Properties

Label 867.2.h.k.688.3
Level $867$
Weight $2$
Character 867.688
Analytic conductor $6.923$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(688,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.688"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8,0,0,0,0,0,-32,0,0,0,0,0,0,-8,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8x^{14} + 32x^{12} + 296x^{10} + 1057x^{8} + 1184x^{6} + 512x^{4} - 512x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 688.3
Root \(0.467712 - 1.12916i\) of defining polynomial
Character \(\chi\) \(=\) 867.688
Dual form 867.2.h.k.712.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.86422 - 1.86422i) q^{2} +(-0.382683 + 0.923880i) q^{3} -4.95063i q^{4} +(-2.05304 - 0.850396i) q^{5} +(1.00891 + 2.43572i) q^{6} +(-2.13807 + 0.885616i) q^{7} +(-5.50062 - 5.50062i) q^{8} +(-0.707107 - 0.707107i) q^{9} +(-5.41264 + 2.24199i) q^{10} +(-0.746474 - 1.80215i) q^{11} +(4.57379 + 1.89452i) q^{12} +1.32218i q^{13} +(-2.33484 + 5.63681i) q^{14} +(1.57133 - 1.57133i) q^{15} -10.6075 q^{16} -2.63640 q^{18} +(-4.20773 + 4.20773i) q^{19} +(-4.21000 + 10.1638i) q^{20} -2.31423i q^{21} +(-4.75119 - 1.96801i) q^{22} +(-1.82887 - 4.41527i) q^{23} +(7.18691 - 2.97692i) q^{24} +(-0.0437455 - 0.0437455i) q^{25} +(2.46483 + 2.46483i) q^{26} +(0.923880 - 0.382683i) q^{27} +(4.38436 + 10.5848i) q^{28} +(-0.159667 - 0.0661363i) q^{29} -5.85860i q^{30} +(-0.170058 + 0.410556i) q^{31} +(-8.77343 + 8.77343i) q^{32} +1.95063 q^{33} +5.14265 q^{35} +(-3.50062 + 3.50062i) q^{36} +(2.03414 - 4.91086i) q^{37} +15.6883i q^{38} +(-1.22153 - 0.505976i) q^{39} +(6.61528 + 15.9707i) q^{40} +(3.71604 - 1.53924i) q^{41} +(-4.31423 - 4.31423i) q^{42} +(-5.89351 - 5.89351i) q^{43} +(-8.92177 + 3.69552i) q^{44} +(0.850396 + 2.05304i) q^{45} +(-11.6405 - 4.82163i) q^{46} +2.38404i q^{47} +(4.05931 - 9.80004i) q^{48} +(-1.16274 + 1.16274i) q^{49} -0.163102 q^{50} +6.54562 q^{52} +(0.514201 - 0.514201i) q^{53} +(1.00891 - 2.43572i) q^{54} +4.33468i q^{55} +(16.6321 + 6.88926i) q^{56} +(-2.27721 - 5.49767i) q^{57} +(-0.420947 + 0.174362i) q^{58} +(-8.33468 - 8.33468i) q^{59} +(-7.77906 - 7.77906i) q^{60} +(8.02576 - 3.32438i) q^{61} +(0.448342 + 1.08239i) q^{62} +(2.13807 + 0.885616i) q^{63} +11.4963i q^{64} +(1.12438 - 2.71448i) q^{65} +(3.63640 - 3.63640i) q^{66} +14.1866 q^{67} +4.77906 q^{69} +(9.58704 - 9.58704i) q^{70} +(2.33484 - 5.63681i) q^{71} +7.77906i q^{72} +(-9.75327 - 4.03994i) q^{73} +(-5.36283 - 12.9470i) q^{74} +(0.0571563 - 0.0236749i) q^{75} +(20.8309 + 20.8309i) q^{76} +(3.19202 + 3.19202i) q^{77} +(-3.22046 + 1.33396i) q^{78} +(-0.267217 - 0.645118i) q^{79} +(21.7776 + 9.02056i) q^{80} +1.00000i q^{81} +(4.05805 - 9.79700i) q^{82} +(6.03142 - 6.03142i) q^{83} -11.4569 q^{84} -21.9736 q^{86} +(0.122204 - 0.122204i) q^{87} +(-5.80687 + 14.0190i) q^{88} -5.40297i q^{89} +(5.41264 + 2.24199i) q^{90} +(-1.17094 - 2.82691i) q^{91} +(-21.8584 + 9.05404i) q^{92} +(-0.314226 - 0.314226i) q^{93} +(4.44438 + 4.44438i) q^{94} +(12.2169 - 5.06039i) q^{95} +(-4.74815 - 11.4630i) q^{96} +(4.35696 + 1.80471i) q^{97} +4.33519i q^{98} +(-0.746474 + 1.80215i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 32 q^{8} - 8 q^{15} - 24 q^{16} - 8 q^{18} - 32 q^{25} - 40 q^{26} - 16 q^{32} - 24 q^{33} + 16 q^{35} - 48 q^{42} - 48 q^{43} - 32 q^{49} + 120 q^{50} - 32 q^{52} - 16 q^{53} - 56 q^{59}+ \cdots + 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.86422 1.86422i 1.31820 1.31820i 0.403004 0.915198i \(-0.367966\pi\)
0.915198 0.403004i \(-0.132034\pi\)
\(3\) −0.382683 + 0.923880i −0.220942 + 0.533402i
\(4\) 4.95063i 2.47532i
\(5\) −2.05304 0.850396i −0.918146 0.380309i −0.126977 0.991906i \(-0.540527\pi\)
−0.791169 + 0.611597i \(0.790527\pi\)
\(6\) 1.00891 + 2.43572i 0.411885 + 0.994379i
\(7\) −2.13807 + 0.885616i −0.808113 + 0.334731i −0.748201 0.663472i \(-0.769082\pi\)
−0.0599122 + 0.998204i \(0.519082\pi\)
\(8\) −5.50062 5.50062i −1.94476 1.94476i
\(9\) −0.707107 0.707107i −0.235702 0.235702i
\(10\) −5.41264 + 2.24199i −1.71163 + 0.708979i
\(11\) −0.746474 1.80215i −0.225070 0.543368i 0.770494 0.637447i \(-0.220009\pi\)
−0.995565 + 0.0940788i \(0.970009\pi\)
\(12\) 4.57379 + 1.89452i 1.32034 + 0.546902i
\(13\) 1.32218i 0.366706i 0.983047 + 0.183353i \(0.0586952\pi\)
−0.983047 + 0.183353i \(0.941305\pi\)
\(14\) −2.33484 + 5.63681i −0.624013 + 1.50650i
\(15\) 1.57133 1.57133i 0.405715 0.405715i
\(16\) −10.6075 −2.65187
\(17\) 0 0
\(18\) −2.63640 −0.621407
\(19\) −4.20773 + 4.20773i −0.965320 + 0.965320i −0.999418 0.0340987i \(-0.989144\pi\)
0.0340987 + 0.999418i \(0.489144\pi\)
\(20\) −4.21000 + 10.1638i −0.941384 + 2.27270i
\(21\) 2.31423i 0.505006i
\(22\) −4.75119 1.96801i −1.01296 0.419581i
\(23\) −1.82887 4.41527i −0.381345 0.920648i −0.991706 0.128525i \(-0.958976\pi\)
0.610361 0.792123i \(-0.291024\pi\)
\(24\) 7.18691 2.97692i 1.46702 0.607661i
\(25\) −0.0437455 0.0437455i −0.00874910 0.00874910i
\(26\) 2.46483 + 2.46483i 0.483393 + 0.483393i
\(27\) 0.923880 0.382683i 0.177801 0.0736475i
\(28\) 4.38436 + 10.5848i 0.828566 + 2.00033i
\(29\) −0.159667 0.0661363i −0.0296494 0.0122812i 0.367809 0.929901i \(-0.380108\pi\)
−0.397459 + 0.917620i \(0.630108\pi\)
\(30\) 5.85860i 1.06963i
\(31\) −0.170058 + 0.410556i −0.0305433 + 0.0737381i −0.938415 0.345510i \(-0.887706\pi\)
0.907872 + 0.419248i \(0.137706\pi\)
\(32\) −8.77343 + 8.77343i −1.55094 + 1.55094i
\(33\) 1.95063 0.339561
\(34\) 0 0
\(35\) 5.14265 0.869267
\(36\) −3.50062 + 3.50062i −0.583437 + 0.583437i
\(37\) 2.03414 4.91086i 0.334411 0.807340i −0.663820 0.747892i \(-0.731066\pi\)
0.998231 0.0594480i \(-0.0189340\pi\)
\(38\) 15.6883i 2.54497i
\(39\) −1.22153 0.505976i −0.195602 0.0810210i
\(40\) 6.61528 + 15.9707i 1.04597 + 2.52519i
\(41\) 3.71604 1.53924i 0.580348 0.240388i −0.0731438 0.997321i \(-0.523303\pi\)
0.653492 + 0.756933i \(0.273303\pi\)
\(42\) −4.31423 4.31423i −0.665700 0.665700i
\(43\) −5.89351 5.89351i −0.898751 0.898751i 0.0965746 0.995326i \(-0.469211\pi\)
−0.995326 + 0.0965746i \(0.969211\pi\)
\(44\) −8.92177 + 3.69552i −1.34501 + 0.557120i
\(45\) 0.850396 + 2.05304i 0.126770 + 0.306049i
\(46\) −11.6405 4.82163i −1.71629 0.710911i
\(47\) 2.38404i 0.347749i 0.984768 + 0.173874i \(0.0556286\pi\)
−0.984768 + 0.173874i \(0.944371\pi\)
\(48\) 4.05931 9.80004i 0.585911 1.41451i
\(49\) −1.16274 + 1.16274i −0.166105 + 0.166105i
\(50\) −0.163102 −0.0230662
\(51\) 0 0
\(52\) 6.54562 0.907714
\(53\) 0.514201 0.514201i 0.0706309 0.0706309i −0.670909 0.741540i \(-0.734096\pi\)
0.741540 + 0.670909i \(0.234096\pi\)
\(54\) 1.00891 2.43572i 0.137295 0.331460i
\(55\) 4.33468i 0.584488i
\(56\) 16.6321 + 6.88926i 2.22256 + 0.920616i
\(57\) −2.27721 5.49767i −0.301624 0.728184i
\(58\) −0.420947 + 0.174362i −0.0552730 + 0.0228948i
\(59\) −8.33468 8.33468i −1.08508 1.08508i −0.996027 0.0890557i \(-0.971615\pi\)
−0.0890557 0.996027i \(-0.528385\pi\)
\(60\) −7.77906 7.77906i −1.00427 1.00427i
\(61\) 8.02576 3.32438i 1.02759 0.425643i 0.195750 0.980654i \(-0.437286\pi\)
0.831843 + 0.555011i \(0.187286\pi\)
\(62\) 0.448342 + 1.08239i 0.0569394 + 0.137464i
\(63\) 2.13807 + 0.885616i 0.269371 + 0.111577i
\(64\) 11.4963i 1.43703i
\(65\) 1.12438 2.71448i 0.139462 0.336690i
\(66\) 3.63640 3.63640i 0.447611 0.447611i
\(67\) 14.1866 1.73317 0.866583 0.499034i \(-0.166312\pi\)
0.866583 + 0.499034i \(0.166312\pi\)
\(68\) 0 0
\(69\) 4.77906 0.575331
\(70\) 9.58704 9.58704i 1.14587 1.14587i
\(71\) 2.33484 5.63681i 0.277095 0.668966i −0.722658 0.691206i \(-0.757080\pi\)
0.999753 + 0.0222399i \(0.00707976\pi\)
\(72\) 7.77906i 0.916771i
\(73\) −9.75327 4.03994i −1.14153 0.472839i −0.269848 0.962903i \(-0.586973\pi\)
−0.871686 + 0.490064i \(0.836973\pi\)
\(74\) −5.36283 12.9470i −0.623416 1.50506i
\(75\) 0.0571563 0.0236749i 0.00659984 0.00273374i
\(76\) 20.8309 + 20.8309i 2.38947 + 2.38947i
\(77\) 3.19202 + 3.19202i 0.363765 + 0.363765i
\(78\) −3.22046 + 1.33396i −0.364645 + 0.151041i
\(79\) −0.267217 0.645118i −0.0300642 0.0725814i 0.908134 0.418679i \(-0.137507\pi\)
−0.938199 + 0.346097i \(0.887507\pi\)
\(80\) 21.7776 + 9.02056i 2.43481 + 1.00853i
\(81\) 1.00000i 0.111111i
\(82\) 4.05805 9.79700i 0.448136 1.08190i
\(83\) 6.03142 6.03142i 0.662034 0.662034i −0.293825 0.955859i \(-0.594928\pi\)
0.955859 + 0.293825i \(0.0949283\pi\)
\(84\) −11.4569 −1.25005
\(85\) 0 0
\(86\) −21.9736 −2.36947
\(87\) 0.122204 0.122204i 0.0131016 0.0131016i
\(88\) −5.80687 + 14.0190i −0.619014 + 1.49443i
\(89\) 5.40297i 0.572713i −0.958123 0.286357i \(-0.907556\pi\)
0.958123 0.286357i \(-0.0924442\pi\)
\(90\) 5.41264 + 2.24199i 0.570542 + 0.236326i
\(91\) −1.17094 2.82691i −0.122748 0.296340i
\(92\) −21.8584 + 9.05404i −2.27889 + 0.943949i
\(93\) −0.314226 0.314226i −0.0325837 0.0325837i
\(94\) 4.44438 + 4.44438i 0.458403 + 0.458403i
\(95\) 12.2169 5.06039i 1.25342 0.519185i
\(96\) −4.74815 11.4630i −0.484606 1.16994i
\(97\) 4.35696 + 1.80471i 0.442383 + 0.183241i 0.592745 0.805390i \(-0.298044\pi\)
−0.150363 + 0.988631i \(0.548044\pi\)
\(98\) 4.33519i 0.437921i
\(99\) −0.746474 + 1.80215i −0.0750235 + 0.181123i
\(100\) −0.216568 + 0.216568i −0.0216568 + 0.0216568i
\(101\) 7.11123 0.707594 0.353797 0.935322i \(-0.384890\pi\)
0.353797 + 0.935322i \(0.384890\pi\)
\(102\) 0 0
\(103\) −9.22344 −0.908813 −0.454406 0.890795i \(-0.650149\pi\)
−0.454406 + 0.890795i \(0.650149\pi\)
\(104\) 7.27281 7.27281i 0.713158 0.713158i
\(105\) −1.96801 + 4.75119i −0.192058 + 0.463669i
\(106\) 1.91717i 0.186212i
\(107\) −4.78804 1.98327i −0.462878 0.191730i 0.139043 0.990286i \(-0.455598\pi\)
−0.601920 + 0.798556i \(0.705598\pi\)
\(108\) −1.89452 4.57379i −0.182301 0.440113i
\(109\) −18.4548 + 7.64423i −1.76765 + 0.732185i −0.772367 + 0.635177i \(0.780927\pi\)
−0.995284 + 0.0970083i \(0.969073\pi\)
\(110\) 8.08079 + 8.08079i 0.770473 + 0.770473i
\(111\) 3.75861 + 3.75861i 0.356751 + 0.356751i
\(112\) 22.6795 9.39416i 2.14301 0.887665i
\(113\) 6.67291 + 16.1098i 0.627735 + 1.51549i 0.842431 + 0.538805i \(0.181124\pi\)
−0.214696 + 0.976681i \(0.568876\pi\)
\(114\) −14.4941 6.00364i −1.35749 0.562293i
\(115\) 10.6200i 0.990318i
\(116\) −0.327416 + 0.790453i −0.0303998 + 0.0733917i
\(117\) 0.934922 0.934922i 0.0864335 0.0864335i
\(118\) −31.0753 −2.86072
\(119\) 0 0
\(120\) −17.2866 −1.57804
\(121\) 5.08766 5.08766i 0.462515 0.462515i
\(122\) 8.76441 21.1592i 0.793493 1.91566i
\(123\) 4.02222i 0.362671i
\(124\) 2.03251 + 0.841894i 0.182525 + 0.0756043i
\(125\) 4.30459 + 10.3922i 0.385014 + 0.929506i
\(126\) 5.63681 2.33484i 0.502167 0.208004i
\(127\) −6.96634 6.96634i −0.618163 0.618163i 0.326897 0.945060i \(-0.393997\pi\)
−0.945060 + 0.326897i \(0.893997\pi\)
\(128\) 3.88467 + 3.88467i 0.343359 + 0.343359i
\(129\) 7.70024 3.18954i 0.677968 0.280824i
\(130\) −2.96431 7.15647i −0.259987 0.627664i
\(131\) 7.02840 + 2.91126i 0.614074 + 0.254358i 0.667969 0.744189i \(-0.267164\pi\)
−0.0538952 + 0.998547i \(0.517164\pi\)
\(132\) 9.65685i 0.840521i
\(133\) 5.26997 12.7228i 0.456965 1.10321i
\(134\) 26.4469 26.4469i 2.28466 2.28466i
\(135\) −2.22219 −0.191256
\(136\) 0 0
\(137\) 22.0723 1.88577 0.942883 0.333125i \(-0.108103\pi\)
0.942883 + 0.333125i \(0.108103\pi\)
\(138\) 8.90921 8.90921i 0.758403 0.758403i
\(139\) 1.37174 3.31168i 0.116350 0.280893i −0.854967 0.518682i \(-0.826423\pi\)
0.971317 + 0.237789i \(0.0764228\pi\)
\(140\) 25.4594i 2.15171i
\(141\) −2.20257 0.912334i −0.185490 0.0768324i
\(142\) −6.15559 14.8609i −0.516566 1.24710i
\(143\) 2.38276 0.986972i 0.199257 0.0825348i
\(144\) 7.50062 + 7.50062i 0.625052 + 0.625052i
\(145\) 0.271560 + 0.271560i 0.0225519 + 0.0225519i
\(146\) −25.7136 + 10.6509i −2.12807 + 0.881476i
\(147\) −0.629268 1.51919i −0.0519012 0.125301i
\(148\) −24.3119 10.0703i −1.99842 0.827773i
\(149\) 11.7711i 0.964327i −0.876081 0.482163i \(-0.839851\pi\)
0.876081 0.482163i \(-0.160149\pi\)
\(150\) 0.0624166 0.150687i 0.00509630 0.0123035i
\(151\) −11.3871 + 11.3871i −0.926666 + 0.926666i −0.997489 0.0708230i \(-0.977437\pi\)
0.0708230 + 0.997489i \(0.477437\pi\)
\(152\) 46.2903 3.75464
\(153\) 0 0
\(154\) 11.9013 0.959031
\(155\) 0.698270 0.698270i 0.0560864 0.0560864i
\(156\) −2.50490 + 6.04736i −0.200553 + 0.484177i
\(157\) 6.45535i 0.515193i 0.966253 + 0.257597i \(0.0829306\pi\)
−0.966253 + 0.257597i \(0.917069\pi\)
\(158\) −1.70079 0.704491i −0.135308 0.0560463i
\(159\) 0.278284 + 0.671836i 0.0220693 + 0.0532801i
\(160\) 25.4731 10.5513i 2.01382 0.834153i
\(161\) 7.82047 + 7.82047i 0.616340 + 0.616340i
\(162\) 1.86422 + 1.86422i 0.146467 + 0.146467i
\(163\) −15.4585 + 6.40313i −1.21081 + 0.501532i −0.894475 0.447117i \(-0.852451\pi\)
−0.316330 + 0.948649i \(0.602451\pi\)
\(164\) −7.62019 18.3968i −0.595037 1.43655i
\(165\) −4.00472 1.65881i −0.311767 0.129138i
\(166\) 22.4878i 1.74539i
\(167\) −0.614202 + 1.48281i −0.0475284 + 0.114744i −0.945861 0.324573i \(-0.894779\pi\)
0.898332 + 0.439317i \(0.144779\pi\)
\(168\) −12.7297 + 12.7297i −0.982117 + 0.982117i
\(169\) 11.2518 0.865526
\(170\) 0 0
\(171\) 5.95063 0.455056
\(172\) −29.1766 + 29.1766i −2.22469 + 2.22469i
\(173\) −6.55764 + 15.8316i −0.498568 + 1.20365i 0.451686 + 0.892177i \(0.350823\pi\)
−0.950255 + 0.311474i \(0.899177\pi\)
\(174\) 0.455630i 0.0345412i
\(175\) 0.132273 + 0.0547891i 0.00999886 + 0.00414166i
\(176\) 7.91821 + 19.1163i 0.596858 + 1.44094i
\(177\) 10.8898 4.51069i 0.818526 0.339045i
\(178\) −10.0723 10.0723i −0.754952 0.754952i
\(179\) −7.83144 7.83144i −0.585350 0.585350i 0.351019 0.936368i \(-0.385835\pi\)
−0.936368 + 0.351019i \(0.885835\pi\)
\(180\) 10.1638 4.21000i 0.757567 0.313795i
\(181\) −7.53868 18.2000i −0.560346 1.35279i −0.909490 0.415725i \(-0.863528\pi\)
0.349145 0.937069i \(-0.386472\pi\)
\(182\) −7.45287 3.08708i −0.552443 0.228830i
\(183\) 8.68702i 0.642163i
\(184\) −14.2269 + 34.3467i −1.04882 + 2.53207i
\(185\) −8.35235 + 8.35235i −0.614077 + 0.614077i
\(186\) −1.17157 −0.0859039
\(187\) 0 0
\(188\) 11.8025 0.860788
\(189\) −1.63640 + 1.63640i −0.119031 + 0.119031i
\(190\) 13.3412 32.2086i 0.967875 2.33666i
\(191\) 1.60953i 0.116461i −0.998303 0.0582307i \(-0.981454\pi\)
0.998303 0.0582307i \(-0.0185459\pi\)
\(192\) −10.6212 4.39942i −0.766516 0.317501i
\(193\) 1.71214 + 4.13347i 0.123242 + 0.297534i 0.973445 0.228923i \(-0.0735203\pi\)
−0.850202 + 0.526456i \(0.823520\pi\)
\(194\) 11.4867 4.75796i 0.824698 0.341601i
\(195\) 2.07757 + 2.07757i 0.148778 + 0.148778i
\(196\) 5.75628 + 5.75628i 0.411163 + 0.411163i
\(197\) 6.83095 2.82947i 0.486685 0.201591i −0.125828 0.992052i \(-0.540159\pi\)
0.612513 + 0.790461i \(0.290159\pi\)
\(198\) 1.96801 + 4.75119i 0.139860 + 0.337653i
\(199\) 6.64876 + 2.75401i 0.471318 + 0.195226i 0.605684 0.795705i \(-0.292900\pi\)
−0.134366 + 0.990932i \(0.542900\pi\)
\(200\) 0.481255i 0.0340299i
\(201\) −5.42896 + 13.1067i −0.382930 + 0.924474i
\(202\) 13.2569 13.2569i 0.932753 0.932753i
\(203\) 0.399950 0.0280710
\(204\) 0 0
\(205\) −8.93813 −0.624266
\(206\) −17.1945 + 17.1945i −1.19800 + 1.19800i
\(207\) −1.82887 + 4.41527i −0.127115 + 0.306883i
\(208\) 14.0250i 0.972458i
\(209\) 10.7239 + 4.44199i 0.741789 + 0.307259i
\(210\) 5.18847 + 12.5261i 0.358038 + 0.864381i
\(211\) 12.3971 5.13503i 0.853449 0.353510i 0.0873068 0.996181i \(-0.472174\pi\)
0.766142 + 0.642671i \(0.222174\pi\)
\(212\) −2.54562 2.54562i −0.174834 0.174834i
\(213\) 4.31423 + 4.31423i 0.295606 + 0.295606i
\(214\) −12.6232 + 5.22871i −0.862906 + 0.357427i
\(215\) 7.08777 + 17.1114i 0.483382 + 1.16699i
\(216\) −7.18691 2.97692i −0.489007 0.202554i
\(217\) 1.02840i 0.0698125i
\(218\) −20.1533 + 48.6544i −1.36495 + 3.29529i
\(219\) 7.46483 7.46483i 0.504427 0.504427i
\(220\) 21.4594 1.44679
\(221\) 0 0
\(222\) 14.0137 0.940541
\(223\) −15.0362 + 15.0362i −1.00690 + 1.00690i −0.00691960 + 0.999976i \(0.502203\pi\)
−0.999976 + 0.00691960i \(0.997797\pi\)
\(224\) 10.9883 26.5281i 0.734186 1.77248i
\(225\) 0.0618655i 0.00412437i
\(226\) 42.4721 + 17.5925i 2.82520 + 1.17024i
\(227\) 1.89583 + 4.57694i 0.125831 + 0.303782i 0.974223 0.225585i \(-0.0724294\pi\)
−0.848393 + 0.529367i \(0.822429\pi\)
\(228\) −27.2169 + 11.2736i −1.80248 + 0.746613i
\(229\) 1.29996 + 1.29996i 0.0859039 + 0.0859039i 0.748753 0.662849i \(-0.230653\pi\)
−0.662849 + 0.748753i \(0.730653\pi\)
\(230\) 19.7980 + 19.7980i 1.30544 + 1.30544i
\(231\) −4.17058 + 1.72751i −0.274404 + 0.113662i
\(232\) 0.514478 + 1.24206i 0.0337771 + 0.0815452i
\(233\) −1.38120 0.572112i −0.0904855 0.0374803i 0.336982 0.941511i \(-0.390594\pi\)
−0.427467 + 0.904031i \(0.640594\pi\)
\(234\) 3.48580i 0.227874i
\(235\) 2.02738 4.89453i 0.132252 0.319284i
\(236\) −41.2619 + 41.2619i −2.68592 + 2.68592i
\(237\) 0.698270 0.0453575
\(238\) 0 0
\(239\) −10.0250 −0.648463 −0.324231 0.945978i \(-0.605106\pi\)
−0.324231 + 0.945978i \(0.605106\pi\)
\(240\) −16.6678 + 16.6678i −1.07590 + 1.07590i
\(241\) −4.40677 + 10.6389i −0.283865 + 0.685311i −0.999919 0.0127340i \(-0.995947\pi\)
0.716054 + 0.698045i \(0.245947\pi\)
\(242\) 18.9690i 1.21938i
\(243\) −0.923880 0.382683i −0.0592669 0.0245492i
\(244\) −16.4578 39.7326i −1.05360 2.54362i
\(245\) 3.37593 1.39835i 0.215680 0.0893376i
\(246\) 7.49830 + 7.49830i 0.478074 + 0.478074i
\(247\) −5.56337 5.56337i −0.353989 0.353989i
\(248\) 3.19374 1.32289i 0.202803 0.0840036i
\(249\) 3.26418 + 7.88043i 0.206859 + 0.499402i
\(250\) 27.3980 + 11.3486i 1.73280 + 0.717751i
\(251\) 0.940179i 0.0593436i −0.999560 0.0296718i \(-0.990554\pi\)
0.999560 0.0296718i \(-0.00944621\pi\)
\(252\) 4.38436 10.5848i 0.276189 0.666778i
\(253\) −6.59178 + 6.59178i −0.414421 + 0.414421i
\(254\) −25.9736 −1.62973
\(255\) 0 0
\(256\) −8.50875 −0.531797
\(257\) −1.52392 + 1.52392i −0.0950596 + 0.0950596i −0.753037 0.657978i \(-0.771412\pi\)
0.657978 + 0.753037i \(0.271412\pi\)
\(258\) 8.40892 20.3009i 0.523517 1.26388i
\(259\) 12.3012i 0.764360i
\(260\) −13.4384 5.56637i −0.833414 0.345211i
\(261\) 0.0661363 + 0.159667i 0.00409373 + 0.00988314i
\(262\) 18.5297 7.67526i 1.14477 0.474179i
\(263\) −9.29326 9.29326i −0.573047 0.573047i 0.359932 0.932979i \(-0.382800\pi\)
−0.932979 + 0.359932i \(0.882800\pi\)
\(264\) −10.7297 10.7297i −0.660367 0.660367i
\(265\) −1.49295 + 0.618399i −0.0917111 + 0.0379880i
\(266\) −13.8938 33.5426i −0.851883 2.05663i
\(267\) 4.99169 + 2.06763i 0.305486 + 0.126537i
\(268\) 70.2325i 4.29013i
\(269\) 5.80697 14.0193i 0.354057 0.854770i −0.642053 0.766660i \(-0.721917\pi\)
0.996111 0.0881101i \(-0.0280827\pi\)
\(270\) −4.14265 + 4.14265i −0.252114 + 0.252114i
\(271\) −11.8360 −0.718985 −0.359493 0.933148i \(-0.617050\pi\)
−0.359493 + 0.933148i \(0.617050\pi\)
\(272\) 0 0
\(273\) 3.05982 0.185189
\(274\) 41.1477 41.1477i 2.48582 2.48582i
\(275\) −0.0461810 + 0.111491i −0.00278482 + 0.00672315i
\(276\) 23.6594i 1.42413i
\(277\) −24.8547 10.2951i −1.49337 0.618575i −0.521325 0.853358i \(-0.674562\pi\)
−0.972048 + 0.234783i \(0.924562\pi\)
\(278\) −3.61647 8.73093i −0.216901 0.523646i
\(279\) 0.410556 0.170058i 0.0245794 0.0101811i
\(280\) −28.2878 28.2878i −1.69052 1.69052i
\(281\) 15.7217 + 15.7217i 0.937880 + 0.937880i 0.998180 0.0603001i \(-0.0192058\pi\)
−0.0603001 + 0.998180i \(0.519206\pi\)
\(282\) −5.80687 + 2.40528i −0.345794 + 0.143232i
\(283\) −9.16820 22.1340i −0.544993 1.31573i −0.921162 0.389179i \(-0.872759\pi\)
0.376169 0.926551i \(-0.377241\pi\)
\(284\) −27.9058 11.5589i −1.65590 0.685897i
\(285\) 13.2234i 0.783289i
\(286\) 2.60206 6.28193i 0.153863 0.371458i
\(287\) −6.58197 + 6.58197i −0.388522 + 0.388522i
\(288\) 12.4075 0.731120
\(289\) 0 0
\(290\) 1.01250 0.0594558
\(291\) −3.33468 + 3.33468i −0.195482 + 0.195482i
\(292\) −20.0002 + 48.2849i −1.17043 + 2.82566i
\(293\) 7.44387i 0.434875i −0.976074 0.217438i \(-0.930230\pi\)
0.976074 0.217438i \(-0.0697699\pi\)
\(294\) −4.00520 1.65901i −0.233588 0.0967552i
\(295\) 10.0236 + 24.1992i 0.583598 + 1.40893i
\(296\) −38.2019 + 15.8237i −2.22044 + 0.919735i
\(297\) −1.37930 1.37930i −0.0800354 0.0800354i
\(298\) −21.9439 21.9439i −1.27118 1.27118i
\(299\) 5.83778 2.41809i 0.337608 0.139842i
\(300\) −0.117206 0.282960i −0.00676687 0.0163367i
\(301\) 17.8201 + 7.38132i 1.02713 + 0.425452i
\(302\) 42.4560i 2.44307i
\(303\) −2.72135 + 6.56992i −0.156338 + 0.377432i
\(304\) 44.6335 44.6335i 2.55990 2.55990i
\(305\) −19.3042 −1.10536
\(306\) 0 0
\(307\) −14.2184 −0.811486 −0.405743 0.913987i \(-0.632987\pi\)
−0.405743 + 0.913987i \(0.632987\pi\)
\(308\) 15.8025 15.8025i 0.900432 0.900432i
\(309\) 3.52966 8.52135i 0.200795 0.484763i
\(310\) 2.60346i 0.147867i
\(311\) 9.57282 + 3.96519i 0.542825 + 0.224846i 0.637210 0.770690i \(-0.280088\pi\)
−0.0943849 + 0.995536i \(0.530088\pi\)
\(312\) 3.93602 + 9.50238i 0.222833 + 0.537967i
\(313\) 16.0997 6.66872i 0.910009 0.376938i 0.121949 0.992536i \(-0.461086\pi\)
0.788060 + 0.615598i \(0.211086\pi\)
\(314\) 12.0342 + 12.0342i 0.679129 + 0.679129i
\(315\) −3.63640 3.63640i −0.204888 0.204888i
\(316\) −3.19374 + 1.32289i −0.179662 + 0.0744184i
\(317\) −5.42466 13.0963i −0.304679 0.735561i −0.999860 0.0167260i \(-0.994676\pi\)
0.695181 0.718835i \(-0.255324\pi\)
\(318\) 1.77123 + 0.733668i 0.0993258 + 0.0411421i
\(319\) 0.337113i 0.0188747i
\(320\) 9.77636 23.6022i 0.546515 1.31940i
\(321\) 3.66461 3.66461i 0.204539 0.204539i
\(322\) 29.1582 1.62492
\(323\) 0 0
\(324\) 4.95063 0.275035
\(325\) 0.0578394 0.0578394i 0.00320835 0.00320835i
\(326\) −16.8812 + 40.7549i −0.934966 + 2.25721i
\(327\) 19.9753i 1.10464i
\(328\) −28.9073 11.9738i −1.59614 0.661143i
\(329\) −2.11135 5.09724i −0.116402 0.281020i
\(330\) −10.5581 + 4.37329i −0.581202 + 0.240742i
\(331\) 7.67104 + 7.67104i 0.421638 + 0.421638i 0.885768 0.464129i \(-0.153633\pi\)
−0.464129 + 0.885768i \(0.653633\pi\)
\(332\) −29.8593 29.8593i −1.63874 1.63874i
\(333\) −4.91086 + 2.03414i −0.269113 + 0.111470i
\(334\) 1.61928 + 3.90930i 0.0886033 + 0.213907i
\(335\) −29.1256 12.0642i −1.59130 0.659138i
\(336\) 24.5481i 1.33921i
\(337\) 3.75707 9.07037i 0.204661 0.494095i −0.787906 0.615795i \(-0.788835\pi\)
0.992567 + 0.121701i \(0.0388348\pi\)
\(338\) 20.9759 20.9759i 1.14094 1.14094i
\(339\) −17.4372 −0.947057
\(340\) 0 0
\(341\) 0.866827 0.0469413
\(342\) 11.0933 11.0933i 0.599856 0.599856i
\(343\) 7.65558 18.4822i 0.413363 0.997945i
\(344\) 64.8359i 3.49572i
\(345\) −9.81158 4.06409i −0.528238 0.218803i
\(346\) 17.2886 + 41.7384i 0.929441 + 2.24387i
\(347\) −24.0642 + 9.96773i −1.29184 + 0.535096i −0.919532 0.393015i \(-0.871432\pi\)
−0.372303 + 0.928111i \(0.621432\pi\)
\(348\) −0.604986 0.604986i −0.0324307 0.0324307i
\(349\) 13.1952 + 13.1952i 0.706325 + 0.706325i 0.965760 0.259436i \(-0.0835365\pi\)
−0.259436 + 0.965760i \(0.583537\pi\)
\(350\) 0.348724 0.144446i 0.0186401 0.00772097i
\(351\) 0.505976 + 1.22153i 0.0270070 + 0.0652007i
\(352\) 22.3602 + 9.26189i 1.19180 + 0.493660i
\(353\) 11.8339i 0.629857i 0.949115 + 0.314929i \(0.101981\pi\)
−0.949115 + 0.314929i \(0.898019\pi\)
\(354\) 11.8920 28.7099i 0.632053 1.52591i
\(355\) −9.58704 + 9.58704i −0.508827 + 0.508827i
\(356\) −26.7481 −1.41765
\(357\) 0 0
\(358\) −29.1991 −1.54322
\(359\) 9.99796 9.99796i 0.527672 0.527672i −0.392206 0.919878i \(-0.628288\pi\)
0.919878 + 0.392206i \(0.128288\pi\)
\(360\) 6.61528 15.9707i 0.348656 0.841730i
\(361\) 16.4100i 0.863685i
\(362\) −47.9825 19.8750i −2.52191 1.04461i
\(363\) 2.75342 + 6.64735i 0.144517 + 0.348895i
\(364\) −13.9950 + 5.79691i −0.733536 + 0.303840i
\(365\) 16.5883 + 16.5883i 0.868271 + 0.868271i
\(366\) 16.1945 + 16.1945i 0.846501 + 0.846501i
\(367\) 3.44017 1.42497i 0.179576 0.0743827i −0.291084 0.956697i \(-0.594016\pi\)
0.470660 + 0.882315i \(0.344016\pi\)
\(368\) 19.3997 + 46.8350i 1.01128 + 2.44144i
\(369\) −3.71604 1.53924i −0.193449 0.0801294i
\(370\) 31.1412i 1.61896i
\(371\) −0.644011 + 1.55478i −0.0334354 + 0.0807202i
\(372\) −1.55562 + 1.55562i −0.0806550 + 0.0806550i
\(373\) −1.53618 −0.0795403 −0.0397701 0.999209i \(-0.512663\pi\)
−0.0397701 + 0.999209i \(0.512663\pi\)
\(374\) 0 0
\(375\) −11.2484 −0.580867
\(376\) 13.1137 13.1137i 0.676289 0.676289i
\(377\) 0.0874440 0.211108i 0.00450359 0.0108726i
\(378\) 6.10124i 0.313814i
\(379\) 33.3992 + 13.8344i 1.71560 + 0.710626i 0.999926 + 0.0121949i \(0.00388185\pi\)
0.715677 + 0.698431i \(0.246118\pi\)
\(380\) −25.0521 60.4812i −1.28515 3.10262i
\(381\) 9.10196 3.77016i 0.466308 0.193151i
\(382\) −3.00052 3.00052i −0.153520 0.153520i
\(383\) 11.5606 + 11.5606i 0.590720 + 0.590720i 0.937826 0.347106i \(-0.112836\pi\)
−0.347106 + 0.937826i \(0.612836\pi\)
\(384\) −5.07556 + 2.10237i −0.259011 + 0.107286i
\(385\) −3.83886 9.26782i −0.195646 0.472332i
\(386\) 10.8975 + 4.51389i 0.554668 + 0.229751i
\(387\) 8.33468i 0.423675i
\(388\) 8.93447 21.5697i 0.453579 1.09504i
\(389\) −11.6342 + 11.6342i −0.589880 + 0.589880i −0.937599 0.347719i \(-0.886956\pi\)
0.347719 + 0.937599i \(0.386956\pi\)
\(390\) 7.74611 0.392240
\(391\) 0 0
\(392\) 12.7916 0.646071
\(393\) −5.37930 + 5.37930i −0.271350 + 0.271350i
\(394\) 7.45963 18.0091i 0.375811 0.907288i
\(395\) 1.55169i 0.0780740i
\(396\) 8.92177 + 3.69552i 0.448336 + 0.185707i
\(397\) −13.9529 33.6852i −0.700275 1.69061i −0.722978 0.690871i \(-0.757227\pi\)
0.0227033 0.999742i \(-0.492773\pi\)
\(398\) 17.5288 7.26068i 0.878641 0.363945i
\(399\) 9.73764 + 9.73764i 0.487492 + 0.487492i
\(400\) 0.464030 + 0.464030i 0.0232015 + 0.0232015i
\(401\) −8.94230 + 3.70402i −0.446557 + 0.184970i −0.594618 0.804008i \(-0.702697\pi\)
0.148061 + 0.988978i \(0.452697\pi\)
\(402\) 14.3129 + 34.5545i 0.713865 + 1.72342i
\(403\) −0.542829 0.224847i −0.0270402 0.0112004i
\(404\) 35.2051i 1.75152i
\(405\) 0.850396 2.05304i 0.0422565 0.102016i
\(406\) 0.745595 0.745595i 0.0370032 0.0370032i
\(407\) −10.3685 −0.513949
\(408\) 0 0
\(409\) −2.52228 −0.124719 −0.0623593 0.998054i \(-0.519862\pi\)
−0.0623593 + 0.998054i \(0.519862\pi\)
\(410\) −16.6626 + 16.6626i −0.822909 + 0.822909i
\(411\) −8.44671 + 20.3922i −0.416645 + 1.00587i
\(412\) 45.6619i 2.24960i
\(413\) 25.2014 + 10.4388i 1.24008 + 0.513658i
\(414\) 4.82163 + 11.6405i 0.236970 + 0.572097i
\(415\) −17.5118 + 7.25363i −0.859621 + 0.356067i
\(416\) −11.6000 11.6000i −0.568739 0.568739i
\(417\) 2.53465 + 2.53465i 0.124122 + 0.124122i
\(418\) 28.2726 11.7109i 1.38286 0.572798i
\(419\) 10.0746 + 24.3222i 0.492177 + 1.18822i 0.953610 + 0.301045i \(0.0973353\pi\)
−0.461434 + 0.887175i \(0.652665\pi\)
\(420\) 23.5214 + 9.74288i 1.14773 + 0.475404i
\(421\) 6.61089i 0.322195i −0.986938 0.161098i \(-0.948497\pi\)
0.986938 0.161098i \(-0.0515034\pi\)
\(422\) 13.5380 32.6837i 0.659020 1.59102i
\(423\) 1.68577 1.68577i 0.0819651 0.0819651i
\(424\) −5.65685 −0.274721
\(425\) 0 0
\(426\) 16.0853 0.779337
\(427\) −14.2155 + 14.2155i −0.687936 + 0.687936i
\(428\) −9.81845 + 23.7038i −0.474593 + 1.14577i
\(429\) 2.57908i 0.124519i
\(430\) 45.1126 + 18.6862i 2.17552 + 0.901131i
\(431\) 10.7634 + 25.9852i 0.518457 + 1.25167i 0.938851 + 0.344324i \(0.111892\pi\)
−0.420394 + 0.907342i \(0.638108\pi\)
\(432\) −9.80004 + 4.05931i −0.471505 + 0.195304i
\(433\) 12.1267 + 12.1267i 0.582770 + 0.582770i 0.935664 0.352893i \(-0.114802\pi\)
−0.352893 + 0.935664i \(0.614802\pi\)
\(434\) −1.91717 1.91717i −0.0920270 0.0920270i
\(435\) −0.354811 + 0.146967i −0.0170119 + 0.00704655i
\(436\) 37.8438 + 91.3630i 1.81239 + 4.37549i
\(437\) 26.2737 + 10.8829i 1.25684 + 0.520600i
\(438\) 27.8322i 1.32987i
\(439\) −3.14756 + 7.59888i −0.150225 + 0.362675i −0.981021 0.193902i \(-0.937886\pi\)
0.830796 + 0.556577i \(0.187886\pi\)
\(440\) 23.8434 23.8434i 1.13669 1.13669i
\(441\) 1.64436 0.0783028
\(442\) 0 0
\(443\) −18.4658 −0.877339 −0.438669 0.898649i \(-0.644550\pi\)
−0.438669 + 0.898649i \(0.644550\pi\)
\(444\) 18.6075 18.6075i 0.883072 0.883072i
\(445\) −4.59466 + 11.0925i −0.217808 + 0.525835i
\(446\) 56.0614i 2.65458i
\(447\) 10.8751 + 4.50461i 0.514374 + 0.213061i
\(448\) −10.1813 24.5797i −0.481019 1.16128i
\(449\) 28.5710 11.8345i 1.34835 0.558504i 0.412516 0.910950i \(-0.364650\pi\)
0.935832 + 0.352446i \(0.114650\pi\)
\(450\) 0.115331 + 0.115331i 0.00543675 + 0.00543675i
\(451\) −5.54786 5.54786i −0.261239 0.261239i
\(452\) 79.7539 33.0351i 3.75131 1.55384i
\(453\) −6.16263 14.8779i −0.289546 0.699025i
\(454\) 12.0667 + 4.99817i 0.566316 + 0.234576i
\(455\) 6.79951i 0.318766i
\(456\) −17.7145 + 42.7667i −0.829559 + 2.00273i
\(457\) −10.9840 + 10.9840i −0.513810 + 0.513810i −0.915692 0.401881i \(-0.868356\pi\)
0.401881 + 0.915692i \(0.368356\pi\)
\(458\) 4.84683 0.226478
\(459\) 0 0
\(460\) 52.5756 2.45135
\(461\) 27.5087 27.5087i 1.28121 1.28121i 0.341230 0.939980i \(-0.389156\pi\)
0.939980 0.341230i \(-0.110844\pi\)
\(462\) −4.55442 + 10.9953i −0.211891 + 0.511549i
\(463\) 22.7572i 1.05762i 0.848742 + 0.528808i \(0.177361\pi\)
−0.848742 + 0.528808i \(0.822639\pi\)
\(464\) 1.69367 + 0.701539i 0.0786265 + 0.0325681i
\(465\) 0.377901 + 0.912334i 0.0175248 + 0.0423085i
\(466\) −3.64141 + 1.50832i −0.168685 + 0.0698715i
\(467\) −8.87780 8.87780i −0.410815 0.410815i 0.471207 0.882023i \(-0.343818\pi\)
−0.882023 + 0.471207i \(0.843818\pi\)
\(468\) −4.62845 4.62845i −0.213950 0.213950i
\(469\) −30.3318 + 12.5639i −1.40059 + 0.580145i
\(470\) −5.34500 12.9040i −0.246546 0.595216i
\(471\) −5.96397 2.47036i −0.274805 0.113828i
\(472\) 91.6918i 4.22046i
\(473\) −6.22162 + 15.0203i −0.286070 + 0.690635i
\(474\) 1.30173 1.30173i 0.0597904 0.0597904i
\(475\) 0.368139 0.0168914
\(476\) 0 0
\(477\) −0.727190 −0.0332957
\(478\) −18.6888 + 18.6888i −0.854805 + 0.854805i
\(479\) 14.2518 34.4070i 0.651183 1.57209i −0.159880 0.987136i \(-0.551111\pi\)
0.811063 0.584959i \(-0.198889\pi\)
\(480\) 27.5719i 1.25848i
\(481\) 6.49303 + 2.68950i 0.296057 + 0.122631i
\(482\) 11.6180 + 28.0484i 0.529187 + 1.27757i
\(483\) −10.2179 + 4.23241i −0.464932 + 0.192581i
\(484\) −25.1871 25.1871i −1.14487 1.14487i
\(485\) −7.41029 7.41029i −0.336484 0.336484i
\(486\) −2.43572 + 1.00891i −0.110487 + 0.0457650i
\(487\) 0.629467 + 1.51967i 0.0285239 + 0.0688627i 0.937500 0.347986i \(-0.113134\pi\)
−0.908976 + 0.416849i \(0.863134\pi\)
\(488\) −62.4329 25.8605i −2.82620 1.17065i
\(489\) 16.7322i 0.756656i
\(490\) 3.68663 8.90031i 0.166545 0.402075i
\(491\) 3.04142 3.04142i 0.137257 0.137257i −0.635140 0.772397i \(-0.719058\pi\)
0.772397 + 0.635140i \(0.219058\pi\)
\(492\) 19.9125 0.897725
\(493\) 0 0
\(494\) −20.7427 −0.933258
\(495\) 3.06508 3.06508i 0.137765 0.137765i
\(496\) 1.80389 4.35497i 0.0809969 0.195544i
\(497\) 14.1196i 0.633352i
\(498\) 20.7760 + 8.60570i 0.930995 + 0.385631i
\(499\) 0.572218 + 1.38146i 0.0256160 + 0.0618425i 0.936170 0.351548i \(-0.114345\pi\)
−0.910554 + 0.413390i \(0.864345\pi\)
\(500\) 51.4479 21.3104i 2.30082 0.953032i
\(501\) −1.13490 1.13490i −0.0507034 0.0507034i
\(502\) −1.75270 1.75270i −0.0782269 0.0782269i
\(503\) 1.55838 0.645504i 0.0694849 0.0287816i −0.347670 0.937617i \(-0.613027\pi\)
0.417155 + 0.908835i \(0.363027\pi\)
\(504\) −6.88926 16.6321i −0.306872 0.740854i
\(505\) −14.5996 6.04736i −0.649675 0.269104i
\(506\) 24.5770i 1.09258i
\(507\) −4.30589 + 10.3953i −0.191231 + 0.461674i
\(508\) −34.4878 + 34.4878i −1.53015 + 1.53015i
\(509\) 6.91070 0.306312 0.153156 0.988202i \(-0.451056\pi\)
0.153156 + 0.988202i \(0.451056\pi\)
\(510\) 0 0
\(511\) 24.4310 1.08076
\(512\) −23.6315 + 23.6315i −1.04438 + 1.04438i
\(513\) −2.27721 + 5.49767i −0.100541 + 0.242728i
\(514\) 5.68185i 0.250616i
\(515\) 18.9361 + 7.84358i 0.834423 + 0.345629i
\(516\) −15.7902 38.1210i −0.695127 1.67818i
\(517\) 4.29640 1.77963i 0.188955 0.0782679i
\(518\) 22.9322 + 22.9322i 1.00758 + 1.00758i
\(519\) −12.1169 12.1169i −0.531875 0.531875i
\(520\) −21.1161 + 8.74658i −0.926003 + 0.383563i
\(521\) −5.12653 12.3765i −0.224597 0.542226i 0.770906 0.636948i \(-0.219804\pi\)
−0.995504 + 0.0947226i \(0.969804\pi\)
\(522\) 0.420947 + 0.174362i 0.0184243 + 0.00763162i
\(523\) 4.40904i 0.192794i −0.995343 0.0963969i \(-0.969268\pi\)
0.995343 0.0963969i \(-0.0307318\pi\)
\(524\) 14.4126 34.7950i 0.629616 1.52003i
\(525\) −0.101237 + 0.101237i −0.00441834 + 0.00441834i
\(526\) −34.6494 −1.51078
\(527\) 0 0
\(528\) −20.6913 −0.900473
\(529\) 0.113564 0.113564i 0.00493756 0.00493756i
\(530\) −1.63035 + 3.93602i −0.0708179 + 0.170970i
\(531\) 11.7870i 0.511513i
\(532\) −62.9861 26.0897i −2.73079 1.13113i
\(533\) 2.03514 + 4.91327i 0.0881519 + 0.212818i
\(534\) 13.1601 5.45110i 0.569494 0.235892i
\(535\) 8.14347 + 8.14347i 0.352073 + 0.352073i
\(536\) −78.0350 78.0350i −3.37060 3.37060i
\(537\) 10.2323 4.23835i 0.441555 0.182898i
\(538\) −15.3095 36.9605i −0.660041 1.59348i
\(539\) 2.96338 + 1.22747i 0.127642 + 0.0528709i
\(540\) 11.0012i 0.473418i
\(541\) 8.84592 21.3559i 0.380316 0.918163i −0.611589 0.791176i \(-0.709469\pi\)
0.991904 0.126987i \(-0.0405308\pi\)
\(542\) −22.0649 + 22.0649i −0.947768 + 0.947768i
\(543\) 19.6995 0.845387
\(544\) 0 0
\(545\) 44.3890 1.90142
\(546\) 5.70418 5.70418i 0.244116 0.244116i
\(547\) −3.62966 + 8.76278i −0.155193 + 0.374669i −0.982284 0.187399i \(-0.939994\pi\)
0.827091 + 0.562068i \(0.189994\pi\)
\(548\) 109.272i 4.66786i
\(549\) −8.02576 3.32438i −0.342531 0.141881i
\(550\) 0.121752 + 0.293935i 0.00519151 + 0.0125334i
\(551\) 0.950120 0.393552i 0.0404765 0.0167659i
\(552\) −26.2878 26.2878i −1.11888 1.11888i
\(553\) 1.14265 + 1.14265i 0.0485906 + 0.0485906i
\(554\) −65.5270 + 27.1422i −2.78398 + 1.15316i
\(555\) −4.52026 10.9129i −0.191874 0.463225i
\(556\) −16.3949 6.79099i −0.695299 0.288002i
\(557\) 38.1670i 1.61719i −0.588368 0.808593i \(-0.700229\pi\)
0.588368 0.808593i \(-0.299771\pi\)
\(558\) 0.448342 1.08239i 0.0189798 0.0458213i
\(559\) 7.79227 7.79227i 0.329578 0.329578i
\(560\) −54.5506 −2.30518
\(561\) 0 0
\(562\) 58.6175 2.47263
\(563\) 9.77111 9.77111i 0.411803 0.411803i −0.470563 0.882366i \(-0.655949\pi\)
0.882366 + 0.470563i \(0.155949\pi\)
\(564\) −4.51663 + 10.9041i −0.190184 + 0.459146i
\(565\) 38.7487i 1.63017i
\(566\) −58.3542 24.1711i −2.45281 1.01599i
\(567\) −0.885616 2.13807i −0.0371924 0.0897903i
\(568\) −43.8491 + 18.1629i −1.83987 + 0.762097i
\(569\) −9.15817 9.15817i −0.383930 0.383930i 0.488586 0.872516i \(-0.337513\pi\)
−0.872516 + 0.488586i \(0.837513\pi\)
\(570\) 24.6514 + 24.6514i 1.03253 + 1.03253i
\(571\) 6.01797 2.49273i 0.251844 0.104317i −0.253190 0.967417i \(-0.581480\pi\)
0.505034 + 0.863099i \(0.331480\pi\)
\(572\) −4.88614 11.7962i −0.204300 0.493223i
\(573\) 1.48701 + 0.615940i 0.0621208 + 0.0257313i
\(574\) 24.5405i 1.02430i
\(575\) −0.113144 + 0.273153i −0.00471842 + 0.0113913i
\(576\) 8.12908 8.12908i 0.338712 0.338712i
\(577\) −15.6703 −0.652364 −0.326182 0.945307i \(-0.605762\pi\)
−0.326182 + 0.945307i \(0.605762\pi\)
\(578\) 0 0
\(579\) −4.47403 −0.185935
\(580\) 1.34440 1.34440i 0.0558230 0.0558230i
\(581\) −7.55405 + 18.2371i −0.313395 + 0.756602i
\(582\) 12.4331i 0.515370i
\(583\) −1.31050 0.542829i −0.0542755 0.0224817i
\(584\) 31.4269 + 75.8713i 1.30045 + 3.13958i
\(585\) −2.71448 + 1.12438i −0.112230 + 0.0464872i
\(586\) −13.8770 13.8770i −0.573254 0.573254i
\(587\) 10.5901 + 10.5901i 0.437098 + 0.437098i 0.891034 0.453936i \(-0.149981\pi\)
−0.453936 + 0.891034i \(0.649981\pi\)
\(588\) −7.52094 + 3.11528i −0.310158 + 0.128472i
\(589\) −1.01195 2.44307i −0.0416968 0.100665i
\(590\) 63.7988 + 26.4263i 2.62656 + 1.08795i
\(591\) 7.39376i 0.304139i
\(592\) −21.5772 + 52.0919i −0.886816 + 2.14096i
\(593\) 32.7886 32.7886i 1.34647 1.34647i 0.456999 0.889467i \(-0.348924\pi\)
0.889467 0.456999i \(-0.151076\pi\)
\(594\) −5.14265 −0.211006
\(595\) 0 0
\(596\) −58.2744 −2.38701
\(597\) −5.08874 + 5.08874i −0.208268 + 0.208268i
\(598\) 6.37506 15.3908i 0.260696 0.629375i
\(599\) 28.7068i 1.17293i −0.809975 0.586464i \(-0.800520\pi\)
0.809975 0.586464i \(-0.199480\pi\)
\(600\) −0.444622 0.184168i −0.0181516 0.00751864i
\(601\) −7.95547 19.2062i −0.324511 0.783438i −0.998981 0.0451358i \(-0.985628\pi\)
0.674470 0.738302i \(-0.264372\pi\)
\(602\) 46.9810 19.4602i 1.91480 0.793137i
\(603\) −10.0314 10.0314i −0.408511 0.408511i
\(604\) 56.3731 + 56.3731i 2.29379 + 2.29379i
\(605\) −14.7717 + 6.11863i −0.600554 + 0.248758i
\(606\) 7.17458 + 17.3210i 0.291448 + 0.703617i
\(607\) −15.8963 6.58447i −0.645211 0.267255i 0.0359891 0.999352i \(-0.488542\pi\)
−0.681201 + 0.732097i \(0.738542\pi\)
\(608\) 73.8325i 2.99430i
\(609\) −0.153054 + 0.369506i −0.00620207 + 0.0149731i
\(610\) −35.9873 + 35.9873i −1.45708 + 1.45708i
\(611\) −3.15213 −0.127522
\(612\) 0 0
\(613\) −42.7657 −1.72729 −0.863644 0.504102i \(-0.831824\pi\)
−0.863644 + 0.504102i \(0.831824\pi\)
\(614\) −26.5062 + 26.5062i −1.06970 + 1.06970i
\(615\) 3.42048 8.25776i 0.137927 0.332985i
\(616\) 35.1162i 1.41487i
\(617\) 35.3658 + 14.6490i 1.42377 + 0.589745i 0.955805 0.294001i \(-0.0949868\pi\)
0.467966 + 0.883746i \(0.344987\pi\)
\(618\) −9.30561 22.4657i −0.374326 0.903704i
\(619\) −8.56660 + 3.54840i −0.344321 + 0.142622i −0.548141 0.836386i \(-0.684664\pi\)
0.203820 + 0.979008i \(0.434664\pi\)
\(620\) −3.45688 3.45688i −0.138832 0.138832i
\(621\) −3.37930 3.37930i −0.135607 0.135607i
\(622\) 25.2378 10.4539i 1.01195 0.419161i
\(623\) 4.78495 + 11.5519i 0.191705 + 0.462817i
\(624\) 12.9574 + 5.36713i 0.518711 + 0.214857i
\(625\) 24.6868i 0.987474i
\(626\) 17.5814 42.4453i 0.702695 1.69646i
\(627\) −8.20773 + 8.20773i −0.327785 + 0.327785i
\(628\) 31.9581 1.27527
\(629\) 0 0
\(630\) −13.5581 −0.540168
\(631\) 23.9340 23.9340i 0.952798 0.952798i −0.0461372 0.998935i \(-0.514691\pi\)
0.998935 + 0.0461372i \(0.0146911\pi\)
\(632\) −2.07869 + 5.01841i −0.0826860 + 0.199622i
\(633\) 13.4185i 0.533337i
\(634\) −34.5271 14.3016i −1.37125 0.567989i
\(635\) 8.37801 + 20.2263i 0.332471 + 0.802656i
\(636\) 3.32601 1.37768i 0.131885 0.0546285i
\(637\) −1.53735 1.53735i −0.0609119 0.0609119i
\(638\) 0.628452 + 0.628452i 0.0248807 + 0.0248807i
\(639\) −5.63681 + 2.33484i −0.222989 + 0.0923649i
\(640\) −4.67186 11.2789i −0.184672 0.445837i
\(641\) 9.85925 + 4.08383i 0.389417 + 0.161302i 0.568797 0.822478i \(-0.307409\pi\)
−0.179380 + 0.983780i \(0.557409\pi\)
\(642\) 13.6633i 0.539247i
\(643\) −15.0447 + 36.3211i −0.593305 + 1.43237i 0.286987 + 0.957934i \(0.407346\pi\)
−0.880293 + 0.474431i \(0.842654\pi\)
\(644\) 38.7163 38.7163i 1.52564 1.52564i
\(645\) −18.5212 −0.729273
\(646\) 0 0
\(647\) −27.9895 −1.10038 −0.550190 0.835039i \(-0.685445\pi\)
−0.550190 + 0.835039i \(0.685445\pi\)
\(648\) 5.50062 5.50062i 0.216085 0.216085i
\(649\) −8.79870 + 21.2419i −0.345379 + 0.833819i
\(650\) 0.215651i 0.00845852i
\(651\) 0.950120 + 0.393552i 0.0372381 + 0.0154245i
\(652\) 31.6995 + 76.5295i 1.24145 + 2.99712i
\(653\) −37.8346 + 15.6716i −1.48058 + 0.613277i −0.969244 0.246102i \(-0.920850\pi\)
−0.511339 + 0.859379i \(0.670850\pi\)
\(654\) −37.2384 37.2384i −1.45614 1.45614i
\(655\) −11.9538 11.9538i −0.467075 0.467075i
\(656\) −39.4179 + 16.3274i −1.53901 + 0.637479i
\(657\) 4.03994 + 9.75327i 0.157613 + 0.380511i
\(658\) −13.4384 5.56637i −0.523883 0.217000i
\(659\) 10.8164i 0.421349i −0.977556 0.210674i \(-0.932434\pi\)
0.977556 0.210674i \(-0.0675660\pi\)
\(660\) −8.21215 + 19.8259i −0.319657 + 0.771721i
\(661\) 14.1983 14.1983i 0.552248 0.552248i −0.374841 0.927089i \(-0.622303\pi\)
0.927089 + 0.374841i \(0.122303\pi\)
\(662\) 28.6010 1.11161
\(663\) 0 0
\(664\) −66.3531 −2.57500
\(665\) −21.6389 + 21.6389i −0.839121 + 0.839121i
\(666\) −5.36283 + 12.9470i −0.207805 + 0.501687i
\(667\) 0.825928i 0.0319801i
\(668\) 7.34086 + 3.04069i 0.284027 + 0.117648i
\(669\) −8.13751 19.6457i −0.314614 0.759546i
\(670\) −76.7867 + 31.8061i −2.96653 + 1.22878i
\(671\) −11.9820 11.9820i −0.462562 0.462562i
\(672\) 20.3037 + 20.3037i 0.783233 + 0.783233i
\(673\) 25.3238 10.4895i 0.976161 0.404339i 0.163159 0.986600i \(-0.447832\pi\)
0.813002 + 0.582261i \(0.197832\pi\)
\(674\) −9.90516 23.9132i −0.381532 0.921101i
\(675\) −0.0571563 0.0236749i −0.00219995 0.000911247i
\(676\) 55.7037i 2.14245i
\(677\) 8.69682 20.9960i 0.334246 0.806941i −0.664000 0.747733i \(-0.731142\pi\)
0.998246 0.0592081i \(-0.0188575\pi\)
\(678\) −32.5067 + 32.5067i −1.24841 + 1.24841i
\(679\) −10.9138 −0.418832
\(680\) 0 0
\(681\) −4.95404 −0.189839
\(682\) 1.61596 1.61596i 0.0618781 0.0618781i
\(683\) 14.2383 34.3743i 0.544814 1.31530i −0.376478 0.926425i \(-0.622865\pi\)
0.921292 0.388871i \(-0.127135\pi\)
\(684\) 29.4594i 1.12641i
\(685\) −45.3153 18.7702i −1.73141 0.717173i
\(686\) −20.1832 48.7266i −0.770599 1.86039i
\(687\) −1.69848 + 0.703535i −0.0648012 + 0.0268415i
\(688\) 62.5153 + 62.5153i 2.38337 + 2.38337i
\(689\) 0.679866 + 0.679866i 0.0259008 + 0.0259008i
\(690\) −25.8673 + 10.7146i −0.984752 + 0.407897i
\(691\) 6.90974 + 16.6816i 0.262859 + 0.634597i 0.999113 0.0421076i \(-0.0134072\pi\)
−0.736254 + 0.676705i \(0.763407\pi\)
\(692\) 78.3762 + 32.4645i 2.97942 + 1.23411i
\(693\) 4.51420i 0.171480i
\(694\) −26.2790 + 63.4430i −0.997536 + 2.40827i
\(695\) −5.63248 + 5.63248i −0.213652 + 0.213652i
\(696\) −1.34440 −0.0509592
\(697\) 0 0
\(698\) 49.1976 1.86216
\(699\) 1.05713 1.05713i 0.0399842 0.0399842i
\(700\) 0.271240 0.654832i 0.0102519 0.0247503i
\(701\) 9.99896i 0.377656i −0.982010 0.188828i \(-0.939531\pi\)
0.982010 0.188828i \(-0.0604688\pi\)
\(702\) 3.22046 + 1.33396i 0.121548 + 0.0503470i
\(703\) 12.1044 + 29.2227i 0.456528 + 1.10216i
\(704\) 20.7179 8.58165i 0.780837 0.323433i
\(705\) 3.74611 + 3.74611i 0.141087 + 0.141087i
\(706\) 22.0611 + 22.0611i 0.830279 + 0.830279i
\(707\) −15.2043 + 6.29782i −0.571816 + 0.236854i
\(708\) −22.3308 53.9113i −0.839242 2.02611i
\(709\) 1.01068 + 0.418638i 0.0379570 + 0.0157223i 0.401581 0.915823i \(-0.368461\pi\)
−0.363624 + 0.931546i \(0.618461\pi\)
\(710\) 35.7447i 1.34147i
\(711\) −0.267217 + 0.645118i −0.0100214 + 0.0241938i
\(712\) −29.7197 + 29.7197i −1.11379 + 1.11379i
\(713\) 2.12373 0.0795344
\(714\) 0 0
\(715\) −5.73122 −0.214335
\(716\) −38.7706 + 38.7706i −1.44892 + 1.44892i
\(717\) 3.83640 9.26189i 0.143273 0.345891i
\(718\) 37.2768i 1.39116i
\(719\) −39.2481 16.2571i −1.46371 0.606287i −0.498292 0.867009i \(-0.666039\pi\)
−0.965414 + 0.260722i \(0.916039\pi\)
\(720\) −9.02056 21.7776i −0.336176 0.811602i
\(721\) 19.7203 8.16843i 0.734423 0.304208i
\(722\) −30.5919 30.5919i −1.13851 1.13851i
\(723\) −8.14265 8.14265i −0.302829 0.302829i
\(724\) −90.1014 + 37.3212i −3.34859 + 1.38703i
\(725\) 0.00409155 + 0.00987788i 0.000151956 + 0.000366855i
\(726\) 17.5251 + 7.25914i 0.650418 + 0.269412i
\(727\) 45.2169i 1.67700i 0.544900 + 0.838501i \(0.316568\pi\)
−0.544900 + 0.838501i \(0.683432\pi\)
\(728\) −9.10883 + 21.9907i −0.337596 + 0.815028i
\(729\) 0.707107 0.707107i 0.0261891 0.0261891i
\(730\) 61.8484 2.28911
\(731\) 0 0
\(732\) 43.0062 1.58956
\(733\) 15.2728 15.2728i 0.564114 0.564114i −0.366359 0.930473i \(-0.619396\pi\)
0.930473 + 0.366359i \(0.119396\pi\)
\(734\) 3.75679 9.06969i 0.138666 0.334769i
\(735\) 3.65408i 0.134783i
\(736\) 54.7826 + 22.6917i 2.01931 + 0.836426i
\(737\) −10.5899 25.5663i −0.390084 0.941747i
\(738\) −9.79700 + 4.05805i −0.360632 + 0.149379i
\(739\) 13.4646 + 13.4646i 0.495305 + 0.495305i 0.909973 0.414668i \(-0.136102\pi\)
−0.414668 + 0.909973i \(0.636102\pi\)
\(740\) 41.3494 + 41.3494i 1.52003 + 1.52003i
\(741\) 7.26890 3.01088i 0.267030 0.110607i
\(742\) 1.69787 + 4.09903i 0.0623309 + 0.150480i
\(743\) −24.4221 10.1160i −0.895959 0.371118i −0.113294 0.993562i \(-0.536140\pi\)
−0.782665 + 0.622443i \(0.786140\pi\)
\(744\) 3.45688i 0.126735i
\(745\) −10.0101 + 24.1665i −0.366742 + 0.885393i
\(746\) −2.86377 + 2.86377i −0.104850 + 0.104850i
\(747\) −8.52971 −0.312086
\(748\) 0 0
\(749\) 11.9936 0.438236
\(750\) −20.9696 + 20.9696i −0.765700 + 0.765700i
\(751\) −1.77828 + 4.29314i −0.0648902 + 0.156659i −0.952998 0.302976i \(-0.902020\pi\)
0.888108 + 0.459635i \(0.152020\pi\)
\(752\) 25.2887i 0.922185i
\(753\) 0.868612 + 0.359791i 0.0316540 + 0.0131115i
\(754\) −0.230538 0.556567i −0.00839569 0.0202690i
\(755\) 33.0616 13.6945i 1.20323 0.498396i
\(756\) 8.10124 + 8.10124i 0.294639 + 0.294639i
\(757\) 7.35913 + 7.35913i 0.267472 + 0.267472i 0.828081 0.560609i \(-0.189433\pi\)
−0.560609 + 0.828081i \(0.689433\pi\)
\(758\) 88.0539 36.4731i 3.19826 1.32476i
\(759\) −3.56744 8.61257i −0.129490 0.312616i
\(760\) −95.0357 39.3651i −3.44731 1.42792i
\(761\) 38.6365i 1.40057i −0.713862 0.700286i \(-0.753056\pi\)
0.713862 0.700286i \(-0.246944\pi\)
\(762\) 9.93966 23.9965i 0.360076 0.869300i
\(763\) 32.6878 32.6878i 1.18338 1.18338i
\(764\) −7.96819 −0.288279
\(765\) 0 0
\(766\) 43.1031 1.55738
\(767\) 11.0199 11.0199i 0.397907 0.397907i
\(768\) 3.25616 7.86106i 0.117496 0.283661i
\(769\) 0.178098i 0.00642238i 0.999995 + 0.00321119i \(0.00102215\pi\)
−0.999995 + 0.00321119i \(0.998978\pi\)
\(770\) −24.4337 10.1208i −0.880531 0.364728i
\(771\) −0.824740 1.99110i −0.0297023 0.0717077i
\(772\) 20.4633 8.47617i 0.736490 0.305064i
\(773\) 2.93841 + 2.93841i 0.105687 + 0.105687i 0.757973 0.652286i \(-0.226190\pi\)
−0.652286 + 0.757973i \(0.726190\pi\)
\(774\) 15.5377 + 15.5377i 0.558490 + 0.558490i
\(775\) 0.0253993 0.0105207i 0.000912368 0.000377915i
\(776\) −14.0390 33.8931i −0.503970 1.21669i
\(777\) −11.3648 4.70747i −0.407711 0.168880i
\(778\) 43.3776i 1.55516i
\(779\) −9.15942 + 22.1128i −0.328170 + 0.792273i
\(780\) 10.2853 10.2853i 0.368273 0.368273i
\(781\) −11.9013 −0.425861
\(782\) 0 0
\(783\) −0.172822 −0.00617617
\(784\) 12.3337 12.3337i 0.440490 0.440490i
\(785\) 5.48960 13.2531i 0.195932 0.473023i
\(786\) 20.0564i 0.715389i
\(787\) −1.60630 0.665353i −0.0572586 0.0237173i 0.353870 0.935294i \(-0.384865\pi\)
−0.411129 + 0.911577i \(0.634865\pi\)
\(788\) −14.0077 33.8175i −0.499002 1.20470i
\(789\) 12.1422 5.02948i 0.432275 0.179054i
\(790\) 2.89269 + 2.89269i 0.102917 + 0.102917i
\(791\) −28.5343 28.5343i −1.01456 1.01456i
\(792\) 14.0190 5.80687i 0.498144 0.206338i
\(793\) 4.39542 + 10.6115i 0.156086 + 0.376825i
\(794\) −88.8079 36.7854i −3.15167 1.30547i
\(795\) 1.61596i 0.0573120i
\(796\) 13.6341 32.9156i 0.483247 1.16666i
\(797\) −15.7038 + 15.7038i −0.556257 + 0.556257i −0.928240 0.371983i \(-0.878678\pi\)
0.371983 + 0.928240i \(0.378678\pi\)
\(798\) 36.3062 1.28523
\(799\) 0 0
\(800\) 0.767597 0.0271386
\(801\) −3.82047 + 3.82047i −0.134990 + 0.134990i
\(802\) −9.76530 + 23.5755i −0.344825 + 0.832480i
\(803\) 20.5926i 0.726695i
\(804\) 64.8863 + 26.8768i 2.28836 + 0.947872i
\(805\) −9.40523 22.7062i −0.331491 0.800289i
\(806\) −1.43112 + 0.592788i −0.0504089 + 0.0208801i
\(807\) 10.7299 + 10.7299i 0.377710 + 0.377710i
\(808\) −39.1162 39.1162i −1.37610 1.37610i
\(809\) −2.98289 + 1.23555i −0.104873 + 0.0434397i −0.434503 0.900670i \(-0.643076\pi\)
0.329630 + 0.944110i \(0.393076\pi\)
\(810\) −2.24199 5.41264i −0.0787754 0.190181i
\(811\) −23.2966 9.64975i −0.818053 0.338848i −0.0658907 0.997827i \(-0.520989\pi\)
−0.752162 + 0.658978i \(0.770989\pi\)
\(812\) 1.98000i 0.0694846i
\(813\) 4.52944 10.9350i 0.158854 0.383508i
\(814\) −19.3292 + 19.3292i −0.677489 + 0.677489i
\(815\) 37.1821 1.30243
\(816\) 0 0
\(817\) 49.5966 1.73516
\(818\) −4.70208 + 4.70208i −0.164404 + 0.164404i
\(819\) −1.17094 + 2.82691i −0.0409161 + 0.0987801i
\(820\) 44.2494i 1.54526i
\(821\) −31.8075 13.1751i −1.11009 0.459814i −0.249121 0.968472i \(-0.580142\pi\)
−0.860969 + 0.508658i \(0.830142\pi\)
\(822\) 22.2689 + 53.7620i 0.776719 + 1.87516i
\(823\) −16.4445 + 6.81153i −0.573219 + 0.237435i −0.650413 0.759581i \(-0.725404\pi\)
0.0771938 + 0.997016i \(0.475404\pi\)
\(824\) 50.7347 + 50.7347i 1.76743 + 1.76743i
\(825\) −0.0853313 0.0853313i −0.00297086 0.00297086i
\(826\) 66.4411 27.5208i 2.31178 0.957572i
\(827\) 0.746474 + 1.80215i 0.0259574 + 0.0626668i 0.936327 0.351130i \(-0.114202\pi\)
−0.910369 + 0.413797i \(0.864202\pi\)
\(828\) 21.8584 + 9.05404i 0.759632 + 0.314650i
\(829\) 0.904671i 0.0314205i 0.999877 + 0.0157103i \(0.00500094\pi\)
−0.999877 + 0.0157103i \(0.994999\pi\)
\(830\) −19.1235 + 46.1682i −0.663787 + 1.60252i
\(831\) 19.0229 19.0229i 0.659899 0.659899i
\(832\) −15.2001 −0.526969
\(833\) 0 0
\(834\) 9.45029 0.327237
\(835\) 2.52196 2.52196i 0.0872759 0.0872759i
\(836\) 21.9907 53.0902i 0.760563 1.83616i
\(837\) 0.444383i 0.0153601i
\(838\) 64.1233 + 26.5607i 2.21510 + 0.917525i
\(839\) −9.29013 22.4284i −0.320731 0.774313i −0.999212 0.0396949i \(-0.987361\pi\)
0.678481 0.734618i \(-0.262639\pi\)
\(840\) 36.9598 15.3092i 1.27523 0.528219i
\(841\) −20.4850 20.4850i −0.706379 0.706379i
\(842\) −12.3242 12.3242i −0.424719 0.424719i
\(843\) −20.5414 + 8.50854i −0.707485 + 0.293050i
\(844\) −25.4216 61.3733i −0.875049 2.11255i
\(845\) −23.1005 9.56852i −0.794680 0.329167i
\(846\) 6.28531i 0.216093i
\(847\) −6.37204 + 15.3835i −0.218946 + 0.528582i
\(848\) −5.45438 + 5.45438i −0.187304 + 0.187304i
\(849\) 23.9577 0.822225
\(850\) 0 0
\(851\) −25.4030 −0.870802
\(852\) 21.3581 21.3581i 0.731718 0.731718i
\(853\) 14.5843 35.2095i 0.499355 1.20555i −0.450476 0.892789i \(-0.648746\pi\)
0.949831 0.312762i \(-0.101254\pi\)
\(854\) 53.0016i 1.81368i
\(855\) −12.2169 5.06039i −0.417808 0.173062i
\(856\) 15.4280 + 37.2465i 0.527318 + 1.27306i
\(857\) −6.28260 + 2.60234i −0.214610 + 0.0888942i −0.487398 0.873180i \(-0.662054\pi\)
0.272789 + 0.962074i \(0.412054\pi\)
\(858\) 4.80798 + 4.80798i 0.164142 + 0.164142i
\(859\) −15.7736 15.7736i −0.538188 0.538188i 0.384808 0.922997i \(-0.374268\pi\)
−0.922997 + 0.384808i \(0.874268\pi\)
\(860\) 84.7122 35.0889i 2.88866 1.19652i
\(861\) −3.56214 8.59976i −0.121397 0.293079i
\(862\) 68.5076 + 28.3768i 2.33338 + 0.966517i
\(863\) 0.400593i 0.0136363i 0.999977 + 0.00681816i \(0.00217031\pi\)
−0.999977 + 0.00681816i \(0.997830\pi\)
\(864\) −4.74815 + 11.4630i −0.161535 + 0.389981i
\(865\) 26.9262 26.9262i 0.915517 0.915517i
\(866\) 45.2135 1.53642
\(867\) 0 0
\(868\) −5.09124 −0.172808
\(869\) −0.963127 + 0.963127i −0.0326719 + 0.0326719i
\(870\) −0.387466 + 0.935425i −0.0131363 + 0.0317139i
\(871\) 18.7572i 0.635563i
\(872\) 143.561 + 59.4649i 4.86159 + 2.01374i
\(873\) −1.80471 4.35696i −0.0610803 0.147461i
\(874\) 69.2680 28.6918i 2.34303 0.970513i
\(875\) −18.4070 18.4070i −0.622270 0.622270i
\(876\) −36.9556 36.9556i −1.24861 1.24861i
\(877\) −0.194781 + 0.0806809i −0.00657729 + 0.00272440i −0.385970 0.922511i \(-0.626133\pi\)
0.379392 + 0.925236i \(0.376133\pi\)
\(878\) 8.29824 + 20.0337i 0.280052 + 0.676105i
\(879\) 6.87723 + 2.84864i 0.231963 + 0.0960824i
\(880\) 45.9800i 1.54999i
\(881\) 19.8216 47.8535i 0.667806 1.61223i −0.117467 0.993077i \(-0.537478\pi\)
0.785273 0.619149i \(-0.212522\pi\)
\(882\) 3.06544 3.06544i 0.103219 0.103219i
\(883\) 23.5757 0.793385 0.396692 0.917952i \(-0.370158\pi\)
0.396692 + 0.917952i \(0.370158\pi\)
\(884\) 0 0
\(885\) −26.1930 −0.880468
\(886\) −34.4244 + 34.4244i −1.15651 + 1.15651i
\(887\) −6.25080 + 15.0908i −0.209881 + 0.506698i −0.993404 0.114665i \(-0.963421\pi\)
0.783523 + 0.621363i \(0.213421\pi\)
\(888\) 41.3494i 1.38759i
\(889\) 21.0640 + 8.72499i 0.706464 + 0.292627i
\(890\) 12.1134 + 29.2443i 0.406042 + 0.980271i
\(891\) 1.80215 0.746474i 0.0603742 0.0250078i
\(892\) 74.4385 + 74.4385i 2.49238 + 2.49238i
\(893\) −10.0314 10.0314i −0.335689 0.335689i
\(894\) 28.6711 11.8760i 0.958906 0.397192i
\(895\) 9.41842 + 22.7381i 0.314823 + 0.760050i
\(896\) −11.7460 4.86535i −0.392406 0.162540i
\(897\) 6.31877i 0.210978i
\(898\) 31.2005 75.3247i 1.04117 2.51362i
\(899\) 0.0543053 0.0543053i 0.00181118 0.00181118i
\(900\) 0.306273 0.0102091
\(901\) 0 0
\(902\) −20.6849 −0.688731
\(903\) −13.6389 + 13.6389i −0.453874 + 0.453874i
\(904\) 51.9090 125.319i 1.72647 4.16806i
\(905\) 43.7761i 1.45517i
\(906\) −39.2242 16.2472i −1.30314 0.539777i
\(907\) −11.7800 28.4394i −0.391148 0.944314i −0.989690 0.143223i \(-0.954253\pi\)
0.598543 0.801091i \(-0.295747\pi\)
\(908\) 22.6587 9.38555i 0.751956 0.311470i
\(909\) −5.02840 5.02840i −0.166782 0.166782i
\(910\) 12.6758 + 12.6758i 0.420198 + 0.420198i
\(911\) 6.64723 2.75337i 0.220233 0.0912234i −0.269839 0.962905i \(-0.586971\pi\)
0.490072 + 0.871682i \(0.336971\pi\)
\(912\) 24.1554 + 58.3164i 0.799867 + 1.93105i
\(913\) −15.3718 6.36721i −0.508733 0.210724i
\(914\) 40.9532i 1.35461i
\(915\) 7.38741 17.8348i 0.244220 0.589600i
\(916\) 6.43563 6.43563i 0.212639 0.212639i
\(917\) −17.6054 −0.581383
\(918\) 0 0
\(919\) 11.6873 0.385527 0.192764 0.981245i \(-0.438255\pi\)
0.192764 + 0.981245i \(0.438255\pi\)
\(920\) 58.4165 58.4165i 1.92594 1.92594i
\(921\) 5.44114 13.1361i 0.179292 0.432848i
\(922\) 102.565i 3.37779i
\(923\) 7.45287 + 3.08708i 0.245314 + 0.101612i
\(924\) 8.55226 + 20.6470i 0.281349 + 0.679236i
\(925\) −0.303813 + 0.125843i −0.00998930 + 0.00413770i
\(926\) 42.4244 + 42.4244i 1.39415 + 1.39415i
\(927\) 6.52196 + 6.52196i 0.214209 + 0.214209i
\(928\) 1.98107 0.820586i 0.0650318 0.0269371i
\(929\) 5.42751 + 13.1032i 0.178071 + 0.429901i 0.987562 0.157231i \(-0.0502569\pi\)
−0.809491 + 0.587132i \(0.800257\pi\)
\(930\) 2.40528 + 0.996301i 0.0788723 + 0.0326700i
\(931\) 9.78497i 0.320689i
\(932\) −2.83232 + 6.83782i −0.0927756 + 0.223980i
\(933\) −7.32672 + 7.32672i −0.239866 + 0.239866i
\(934\) −33.1003 −1.08308
\(935\) 0 0
\(936\) −10.2853 −0.336186
\(937\) −18.0095 + 18.0095i −0.588344 + 0.588344i −0.937183 0.348839i \(-0.886576\pi\)
0.348839 + 0.937183i \(0.386576\pi\)
\(938\) −33.1234 + 79.9670i −1.08152 + 2.61101i
\(939\) 17.4262i 0.568682i
\(940\) −24.2310 10.0368i −0.790329 0.327365i
\(941\) −22.4191 54.1244i −0.730840 1.76440i −0.639779 0.768559i \(-0.720974\pi\)
−0.0910612 0.995845i \(-0.529026\pi\)
\(942\) −15.7234 + 6.51286i −0.512297 + 0.212200i
\(943\) −13.5923 13.5923i −0.442626 0.442626i
\(944\) 88.4099 + 88.4099i 2.87750 + 2.87750i
\(945\) 4.75119 1.96801i 0.154556 0.0640193i
\(946\) 16.4027 + 39.5996i 0.533298 + 1.28750i
\(947\) 17.5946 + 7.28794i 0.571749 + 0.236826i 0.649777 0.760125i \(-0.274862\pi\)
−0.0780278 + 0.996951i \(0.524862\pi\)
\(948\) 3.45688i 0.112274i
\(949\) 5.34152 12.8956i 0.173393 0.418608i
\(950\) 0.686292 0.686292i 0.0222662 0.0222662i
\(951\) 14.1753 0.459666
\(952\) 0 0
\(953\) 19.8922 0.644371 0.322185 0.946677i \(-0.395583\pi\)
0.322185 + 0.946677i \(0.395583\pi\)
\(954\) −1.35564 + 1.35564i −0.0438905 + 0.0438905i
\(955\) −1.36874 + 3.30442i −0.0442913 + 0.106929i
\(956\) 49.6300i 1.60515i
\(957\) −0.311451 0.129007i −0.0100678 0.00417022i
\(958\) −37.5736 90.7107i −1.21395 2.93073i
\(959\) −47.1921 + 19.5476i −1.52391 + 0.631225i
\(960\) 18.0644 + 18.0644i 0.583025 + 0.583025i
\(961\) 21.7807 + 21.7807i 0.702602 + 0.702602i
\(962\) 17.1183 7.09062i 0.551915 0.228611i
\(963\) 1.98327 + 4.78804i 0.0639101 + 0.154293i
\(964\) 52.6692 + 21.8163i 1.69636 + 0.702656i
\(965\) 9.94216i 0.320049i
\(966\) −11.1583 + 26.9386i −0.359014 + 0.866736i
\(967\) 37.4986 37.4986i 1.20587 1.20587i 0.233520 0.972352i \(-0.424975\pi\)
0.972352 0.233520i \(-0.0750245\pi\)
\(968\) −55.9706 −1.79896
\(969\) 0 0
\(970\) −27.6288 −0.887108
\(971\) −2.13924 + 2.13924i −0.0686516 + 0.0686516i −0.740599 0.671947i \(-0.765458\pi\)
0.671947 + 0.740599i \(0.265458\pi\)
\(972\) −1.89452 + 4.57379i −0.0607669 + 0.146704i
\(973\) 8.29543i 0.265939i
\(974\) 4.00646 + 1.65953i 0.128375 + 0.0531747i
\(975\) 0.0313025 + 0.0755708i 0.00100248 + 0.00242020i
\(976\) −85.1332 + 35.2633i −2.72505 + 1.12875i
\(977\) 7.96654 + 7.96654i 0.254872 + 0.254872i 0.822965 0.568093i \(-0.192318\pi\)
−0.568093 + 0.822965i \(0.692318\pi\)
\(978\) −31.1925 31.1925i −0.997425 0.997425i
\(979\) −9.73695 + 4.03317i −0.311194 + 0.128901i
\(980\) −6.92274 16.7130i −0.221139 0.533876i
\(981\) 18.4548 + 7.64423i 0.589217 + 0.244062i
\(982\) 11.3397i 0.361866i
\(983\) −18.5058 + 44.6770i −0.590244 + 1.42498i 0.293022 + 0.956106i \(0.405339\pi\)
−0.883267 + 0.468871i \(0.844661\pi\)
\(984\) 22.1247 22.1247i 0.705310 0.705310i
\(985\) −16.4304 −0.523515
\(986\) 0 0
\(987\) 5.51722 0.175615
\(988\) −27.5422 + 27.5422i −0.876234 + 0.876234i
\(989\) −15.2430 + 36.7999i −0.484699 + 1.17017i
\(990\) 11.4280i 0.363204i
\(991\) −22.2104 9.19984i −0.705536 0.292243i 0.000919961 1.00000i \(-0.499707\pi\)
−0.706456 + 0.707757i \(0.749707\pi\)
\(992\) −2.11000 5.09398i −0.0669924 0.161734i
\(993\) −10.0227 + 4.15154i −0.318061 + 0.131745i
\(994\) 26.3221 + 26.3221i 0.834887 + 0.834887i
\(995\) −11.3082 11.3082i −0.358493 0.358493i
\(996\) 39.0131 16.1598i 1.23618 0.512041i
\(997\) 10.0798 + 24.3348i 0.319230 + 0.770691i 0.999295 + 0.0375385i \(0.0119517\pi\)
−0.680065 + 0.733152i \(0.738048\pi\)
\(998\) 3.64208 + 1.50860i 0.115288 + 0.0477539i
\(999\) 5.31548i 0.168174i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.k.688.3 16
17.2 even 8 inner 867.2.h.k.712.4 16
17.3 odd 16 51.2.e.a.4.1 8
17.4 even 4 867.2.h.i.757.2 16
17.5 odd 16 51.2.e.a.13.4 yes 8
17.6 odd 16 867.2.d.f.577.8 8
17.7 odd 16 867.2.a.l.1.1 4
17.8 even 8 867.2.h.i.733.2 16
17.9 even 8 867.2.h.i.733.1 16
17.10 odd 16 867.2.a.k.1.1 4
17.11 odd 16 867.2.d.f.577.7 8
17.12 odd 16 867.2.e.g.829.4 8
17.13 even 4 867.2.h.i.757.1 16
17.14 odd 16 867.2.e.g.616.1 8
17.15 even 8 inner 867.2.h.k.712.3 16
17.16 even 2 inner 867.2.h.k.688.4 16
51.5 even 16 153.2.f.b.64.1 8
51.20 even 16 153.2.f.b.55.4 8
51.41 even 16 2601.2.a.be.1.4 4
51.44 even 16 2601.2.a.bf.1.4 4
68.3 even 16 816.2.bd.e.769.4 8
68.39 even 16 816.2.bd.e.625.4 8
204.71 odd 16 2448.2.be.x.1585.1 8
204.107 odd 16 2448.2.be.x.1441.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.1 8 17.3 odd 16
51.2.e.a.13.4 yes 8 17.5 odd 16
153.2.f.b.55.4 8 51.20 even 16
153.2.f.b.64.1 8 51.5 even 16
816.2.bd.e.625.4 8 68.39 even 16
816.2.bd.e.769.4 8 68.3 even 16
867.2.a.k.1.1 4 17.10 odd 16
867.2.a.l.1.1 4 17.7 odd 16
867.2.d.f.577.7 8 17.11 odd 16
867.2.d.f.577.8 8 17.6 odd 16
867.2.e.g.616.1 8 17.14 odd 16
867.2.e.g.829.4 8 17.12 odd 16
867.2.h.i.733.1 16 17.9 even 8
867.2.h.i.733.2 16 17.8 even 8
867.2.h.i.757.1 16 17.13 even 4
867.2.h.i.757.2 16 17.4 even 4
867.2.h.k.688.3 16 1.1 even 1 trivial
867.2.h.k.688.4 16 17.16 even 2 inner
867.2.h.k.712.3 16 17.15 even 8 inner
867.2.h.k.712.4 16 17.2 even 8 inner
2448.2.be.x.1441.1 8 204.107 odd 16
2448.2.be.x.1585.1 8 204.71 odd 16
2601.2.a.be.1.4 4 51.41 even 16
2601.2.a.bf.1.4 4 51.44 even 16