi\)
0.675592 + 0.737276i \(0.263888\pi\)
\(168\) 0.406210 + 3.15959i 0.0313398 + 0.243768i
\(169\) 3.37442 + 12.5544i 0.259571 + 0.965724i
\(170\) −0.839430 1.45394i −0.0643813 0.111512i
\(171\) 9.23471 + 15.9950i 0.706196 + 1.22317i
\(172\) −1.13286 1.96218i −0.0863800 0.149615i
\(173\) −3.04731 + 5.27809i −0.231682 + 0.401286i −0.958303 0.285753i \(-0.907756\pi\)
0.726621 + 0.687039i \(0.241090\pi\)
\(174\) −6.47713 −0.491030
\(175\) −7.53259 + 5.74369i −0.569410 + 0.434182i
\(176\) 4.93078 + 8.54037i 0.371672 + 0.643754i
\(177\) −2.50643 4.34126i −0.188395 0.326309i
\(178\) −27.5975 −2.06852
\(179\) −9.26488 16.0472i −0.692490 1.19943i −0.971020 0.239000i \(-0.923181\pi\)
0.278530 0.960428i \(-0.410153\pi\)
\(180\) 1.37182 0.102249
\(181\) −5.60520 −0.416631 −0.208316 0.978062i \(-0.566798\pi\)
−0.208316 + 0.978062i \(0.566798\pi\)
\(182\) −7.38135 12.8634i −0.547142 0.953499i
\(183\) 4.04535 0.299041
\(184\) −8.85299 −0.652651
\(185\) 2.97377 + 5.15071i 0.218636 + 0.378688i
\(186\) 4.02208 0.294913
\(187\) 0.958931 + 1.66092i 0.0701240 + 0.121458i
\(188\) 0.664516 + 1.15097i 0.0484648 + 0.0839435i
\(189\) −6.88047 2.87450i −0.500480 0.209089i
\(190\) −12.3933 −0.899102
\(191\) −0.251851 + 0.436219i −0.0182233 + 0.0315637i −0.874993 0.484135i \(-0.839134\pi\)
0.856770 + 0.515699i \(0.172468\pi\)
\(192\) 1.39647 + 2.41876i 0.100782 + 0.174559i
\(193\) 1.85622 + 3.21507i 0.133614 + 0.231426i 0.925067 0.379804i \(-0.124009\pi\)
−0.791453 + 0.611230i \(0.790675\pi\)
\(194\) −4.82290 8.35351i −0.346264 0.599747i
\(195\) −1.94154 + 0.805100i −0.139037 + 0.0576544i
\(196\) 2.05172 + 2.07680i 0.146552 + 0.148343i
\(197\) 3.72225 6.44713i 0.265200 0.459339i −0.702416 0.711766i \(-0.747895\pi\)
0.967616 + 0.252427i \(0.0812288\pi\)
\(198\) −9.08230 −0.645451
\(199\) 7.50556 0.532055 0.266028 0.963965i \(-0.414289\pi\)
0.266028 + 0.963965i \(0.414289\pi\)
\(200\) −4.40554 + 7.63062i −0.311519 + 0.539566i
\(201\) −0.915789 + 1.58619i −0.0645948 + 0.111881i
\(202\) 5.61449 + 9.72458i 0.395034 + 0.684219i
\(203\) 17.9156 13.6609i 1.25743 0.958807i
\(204\) −0.0924624 0.160149i −0.00647366 0.0112127i
\(205\) −1.83059 −0.127854
\(206\) −7.71626 13.3650i −0.537617 0.931181i
\(207\) 4.96545 8.60042i 0.345123 0.597770i
\(208\) −13.3343 10.2235i −0.924567 0.708873i
\(209\) 14.1576 0.979299
\(210\) 1.90677 1.45394i 0.131580 0.100331i
\(211\) −1.89531 + 3.28278i −0.130479 + 0.225996i −0.923861 0.382728i \(-0.874985\pi\)
0.793383 + 0.608723i \(0.208318\pi\)
\(212\) 0.589037 1.02024i 0.0404553 0.0700706i
\(213\) −0.618953 + 1.07206i −0.0424100 + 0.0734562i
\(214\) −3.42041 −0.233814
\(215\) 3.23658 5.60592i 0.220733 0.382320i
\(216\) −6.93605 −0.471938
\(217\) −11.1250 + 8.48295i −0.755214 + 0.575860i
\(218\) −10.6852 + 18.5073i −0.723695 + 1.25348i
\(219\) 2.80363 0.189452
\(220\) 0.525777 0.910673i 0.0354479 0.0613975i
\(221\) −2.59323 1.98825i −0.174440 0.133744i
\(222\) 1.89838 + 3.28809i 0.127411 + 0.220682i
\(223\) −2.43440 + 4.21650i −0.163019 + 0.282358i −0.935950 0.352133i \(-0.885457\pi\)
0.772931 + 0.634490i \(0.218790\pi\)
\(224\) 5.67138 + 2.36937i 0.378935 + 0.158310i
\(225\) −4.94195 8.55971i −0.329463 0.570647i
\(226\) 12.5111 + 21.6699i 0.832228 + 1.44146i
\(227\) 24.1767 1.60466 0.802332 0.596877i \(-0.203592\pi\)
0.802332 + 0.596877i \(0.203592\pi\)
\(228\) −1.36510 −0.0904063
\(229\) 10.8561 + 18.8034i 0.717394 + 1.24256i 0.962029 + 0.272947i \(0.0879985\pi\)
−0.244635 + 0.969615i \(0.578668\pi\)
\(230\) 3.33190 + 5.77101i 0.219699 + 0.380529i
\(231\) −2.17822 + 1.66092i −0.143316 + 0.109280i
\(232\) 10.4782 18.1488i 0.687928 1.19153i
\(233\) −1.89842 3.28816i −0.124370 0.215414i 0.797117 0.603825i \(-0.206358\pi\)
−0.921486 + 0.388411i \(0.873024\pi\)
\(234\) 14.2945 5.92749i 0.934460 0.387492i
\(235\) −1.89851 + 3.28832i −0.123845 + 0.214507i
\(236\) −4.27309 −0.278155
\(237\) 1.48547 2.57290i 0.0964914 0.167128i
\(238\) 3.43979 + 1.43706i 0.222968 + 0.0931509i
\(239\) 21.9100 1.41724 0.708619 0.705592i \(-0.249319\pi\)
0.708619 + 0.705592i \(0.249319\pi\)
\(240\) 1.35832 2.35268i 0.0876792 0.151865i
\(241\) −20.7488 −1.33655 −0.668273 0.743916i \(-0.732966\pi\)
−0.668273 + 0.743916i \(0.732966\pi\)
\(242\) 5.06980 8.78115i 0.325899 0.564474i
\(243\) 5.91625 10.2472i 0.379527 0.657361i
\(244\) 1.72418 2.98637i 0.110380 0.191183i
\(245\) −2.20760 + 8.04312i −0.141038 + 0.513856i
\(246\) −1.16861 −0.0745077
\(247\) −22.2824 + 9.23982i −1.41779 + 0.587916i
\(248\) −6.50661 + 11.2698i −0.413170 + 0.715632i
\(249\) −2.84521 4.92805i −0.180308 0.312302i
\(250\) 15.8944 1.00525
\(251\) −6.62891 11.4816i −0.418413 0.724713i 0.577367 0.816485i \(-0.304080\pi\)
−0.995780 + 0.0917718i \(0.970747\pi\)
\(252\) −2.42227 + 1.84701i −0.152589 + 0.116351i
\(253\) −3.80622 6.59257i −0.239295 0.414472i
\(254\) 12.1875 21.1094i 0.764713 1.32452i
\(255\) 0.264164 0.457546i 0.0165426 0.0286526i
\(256\) 9.60425 0.600266
\(257\) −13.1711 −0.821590 −0.410795 0.911728i \(-0.634749\pi\)
−0.410795 + 0.911728i \(0.634749\pi\)
\(258\) 2.06616 3.57869i 0.128633 0.222799i
\(259\) −12.1858 5.09094i −0.757189 0.316336i
\(260\) −0.233169 + 1.77644i −0.0144605 + 0.110170i
\(261\) 11.7540 + 20.3585i 0.727555 + 1.26016i
\(262\) 7.41406 + 12.8415i 0.458042 + 0.793352i
\(263\) 9.57028 + 16.5762i 0.590129 + 1.02213i 0.994215 + 0.107412i \(0.0342564\pi\)
−0.404086 + 0.914721i \(0.632410\pi\)
\(264\) −1.27396 + 2.20657i −0.0784069 + 0.135805i
\(265\) 3.36575 0.206756
\(266\) 21.8833 16.6863i 1.34175 1.02310i
\(267\) −4.34239 7.52123i −0.265750 0.460292i
\(268\) 0.780643 + 1.35211i 0.0476854 + 0.0825935i
\(269\) −28.4822 −1.73659 −0.868296 0.496047i \(-0.834784\pi\)
−0.868296 + 0.496047i \(0.834784\pi\)
\(270\) 2.61044 + 4.52141i 0.158866 + 0.275164i
\(271\) 17.9474 1.09023 0.545114 0.838362i \(-0.316486\pi\)
0.545114 + 0.838362i \(0.316486\pi\)
\(272\) 4.22353 0.256089
\(273\) 2.34428 4.03569i 0.141882 0.244251i
\(274\) −4.29811 −0.259658
\(275\) −7.57641 −0.456875
\(276\) 0.367005 + 0.635671i 0.0220911 + 0.0382629i
\(277\) 13.4389 0.807463 0.403732 0.914877i \(-0.367713\pi\)
0.403732 + 0.914877i \(0.367713\pi\)
\(278\) 17.7209 + 30.6934i 1.06283 + 1.84087i
\(279\) −7.29884 12.6420i −0.436970 0.756855i
\(280\) 0.989273 + 7.69480i 0.0591204 + 0.459852i
\(281\) −29.9530 −1.78685 −0.893424 0.449214i \(-0.851704\pi\)
−0.893424 + 0.449214i \(0.851704\pi\)
\(282\) −1.21197 + 2.09919i −0.0721716 + 0.125005i
\(283\) 4.94561 + 8.56604i 0.293986 + 0.509199i 0.974748 0.223306i \(-0.0716848\pi\)
−0.680763 + 0.732504i \(0.738351\pi\)
\(284\) 0.527613 + 0.913852i 0.0313080 + 0.0542271i
\(285\) −1.95005 3.37758i −0.115511 0.200070i
\(286\) 1.54373 11.7611i 0.0912824 0.695451i
\(287\) 3.23235 2.46471i 0.190800 0.145487i
\(288\) −3.20665 + 5.55408i −0.188954 + 0.327277i
\(289\) −16.1786 −0.951683
\(290\) −15.7742 −0.926295
\(291\) 1.51774 2.62881i 0.0889716 0.154103i
\(292\) 1.19494 2.06970i 0.0699288 0.121120i
\(293\) −3.95529 6.85076i −0.231071 0.400226i 0.727053 0.686581i \(-0.240889\pi\)
−0.958123 + 0.286356i \(0.907556\pi\)
\(294\) −1.40928 + 5.13454i −0.0821908 + 0.299452i
\(295\) −6.10409 10.5726i −0.355394 0.615561i
\(296\) −12.2842 −0.714007
\(297\) −2.98206 5.16508i −0.173037 0.299708i
\(298\) 11.2028 19.4038i 0.648959 1.12403i
\(299\) 10.2931 + 7.89185i 0.595268 + 0.456397i
\(300\) 0.730535 0.0421775
\(301\) 1.83285 + 14.2563i 0.105644 + 0.821720i
\(302\) −11.8607 + 20.5434i −0.682508 + 1.18214i
\(303\) −1.76685 + 3.06027i −0.101503 + 0.175808i
\(304\) 15.5889 27.0008i 0.894086 1.54860i
\(305\) 9.85196 0.564121
\(306\) −1.94489 + 3.36865i −0.111182 + 0.192573i
\(307\) 1.27238 0.0726187 0.0363094 0.999341i \(-0.488440\pi\)
0.0363094 + 0.999341i \(0.488440\pi\)
\(308\) 0.297743 + 2.31592i 0.0169655 + 0.131962i
\(309\) 2.42827 4.20588i 0.138139 0.239264i
\(310\) 9.79527 0.556334
\(311\) −12.3817 + 21.4458i −0.702103 + 1.21608i 0.265624 + 0.964077i \(0.414422\pi\)
−0.967727 + 0.252002i \(0.918911\pi\)
\(312\) 0.564970 4.30432i 0.0319851 0.243684i
\(313\) −1.18826 2.05812i −0.0671642 0.116332i 0.830488 0.557037i \(-0.188062\pi\)
−0.897652 + 0.440705i \(0.854728\pi\)
\(314\) 8.87330 15.3690i 0.500749 0.867323i
\(315\) −8.03013 3.35480i −0.452446 0.189021i
\(316\) −1.26625 2.19321i −0.0712322 0.123378i
\(317\) 9.88979 + 17.1296i 0.555466 + 0.962096i 0.997867 + 0.0652782i \(0.0207935\pi\)
−0.442401 + 0.896817i \(0.645873\pi\)
\(318\) 2.14862 0.120488
\(319\) 18.0199 1.00892
\(320\) 3.40093 + 5.89059i 0.190118 + 0.329294i
\(321\) −0.538192 0.932176i −0.0300390 0.0520290i
\(322\) −13.6533 5.70404i −0.760871 0.317874i
\(323\) 3.03171 5.25108i 0.168689 0.292178i
\(324\) −1.43945 2.49320i −0.0799695 0.138511i
\(325\) 11.9244 4.94469i 0.661447 0.274282i
\(326\) 11.1997 19.3985i 0.620295 1.07438i
\(327\) −6.72516 −0.371902
\(328\) 1.89049 3.27442i 0.104385 0.180799i
\(329\) −1.07511 8.36248i −0.0592729 0.461038i
\(330\) 1.91786 0.105575
\(331\) −1.96386 + 3.40151i −0.107944 + 0.186964i −0.914937 0.403596i \(-0.867760\pi\)
0.806993 + 0.590561i \(0.201093\pi\)
\(332\) −4.85067 −0.266215
\(333\) 6.88997 11.9338i 0.377568 0.653967i
\(334\) −6.04143 + 10.4641i −0.330572 + 0.572568i
\(335\) −2.23029 + 3.86298i −0.121854 + 0.211057i
\(336\) 0.769205 + 5.98306i 0.0419636 + 0.326403i
\(337\) −7.14099 −0.388995 −0.194497 0.980903i \(-0.562308\pi\)
−0.194497 + 0.980903i \(0.562308\pi\)
\(338\) 5.24617 + 19.5182i 0.285354 + 1.06165i
\(339\) −3.93718 + 6.81940i −0.213838 + 0.370379i
\(340\) −0.225181 0.390024i −0.0122121 0.0211520i
\(341\) −11.1897 −0.605958
\(342\) 14.3571 + 24.8672i 0.776342 + 1.34466i
\(343\) −6.93120 17.1744i −0.374250 0.927328i
\(344\) 6.68494 + 11.5787i 0.360428 + 0.624280i
\(345\) −1.04853 + 1.81611i −0.0564509 + 0.0977759i
\(346\) −4.73761 + 8.20578i −0.254695 + 0.441145i
\(347\) 10.0700 0.540584 0.270292 0.962778i \(-0.412880\pi\)
0.270292 + 0.962778i \(0.412880\pi\)
\(348\) −1.73752 −0.0931407
\(349\) 3.14418 5.44588i 0.168304 0.291512i −0.769520 0.638623i \(-0.779504\pi\)
0.937824 + 0.347112i \(0.112838\pi\)
\(350\) −11.7108 + 8.92964i −0.625969 + 0.477310i
\(351\) 8.06437 + 6.18302i 0.430444 + 0.330025i
\(352\) 2.45803 + 4.25743i 0.131013 + 0.226922i
\(353\) −17.0836 29.5897i −0.909269 1.57490i −0.815083 0.579345i \(-0.803308\pi\)
−0.0941861 0.995555i \(-0.530025\pi\)
\(354\) −3.89671 6.74930i −0.207108 0.358721i
\(355\) −1.50738 + 2.61087i −0.0800036 + 0.138570i
\(356\) −7.40313 −0.392365
\(357\) 0.149594 + 1.16358i 0.00791735 + 0.0615830i
\(358\) −14.4040 24.9484i −0.761274 1.31857i
\(359\) −9.34327 16.1830i −0.493119 0.854107i 0.506850 0.862034i \(-0.330810\pi\)
−0.999969 + 0.00792750i \(0.997477\pi\)
\(360\) −8.09500 −0.426644
\(361\) −12.8799 22.3087i −0.677891 1.17414i
\(362\) −8.71433 −0.458015
\(363\) 3.19088 0.167478
\(364\) −1.98008 3.45066i −0.103784 0.180864i
\(365\) 6.82788 0.357388
\(366\) 6.28926 0.328745
\(367\) 15.5305 + 26.8997i 0.810687 + 1.40415i 0.912384 + 0.409336i \(0.134240\pi\)
−0.101696 + 0.994816i \(0.532427\pi\)
\(368\) −16.7642 −0.873893
\(369\) 2.12067 + 3.67310i 0.110397 + 0.191214i
\(370\) 4.62327 + 8.00775i 0.240353 + 0.416303i
\(371\) −5.94303 + 4.53164i −0.308547 + 0.235271i
\(372\) 1.07894 0.0559404
\(373\) 1.46852 2.54355i 0.0760371 0.131700i −0.825500 0.564403i \(-0.809107\pi\)
0.901537 + 0.432702i \(0.142440\pi\)
\(374\) 1.49084 + 2.58221i 0.0770894 + 0.133523i
\(375\) 2.50094 + 4.33175i 0.129148 + 0.223691i
\(376\) −3.92126 6.79182i −0.202223 0.350261i
\(377\) −28.3612 + 11.7605i −1.46068 + 0.605698i
\(378\) −10.6970 4.46894i −0.550193 0.229858i
\(379\) −5.04254 + 8.73394i −0.259018 + 0.448632i −0.965979 0.258620i \(-0.916732\pi\)
0.706961 + 0.707252i \(0.250066\pi\)
\(380\) −3.32454 −0.170545
\(381\) 7.67069 0.392981
\(382\) −0.391550 + 0.678184i −0.0200334 + 0.0346989i
\(383\) −1.84466 + 3.19504i −0.0942576 + 0.163259i −0.909299 0.416144i \(-0.863381\pi\)
0.815041 + 0.579403i \(0.196714\pi\)
\(384\) 3.30767 + 5.72905i 0.168794 + 0.292360i
\(385\) −5.30477 + 4.04496i −0.270356 + 0.206150i
\(386\) 2.88584 + 4.99842i 0.146885 + 0.254413i
\(387\) −14.9978 −0.762379
\(388\) −1.29376 2.24086i −0.0656809 0.113763i
\(389\) −11.3333 + 19.6299i −0.574623 + 0.995277i 0.421459 + 0.906847i \(0.361518\pi\)
−0.996082 + 0.0884295i \(0.971815\pi\)
\(390\) −3.01849 + 1.25168i −0.152847 + 0.0633812i
\(391\) −3.26027 −0.164879
\(392\) −12.1071 12.2550i −0.611499 0.618973i
\(393\) −2.33316 + 4.04116i −0.117693 + 0.203849i
\(394\) 5.78694 10.0233i 0.291542 0.504965i
\(395\) 3.61767 6.26598i 0.182025 0.315276i
\(396\) −2.43636 −0.122432
\(397\) 14.5680 25.2325i 0.731146 1.26638i −0.225248 0.974302i \(-0.572319\pi\)
0.956394 0.292080i \(-0.0943475\pi\)
\(398\) 11.6688 0.584904
\(399\) 7.99084 + 3.33838i 0.400042 + 0.167128i
\(400\) −8.34241 + 14.4495i −0.417120 + 0.722474i
\(401\) 8.12052 0.405519 0.202760 0.979229i \(-0.435009\pi\)
0.202760 + 0.979229i \(0.435009\pi\)
\(402\) −1.42377 + 2.46603i −0.0710110 + 0.122995i
\(403\) 17.6113 7.30289i 0.877283 0.363783i
\(404\) 1.50611 + 2.60866i 0.0749318 + 0.129786i
\(405\) 4.11250 7.12305i 0.204352 0.353947i
\(406\) 27.8532 21.2384i 1.38233 1.05404i
\(407\) −5.28144 9.14773i −0.261791 0.453436i
\(408\) 0.545614 + 0.945031i 0.0270119 + 0.0467860i
\(409\) −8.32261 −0.411527 −0.205763 0.978602i \(-0.565968\pi\)
−0.205763 + 0.978602i \(0.565968\pi\)
\(410\) −2.84600 −0.140554
\(411\) −0.676295 1.17138i −0.0333592 0.0577798i
\(412\) −2.06992 3.58520i −0.101978 0.176630i
\(413\) 25.0132 + 10.4499i 1.23082 + 0.514206i
\(414\) 7.71973 13.3710i 0.379404 0.657147i
\(415\) −6.92915 12.0016i −0.340139 0.589138i
\(416\) −6.64723 5.09649i −0.325907 0.249876i
\(417\) −5.57666 + 9.65905i −0.273090 + 0.473006i
\(418\) 22.0106 1.07657
\(419\) 6.50832 11.2727i 0.317952 0.550710i −0.662108 0.749408i \(-0.730338\pi\)
0.980061 + 0.198699i \(0.0636715\pi\)
\(420\) 0.511499 0.390024i 0.0249586 0.0190312i
\(421\) −8.89681 −0.433604 −0.216802 0.976216i \(-0.569563\pi\)
−0.216802 + 0.976216i \(0.569563\pi\)
\(422\) −2.94662 + 5.10369i −0.143439 + 0.248444i
\(423\) 8.79740 0.427744
\(424\) −3.47587 + 6.02038i −0.168803 + 0.292376i
\(425\) −1.62242 + 2.81011i −0.0786988 + 0.136310i
\(426\) −0.962279 + 1.66672i −0.0466225 + 0.0807526i
\(427\) −17.3960 + 13.2647i −0.841850 + 0.641922i
\(428\) −0.917539 −0.0443509
\(429\) 3.44821 1.42987i 0.166481 0.0690346i
\(430\) 5.03187 8.71545i 0.242658 0.420296i
\(431\) 4.47872 + 7.75736i 0.215732 + 0.373659i 0.953499 0.301397i \(-0.0974529\pi\)
−0.737767 + 0.675056i \(0.764120\pi\)
\(432\) −13.1342 −0.631920
\(433\) 0.0864547 + 0.149744i 0.00415475 + 0.00719624i 0.868095 0.496398i \(-0.165344\pi\)
−0.863941 + 0.503594i \(0.832011\pi\)
\(434\) −17.2959 + 13.1883i −0.830229 + 0.633060i
\(435\) −2.48203 4.29901i −0.119004 0.206122i
\(436\) −2.86636 + 4.96467i −0.137274 + 0.237765i
\(437\) −12.0336 + 20.8428i −0.575644 + 0.997045i
\(438\) 4.35876 0.208270
\(439\) 9.54160 0.455396 0.227698 0.973732i \(-0.426880\pi\)
0.227698 + 0.973732i \(0.426880\pi\)
\(440\) −3.10257 + 5.37382i −0.147909 + 0.256187i
\(441\) 18.6960 4.88806i 0.890286 0.232765i
\(442\) −4.03166 3.09111i −0.191767 0.147029i
\(443\) 6.93676 + 12.0148i 0.329576 + 0.570842i 0.982428 0.186644i \(-0.0597610\pi\)
−0.652852 + 0.757485i \(0.726428\pi\)
\(444\) 0.509249 + 0.882045i 0.0241679 + 0.0418600i
\(445\) −10.5753 18.3170i −0.501319 0.868310i
\(446\) −3.78473 + 6.55534i −0.179212 + 0.310404i
\(447\) 7.05091 0.333496
\(448\) −13.9362 5.82223i −0.658426 0.275075i
\(449\) 10.6456 + 18.4388i 0.502398 + 0.870180i 0.999996 + 0.00277167i \(0.000882252\pi\)
−0.497598 + 0.867408i \(0.665784\pi\)
\(450\) −7.68318 13.3077i −0.362189 0.627329i
\(451\) 3.25116 0.153091
\(452\) 3.35616 + 5.81304i 0.157861 + 0.273423i
\(453\) −7.46501 −0.350737
\(454\) 37.5872 1.76406
\(455\) 5.70919 9.82842i 0.267651 0.460763i
\(456\) 8.05539 0.377228
\(457\) 9.68564 0.453075 0.226538 0.974002i \(-0.427259\pi\)
0.226538 + 0.974002i \(0.427259\pi\)
\(458\) 16.8779 + 29.2334i 0.788652 + 1.36599i
\(459\) −2.55432 −0.119226
\(460\) 0.893795 + 1.54810i 0.0416734 + 0.0721804i
\(461\) 0.687178 + 1.19023i 0.0320051 + 0.0554344i 0.881584 0.472027i \(-0.156477\pi\)
−0.849579 + 0.527461i \(0.823144\pi\)
\(462\) −3.38644 + 2.58221i −0.157552 + 0.120135i
\(463\) 31.7710 1.47653 0.738263 0.674513i \(-0.235646\pi\)
0.738263 + 0.674513i \(0.235646\pi\)
\(464\) 19.8417 34.3669i 0.921128 1.59544i
\(465\) 1.54126 + 2.66954i 0.0714742 + 0.123797i
\(466\) −2.95145 5.11206i −0.136723 0.236812i
\(467\) 14.5605 + 25.2195i 0.673778 + 1.16702i 0.976824 + 0.214042i \(0.0686629\pi\)
−0.303046 + 0.952976i \(0.598004\pi\)
\(468\) 3.83456 1.59007i 0.177252 0.0735012i
\(469\) −1.26299 9.82387i −0.0583197 0.453624i
\(470\) −2.95160 + 5.11231i −0.136147 + 0.235813i
\(471\) 5.58476 0.257332
\(472\) 25.2152 1.16062
\(473\) −5.74820 + 9.95618i −0.264303 + 0.457786i
\(474\) 2.30943 4.00006i 0.106076 0.183729i
\(475\) 11.9766 + 20.7441i 0.549525 + 0.951804i
\(476\) 0.922738 + 0.385498i 0.0422936 + 0.0176693i
\(477\) −3.89908 6.75341i −0.178527 0.309217i
\(478\) 34.0631 1.55801
\(479\) −4.86092 8.41936i −0.222101 0.384690i 0.733345 0.679857i \(-0.237958\pi\)
−0.955446 + 0.295167i \(0.904625\pi\)
\(480\) 0.677132 1.17283i 0.0309067 0.0535320i
\(481\) 14.2826 + 10.9506i 0.651229 + 0.499303i
\(482\) −32.2578 −1.46930
\(483\) −0.593773 4.61851i −0.0270176 0.210149i
\(484\) 1.36000 2.35558i 0.0618180 0.107072i
\(485\) 3.69627 6.40213i 0.167839 0.290706i
\(486\) 9.19791 15.9313i 0.417226 0.722656i
\(487\) −17.1133 −0.775478 −0.387739 0.921769i \(-0.626744\pi\)
−0.387739 + 0.921769i \(0.626744\pi\)
\(488\) −10.1743 + 17.6224i −0.460568 + 0.797728i
\(489\) 7.04899 0.318766
\(490\) −3.43212 + 12.5045i −0.155048 + 0.564897i
\(491\) 12.8607 22.2753i 0.580394 1.00527i −0.415038 0.909804i \(-0.636232\pi\)
0.995432 0.0954681i \(-0.0304348\pi\)
\(492\) −0.313484 −0.0141329
\(493\) 3.85879 6.68361i 0.173791 0.301015i
\(494\) −34.6421 + 14.3650i −1.55862 + 0.646313i
\(495\) −3.48033 6.02812i −0.156429 0.270944i
\(496\) −12.3210 + 21.3407i −0.553231 + 0.958224i
\(497\) −0.853619 6.63965i −0.0382900 0.297829i
\(498\) −4.42341 7.66157i −0.198218 0.343323i
\(499\) −2.70198 4.67996i −0.120957 0.209504i 0.799188 0.601081i \(-0.205263\pi\)
−0.920145 + 0.391577i \(0.871930\pi\)
\(500\) 4.26373 0.190680
\(501\) −3.80241 −0.169879
\(502\) −10.3059 17.8503i −0.459974 0.796699i
\(503\) 6.30847 + 10.9266i 0.281281 + 0.487193i 0.971700 0.236216i \(-0.0759074\pi\)
−0.690420 + 0.723409i \(0.742574\pi\)
\(504\) 14.2936 10.8991i 0.636690 0.485484i
\(505\) −4.30294 + 7.45292i −0.191478 + 0.331650i
\(506\) −5.91749 10.2494i −0.263064 0.455641i
\(507\) −4.49389 + 4.50089i −0.199581 + 0.199892i
\(508\) 3.26935 5.66268i 0.145054 0.251241i
\(509\) −1.95876 −0.0868204 −0.0434102 0.999057i \(-0.513822\pi\)
−0.0434102 + 0.999057i \(0.513822\pi\)
\(510\) 0.410692 0.711340i 0.0181858 0.0314987i
\(511\) −12.0563 + 9.19305i −0.533338 + 0.406677i
\(512\) −12.1111 −0.535240
\(513\) −9.42794 + 16.3297i −0.416254 + 0.720973i
\(514\) −20.4769 −0.903198
\(515\) 5.91374 10.2429i 0.260590 0.451356i
\(516\) 0.554255 0.959998i 0.0243997 0.0422615i
\(517\) 3.37178 5.84010i 0.148291 0.256847i
\(518\) −18.9451 7.91482i −0.832400 0.347757i
\(519\) −2.98180 −0.130886
\(520\) 1.37591 10.4826i 0.0603378 0.459694i
\(521\) 19.5477 33.8576i 0.856401 1.48333i −0.0189387 0.999821i \(-0.506029\pi\)
0.875339 0.483509i \(-0.160638\pi\)
\(522\) 18.2738 + 31.6512i 0.799823 + 1.38533i
\(523\) −8.71268 −0.380979 −0.190489 0.981689i \(-0.561007\pi\)
−0.190489 + 0.981689i \(0.561007\pi\)
\(524\) 1.98885 + 3.44479i 0.0868834 + 0.150486i
\(525\) −4.27629 1.78653i −0.186633 0.0779707i
\(526\) 14.8788 + 25.7708i 0.648746 + 1.12366i
\(527\) −2.39618 + 4.15030i −0.104379 + 0.180790i
\(528\) −2.41239 + 4.17839i −0.104986 + 0.181841i
\(529\) −10.0592 −0.437357
\(530\) 5.23269 0.227293
\(531\) −14.1427 + 24.4958i −0.613740 + 1.06303i
\(532\) 5.87028 4.47616i 0.254509 0.194066i
\(533\) −5.11694 + 2.12184i −0.221639 + 0.0919072i
\(534\) −6.75105 11.6932i −0.292147 0.506013i
\(535\) −1.31070 2.27020i −0.0566665 0.0981493i
\(536\) −4.60652 7.97873i −0.198971 0.344629i
\(537\) 4.53286 7.85114i 0.195607 0.338802i
\(538\) −44.2809 −1.90909
\(539\) 3.92072 14.2847i 0.168877 0.615285i
\(540\) 0.700261 + 1.21289i 0.0301344 + 0.0521944i
\(541\) 10.7497 + 18.6190i 0.462165 + 0.800493i 0.999069 0.0431505i \(-0.0137395\pi\)
−0.536904 + 0.843644i \(0.680406\pi\)
\(542\) 27.9026 1.19852
\(543\) −1.37118 2.37495i −0.0588428 0.101919i
\(544\) 2.10546 0.0902707
\(545\) −16.3783 −0.701569
\(546\) 3.64461 6.27423i 0.155975 0.268512i
\(547\) −30.2968 −1.29540 −0.647699 0.761896i \(-0.724269\pi\)
−0.647699 + 0.761896i \(0.724269\pi\)
\(548\) −1.15299 −0.0492531
\(549\) −11.4131 19.7680i −0.487098 0.843679i
\(550\) −11.7789 −0.502256
\(551\) −28.4854 49.3381i −1.21352 2.10187i
\(552\) −2.16567 3.75105i −0.0921770 0.159655i
\(553\) 2.04865 + 15.9349i 0.0871176 + 0.677621i
\(554\) 20.8932 0.887668
\(555\) −1.45492 + 2.51999i −0.0617579 + 0.106968i
\(556\) 4.75369 + 8.23364i 0.201601 + 0.349184i
\(557\) 8.84201 + 15.3148i 0.374648 + 0.648909i 0.990274 0.139129i \(-0.0444302\pi\)
−0.615626 + 0.788038i \(0.711097\pi\)
\(558\) −11.3474 19.6543i −0.480374 0.832033i
\(559\) 2.54918 19.4214i 0.107819 0.821437i
\(560\) 1.87330 + 14.5710i 0.0791616 + 0.615737i
\(561\) −0.469159 + 0.812606i −0.0198079 + 0.0343083i
\(562\) −46.5676 −1.96433
\(563\) −41.7390 −1.75909 −0.879545 0.475816i \(-0.842153\pi\)
−0.879545 + 0.475816i \(0.842153\pi\)
\(564\) −0.325115 + 0.563116i −0.0136898 + 0.0237115i
\(565\) −9.58852 + 16.6078i −0.403392 + 0.698696i
\(566\) 7.68887 + 13.3175i 0.323187 + 0.559777i
\(567\) 2.32887 + 18.1145i 0.0978035 + 0.760738i
\(568\) −3.11340 5.39257i −0.130636 0.226267i
\(569\) 5.46775 0.229220 0.114610 0.993411i \(-0.463438\pi\)
0.114610 + 0.993411i \(0.463438\pi\)
\(570\) −3.03171 5.25108i −0.126984 0.219943i
\(571\) −4.67621 + 8.09944i −0.195693 + 0.338951i −0.947128 0.320857i \(-0.896029\pi\)
0.751434 + 0.659808i \(0.229362\pi\)
\(572\) 0.414111 3.15498i 0.0173149 0.131916i
\(573\) −0.246437 −0.0102951
\(574\) 5.02529 3.83185i 0.209752 0.159938i
\(575\) 6.43976 11.1540i 0.268557 0.465154i
\(576\) 7.87968 13.6480i 0.328320 0.568667i
\(577\) 1.68462 2.91786i 0.0701318 0.121472i −0.828827 0.559505i \(-0.810991\pi\)
0.898959 + 0.438033i \(0.144325\pi\)
\(578\) −25.1527 −1.04621
\(579\) −0.908159 + 1.57298i −0.0377418 + 0.0653707i
\(580\) −4.23151 −0.175704
\(581\) 28.3941 + 11.8624i 1.17798 + 0.492134i
\(582\) 2.35961 4.08697i 0.0978091 0.169410i
\(583\) −5.97761 −0.247567
\(584\) −7.05128 + 12.2132i −0.291784 + 0.505385i
\(585\) 9.41185 + 7.21614i 0.389132 + 0.298351i
\(586\) −6.14924 10.6508i −0.254023 0.439980i
\(587\) 6.57639 11.3906i 0.271437 0.470142i −0.697793 0.716299i \(-0.745835\pi\)
0.969230 + 0.246157i \(0.0791679\pi\)
\(588\) −0.378045 + 1.37736i −0.0155903 + 0.0568014i
\(589\) 17.6884 + 30.6373i 0.728840 + 1.26239i
\(590\) −9.48995 16.4371i −0.390695 0.676704i
\(591\) 3.64224 0.149822
\(592\) −23.2616 −0.956048
\(593\) −19.2958 33.4213i −0.792384 1.37245i −0.924487 0.381214i \(-0.875506\pi\)
0.132102 0.991236i \(-0.457827\pi\)
\(594\) −4.63617 8.03008i −0.190224 0.329478i
\(595\) 0.364317 + 2.83374i 0.0149356 + 0.116172i
\(596\) 3.00519 5.20515i 0.123097 0.213211i
\(597\) 1.83605 + 3.18014i 0.0751447 + 0.130154i
\(598\) 16.0026 + 12.2694i 0.654396 + 0.501731i
\(599\) −9.20762 + 15.9481i −0.376213 + 0.651620i −0.990508 0.137457i \(-0.956107\pi\)
0.614295 + 0.789077i \(0.289441\pi\)
\(600\) −4.31084 −0.175989
\(601\) 20.7018 35.8566i 0.844445 1.46262i −0.0416571 0.999132i \(-0.513264\pi\)
0.886102 0.463490i \(-0.153403\pi\)
\(602\) 2.84950 + 22.1641i 0.116137 + 0.903341i
\(603\) 10.3348 0.420865
\(604\) −3.18169 + 5.51085i −0.129461 + 0.224233i
\(605\) 7.77099 0.315936
\(606\) −2.74690 + 4.75777i −0.111585 + 0.193271i
\(607\) −6.15255 + 10.6565i −0.249724 + 0.432535i −0.963449 0.267891i \(-0.913673\pi\)
0.713725 + 0.700426i \(0.247007\pi\)
\(608\) 7.77119 13.4601i 0.315163 0.545879i
\(609\) 10.1708 + 4.24912i 0.412142 + 0.172183i
\(610\) 15.3167 0.620155
\(611\) −1.49530 + 11.3922i −0.0604934 + 0.460880i
\(612\) −0.521725 + 0.903654i −0.0210895 + 0.0365280i
\(613\) −13.1112 22.7093i −0.529556 0.917219i −0.999406 0.0344720i \(-0.989025\pi\)
0.469849 0.882747i \(-0.344308\pi\)
\(614\) 1.97816 0.0798319
\(615\) −0.447810 0.775630i −0.0180575 0.0312764i
\(616\) −1.75696 13.6661i −0.0707900 0.550621i
\(617\) 9.41259 + 16.3031i 0.378936 + 0.656337i 0.990908 0.134543i \(-0.0429565\pi\)
−0.611971 + 0.790880i \(0.709623\pi\)
\(618\) 3.77519 6.53882i 0.151860 0.263030i
\(619\) 7.90415 13.6904i 0.317695 0.550263i −0.662312 0.749228i \(-0.730425\pi\)
0.980007 + 0.198965i \(0.0637580\pi\)
\(620\) 2.62762 0.105528
\(621\) 10.1387 0.406852
\(622\) −19.2497 + 33.3415i −0.771843 + 1.33687i
\(623\) 43.3353 + 18.1045i 1.73619 + 0.725340i
\(624\) 1.06984 8.15073i 0.0428277 0.326290i
\(625\) −2.86003 4.95371i −0.114401 0.198149i
\(626\) −1.84737 3.19973i −0.0738356 0.127887i
\(627\) 3.46331 + 5.99862i 0.138311 + 0.239562i
\(628\) 2.38030 4.12280i 0.0949843 0.164518i
\(629\) −4.52389 −0.180379
\(630\) −12.4843 5.21566i −0.497388 0.207797i
\(631\) 8.33817 + 14.4421i 0.331937 + 0.574933i 0.982892 0.184184i \(-0.0589644\pi\)
−0.650954 + 0.759117i \(0.725631\pi\)
\(632\) 7.47206 + 12.9420i 0.297222 + 0.514804i
\(633\) −1.85457 −0.0737125
\(634\) 15.3755 + 26.6312i 0.610640 + 1.05766i
\(635\) 18.6810 0.741333
\(636\) 0.576375 0.0228548
\(637\) 3.15202 + 25.0413i 0.124888 + 0.992171i
\(638\) 28.0152 1.10913
\(639\) 6.98497 0.276321
\(640\) 8.05542 + 13.9524i 0.318418 + 0.551517i
\(641\) 49.2464 1.94512 0.972559 0.232658i \(-0.0747422\pi\)
0.972559 + 0.232658i \(0.0747422\pi\)
\(642\) −0.836720 1.44924i −0.0330227 0.0571970i
\(643\) −21.4355 37.1275i −0.845335 1.46416i −0.885330 0.464964i \(-0.846067\pi\)
0.0399940 0.999200i \(-0.487266\pi\)
\(644\) −3.66256 1.53013i −0.144325 0.0602957i
\(645\) 3.16700 0.124701
\(646\) 4.71336 8.16378i 0.185445 0.321200i
\(647\) −2.12929 3.68804i −0.0837112 0.144992i 0.821130 0.570741i \(-0.193344\pi\)
−0.904841 + 0.425749i \(0.860011\pi\)
\(648\) 8.49410 + 14.7122i 0.333680 + 0.577950i
\(649\) 10.8409 + 18.7771i 0.425544 + 0.737064i
\(650\) 18.5387 7.68744i 0.727148 0.301526i
\(651\) −6.31572 2.63856i −0.247533 0.103413i
\(652\) 3.00437 5.20373i 0.117660 0.203794i
\(653\) −2.09552 −0.0820040 −0.0410020 0.999159i \(-0.513055\pi\)
−0.0410020 + 0.999159i \(0.513055\pi\)
\(654\) −10.4555 −0.408843
\(655\) −5.68213 + 9.84174i −0.222019 + 0.384549i
\(656\) 3.57986 6.20049i 0.139770 0.242089i
\(657\) −7.90982 13.7002i −0.308592 0.534496i
\(658\) −1.67146 13.0010i −0.0651604 0.506833i
\(659\) −12.7259 22.0419i −0.495732 0.858632i 0.504256 0.863554i \(-0.331767\pi\)
−0.999988 + 0.00492170i \(0.998433\pi\)
\(660\) 0.514475 0.0200259
\(661\) −13.9054 24.0848i −0.540857 0.936792i −0.998855 0.0478387i \(-0.984767\pi\)
0.457998 0.888953i \(-0.348567\pi\)
\(662\) −3.05319 + 5.28829i −0.118666 + 0.205535i
\(663\) 0.208060 1.58514i 0.00808038 0.0615618i
\(664\) 28.6234 1.11080
\(665\) 19.4607 + 8.13022i 0.754653 + 0.315276i
\(666\) 10.7117 18.5533i 0.415072 0.718925i
\(667\) −15.3164 + 26.5288i −0.593055 + 1.02720i
\(668\) −1.62064 + 2.80703i −0.0627044 + 0.108607i
\(669\) −2.38207 −0.0920960
\(670\) −3.46740 + 6.00572i −0.133957 + 0.232021i
\(671\) −17.4972 −0.675472
\(672\) 0.383454 + 2.98260i 0.0147921 + 0.115056i
\(673\) −7.76033 + 13.4413i −0.299139 + 0.518124i −0.975939 0.218043i \(-0.930033\pi\)
0.676800 + 0.736167i \(0.263366\pi\)
\(674\) −11.1020 −0.427633
\(675\) 5.04536 8.73881i 0.194196 0.336357i
\(676\) 1.40731 + 5.23583i 0.0541272 + 0.201378i
\(677\) −17.2813 29.9321i −0.664175 1.15038i −0.979508 0.201403i \(-0.935450\pi\)
0.315334 0.948981i \(-0.397884\pi\)
\(678\) −6.12109 + 10.6020i −0.235079 + 0.407169i
\(679\) 2.09317 + 16.2811i 0.0803284 + 0.624813i
\(680\) 1.32877 + 2.30150i 0.0509562 + 0.0882587i
\(681\) 5.91425 + 10.2438i 0.226634 + 0.392542i
\(682\) −17.3965 −0.666147
\(683\) 47.0064 1.79865 0.899325 0.437281i \(-0.144058\pi\)
0.899325 + 0.437281i \(0.144058\pi\)
\(684\) 3.85135 + 6.67073i 0.147260 + 0.255062i
\(685\) −1.64703 2.85275i −0.0629299 0.108998i
\(686\) −10.7758 26.7007i −0.411424 1.01944i
\(687\) −5.31138 + 9.19958i −0.202642 + 0.350986i
\(688\) 12.6587 + 21.9255i 0.482609 + 0.835904i
\(689\) 9.40807 3.90124i 0.358419 0.148625i
\(690\) −1.63013 + 2.82348i −0.0620582 + 0.107488i
\(691\) 19.0060 0.723023 0.361512 0.932368i \(-0.382261\pi\)
0.361512 + 0.932368i \(0.382261\pi\)
\(692\) −1.27088 + 2.20123i −0.0483117 + 0.0836784i
\(693\) 14.2616 + 5.95816i 0.541754 + 0.226332i
\(694\) 15.6556 0.594280
\(695\) −13.5813 + 23.5234i −0.515166 + 0.892294i
\(696\) 10.2530 0.388638
\(697\) 0.696205 1.20586i 0.0263706 0.0456753i
\(698\) 4.88822 8.46665i 0.185022 0.320467i
\(699\) 0.928805 1.60874i 0.0351306 0.0608480i
\(700\) −3.14147 + 2.39541i −0.118737 + 0.0905382i
\(701\) −45.4648 −1.71718 −0.858591 0.512662i \(-0.828659\pi\)
−0.858591 + 0.512662i \(0.828659\pi\)
\(702\) 12.5376 + 9.61266i 0.473200 + 0.362807i
\(703\) −16.6976 + 28.9210i −0.629760 + 1.09078i
\(704\) −6.04010 10.4618i −0.227645 0.394293i
\(705\) −1.85770 −0.0699651
\(706\) −26.5597 46.0027i −0.999586 1.73133i
\(707\) −2.43672 18.9534i −0.0916423 0.712815i
\(708\) −1.04531 1.81053i −0.0392851 0.0680438i
\(709\) 4.89390 8.47648i 0.183794 0.318341i −0.759375 0.650653i \(-0.774495\pi\)
0.943170 + 0.332312i \(0.107829\pi\)
\(710\) −2.34351 + 4.05908i −0.0879504 + 0.152334i
\(711\) −16.7637 −0.628687
\(712\) 43.6854 1.63718
\(713\) 9.51099 16.4735i 0.356189 0.616938i
\(714\) 0.232572 + 1.80900i 0.00870377 + 0.0677000i
\(715\) 8.39768 3.48226i 0.314055 0.130229i
\(716\) −3.86393 6.69252i −0.144402 0.250111i
\(717\) 5.35974 + 9.28334i 0.200163 + 0.346693i
\(718\) −14.5259 25.1595i −0.542100 0.938945i
\(719\) 13.9201 24.1104i 0.519133 0.899165i −0.480620 0.876929i \(-0.659588\pi\)
0.999753 0.0222358i \(-0.00707846\pi\)
\(720\) −15.3288 −0.571271
\(721\) 3.34890 + 26.0485i 0.124720 + 0.970098i
\(722\) −20.0243 34.6830i −0.745226 1.29077i
\(723\) −5.07568 8.79134i −0.188767 0.326953i
\(724\) −2.33766 −0.0868783
\(725\) 15.2439 + 26.4033i 0.566145 + 0.980592i
\(726\) 4.96082 0.184113
\(727\) −14.5650 −0.540186 −0.270093 0.962834i \(-0.587055\pi\)
−0.270093 + 0.962834i \(0.587055\pi\)
\(728\) 11.6843 + 20.3621i 0.433049 + 0.754670i
\(729\) −14.9199 −0.552589
\(730\) 10.6152 0.392887
\(731\) 2.46185 + 4.26405i 0.0910547 + 0.157711i
\(732\) 1.68712 0.0623577
\(733\) −8.83030 15.2945i −0.326155 0.564916i 0.655591 0.755116i \(-0.272420\pi\)
−0.981745 + 0.190200i \(0.939086\pi\)
\(734\) 24.1451 + 41.8206i 0.891213 + 1.54363i
\(735\) −3.94794 + 1.03219i −0.145622 + 0.0380727i
\(736\) −8.35705 −0.308045
\(737\) 3.96102 6.86069i 0.145906 0.252717i
\(738\) 3.29697 + 5.71052i 0.121363 + 0.210207i
\(739\) −4.48279 7.76443i −0.164902 0.285619i 0.771718 0.635964i \(-0.219398\pi\)
−0.936621 + 0.350345i \(0.886064\pi\)
\(740\) 1.24021 + 2.14811i 0.0455911 + 0.0789661i
\(741\) −9.36579 7.18084i −0.344061 0.263795i
\(742\) −9.23955 + 7.04528i −0.339195 + 0.258640i
\(743\) 13.1839 22.8352i 0.483671 0.837743i −0.516153 0.856497i \(-0.672636\pi\)
0.999824 + 0.0187532i \(0.00596968\pi\)
\(744\) −6.36674 −0.233416
\(745\) 17.1716 0.629119
\(746\) 2.28309 3.95442i 0.0835898 0.144782i
\(747\) −16.0543 + 27.8068i −0.587395 + 1.01740i
\(748\) 0.399923 + 0.692688i 0.0146226 + 0.0253272i
\(749\) 5.37095 + 2.24385i 0.196250 + 0.0819887i
\(750\) 3.88818 + 6.73452i 0.141976 + 0.245910i
\(751\) −20.2876 −0.740305 −0.370152 0.928971i \(-0.620695\pi\)
−0.370152 + 0.928971i \(0.620695\pi\)
\(752\) −7.42536 12.8611i −0.270775 0.468996i
\(753\) 3.24321 5.61740i 0.118189 0.204709i
\(754\) −44.0928 + 18.2839i −1.60576 + 0.665861i
\(755\) −18.1801 −0.661642
\(756\) −2.86951 1.19881i −0.104363 0.0436004i
\(757\) −12.4992 + 21.6493i −0.454292 + 0.786857i −0.998647 0.0519981i \(-0.983441\pi\)
0.544355 + 0.838855i \(0.316774\pi\)
\(758\) −7.83957 + 13.5785i −0.284746 + 0.493195i
\(759\) 1.86220 3.22543i 0.0675936 0.117076i
\(760\) 19.6179 0.711616
\(761\) −10.0711 + 17.4436i −0.365077 + 0.632332i −0.988789 0.149323i \(-0.952291\pi\)
0.623712 + 0.781655i \(0.285624\pi\)
\(762\) 11.9255 0.432016
\(763\) 28.9198 22.0517i 1.04697 0.798326i
\(764\) −0.105035 + 0.181926i −0.00380003 + 0.00658184i
\(765\) −2.98112 −0.107783
\(766\) −2.86786 + 4.96729i −0.103620 + 0.179475i
\(767\) −29.3171 22.4777i −1.05858 0.811622i
\(768\) 2.34945 + 4.06936i 0.0847784 + 0.146840i
\(769\) −4.33610 + 7.51034i −0.156364 + 0.270830i −0.933555 0.358435i \(-0.883311\pi\)
0.777191 + 0.629265i \(0.216644\pi\)
\(770\) −8.24726 + 6.28864i −0.297211 + 0.226627i
\(771\) −3.22199 5.58065i −0.116037 0.200982i
\(772\) 0.774139 + 1.34085i 0.0278619 + 0.0482582i
\(773\) 2.34567 0.0843679 0.0421839 0.999110i \(-0.486568\pi\)
0.0421839 + 0.999110i \(0.486568\pi\)
\(774\) −23.3168 −0.838106
\(775\) −9.46596 16.3955i −0.340027 0.588945i
\(776\) 7.63441 + 13.2232i 0.274059 + 0.474685i