Properties

Label 867.2.h.i.733.1
Level $867$
Weight $2$
Character 867.733
Analytic conductor $6.923$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(688,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.688"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-8,0,0,0,0,0,32,0,0,0,0,0,0,8,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8x^{14} + 32x^{12} + 296x^{10} + 1057x^{8} + 1184x^{6} + 512x^{4} - 512x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 733.1
Root \(-0.467712 - 1.12916i\) of defining polynomial
Character \(\chi\) \(=\) 867.733
Dual form 867.2.h.i.757.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.86422 - 1.86422i) q^{2} +(-0.923880 + 0.382683i) q^{3} +4.95063i q^{4} +(0.850396 + 2.05304i) q^{5} +(2.43572 + 1.00891i) q^{6} +(0.885616 - 2.13807i) q^{7} +(5.50062 - 5.50062i) q^{8} +(0.707107 - 0.707107i) q^{9} +(2.24199 - 5.41264i) q^{10} +(-1.80215 - 0.746474i) q^{11} +(-1.89452 - 4.57379i) q^{12} -1.32218i q^{13} +(-5.63681 + 2.33484i) q^{14} +(-1.57133 - 1.57133i) q^{15} -10.6075 q^{16} -2.63640 q^{18} +(4.20773 + 4.20773i) q^{19} +(-10.1638 + 4.21000i) q^{20} +2.31423i q^{21} +(1.96801 + 4.75119i) q^{22} +(-4.41527 - 1.82887i) q^{23} +(-2.97692 + 7.18691i) q^{24} +(0.0437455 - 0.0437455i) q^{25} +(-2.46483 + 2.46483i) q^{26} +(-0.382683 + 0.923880i) q^{27} +(10.5848 + 4.38436i) q^{28} +(0.0661363 + 0.159667i) q^{29} +5.85860i q^{30} +(-0.410556 + 0.170058i) q^{31} +(8.77343 + 8.77343i) q^{32} +1.95063 q^{33} +5.14265 q^{35} +(3.50062 + 3.50062i) q^{36} +(4.91086 - 2.03414i) q^{37} -15.6883i q^{38} +(0.505976 + 1.22153i) q^{39} +(15.9707 + 6.61528i) q^{40} +(-1.53924 + 3.71604i) q^{41} +(4.31423 - 4.31423i) q^{42} +(5.89351 - 5.89351i) q^{43} +(3.69552 - 8.92177i) q^{44} +(2.05304 + 0.850396i) q^{45} +(4.82163 + 11.6405i) q^{46} -2.38404i q^{47} +(9.80004 - 4.05931i) q^{48} +(1.16274 + 1.16274i) q^{49} -0.163102 q^{50} +6.54562 q^{52} +(-0.514201 - 0.514201i) q^{53} +(2.43572 - 1.00891i) q^{54} -4.33468i q^{55} +(-6.88926 - 16.6321i) q^{56} +(-5.49767 - 2.27721i) q^{57} +(0.174362 - 0.420947i) q^{58} +(8.33468 - 8.33468i) q^{59} +(7.77906 - 7.77906i) q^{60} +(-3.32438 + 8.02576i) q^{61} +(1.08239 + 0.448342i) q^{62} +(-0.885616 - 2.13807i) q^{63} -11.4963i q^{64} +(2.71448 - 1.12438i) q^{65} +(-3.63640 - 3.63640i) q^{66} +14.1866 q^{67} +4.77906 q^{69} +(-9.58704 - 9.58704i) q^{70} +(5.63681 - 2.33484i) q^{71} -7.77906i q^{72} +(4.03994 + 9.75327i) q^{73} +(-12.9470 - 5.36283i) q^{74} +(-0.0236749 + 0.0571563i) q^{75} +(-20.8309 + 20.8309i) q^{76} +(-3.19202 + 3.19202i) q^{77} +(1.33396 - 3.22046i) q^{78} +(-0.645118 - 0.267217i) q^{79} +(-9.02056 - 21.7776i) q^{80} -1.00000i q^{81} +(9.79700 - 4.05805i) q^{82} +(-6.03142 - 6.03142i) q^{83} -11.4569 q^{84} -21.9736 q^{86} +(-0.122204 - 0.122204i) q^{87} +(-14.0190 + 5.80687i) q^{88} +5.40297i q^{89} +(-2.24199 - 5.41264i) q^{90} +(-2.82691 - 1.17094i) q^{91} +(9.05404 - 21.8584i) q^{92} +(0.314226 - 0.314226i) q^{93} +(-4.44438 + 4.44438i) q^{94} +(-5.06039 + 12.2169i) q^{95} +(-11.4630 - 4.74815i) q^{96} +(-1.80471 - 4.35696i) q^{97} -4.33519i q^{98} +(-1.80215 + 0.746474i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} + 32 q^{8} + 8 q^{15} - 24 q^{16} - 8 q^{18} + 32 q^{25} + 40 q^{26} + 16 q^{32} - 24 q^{33} + 16 q^{35} + 48 q^{42} + 48 q^{43} + 32 q^{49} + 120 q^{50} - 32 q^{52} + 16 q^{53} + 56 q^{59}+ \cdots - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86422 1.86422i −1.31820 1.31820i −0.915198 0.403004i \(-0.867966\pi\)
−0.403004 0.915198i \(-0.632034\pi\)
\(3\) −0.923880 + 0.382683i −0.533402 + 0.220942i
\(4\) 4.95063i 2.47532i
\(5\) 0.850396 + 2.05304i 0.380309 + 0.918146i 0.991906 + 0.126977i \(0.0405274\pi\)
−0.611597 + 0.791169i \(0.709473\pi\)
\(6\) 2.43572 + 1.00891i 0.994379 + 0.411885i
\(7\) 0.885616 2.13807i 0.334731 0.808113i −0.663472 0.748201i \(-0.730918\pi\)
0.998204 0.0599122i \(-0.0190821\pi\)
\(8\) 5.50062 5.50062i 1.94476 1.94476i
\(9\) 0.707107 0.707107i 0.235702 0.235702i
\(10\) 2.24199 5.41264i 0.708979 1.71163i
\(11\) −1.80215 0.746474i −0.543368 0.225070i 0.0940788 0.995565i \(-0.470009\pi\)
−0.637447 + 0.770494i \(0.720009\pi\)
\(12\) −1.89452 4.57379i −0.546902 1.32034i
\(13\) 1.32218i 0.366706i −0.983047 0.183353i \(-0.941305\pi\)
0.983047 0.183353i \(-0.0586952\pi\)
\(14\) −5.63681 + 2.33484i −1.50650 + 0.624013i
\(15\) −1.57133 1.57133i −0.405715 0.405715i
\(16\) −10.6075 −2.65187
\(17\) 0 0
\(18\) −2.63640 −0.621407
\(19\) 4.20773 + 4.20773i 0.965320 + 0.965320i 0.999418 0.0340987i \(-0.0108560\pi\)
−0.0340987 + 0.999418i \(0.510856\pi\)
\(20\) −10.1638 + 4.21000i −2.27270 + 0.941384i
\(21\) 2.31423i 0.505006i
\(22\) 1.96801 + 4.75119i 0.419581 + 1.01296i
\(23\) −4.41527 1.82887i −0.920648 0.381345i −0.128525 0.991706i \(-0.541024\pi\)
−0.792123 + 0.610361i \(0.791024\pi\)
\(24\) −2.97692 + 7.18691i −0.607661 + 1.46702i
\(25\) 0.0437455 0.0437455i 0.00874910 0.00874910i
\(26\) −2.46483 + 2.46483i −0.483393 + 0.483393i
\(27\) −0.382683 + 0.923880i −0.0736475 + 0.177801i
\(28\) 10.5848 + 4.38436i 2.00033 + 0.828566i
\(29\) 0.0661363 + 0.159667i 0.0122812 + 0.0296494i 0.929901 0.367809i \(-0.119892\pi\)
−0.917620 + 0.397459i \(0.869892\pi\)
\(30\) 5.85860i 1.06963i
\(31\) −0.410556 + 0.170058i −0.0737381 + 0.0305433i −0.419248 0.907872i \(-0.637706\pi\)
0.345510 + 0.938415i \(0.387706\pi\)
\(32\) 8.77343 + 8.77343i 1.55094 + 1.55094i
\(33\) 1.95063 0.339561
\(34\) 0 0
\(35\) 5.14265 0.869267
\(36\) 3.50062 + 3.50062i 0.583437 + 0.583437i
\(37\) 4.91086 2.03414i 0.807340 0.334411i 0.0594480 0.998231i \(-0.481066\pi\)
0.747892 + 0.663820i \(0.231066\pi\)
\(38\) 15.6883i 2.54497i
\(39\) 0.505976 + 1.22153i 0.0810210 + 0.195602i
\(40\) 15.9707 + 6.61528i 2.52519 + 1.04597i
\(41\) −1.53924 + 3.71604i −0.240388 + 0.580348i −0.997321 0.0731438i \(-0.976697\pi\)
0.756933 + 0.653492i \(0.226697\pi\)
\(42\) 4.31423 4.31423i 0.665700 0.665700i
\(43\) 5.89351 5.89351i 0.898751 0.898751i −0.0965746 0.995326i \(-0.530789\pi\)
0.995326 + 0.0965746i \(0.0307886\pi\)
\(44\) 3.69552 8.92177i 0.557120 1.34501i
\(45\) 2.05304 + 0.850396i 0.306049 + 0.126770i
\(46\) 4.82163 + 11.6405i 0.710911 + 1.71629i
\(47\) 2.38404i 0.347749i −0.984768 0.173874i \(-0.944371\pi\)
0.984768 0.173874i \(-0.0556286\pi\)
\(48\) 9.80004 4.05931i 1.41451 0.585911i
\(49\) 1.16274 + 1.16274i 0.166105 + 0.166105i
\(50\) −0.163102 −0.0230662
\(51\) 0 0
\(52\) 6.54562 0.907714
\(53\) −0.514201 0.514201i −0.0706309 0.0706309i 0.670909 0.741540i \(-0.265904\pi\)
−0.741540 + 0.670909i \(0.765904\pi\)
\(54\) 2.43572 1.00891i 0.331460 0.137295i
\(55\) 4.33468i 0.584488i
\(56\) −6.88926 16.6321i −0.920616 2.22256i
\(57\) −5.49767 2.27721i −0.728184 0.301624i
\(58\) 0.174362 0.420947i 0.0228948 0.0552730i
\(59\) 8.33468 8.33468i 1.08508 1.08508i 0.0890557 0.996027i \(-0.471615\pi\)
0.996027 0.0890557i \(-0.0283849\pi\)
\(60\) 7.77906 7.77906i 1.00427 1.00427i
\(61\) −3.32438 + 8.02576i −0.425643 + 1.02759i 0.555011 + 0.831843i \(0.312714\pi\)
−0.980654 + 0.195750i \(0.937286\pi\)
\(62\) 1.08239 + 0.448342i 0.137464 + 0.0569394i
\(63\) −0.885616 2.13807i −0.111577 0.269371i
\(64\) 11.4963i 1.43703i
\(65\) 2.71448 1.12438i 0.336690 0.139462i
\(66\) −3.63640 3.63640i −0.447611 0.447611i
\(67\) 14.1866 1.73317 0.866583 0.499034i \(-0.166312\pi\)
0.866583 + 0.499034i \(0.166312\pi\)
\(68\) 0 0
\(69\) 4.77906 0.575331
\(70\) −9.58704 9.58704i −1.14587 1.14587i
\(71\) 5.63681 2.33484i 0.668966 0.277095i −0.0222399 0.999753i \(-0.507080\pi\)
0.691206 + 0.722658i \(0.257080\pi\)
\(72\) 7.77906i 0.916771i
\(73\) 4.03994 + 9.75327i 0.472839 + 1.14153i 0.962903 + 0.269848i \(0.0869734\pi\)
−0.490064 + 0.871686i \(0.663027\pi\)
\(74\) −12.9470 5.36283i −1.50506 0.623416i
\(75\) −0.0236749 + 0.0571563i −0.00273374 + 0.00659984i
\(76\) −20.8309 + 20.8309i −2.38947 + 2.38947i
\(77\) −3.19202 + 3.19202i −0.363765 + 0.363765i
\(78\) 1.33396 3.22046i 0.151041 0.364645i
\(79\) −0.645118 0.267217i −0.0725814 0.0300642i 0.346097 0.938199i \(-0.387507\pi\)
−0.418679 + 0.908134i \(0.637507\pi\)
\(80\) −9.02056 21.7776i −1.00853 2.43481i
\(81\) 1.00000i 0.111111i
\(82\) 9.79700 4.05805i 1.08190 0.448136i
\(83\) −6.03142 6.03142i −0.662034 0.662034i 0.293825 0.955859i \(-0.405072\pi\)
−0.955859 + 0.293825i \(0.905072\pi\)
\(84\) −11.4569 −1.25005
\(85\) 0 0
\(86\) −21.9736 −2.36947
\(87\) −0.122204 0.122204i −0.0131016 0.0131016i
\(88\) −14.0190 + 5.80687i −1.49443 + 0.619014i
\(89\) 5.40297i 0.572713i 0.958123 + 0.286357i \(0.0924442\pi\)
−0.958123 + 0.286357i \(0.907556\pi\)
\(90\) −2.24199 5.41264i −0.236326 0.570542i
\(91\) −2.82691 1.17094i −0.296340 0.122748i
\(92\) 9.05404 21.8584i 0.943949 2.27889i
\(93\) 0.314226 0.314226i 0.0325837 0.0325837i
\(94\) −4.44438 + 4.44438i −0.458403 + 0.458403i
\(95\) −5.06039 + 12.2169i −0.519185 + 1.25342i
\(96\) −11.4630 4.74815i −1.16994 0.484606i
\(97\) −1.80471 4.35696i −0.183241 0.442383i 0.805390 0.592745i \(-0.201956\pi\)
−0.988631 + 0.150363i \(0.951956\pi\)
\(98\) 4.33519i 0.437921i
\(99\) −1.80215 + 0.746474i −0.181123 + 0.0750235i
\(100\) 0.216568 + 0.216568i 0.0216568 + 0.0216568i
\(101\) 7.11123 0.707594 0.353797 0.935322i \(-0.384890\pi\)
0.353797 + 0.935322i \(0.384890\pi\)
\(102\) 0 0
\(103\) −9.22344 −0.908813 −0.454406 0.890795i \(-0.650149\pi\)
−0.454406 + 0.890795i \(0.650149\pi\)
\(104\) −7.27281 7.27281i −0.713158 0.713158i
\(105\) −4.75119 + 1.96801i −0.463669 + 0.192058i
\(106\) 1.91717i 0.186212i
\(107\) 1.98327 + 4.78804i 0.191730 + 0.462878i 0.990286 0.139043i \(-0.0444025\pi\)
−0.798556 + 0.601920i \(0.794402\pi\)
\(108\) −4.57379 1.89452i −0.440113 0.182301i
\(109\) 7.64423 18.4548i 0.732185 1.76765i 0.0970083 0.995284i \(-0.469073\pi\)
0.635177 0.772367i \(-0.280927\pi\)
\(110\) −8.08079 + 8.08079i −0.770473 + 0.770473i
\(111\) −3.75861 + 3.75861i −0.356751 + 0.356751i
\(112\) −9.39416 + 22.6795i −0.887665 + 2.14301i
\(113\) 16.1098 + 6.67291i 1.51549 + 0.627735i 0.976681 0.214696i \(-0.0688760\pi\)
0.538805 + 0.842431i \(0.318876\pi\)
\(114\) 6.00364 + 14.4941i 0.562293 + 1.35749i
\(115\) 10.6200i 0.990318i
\(116\) −0.790453 + 0.327416i −0.0733917 + 0.0303998i
\(117\) −0.934922 0.934922i −0.0864335 0.0864335i
\(118\) −31.0753 −2.86072
\(119\) 0 0
\(120\) −17.2866 −1.57804
\(121\) −5.08766 5.08766i −0.462515 0.462515i
\(122\) 21.1592 8.76441i 1.91566 0.793493i
\(123\) 4.02222i 0.362671i
\(124\) −0.841894 2.03251i −0.0756043 0.182525i
\(125\) 10.3922 + 4.30459i 0.929506 + 0.385014i
\(126\) −2.33484 + 5.63681i −0.208004 + 0.502167i
\(127\) 6.96634 6.96634i 0.618163 0.618163i −0.326897 0.945060i \(-0.606003\pi\)
0.945060 + 0.326897i \(0.106003\pi\)
\(128\) −3.88467 + 3.88467i −0.343359 + 0.343359i
\(129\) −3.18954 + 7.70024i −0.280824 + 0.677968i
\(130\) −7.15647 2.96431i −0.627664 0.259987i
\(131\) −2.91126 7.02840i −0.254358 0.614074i 0.744189 0.667969i \(-0.232836\pi\)
−0.998547 + 0.0538952i \(0.982836\pi\)
\(132\) 9.65685i 0.840521i
\(133\) 12.7228 5.26997i 1.10321 0.456965i
\(134\) −26.4469 26.4469i −2.28466 2.28466i
\(135\) −2.22219 −0.191256
\(136\) 0 0
\(137\) 22.0723 1.88577 0.942883 0.333125i \(-0.108103\pi\)
0.942883 + 0.333125i \(0.108103\pi\)
\(138\) −8.90921 8.90921i −0.758403 0.758403i
\(139\) 3.31168 1.37174i 0.280893 0.116350i −0.237789 0.971317i \(-0.576423\pi\)
0.518682 + 0.854967i \(0.326423\pi\)
\(140\) 25.4594i 2.15171i
\(141\) 0.912334 + 2.20257i 0.0768324 + 0.185490i
\(142\) −14.8609 6.15559i −1.24710 0.516566i
\(143\) −0.986972 + 2.38276i −0.0825348 + 0.199257i
\(144\) −7.50062 + 7.50062i −0.625052 + 0.625052i
\(145\) −0.271560 + 0.271560i −0.0225519 + 0.0225519i
\(146\) 10.6509 25.7136i 0.881476 2.12807i
\(147\) −1.51919 0.629268i −0.125301 0.0519012i
\(148\) 10.0703 + 24.3119i 0.827773 + 1.99842i
\(149\) 11.7711i 0.964327i 0.876081 + 0.482163i \(0.160149\pi\)
−0.876081 + 0.482163i \(0.839851\pi\)
\(150\) 0.150687 0.0624166i 0.0123035 0.00509630i
\(151\) 11.3871 + 11.3871i 0.926666 + 0.926666i 0.997489 0.0708230i \(-0.0225626\pi\)
−0.0708230 + 0.997489i \(0.522563\pi\)
\(152\) 46.2903 3.75464
\(153\) 0 0
\(154\) 11.9013 0.959031
\(155\) −0.698270 0.698270i −0.0560864 0.0560864i
\(156\) −6.04736 + 2.50490i −0.484177 + 0.200553i
\(157\) 6.45535i 0.515193i −0.966253 0.257597i \(-0.917069\pi\)
0.966253 0.257597i \(-0.0829306\pi\)
\(158\) 0.704491 + 1.70079i 0.0560463 + 0.135308i
\(159\) 0.671836 + 0.278284i 0.0532801 + 0.0220693i
\(160\) −10.5513 + 25.4731i −0.834153 + 2.01382i
\(161\) −7.82047 + 7.82047i −0.616340 + 0.616340i
\(162\) −1.86422 + 1.86422i −0.146467 + 0.146467i
\(163\) 6.40313 15.4585i 0.501532 1.21081i −0.447117 0.894475i \(-0.647549\pi\)
0.948649 0.316330i \(-0.102451\pi\)
\(164\) −18.3968 7.62019i −1.43655 0.595037i
\(165\) 1.65881 + 4.00472i 0.129138 + 0.311767i
\(166\) 22.4878i 1.74539i
\(167\) −1.48281 + 0.614202i −0.114744 + 0.0475284i −0.439317 0.898332i \(-0.644779\pi\)
0.324573 + 0.945861i \(0.394779\pi\)
\(168\) 12.7297 + 12.7297i 0.982117 + 0.982117i
\(169\) 11.2518 0.865526
\(170\) 0 0
\(171\) 5.95063 0.455056
\(172\) 29.1766 + 29.1766i 2.22469 + 2.22469i
\(173\) −15.8316 + 6.55764i −1.20365 + 0.498568i −0.892177 0.451686i \(-0.850823\pi\)
−0.311474 + 0.950255i \(0.600823\pi\)
\(174\) 0.455630i 0.0345412i
\(175\) −0.0547891 0.132273i −0.00414166 0.00999886i
\(176\) 19.1163 + 7.91821i 1.44094 + 0.596858i
\(177\) −4.51069 + 10.8898i −0.339045 + 0.818526i
\(178\) 10.0723 10.0723i 0.754952 0.754952i
\(179\) 7.83144 7.83144i 0.585350 0.585350i −0.351019 0.936368i \(-0.614165\pi\)
0.936368 + 0.351019i \(0.114165\pi\)
\(180\) −4.21000 + 10.1638i −0.313795 + 0.757567i
\(181\) −18.2000 7.53868i −1.35279 0.560346i −0.415725 0.909490i \(-0.636472\pi\)
−0.937069 + 0.349145i \(0.886472\pi\)
\(182\) 3.08708 + 7.45287i 0.228830 + 0.552443i
\(183\) 8.68702i 0.642163i
\(184\) −34.3467 + 14.2269i −2.53207 + 1.04882i
\(185\) 8.35235 + 8.35235i 0.614077 + 0.614077i
\(186\) −1.17157 −0.0859039
\(187\) 0 0
\(188\) 11.8025 0.860788
\(189\) 1.63640 + 1.63640i 0.119031 + 0.119031i
\(190\) 32.2086 13.3412i 2.33666 0.967875i
\(191\) 1.60953i 0.116461i 0.998303 + 0.0582307i \(0.0185459\pi\)
−0.998303 + 0.0582307i \(0.981454\pi\)
\(192\) 4.39942 + 10.6212i 0.317501 + 0.766516i
\(193\) 4.13347 + 1.71214i 0.297534 + 0.123242i 0.526456 0.850202i \(-0.323520\pi\)
−0.228923 + 0.973445i \(0.573520\pi\)
\(194\) −4.75796 + 11.4867i −0.341601 + 0.824698i
\(195\) −2.07757 + 2.07757i −0.148778 + 0.148778i
\(196\) −5.75628 + 5.75628i −0.411163 + 0.411163i
\(197\) −2.82947 + 6.83095i −0.201591 + 0.486685i −0.992052 0.125828i \(-0.959841\pi\)
0.790461 + 0.612513i \(0.209841\pi\)
\(198\) 4.75119 + 1.96801i 0.337653 + 0.139860i
\(199\) −2.75401 6.64876i −0.195226 0.471318i 0.795705 0.605684i \(-0.207100\pi\)
−0.990932 + 0.134366i \(0.957100\pi\)
\(200\) 0.481255i 0.0340299i
\(201\) −13.1067 + 5.42896i −0.924474 + 0.382930i
\(202\) −13.2569 13.2569i −0.932753 0.932753i
\(203\) 0.399950 0.0280710
\(204\) 0 0
\(205\) −8.93813 −0.624266
\(206\) 17.1945 + 17.1945i 1.19800 + 1.19800i
\(207\) −4.41527 + 1.82887i −0.306883 + 0.127115i
\(208\) 14.0250i 0.972458i
\(209\) −4.44199 10.7239i −0.307259 0.741789i
\(210\) 12.5261 + 5.18847i 0.864381 + 0.358038i
\(211\) −5.13503 + 12.3971i −0.353510 + 0.853449i 0.642671 + 0.766142i \(0.277826\pi\)
−0.996181 + 0.0873068i \(0.972174\pi\)
\(212\) 2.54562 2.54562i 0.174834 0.174834i
\(213\) −4.31423 + 4.31423i −0.295606 + 0.295606i
\(214\) 5.22871 12.6232i 0.357427 0.862906i
\(215\) 17.1114 + 7.08777i 1.16699 + 0.483382i
\(216\) 2.97692 + 7.18691i 0.202554 + 0.489007i
\(217\) 1.02840i 0.0698125i
\(218\) −48.6544 + 20.1533i −3.29529 + 1.36495i
\(219\) −7.46483 7.46483i −0.504427 0.504427i
\(220\) 21.4594 1.44679
\(221\) 0 0
\(222\) 14.0137 0.940541
\(223\) 15.0362 + 15.0362i 1.00690 + 1.00690i 0.999976 + 0.00691960i \(0.00220259\pi\)
0.00691960 + 0.999976i \(0.497797\pi\)
\(224\) 26.5281 10.9883i 1.77248 0.734186i
\(225\) 0.0618655i 0.00412437i
\(226\) −17.5925 42.4721i −1.17024 2.82520i
\(227\) 4.57694 + 1.89583i 0.303782 + 0.125831i 0.529367 0.848393i \(-0.322429\pi\)
−0.225585 + 0.974223i \(0.572429\pi\)
\(228\) 11.2736 27.2169i 0.746613 1.80248i
\(229\) −1.29996 + 1.29996i −0.0859039 + 0.0859039i −0.748753 0.662849i \(-0.769347\pi\)
0.662849 + 0.748753i \(0.269347\pi\)
\(230\) −19.7980 + 19.7980i −1.30544 + 1.30544i
\(231\) 1.72751 4.17058i 0.113662 0.274404i
\(232\) 1.24206 + 0.514478i 0.0815452 + 0.0337771i
\(233\) 0.572112 + 1.38120i 0.0374803 + 0.0904855i 0.941511 0.336982i \(-0.109406\pi\)
−0.904031 + 0.427467i \(0.859406\pi\)
\(234\) 3.48580i 0.227874i
\(235\) 4.89453 2.02738i 0.319284 0.132252i
\(236\) 41.2619 + 41.2619i 2.68592 + 2.68592i
\(237\) 0.698270 0.0453575
\(238\) 0 0
\(239\) −10.0250 −0.648463 −0.324231 0.945978i \(-0.605106\pi\)
−0.324231 + 0.945978i \(0.605106\pi\)
\(240\) 16.6678 + 16.6678i 1.07590 + 1.07590i
\(241\) −10.6389 + 4.40677i −0.685311 + 0.283865i −0.698045 0.716054i \(-0.745947\pi\)
0.0127340 + 0.999919i \(0.495947\pi\)
\(242\) 18.9690i 1.21938i
\(243\) 0.382683 + 0.923880i 0.0245492 + 0.0592669i
\(244\) −39.7326 16.4578i −2.54362 1.05360i
\(245\) −1.39835 + 3.37593i −0.0893376 + 0.215680i
\(246\) −7.49830 + 7.49830i −0.478074 + 0.478074i
\(247\) 5.56337 5.56337i 0.353989 0.353989i
\(248\) −1.32289 + 3.19374i −0.0840036 + 0.202803i
\(249\) 7.88043 + 3.26418i 0.499402 + 0.206859i
\(250\) −11.3486 27.3980i −0.717751 1.73280i
\(251\) 0.940179i 0.0593436i 0.999560 + 0.0296718i \(0.00944621\pi\)
−0.999560 + 0.0296718i \(0.990554\pi\)
\(252\) 10.5848 4.38436i 0.666778 0.276189i
\(253\) 6.59178 + 6.59178i 0.414421 + 0.414421i
\(254\) −25.9736 −1.62973
\(255\) 0 0
\(256\) −8.50875 −0.531797
\(257\) 1.52392 + 1.52392i 0.0950596 + 0.0950596i 0.753037 0.657978i \(-0.228588\pi\)
−0.657978 + 0.753037i \(0.728588\pi\)
\(258\) 20.3009 8.40892i 1.26388 0.523517i
\(259\) 12.3012i 0.764360i
\(260\) 5.56637 + 13.4384i 0.345211 + 0.833414i
\(261\) 0.159667 + 0.0661363i 0.00988314 + 0.00409373i
\(262\) −7.67526 + 18.5297i −0.474179 + 1.14477i
\(263\) 9.29326 9.29326i 0.573047 0.573047i −0.359932 0.932979i \(-0.617200\pi\)
0.932979 + 0.359932i \(0.117200\pi\)
\(264\) 10.7297 10.7297i 0.660367 0.660367i
\(265\) 0.618399 1.49295i 0.0379880 0.0917111i
\(266\) −33.5426 13.8938i −2.05663 0.851883i
\(267\) −2.06763 4.99169i −0.126537 0.305486i
\(268\) 70.2325i 4.29013i
\(269\) 14.0193 5.80697i 0.854770 0.354057i 0.0881101 0.996111i \(-0.471917\pi\)
0.766660 + 0.642053i \(0.221917\pi\)
\(270\) 4.14265 + 4.14265i 0.252114 + 0.252114i
\(271\) −11.8360 −0.718985 −0.359493 0.933148i \(-0.617050\pi\)
−0.359493 + 0.933148i \(0.617050\pi\)
\(272\) 0 0
\(273\) 3.05982 0.185189
\(274\) −41.1477 41.1477i −2.48582 2.48582i
\(275\) −0.111491 + 0.0461810i −0.00672315 + 0.00278482i
\(276\) 23.6594i 1.42413i
\(277\) 10.2951 + 24.8547i 0.618575 + 1.49337i 0.853358 + 0.521325i \(0.174562\pi\)
−0.234783 + 0.972048i \(0.575438\pi\)
\(278\) −8.73093 3.61647i −0.523646 0.216901i
\(279\) −0.170058 + 0.410556i −0.0101811 + 0.0245794i
\(280\) 28.2878 28.2878i 1.69052 1.69052i
\(281\) −15.7217 + 15.7217i −0.937880 + 0.937880i −0.998180 0.0603001i \(-0.980794\pi\)
0.0603001 + 0.998180i \(0.480794\pi\)
\(282\) 2.40528 5.80687i 0.143232 0.345794i
\(283\) −22.1340 9.16820i −1.31573 0.544993i −0.389179 0.921162i \(-0.627241\pi\)
−0.926551 + 0.376169i \(0.877241\pi\)
\(284\) 11.5589 + 27.9058i 0.685897 + 1.65590i
\(285\) 13.2234i 0.783289i
\(286\) 6.28193 2.60206i 0.371458 0.153863i
\(287\) 6.58197 + 6.58197i 0.388522 + 0.388522i
\(288\) 12.4075 0.731120
\(289\) 0 0
\(290\) 1.01250 0.0594558
\(291\) 3.33468 + 3.33468i 0.195482 + 0.195482i
\(292\) −48.2849 + 20.0002i −2.82566 + 1.17043i
\(293\) 7.44387i 0.434875i 0.976074 + 0.217438i \(0.0697699\pi\)
−0.976074 + 0.217438i \(0.930230\pi\)
\(294\) 1.65901 + 4.00520i 0.0967552 + 0.233588i
\(295\) 24.1992 + 10.0236i 1.40893 + 0.583598i
\(296\) 15.8237 38.2019i 0.919735 2.22044i
\(297\) 1.37930 1.37930i 0.0800354 0.0800354i
\(298\) 21.9439 21.9439i 1.27118 1.27118i
\(299\) −2.41809 + 5.83778i −0.139842 + 0.337608i
\(300\) −0.282960 0.117206i −0.0163367 0.00676687i
\(301\) −7.38132 17.8201i −0.425452 1.02713i
\(302\) 42.4560i 2.44307i
\(303\) −6.56992 + 2.72135i −0.377432 + 0.156338i
\(304\) −44.6335 44.6335i −2.55990 2.55990i
\(305\) −19.3042 −1.10536
\(306\) 0 0
\(307\) −14.2184 −0.811486 −0.405743 0.913987i \(-0.632987\pi\)
−0.405743 + 0.913987i \(0.632987\pi\)
\(308\) −15.8025 15.8025i −0.900432 0.900432i
\(309\) 8.52135 3.52966i 0.484763 0.200795i
\(310\) 2.60346i 0.147867i
\(311\) −3.96519 9.57282i −0.224846 0.542825i 0.770690 0.637210i \(-0.219912\pi\)
−0.995536 + 0.0943849i \(0.969912\pi\)
\(312\) 9.50238 + 3.93602i 0.537967 + 0.222833i
\(313\) −6.66872 + 16.0997i −0.376938 + 0.910009i 0.615598 + 0.788060i \(0.288914\pi\)
−0.992536 + 0.121949i \(0.961086\pi\)
\(314\) −12.0342 + 12.0342i −0.679129 + 0.679129i
\(315\) 3.63640 3.63640i 0.204888 0.204888i
\(316\) 1.32289 3.19374i 0.0744184 0.179662i
\(317\) −13.0963 5.42466i −0.735561 0.304679i −0.0167260 0.999860i \(-0.505324\pi\)
−0.718835 + 0.695181i \(0.755324\pi\)
\(318\) −0.733668 1.77123i −0.0411421 0.0993258i
\(319\) 0.337113i 0.0188747i
\(320\) 23.6022 9.77636i 1.31940 0.546515i
\(321\) −3.66461 3.66461i −0.204539 0.204539i
\(322\) 29.1582 1.62492
\(323\) 0 0
\(324\) 4.95063 0.275035
\(325\) −0.0578394 0.0578394i −0.00320835 0.00320835i
\(326\) −40.7549 + 16.8812i −2.25721 + 0.934966i
\(327\) 19.9753i 1.10464i
\(328\) 11.9738 + 28.9073i 0.661143 + 1.59614i
\(329\) −5.09724 2.11135i −0.281020 0.116402i
\(330\) 4.37329 10.5581i 0.240742 0.581202i
\(331\) −7.67104 + 7.67104i −0.421638 + 0.421638i −0.885768 0.464129i \(-0.846367\pi\)
0.464129 + 0.885768i \(0.346367\pi\)
\(332\) 29.8593 29.8593i 1.63874 1.63874i
\(333\) 2.03414 4.91086i 0.111470 0.269113i
\(334\) 3.90930 + 1.61928i 0.213907 + 0.0886033i
\(335\) 12.0642 + 29.1256i 0.659138 + 1.59130i
\(336\) 24.5481i 1.33921i
\(337\) 9.07037 3.75707i 0.494095 0.204661i −0.121701 0.992567i \(-0.538835\pi\)
0.615795 + 0.787906i \(0.288835\pi\)
\(338\) −20.9759 20.9759i −1.14094 1.14094i
\(339\) −17.4372 −0.947057
\(340\) 0 0
\(341\) 0.866827 0.0469413
\(342\) −11.0933 11.0933i −0.599856 0.599856i
\(343\) 18.4822 7.65558i 0.997945 0.413363i
\(344\) 64.8359i 3.49572i
\(345\) 4.06409 + 9.81158i 0.218803 + 0.528238i
\(346\) 41.7384 + 17.2886i 2.24387 + 0.929441i
\(347\) 9.96773 24.0642i 0.535096 1.29184i −0.393015 0.919532i \(-0.628568\pi\)
0.928111 0.372303i \(-0.121432\pi\)
\(348\) 0.604986 0.604986i 0.0324307 0.0324307i
\(349\) −13.1952 + 13.1952i −0.706325 + 0.706325i −0.965760 0.259436i \(-0.916463\pi\)
0.259436 + 0.965760i \(0.416463\pi\)
\(350\) −0.144446 + 0.348724i −0.00772097 + 0.0186401i
\(351\) 1.22153 + 0.505976i 0.0652007 + 0.0270070i
\(352\) −9.26189 22.3602i −0.493660 1.19180i
\(353\) 11.8339i 0.629857i −0.949115 0.314929i \(-0.898019\pi\)
0.949115 0.314929i \(-0.101981\pi\)
\(354\) 28.7099 11.8920i 1.52591 0.632053i
\(355\) 9.58704 + 9.58704i 0.508827 + 0.508827i
\(356\) −26.7481 −1.41765
\(357\) 0 0
\(358\) −29.1991 −1.54322
\(359\) −9.99796 9.99796i −0.527672 0.527672i 0.392206 0.919878i \(-0.371712\pi\)
−0.919878 + 0.392206i \(0.871712\pi\)
\(360\) 15.9707 6.61528i 0.841730 0.348656i
\(361\) 16.4100i 0.863685i
\(362\) 19.8750 + 47.9825i 1.04461 + 2.52191i
\(363\) 6.64735 + 2.75342i 0.348895 + 0.144517i
\(364\) 5.79691 13.9950i 0.303840 0.733536i
\(365\) −16.5883 + 16.5883i −0.868271 + 0.868271i
\(366\) −16.1945 + 16.1945i −0.846501 + 0.846501i
\(367\) −1.42497 + 3.44017i −0.0743827 + 0.179576i −0.956697 0.291084i \(-0.905984\pi\)
0.882315 + 0.470660i \(0.155984\pi\)
\(368\) 46.8350 + 19.3997i 2.44144 + 1.01128i
\(369\) 1.53924 + 3.71604i 0.0801294 + 0.193449i
\(370\) 31.1412i 1.61896i
\(371\) −1.55478 + 0.644011i −0.0807202 + 0.0334354i
\(372\) 1.55562 + 1.55562i 0.0806550 + 0.0806550i
\(373\) −1.53618 −0.0795403 −0.0397701 0.999209i \(-0.512663\pi\)
−0.0397701 + 0.999209i \(0.512663\pi\)
\(374\) 0 0
\(375\) −11.2484 −0.580867
\(376\) −13.1137 13.1137i −0.676289 0.676289i
\(377\) 0.211108 0.0874440i 0.0108726 0.00450359i
\(378\) 6.10124i 0.313814i
\(379\) −13.8344 33.3992i −0.710626 1.71560i −0.698431 0.715677i \(-0.746118\pi\)
−0.0121949 0.999926i \(-0.503882\pi\)
\(380\) −60.4812 25.0521i −3.10262 1.28515i
\(381\) −3.77016 + 9.10196i −0.193151 + 0.466308i
\(382\) 3.00052 3.00052i 0.153520 0.153520i
\(383\) −11.5606 + 11.5606i −0.590720 + 0.590720i −0.937826 0.347106i \(-0.887164\pi\)
0.347106 + 0.937826i \(0.387164\pi\)
\(384\) 2.10237 5.07556i 0.107286 0.259011i
\(385\) −9.26782 3.83886i −0.472332 0.195646i
\(386\) −4.51389 10.8975i −0.229751 0.554668i
\(387\) 8.33468i 0.423675i
\(388\) 21.5697 8.93447i 1.09504 0.453579i
\(389\) 11.6342 + 11.6342i 0.589880 + 0.589880i 0.937599 0.347719i \(-0.113044\pi\)
−0.347719 + 0.937599i \(0.613044\pi\)
\(390\) 7.74611 0.392240
\(391\) 0 0
\(392\) 12.7916 0.646071
\(393\) 5.37930 + 5.37930i 0.271350 + 0.271350i
\(394\) 18.0091 7.45963i 0.907288 0.375811i
\(395\) 1.55169i 0.0780740i
\(396\) −3.69552 8.92177i −0.185707 0.448336i
\(397\) −33.6852 13.9529i −1.69061 0.700275i −0.690871 0.722978i \(-0.742773\pi\)
−0.999742 + 0.0227033i \(0.992773\pi\)
\(398\) −7.26068 + 17.5288i −0.363945 + 0.878641i
\(399\) −9.73764 + 9.73764i −0.487492 + 0.487492i
\(400\) −0.464030 + 0.464030i −0.0232015 + 0.0232015i
\(401\) 3.70402 8.94230i 0.184970 0.446557i −0.804008 0.594618i \(-0.797303\pi\)
0.988978 + 0.148061i \(0.0473033\pi\)
\(402\) 34.5545 + 14.3129i 1.72342 + 0.713865i
\(403\) 0.224847 + 0.542829i 0.0112004 + 0.0270402i
\(404\) 35.2051i 1.75152i
\(405\) 2.05304 0.850396i 0.102016 0.0422565i
\(406\) −0.745595 0.745595i −0.0370032 0.0370032i
\(407\) −10.3685 −0.513949
\(408\) 0 0
\(409\) −2.52228 −0.124719 −0.0623593 0.998054i \(-0.519862\pi\)
−0.0623593 + 0.998054i \(0.519862\pi\)
\(410\) 16.6626 + 16.6626i 0.822909 + 0.822909i
\(411\) −20.3922 + 8.44671i −1.00587 + 0.416645i
\(412\) 45.6619i 2.24960i
\(413\) −10.4388 25.2014i −0.513658 1.24008i
\(414\) 11.6405 + 4.82163i 0.572097 + 0.236970i
\(415\) 7.25363 17.5118i 0.356067 0.859621i
\(416\) 11.6000 11.6000i 0.568739 0.568739i
\(417\) −2.53465 + 2.53465i −0.124122 + 0.124122i
\(418\) −11.7109 + 28.2726i −0.572798 + 1.38286i
\(419\) 24.3222 + 10.0746i 1.18822 + 0.492177i 0.887175 0.461434i \(-0.152665\pi\)
0.301045 + 0.953610i \(0.402665\pi\)
\(420\) −9.74288 23.5214i −0.475404 1.14773i
\(421\) 6.61089i 0.322195i 0.986938 + 0.161098i \(0.0515034\pi\)
−0.986938 + 0.161098i \(0.948497\pi\)
\(422\) 32.6837 13.5380i 1.59102 0.659020i
\(423\) −1.68577 1.68577i −0.0819651 0.0819651i
\(424\) −5.65685 −0.274721
\(425\) 0 0
\(426\) 16.0853 0.779337
\(427\) 14.2155 + 14.2155i 0.687936 + 0.687936i
\(428\) −23.7038 + 9.81845i −1.14577 + 0.474593i
\(429\) 2.57908i 0.124519i
\(430\) −18.6862 45.1126i −0.901131 2.17552i
\(431\) 25.9852 + 10.7634i 1.25167 + 0.518457i 0.907342 0.420394i \(-0.138108\pi\)
0.344324 + 0.938851i \(0.388108\pi\)
\(432\) 4.05931 9.80004i 0.195304 0.471505i
\(433\) −12.1267 + 12.1267i −0.582770 + 0.582770i −0.935664 0.352893i \(-0.885198\pi\)
0.352893 + 0.935664i \(0.385198\pi\)
\(434\) 1.91717 1.91717i 0.0920270 0.0920270i
\(435\) 0.146967 0.354811i 0.00704655 0.0170119i
\(436\) 91.3630 + 37.8438i 4.37549 + 1.81239i
\(437\) −10.8829 26.2737i −0.520600 1.25684i
\(438\) 27.8322i 1.32987i
\(439\) −7.59888 + 3.14756i −0.362675 + 0.150225i −0.556577 0.830796i \(-0.687886\pi\)
0.193902 + 0.981021i \(0.437886\pi\)
\(440\) −23.8434 23.8434i −1.13669 1.13669i
\(441\) 1.64436 0.0783028
\(442\) 0 0
\(443\) −18.4658 −0.877339 −0.438669 0.898649i \(-0.644550\pi\)
−0.438669 + 0.898649i \(0.644550\pi\)
\(444\) −18.6075 18.6075i −0.883072 0.883072i
\(445\) −11.0925 + 4.59466i −0.525835 + 0.217808i
\(446\) 56.0614i 2.65458i
\(447\) −4.50461 10.8751i −0.213061 0.514374i
\(448\) −24.5797 10.1813i −1.16128 0.481019i
\(449\) −11.8345 + 28.5710i −0.558504 + 1.34835i 0.352446 + 0.935832i \(0.385350\pi\)
−0.910950 + 0.412516i \(0.864650\pi\)
\(450\) −0.115331 + 0.115331i −0.00543675 + 0.00543675i
\(451\) 5.54786 5.54786i 0.261239 0.261239i
\(452\) −33.0351 + 79.7539i −1.55384 + 3.75131i
\(453\) −14.8779 6.16263i −0.699025 0.289546i
\(454\) −4.99817 12.0667i −0.234576 0.566316i
\(455\) 6.79951i 0.318766i
\(456\) −42.7667 + 17.7145i −2.00273 + 0.829559i
\(457\) 10.9840 + 10.9840i 0.513810 + 0.513810i 0.915692 0.401881i \(-0.131644\pi\)
−0.401881 + 0.915692i \(0.631644\pi\)
\(458\) 4.84683 0.226478
\(459\) 0 0
\(460\) 52.5756 2.45135
\(461\) −27.5087 27.5087i −1.28121 1.28121i −0.939980 0.341230i \(-0.889156\pi\)
−0.341230 0.939980i \(-0.610844\pi\)
\(462\) −10.9953 + 4.55442i −0.511549 + 0.211891i
\(463\) 22.7572i 1.05762i −0.848742 0.528808i \(-0.822639\pi\)
0.848742 0.528808i \(-0.177361\pi\)
\(464\) −0.701539 1.69367i −0.0325681 0.0786265i
\(465\) 0.912334 + 0.377901i 0.0423085 + 0.0175248i
\(466\) 1.50832 3.64141i 0.0698715 0.168685i
\(467\) 8.87780 8.87780i 0.410815 0.410815i −0.471207 0.882023i \(-0.656182\pi\)
0.882023 + 0.471207i \(0.156182\pi\)
\(468\) 4.62845 4.62845i 0.213950 0.213950i
\(469\) 12.5639 30.3318i 0.580145 1.40059i
\(470\) −12.9040 5.34500i −0.595216 0.246546i
\(471\) 2.47036 + 5.96397i 0.113828 + 0.274805i
\(472\) 91.6918i 4.22046i
\(473\) −15.0203 + 6.22162i −0.690635 + 0.286070i
\(474\) −1.30173 1.30173i −0.0597904 0.0597904i
\(475\) 0.368139 0.0168914
\(476\) 0 0
\(477\) −0.727190 −0.0332957
\(478\) 18.6888 + 18.6888i 0.854805 + 0.854805i
\(479\) 34.4070 14.2518i 1.57209 0.651183i 0.584959 0.811063i \(-0.301111\pi\)
0.987136 + 0.159880i \(0.0511108\pi\)
\(480\) 27.5719i 1.25848i
\(481\) −2.68950 6.49303i −0.122631 0.296057i
\(482\) 28.0484 + 11.6180i 1.27757 + 0.529187i
\(483\) 4.23241 10.2179i 0.192581 0.464932i
\(484\) 25.1871 25.1871i 1.14487 1.14487i
\(485\) 7.41029 7.41029i 0.336484 0.336484i
\(486\) 1.00891 2.43572i 0.0457650 0.110487i
\(487\) 1.51967 + 0.629467i 0.0688627 + 0.0285239i 0.416849 0.908976i \(-0.363134\pi\)
−0.347986 + 0.937500i \(0.613134\pi\)
\(488\) 25.8605 + 62.4329i 1.17065 + 2.82620i
\(489\) 16.7322i 0.756656i
\(490\) 8.90031 3.68663i 0.402075 0.166545i
\(491\) −3.04142 3.04142i −0.137257 0.137257i 0.635140 0.772397i \(-0.280942\pi\)
−0.772397 + 0.635140i \(0.780942\pi\)
\(492\) 19.9125 0.897725
\(493\) 0 0
\(494\) −20.7427 −0.933258
\(495\) −3.06508 3.06508i −0.137765 0.137765i
\(496\) 4.35497 1.80389i 0.195544 0.0809969i
\(497\) 14.1196i 0.633352i
\(498\) −8.60570 20.7760i −0.385631 0.930995i
\(499\) 1.38146 + 0.572218i 0.0618425 + 0.0256160i 0.413390 0.910554i \(-0.364345\pi\)
−0.351548 + 0.936170i \(0.614345\pi\)
\(500\) −21.3104 + 51.4479i −0.953032 + 2.30082i
\(501\) 1.13490 1.13490i 0.0507034 0.0507034i
\(502\) 1.75270 1.75270i 0.0782269 0.0782269i
\(503\) −0.645504 + 1.55838i −0.0287816 + 0.0694849i −0.937617 0.347670i \(-0.886973\pi\)
0.908835 + 0.417155i \(0.136973\pi\)
\(504\) −16.6321 6.88926i −0.740854 0.306872i
\(505\) 6.04736 + 14.5996i 0.269104 + 0.649675i
\(506\) 24.5770i 1.09258i
\(507\) −10.3953 + 4.30589i −0.461674 + 0.191231i
\(508\) 34.4878 + 34.4878i 1.53015 + 1.53015i
\(509\) 6.91070 0.306312 0.153156 0.988202i \(-0.451056\pi\)
0.153156 + 0.988202i \(0.451056\pi\)
\(510\) 0 0
\(511\) 24.4310 1.08076
\(512\) 23.6315 + 23.6315i 1.04438 + 1.04438i
\(513\) −5.49767 + 2.27721i −0.242728 + 0.100541i
\(514\) 5.68185i 0.250616i
\(515\) −7.84358 18.9361i −0.345629 0.834423i
\(516\) −38.1210 15.7902i −1.67818 0.695127i
\(517\) −1.77963 + 4.29640i −0.0782679 + 0.188955i
\(518\) −22.9322 + 22.9322i −1.00758 + 1.00758i
\(519\) 12.1169 12.1169i 0.531875 0.531875i
\(520\) 8.74658 21.1161i 0.383563 0.926003i
\(521\) −12.3765 5.12653i −0.542226 0.224597i 0.0947226 0.995504i \(-0.469804\pi\)
−0.636948 + 0.770906i \(0.719804\pi\)
\(522\) −0.174362 0.420947i −0.00763162 0.0184243i
\(523\) 4.40904i 0.192794i 0.995343 + 0.0963969i \(0.0307318\pi\)
−0.995343 + 0.0963969i \(0.969268\pi\)
\(524\) 34.7950 14.4126i 1.52003 0.629616i
\(525\) 0.101237 + 0.101237i 0.00441834 + 0.00441834i
\(526\) −34.6494 −1.51078
\(527\) 0 0
\(528\) −20.6913 −0.900473
\(529\) −0.113564 0.113564i −0.00493756 0.00493756i
\(530\) −3.93602 + 1.63035i −0.170970 + 0.0708179i
\(531\) 11.7870i 0.511513i
\(532\) 26.0897 + 62.9861i 1.13113 + 2.73079i
\(533\) 4.91327 + 2.03514i 0.212818 + 0.0881519i
\(534\) −5.45110 + 13.1601i −0.235892 + 0.569494i
\(535\) −8.14347 + 8.14347i −0.352073 + 0.352073i
\(536\) 78.0350 78.0350i 3.37060 3.37060i
\(537\) −4.23835 + 10.2323i −0.182898 + 0.441555i
\(538\) −36.9605 15.3095i −1.59348 0.660041i
\(539\) −1.22747 2.96338i −0.0528709 0.127642i
\(540\) 11.0012i 0.473418i
\(541\) 21.3559 8.84592i 0.918163 0.380316i 0.126987 0.991904i \(-0.459469\pi\)
0.791176 + 0.611589i \(0.209469\pi\)
\(542\) 22.0649 + 22.0649i 0.947768 + 0.947768i
\(543\) 19.6995 0.845387
\(544\) 0 0
\(545\) 44.3890 1.90142
\(546\) −5.70418 5.70418i −0.244116 0.244116i
\(547\) −8.76278 + 3.62966i −0.374669 + 0.155193i −0.562068 0.827091i \(-0.689994\pi\)
0.187399 + 0.982284i \(0.439994\pi\)
\(548\) 109.272i 4.66786i
\(549\) 3.32438 + 8.02576i 0.141881 + 0.342531i
\(550\) 0.293935 + 0.121752i 0.0125334 + 0.00519151i
\(551\) −0.393552 + 0.950120i −0.0167659 + 0.0404765i
\(552\) 26.2878 26.2878i 1.11888 1.11888i
\(553\) −1.14265 + 1.14265i −0.0485906 + 0.0485906i
\(554\) 27.1422 65.5270i 1.15316 2.78398i
\(555\) −10.9129 4.52026i −0.463225 0.191874i
\(556\) 6.79099 + 16.3949i 0.288002 + 0.695299i
\(557\) 38.1670i 1.61719i 0.588368 + 0.808593i \(0.299771\pi\)
−0.588368 + 0.808593i \(0.700229\pi\)
\(558\) 1.08239 0.448342i 0.0458213 0.0189798i
\(559\) −7.79227 7.79227i −0.329578 0.329578i
\(560\) −54.5506 −2.30518
\(561\) 0 0
\(562\) 58.6175 2.47263
\(563\) −9.77111 9.77111i −0.411803 0.411803i 0.470563 0.882366i \(-0.344051\pi\)
−0.882366 + 0.470563i \(0.844051\pi\)
\(564\) −10.9041 + 4.51663i −0.459146 + 0.190184i
\(565\) 38.7487i 1.63017i
\(566\) 24.1711 + 58.3542i 1.01599 + 2.45281i
\(567\) −2.13807 0.885616i −0.0897903 0.0371924i
\(568\) 18.1629 43.8491i 0.762097 1.83987i
\(569\) 9.15817 9.15817i 0.383930 0.383930i −0.488586 0.872516i \(-0.662487\pi\)
0.872516 + 0.488586i \(0.162487\pi\)
\(570\) −24.6514 + 24.6514i −1.03253 + 1.03253i
\(571\) −2.49273 + 6.01797i −0.104317 + 0.251844i −0.967417 0.253190i \(-0.918520\pi\)
0.863099 + 0.505034i \(0.168520\pi\)
\(572\) −11.7962 4.88614i −0.493223 0.204300i
\(573\) −0.615940 1.48701i −0.0257313 0.0621208i
\(574\) 24.5405i 1.02430i
\(575\) −0.273153 + 0.113144i −0.0113913 + 0.00471842i
\(576\) −8.12908 8.12908i −0.338712 0.338712i
\(577\) −15.6703 −0.652364 −0.326182 0.945307i \(-0.605762\pi\)
−0.326182 + 0.945307i \(0.605762\pi\)
\(578\) 0 0
\(579\) −4.47403 −0.185935
\(580\) −1.34440 1.34440i −0.0558230 0.0558230i
\(581\) −18.2371 + 7.55405i −0.756602 + 0.313395i
\(582\) 12.4331i 0.515370i
\(583\) 0.542829 + 1.31050i 0.0224817 + 0.0542755i
\(584\) 75.8713 + 31.4269i 3.13958 + 1.30045i
\(585\) 1.12438 2.71448i 0.0464872 0.112230i
\(586\) 13.8770 13.8770i 0.573254 0.573254i
\(587\) −10.5901 + 10.5901i −0.437098 + 0.437098i −0.891034 0.453936i \(-0.850019\pi\)
0.453936 + 0.891034i \(0.350019\pi\)
\(588\) 3.11528 7.52094i 0.128472 0.310158i
\(589\) −2.44307 1.01195i −0.100665 0.0416968i
\(590\) −26.4263 63.7988i −1.08795 2.62656i
\(591\) 7.39376i 0.304139i
\(592\) −52.0919 + 21.5772i −2.14096 + 0.886816i
\(593\) −32.7886 32.7886i −1.34647 1.34647i −0.889467 0.456999i \(-0.848924\pi\)
−0.456999 0.889467i \(-0.651076\pi\)
\(594\) −5.14265 −0.211006
\(595\) 0 0
\(596\) −58.2744 −2.38701
\(597\) 5.08874 + 5.08874i 0.208268 + 0.208268i
\(598\) 15.3908 6.37506i 0.629375 0.260696i
\(599\) 28.7068i 1.17293i 0.809975 + 0.586464i \(0.199480\pi\)
−0.809975 + 0.586464i \(0.800520\pi\)
\(600\) 0.184168 + 0.444622i 0.00751864 + 0.0181516i
\(601\) −19.2062 7.95547i −0.783438 0.324511i −0.0451358 0.998981i \(-0.514372\pi\)
−0.738302 + 0.674470i \(0.764372\pi\)
\(602\) −19.4602 + 46.9810i −0.793137 + 1.91480i
\(603\) 10.0314 10.0314i 0.408511 0.408511i
\(604\) −56.3731 + 56.3731i −2.29379 + 2.29379i
\(605\) 6.11863 14.7717i 0.248758 0.600554i
\(606\) 17.3210 + 7.17458i 0.703617 + 0.291448i
\(607\) 6.58447 + 15.8963i 0.267255 + 0.645211i 0.999352 0.0359891i \(-0.0114582\pi\)
−0.732097 + 0.681201i \(0.761458\pi\)
\(608\) 73.8325i 2.99430i
\(609\) −0.369506 + 0.153054i −0.0149731 + 0.00620207i
\(610\) 35.9873 + 35.9873i 1.45708 + 1.45708i
\(611\) −3.15213 −0.127522
\(612\) 0 0
\(613\) −42.7657 −1.72729 −0.863644 0.504102i \(-0.831824\pi\)
−0.863644 + 0.504102i \(0.831824\pi\)
\(614\) 26.5062 + 26.5062i 1.06970 + 1.06970i
\(615\) 8.25776 3.42048i 0.332985 0.137927i
\(616\) 35.1162i 1.41487i
\(617\) −14.6490 35.3658i −0.589745 1.42377i −0.883746 0.467966i \(-0.844987\pi\)
0.294001 0.955805i \(-0.405013\pi\)
\(618\) −22.4657 9.30561i −0.903704 0.374326i
\(619\) 3.54840 8.56660i 0.142622 0.344321i −0.836386 0.548141i \(-0.815336\pi\)
0.979008 + 0.203820i \(0.0653358\pi\)
\(620\) 3.45688 3.45688i 0.138832 0.138832i
\(621\) 3.37930 3.37930i 0.135607 0.135607i
\(622\) −10.4539 + 25.2378i −0.419161 + 1.01195i
\(623\) 11.5519 + 4.78495i 0.462817 + 0.191705i
\(624\) −5.36713 12.9574i −0.214857 0.518711i
\(625\) 24.6868i 0.987474i
\(626\) 42.4453 17.5814i 1.69646 0.702695i
\(627\) 8.20773 + 8.20773i 0.327785 + 0.327785i
\(628\) 31.9581 1.27527
\(629\) 0 0
\(630\) −13.5581 −0.540168
\(631\) −23.9340 23.9340i −0.952798 0.952798i 0.0461372 0.998935i \(-0.485309\pi\)
−0.998935 + 0.0461372i \(0.985309\pi\)
\(632\) −5.01841 + 2.07869i −0.199622 + 0.0826860i
\(633\) 13.4185i 0.533337i
\(634\) 14.3016 + 34.5271i 0.567989 + 1.37125i
\(635\) 20.2263 + 8.37801i 0.802656 + 0.332471i
\(636\) −1.37768 + 3.32601i −0.0546285 + 0.131885i
\(637\) 1.53735 1.53735i 0.0609119 0.0609119i
\(638\) −0.628452 + 0.628452i −0.0248807 + 0.0248807i
\(639\) 2.33484 5.63681i 0.0923649 0.222989i
\(640\) −11.2789 4.67186i −0.445837 0.184672i
\(641\) −4.08383 9.85925i −0.161302 0.389417i 0.822478 0.568797i \(-0.192591\pi\)
−0.983780 + 0.179380i \(0.942591\pi\)
\(642\) 13.6633i 0.539247i
\(643\) −36.3211 + 15.0447i −1.43237 + 0.593305i −0.957934 0.286987i \(-0.907346\pi\)
−0.474431 + 0.880293i \(0.657346\pi\)
\(644\) −38.7163 38.7163i −1.52564 1.52564i
\(645\) −18.5212 −0.729273
\(646\) 0 0
\(647\) −27.9895 −1.10038 −0.550190 0.835039i \(-0.685445\pi\)
−0.550190 + 0.835039i \(0.685445\pi\)
\(648\) −5.50062 5.50062i −0.216085 0.216085i
\(649\) −21.2419 + 8.79870i −0.833819 + 0.345379i
\(650\) 0.215651i 0.00845852i
\(651\) −0.393552 0.950120i −0.0154245 0.0372381i
\(652\) 76.5295 + 31.6995i 2.99712 + 1.24145i
\(653\) 15.6716 37.8346i 0.613277 1.48058i −0.246102 0.969244i \(-0.579150\pi\)
0.859379 0.511339i \(-0.170850\pi\)
\(654\) 37.2384 37.2384i 1.45614 1.45614i
\(655\) 11.9538 11.9538i 0.467075 0.467075i
\(656\) 16.3274 39.4179i 0.637479 1.53901i
\(657\) 9.75327 + 4.03994i 0.380511 + 0.157613i
\(658\) 5.56637 + 13.4384i 0.217000 + 0.523883i
\(659\) 10.8164i 0.421349i 0.977556 + 0.210674i \(0.0675660\pi\)
−0.977556 + 0.210674i \(0.932434\pi\)
\(660\) −19.8259 + 8.21215i −0.771721 + 0.319657i
\(661\) −14.1983 14.1983i −0.552248 0.552248i 0.374841 0.927089i \(-0.377697\pi\)
−0.927089 + 0.374841i \(0.877697\pi\)
\(662\) 28.6010 1.11161
\(663\) 0 0
\(664\) −66.3531 −2.57500
\(665\) 21.6389 + 21.6389i 0.839121 + 0.839121i
\(666\) −12.9470 + 5.36283i −0.501687 + 0.207805i
\(667\) 0.825928i 0.0319801i
\(668\) −3.04069 7.34086i −0.117648 0.284027i
\(669\) −19.6457 8.13751i −0.759546 0.314614i
\(670\) 31.8061 76.7867i 1.22878 2.96653i
\(671\) 11.9820 11.9820i 0.462562 0.462562i
\(672\) −20.3037 + 20.3037i −0.783233 + 0.783233i
\(673\) −10.4895 + 25.3238i −0.404339 + 0.976161i 0.582261 + 0.813002i \(0.302168\pi\)
−0.986600 + 0.163159i \(0.947832\pi\)
\(674\) −23.9132 9.90516i −0.921101 0.381532i
\(675\) 0.0236749 + 0.0571563i 0.000911247 + 0.00219995i
\(676\) 55.7037i 2.14245i
\(677\) 20.9960 8.69682i 0.806941 0.334246i 0.0592081 0.998246i \(-0.481142\pi\)
0.747733 + 0.664000i \(0.231142\pi\)
\(678\) 32.5067 + 32.5067i 1.24841 + 1.24841i
\(679\) −10.9138 −0.418832
\(680\) 0 0
\(681\) −4.95404 −0.189839
\(682\) −1.61596 1.61596i −0.0618781 0.0618781i
\(683\) 34.3743 14.2383i 1.31530 0.544814i 0.388871 0.921292i \(-0.372865\pi\)
0.926425 + 0.376478i \(0.122865\pi\)
\(684\) 29.4594i 1.12641i
\(685\) 18.7702 + 45.3153i 0.717173 + 1.73141i
\(686\) −48.7266 20.1832i −1.86039 0.770599i
\(687\) 0.703535 1.69848i 0.0268415 0.0648012i
\(688\) −62.5153 + 62.5153i −2.38337 + 2.38337i
\(689\) −0.679866 + 0.679866i −0.0259008 + 0.0259008i
\(690\) 10.7146 25.8673i 0.407897 0.984752i
\(691\) 16.6816 + 6.90974i 0.634597 + 0.262859i 0.676705 0.736254i \(-0.263407\pi\)
−0.0421076 + 0.999113i \(0.513407\pi\)
\(692\) −32.4645 78.3762i −1.23411 2.97942i
\(693\) 4.51420i 0.171480i
\(694\) −63.4430 + 26.2790i −2.40827 + 0.997536i
\(695\) 5.63248 + 5.63248i 0.213652 + 0.213652i
\(696\) −1.34440 −0.0509592
\(697\) 0 0
\(698\) 49.1976 1.86216
\(699\) −1.05713 1.05713i −0.0399842 0.0399842i
\(700\) 0.654832 0.271240i 0.0247503 0.0102519i
\(701\) 9.99896i 0.377656i 0.982010 + 0.188828i \(0.0604688\pi\)
−0.982010 + 0.188828i \(0.939531\pi\)
\(702\) −1.33396 3.22046i −0.0503470 0.121548i
\(703\) 29.2227 + 12.1044i 1.10216 + 0.456528i
\(704\) −8.58165 + 20.7179i −0.323433 + 0.780837i
\(705\) −3.74611 + 3.74611i −0.141087 + 0.141087i
\(706\) −22.0611 + 22.0611i −0.830279 + 0.830279i
\(707\) 6.29782 15.2043i 0.236854 0.571816i
\(708\) −53.9113 22.3308i −2.02611 0.839242i
\(709\) −0.418638 1.01068i −0.0157223 0.0379570i 0.915823 0.401581i \(-0.131539\pi\)
−0.931546 + 0.363624i \(0.881539\pi\)
\(710\) 35.7447i 1.34147i
\(711\) −0.645118 + 0.267217i −0.0241938 + 0.0100214i
\(712\) 29.7197 + 29.7197i 1.11379 + 1.11379i
\(713\) 2.12373 0.0795344
\(714\) 0 0
\(715\) −5.73122 −0.214335
\(716\) 38.7706 + 38.7706i 1.44892 + 1.44892i
\(717\) 9.26189 3.83640i 0.345891 0.143273i
\(718\) 37.2768i 1.39116i
\(719\) 16.2571 + 39.2481i 0.606287 + 1.46371i 0.867009 + 0.498292i \(0.166039\pi\)
−0.260722 + 0.965414i \(0.583961\pi\)
\(720\) −21.7776 9.02056i −0.811602 0.336176i
\(721\) −8.16843 + 19.7203i −0.304208 + 0.734423i
\(722\) 30.5919 30.5919i 1.13851 1.13851i
\(723\) 8.14265 8.14265i 0.302829 0.302829i
\(724\) 37.3212 90.1014i 1.38703 3.34859i
\(725\) 0.00987788 + 0.00409155i 0.000366855 + 0.000151956i
\(726\) −7.25914 17.5251i −0.269412 0.650418i
\(727\) 45.2169i 1.67700i −0.544900 0.838501i \(-0.683432\pi\)
0.544900 0.838501i \(-0.316568\pi\)
\(728\) −21.9907 + 9.10883i −0.815028 + 0.337596i
\(729\) −0.707107 0.707107i −0.0261891 0.0261891i
\(730\) 61.8484 2.28911
\(731\) 0 0
\(732\) 43.0062 1.58956
\(733\) −15.2728 15.2728i −0.564114 0.564114i 0.366359 0.930473i \(-0.380604\pi\)
−0.930473 + 0.366359i \(0.880604\pi\)
\(734\) 9.06969 3.75679i 0.334769 0.138666i
\(735\) 3.65408i 0.134783i
\(736\) −22.6917 54.7826i −0.836426 2.01931i
\(737\) −25.5663 10.5899i −0.941747 0.390084i
\(738\) 4.05805 9.79700i 0.149379 0.360632i
\(739\) −13.4646 + 13.4646i −0.495305 + 0.495305i −0.909973 0.414668i \(-0.863898\pi\)
0.414668 + 0.909973i \(0.363898\pi\)
\(740\) −41.3494 + 41.3494i −1.52003 + 1.52003i
\(741\) −3.01088 + 7.26890i −0.110607 + 0.267030i
\(742\) 4.09903 + 1.69787i 0.150480 + 0.0623309i
\(743\) 10.1160 + 24.4221i 0.371118 + 0.895959i 0.993562 + 0.113294i \(0.0361402\pi\)
−0.622443 + 0.782665i \(0.713860\pi\)
\(744\) 3.45688i 0.126735i
\(745\) −24.1665 + 10.0101i −0.885393 + 0.366742i
\(746\) 2.86377 + 2.86377i 0.104850 + 0.104850i
\(747\) −8.52971 −0.312086
\(748\) 0 0
\(749\) 11.9936 0.438236
\(750\) 20.9696 + 20.9696i 0.765700 + 0.765700i
\(751\) −4.29314 + 1.77828i −0.156659 + 0.0648902i −0.459635 0.888108i \(-0.652020\pi\)
0.302976 + 0.952998i \(0.402020\pi\)
\(752\) 25.2887i 0.922185i
\(753\) −0.359791 0.868612i −0.0131115 0.0316540i
\(754\) −0.556567 0.230538i −0.0202690 0.00839569i
\(755\) −13.6945 + 33.0616i −0.498396 + 1.20323i
\(756\) −8.10124 + 8.10124i −0.294639 + 0.294639i
\(757\) −7.35913 + 7.35913i −0.267472 + 0.267472i −0.828081 0.560609i \(-0.810567\pi\)
0.560609 + 0.828081i \(0.310567\pi\)
\(758\) −36.4731 + 88.0539i −1.32476 + 3.19826i
\(759\) −8.61257 3.56744i −0.312616 0.129490i
\(760\) 39.3651 + 95.0357i 1.42792 + 3.44731i
\(761\) 38.6365i 1.40057i 0.713862 + 0.700286i \(0.246944\pi\)
−0.713862 + 0.700286i \(0.753056\pi\)
\(762\) 23.9965 9.93966i 0.869300 0.360076i
\(763\) −32.6878 32.6878i −1.18338 1.18338i
\(764\) −7.96819 −0.288279
\(765\) 0 0
\(766\) 43.1031 1.55738
\(767\) −11.0199 11.0199i −0.397907 0.397907i
\(768\) 7.86106 3.25616i 0.283661 0.117496i
\(769\) 0.178098i 0.00642238i −0.999995 0.00321119i \(-0.998978\pi\)
0.999995 0.00321119i \(-0.00102215\pi\)
\(770\) 10.1208 + 24.4337i 0.364728 + 0.880531i
\(771\) −1.99110 0.824740i −0.0717077 0.0297023i
\(772\) −8.47617 + 20.4633i −0.305064 + 0.736490i
\(773\) −2.93841 + 2.93841i −0.105687 + 0.105687i −0.757973 0.652286i \(-0.773810\pi\)
0.652286 + 0.757973i \(0.273810\pi\)
\(774\) −15.5377 + 15.5377i −0.558490 + 0.558490i
\(775\) −0.0105207 + 0.0253993i −0.000377915 + 0.000912368i
\(776\) −33.8931 14.0390i −1.21669 0.503970i
\(777\) 4.70747 + 11.3648i 0.168880 + 0.407711i
\(778\) 43.3776i 1.55516i
\(779\) −22.1128 + 9.15942i −0.792273 + 0.328170i
\(780\) −10.2853 10.2853i −0.368273 0.368273i
\(781\) −11.9013 −0.425861
\(782\) 0 0
\(783\) −0.172822 −0.00617617
\(784\) −12.3337 12.3337i −0.440490 0.440490i
\(785\) 13.2531 5.48960i 0.473023 0.195932i
\(786\) 20.0564i 0.715389i
\(787\) 0.665353 + 1.60630i 0.0237173 + 0.0572586i 0.935294 0.353870i \(-0.115135\pi\)
−0.911577 + 0.411129i \(0.865135\pi\)
\(788\) −33.8175 14.0077i −1.20470 0.499002i
\(789\) −5.02948 + 12.1422i −0.179054 + 0.432275i
\(790\) −2.89269 + 2.89269i −0.102917 + 0.102917i
\(791\) 28.5343 28.5343i 1.01456 1.01456i
\(792\) −5.80687 + 14.0190i −0.206338 + 0.498144i
\(793\) 10.6115 + 4.39542i 0.376825 + 0.156086i
\(794\) 36.7854 + 88.8079i 1.30547 + 3.15167i
\(795\) 1.61596i 0.0573120i
\(796\) 32.9156 13.6341i 1.16666 0.483247i
\(797\) 15.7038 + 15.7038i 0.556257 + 0.556257i 0.928240 0.371983i \(-0.121322\pi\)
−0.371983 + 0.928240i \(0.621322\pi\)
\(798\) 36.3062 1.28523
\(799\) 0 0
\(800\) 0.767597 0.0271386
\(801\) 3.82047 + 3.82047i 0.134990 + 0.134990i
\(802\) −23.5755 + 9.76530i −0.832480 + 0.344825i
\(803\) 20.5926i 0.726695i
\(804\) −26.8768 64.8863i −0.947872 2.28836i
\(805\) −22.7062 9.40523i −0.800289 0.331491i
\(806\) 0.592788 1.43112i 0.0208801 0.0504089i
\(807\) −10.7299 + 10.7299i −0.377710 + 0.377710i
\(808\) 39.1162 39.1162i 1.37610 1.37610i
\(809\) 1.23555 2.98289i 0.0434397 0.104873i −0.900670 0.434503i \(-0.856924\pi\)
0.944110 + 0.329630i \(0.106924\pi\)
\(810\) −5.41264 2.24199i −0.190181 0.0787754i
\(811\) 9.64975 + 23.2966i 0.338848 + 0.818053i 0.997827 + 0.0658907i \(0.0209889\pi\)
−0.658978 + 0.752162i \(0.729011\pi\)
\(812\) 1.98000i 0.0694846i
\(813\) 10.9350 4.52944i 0.383508 0.158854i
\(814\) 19.3292 + 19.3292i 0.677489 + 0.677489i
\(815\) 37.1821 1.30243
\(816\) 0 0
\(817\) 49.5966 1.73516
\(818\) 4.70208 + 4.70208i 0.164404 + 0.164404i
\(819\) −2.82691 + 1.17094i −0.0987801 + 0.0409161i
\(820\) 44.2494i 1.54526i
\(821\) 13.1751 + 31.8075i 0.459814 + 1.11009i 0.968472 + 0.249121i \(0.0801417\pi\)
−0.508658 + 0.860969i \(0.669858\pi\)
\(822\) 53.7620 + 22.2689i 1.87516 + 0.776719i
\(823\) 6.81153 16.4445i 0.237435 0.573219i −0.759581 0.650413i \(-0.774596\pi\)
0.997016 + 0.0771938i \(0.0245960\pi\)
\(824\) −50.7347 + 50.7347i −1.76743 + 1.76743i
\(825\) 0.0853313 0.0853313i 0.00297086 0.00297086i
\(826\) −27.5208 + 66.4411i −0.957572 + 2.31178i
\(827\) 1.80215 + 0.746474i 0.0626668 + 0.0259574i 0.413797 0.910369i \(-0.364202\pi\)
−0.351130 + 0.936327i \(0.614202\pi\)
\(828\) −9.05404 21.8584i −0.314650 0.759632i
\(829\) 0.904671i 0.0314205i −0.999877 0.0157103i \(-0.994999\pi\)
0.999877 0.0157103i \(-0.00500094\pi\)
\(830\) −46.1682 + 19.1235i −1.60252 + 0.663787i
\(831\) −19.0229 19.0229i −0.659899 0.659899i
\(832\) −15.2001 −0.526969
\(833\) 0 0
\(834\) 9.45029 0.327237
\(835\) −2.52196 2.52196i −0.0872759 0.0872759i
\(836\) 53.0902 21.9907i 1.83616 0.760563i
\(837\) 0.444383i 0.0153601i
\(838\) −26.5607 64.1233i −0.917525 2.21510i
\(839\) −22.4284 9.29013i −0.774313 0.320731i −0.0396949 0.999212i \(-0.512639\pi\)
−0.734618 + 0.678481i \(0.762639\pi\)
\(840\) −15.3092 + 36.9598i −0.528219 + 1.27523i
\(841\) 20.4850 20.4850i 0.706379 0.706379i
\(842\) 12.3242 12.3242i 0.424719 0.424719i
\(843\) 8.50854 20.5414i 0.293050 0.707485i
\(844\) −61.3733 25.4216i −2.11255 0.875049i
\(845\) 9.56852 + 23.1005i 0.329167 + 0.794680i
\(846\) 6.28531i 0.216093i
\(847\) −15.3835 + 6.37204i −0.528582 + 0.218946i
\(848\) 5.45438 + 5.45438i 0.187304 + 0.187304i
\(849\) 23.9577 0.822225
\(850\) 0 0
\(851\) −25.4030 −0.870802
\(852\) −21.3581 21.3581i −0.731718 0.731718i
\(853\) 35.2095 14.5843i 1.20555 0.499355i 0.312762 0.949831i \(-0.398746\pi\)
0.892789 + 0.450476i \(0.148746\pi\)
\(854\) 53.0016i 1.81368i
\(855\) 5.06039 + 12.2169i 0.173062 + 0.417808i
\(856\) 37.2465 + 15.4280i 1.27306 + 0.527318i
\(857\) 2.60234 6.28260i 0.0888942 0.214610i −0.873180 0.487398i \(-0.837946\pi\)
0.962074 + 0.272789i \(0.0879460\pi\)
\(858\) −4.80798 + 4.80798i −0.164142 + 0.164142i
\(859\) 15.7736 15.7736i 0.538188 0.538188i −0.384808 0.922997i \(-0.625732\pi\)
0.922997 + 0.384808i \(0.125732\pi\)
\(860\) −35.0889 + 84.7122i −1.19652 + 2.88866i
\(861\) −8.59976 3.56214i −0.293079 0.121397i
\(862\) −28.3768 68.5076i −0.966517 2.33338i
\(863\) 0.400593i 0.0136363i −0.999977 0.00681816i \(-0.997830\pi\)
0.999977 0.00681816i \(-0.00217031\pi\)
\(864\) −11.4630 + 4.74815i −0.389981 + 0.161535i
\(865\) −26.9262 26.9262i −0.915517 0.915517i
\(866\) 45.2135 1.53642
\(867\) 0 0
\(868\) −5.09124 −0.172808
\(869\) 0.963127 + 0.963127i 0.0326719 + 0.0326719i
\(870\) −0.935425 + 0.387466i −0.0317139 + 0.0131363i
\(871\) 18.7572i 0.635563i
\(872\) −59.4649 143.561i −2.01374 4.86159i
\(873\) −4.35696 1.80471i −0.147461 0.0610803i
\(874\) −28.6918 + 69.2680i −0.970513 + 2.34303i
\(875\) 18.4070 18.4070i 0.622270 0.622270i
\(876\) 36.9556 36.9556i 1.24861 1.24861i
\(877\) 0.0806809 0.194781i 0.00272440 0.00657729i −0.922511 0.385970i \(-0.873867\pi\)
0.925236 + 0.379392i \(0.123867\pi\)
\(878\) 20.0337 + 8.29824i 0.676105 + 0.280052i
\(879\) −2.84864 6.87723i −0.0960824 0.231963i
\(880\) 45.9800i 1.54999i
\(881\) 47.8535 19.8216i 1.61223 0.667806i 0.619149 0.785273i \(-0.287478\pi\)
0.993077 + 0.117467i \(0.0374776\pi\)
\(882\) −3.06544 3.06544i −0.103219 0.103219i
\(883\) 23.5757 0.793385 0.396692 0.917952i \(-0.370158\pi\)
0.396692 + 0.917952i \(0.370158\pi\)
\(884\) 0 0
\(885\) −26.1930 −0.880468
\(886\) 34.4244 + 34.4244i 1.15651 + 1.15651i
\(887\) −15.0908 + 6.25080i −0.506698 + 0.209881i −0.621363 0.783523i \(-0.713421\pi\)
0.114665 + 0.993404i \(0.463421\pi\)
\(888\) 41.3494i 1.38759i
\(889\) −8.72499 21.0640i −0.292627 0.706464i
\(890\) 29.2443 + 12.1134i 0.980271 + 0.406042i
\(891\) −0.746474 + 1.80215i −0.0250078 + 0.0603742i
\(892\) −74.4385 + 74.4385i −2.49238 + 2.49238i
\(893\) 10.0314 10.0314i 0.335689 0.335689i
\(894\) −11.8760 + 28.6711i −0.397192 + 0.958906i
\(895\) 22.7381 + 9.41842i 0.760050 + 0.314823i
\(896\) 4.86535 + 11.7460i 0.162540 + 0.392406i
\(897\) 6.31877i 0.210978i
\(898\) 75.3247 31.2005i 2.51362 1.04117i
\(899\) −0.0543053 0.0543053i −0.00181118 0.00181118i
\(900\) 0.306273 0.0102091
\(901\) 0 0
\(902\) −20.6849 −0.688731
\(903\) 13.6389 + 13.6389i 0.453874 + 0.453874i
\(904\) 125.319 51.9090i 4.16806 1.72647i
\(905\) 43.7761i 1.45517i
\(906\) 16.2472 + 39.2242i 0.539777 + 1.30314i
\(907\) −28.4394 11.7800i −0.944314 0.391148i −0.143223 0.989690i \(-0.545747\pi\)
−0.801091 + 0.598543i \(0.795747\pi\)
\(908\) −9.38555 + 22.6587i −0.311470 + 0.751956i
\(909\) 5.02840 5.02840i 0.166782 0.166782i
\(910\) −12.6758 + 12.6758i −0.420198 + 0.420198i
\(911\) −2.75337 + 6.64723i −0.0912234 + 0.220233i −0.962905 0.269839i \(-0.913029\pi\)
0.871682 + 0.490072i \(0.163029\pi\)
\(912\) 58.3164 + 24.1554i 1.93105 + 0.799867i
\(913\) 6.36721 + 15.3718i 0.210724 + 0.508733i
\(914\) 40.9532i 1.35461i
\(915\) 17.8348 7.38741i 0.589600 0.244220i
\(916\) −6.43563 6.43563i −0.212639 0.212639i
\(917\) −17.6054 −0.581383
\(918\) 0 0
\(919\) 11.6873 0.385527 0.192764 0.981245i \(-0.438255\pi\)
0.192764 + 0.981245i \(0.438255\pi\)
\(920\) −58.4165 58.4165i −1.92594 1.92594i
\(921\) 13.1361 5.44114i 0.432848 0.179292i
\(922\) 102.565i 3.37779i
\(923\) −3.08708 7.45287i −0.101612 0.245314i
\(924\) 20.6470 + 8.55226i 0.679236 + 0.281349i
\(925\) 0.125843 0.303813i 0.00413770 0.00998930i
\(926\) −42.4244 + 42.4244i −1.39415 + 1.39415i
\(927\) −6.52196 + 6.52196i −0.214209 + 0.214209i
\(928\) −0.820586 + 1.98107i −0.0269371 + 0.0650318i
\(929\) 13.1032 + 5.42751i 0.429901 + 0.178071i 0.587132 0.809491i \(-0.300257\pi\)
−0.157231 + 0.987562i \(0.550257\pi\)
\(930\) −0.996301 2.40528i −0.0326700 0.0788723i
\(931\) 9.78497i 0.320689i
\(932\) −6.83782 + 2.83232i −0.223980 + 0.0927756i
\(933\) 7.32672 + 7.32672i 0.239866 + 0.239866i
\(934\) −33.1003 −1.08308
\(935\) 0 0
\(936\) −10.2853 −0.336186
\(937\) 18.0095 + 18.0095i 0.588344 + 0.588344i 0.937183 0.348839i \(-0.113424\pi\)
−0.348839 + 0.937183i \(0.613424\pi\)
\(938\) −79.9670 + 33.1234i −2.61101 + 1.08152i
\(939\) 17.4262i 0.568682i
\(940\) 10.0368 + 24.2310i 0.327365 + 0.790329i
\(941\) −54.1244 22.4191i −1.76440 0.730840i −0.995845 0.0910612i \(-0.970974\pi\)
−0.768559 0.639779i \(-0.779026\pi\)
\(942\) 6.51286 15.7234i 0.212200 0.512297i
\(943\) 13.5923 13.5923i 0.442626 0.442626i
\(944\) −88.4099 + 88.4099i −2.87750 + 2.87750i
\(945\) −1.96801 + 4.75119i −0.0640193 + 0.154556i
\(946\) 39.5996 + 16.4027i 1.28750 + 0.533298i
\(947\) −7.28794 17.5946i −0.236826 0.571749i 0.760125 0.649777i \(-0.225138\pi\)
−0.996951 + 0.0780278i \(0.975138\pi\)
\(948\) 3.45688i 0.112274i
\(949\) 12.8956 5.34152i 0.418608 0.173393i
\(950\) −0.686292 0.686292i −0.0222662 0.0222662i
\(951\) 14.1753 0.459666
\(952\) 0 0
\(953\) 19.8922 0.644371 0.322185 0.946677i \(-0.395583\pi\)
0.322185 + 0.946677i \(0.395583\pi\)
\(954\) 1.35564 + 1.35564i 0.0438905 + 0.0438905i
\(955\) −3.30442 + 1.36874i −0.106929 + 0.0442913i
\(956\) 49.6300i 1.60515i
\(957\) 0.129007 + 0.311451i 0.00417022 + 0.0100678i
\(958\) −90.7107 37.5736i −2.93073 1.21395i
\(959\) 19.5476 47.1921i 0.631225 1.52391i
\(960\) −18.0644 + 18.0644i −0.583025 + 0.583025i
\(961\) −21.7807 + 21.7807i −0.702602 + 0.702602i
\(962\) −7.09062 + 17.1183i −0.228611 + 0.551915i
\(963\) 4.78804 + 1.98327i 0.154293 + 0.0639101i
\(964\) −21.8163 52.6692i −0.702656 1.69636i
\(965\) 9.94216i 0.320049i
\(966\) −26.9386 + 11.1583i −0.866736 + 0.359014i
\(967\) −37.4986 37.4986i −1.20587 1.20587i −0.972352 0.233520i \(-0.924975\pi\)
−0.233520 0.972352i \(-0.575025\pi\)
\(968\) −55.9706 −1.79896
\(969\) 0 0
\(970\) −27.6288 −0.887108
\(971\) 2.13924 + 2.13924i 0.0686516 + 0.0686516i 0.740599 0.671947i \(-0.234542\pi\)
−0.671947 + 0.740599i \(0.734542\pi\)
\(972\) −4.57379 + 1.89452i −0.146704 + 0.0607669i
\(973\) 8.29543i 0.265939i
\(974\) −1.65953 4.00646i −0.0531747 0.128375i
\(975\) 0.0755708 + 0.0313025i 0.00242020 + 0.00100248i
\(976\) 35.2633 85.1332i 1.12875 2.72505i
\(977\) −7.96654 + 7.96654i −0.254872 + 0.254872i −0.822965 0.568093i \(-0.807682\pi\)
0.568093 + 0.822965i \(0.307682\pi\)
\(978\) 31.1925 31.1925i 0.997425 0.997425i
\(979\) 4.03317 9.73695i 0.128901 0.311194i
\(980\) −16.7130 6.92274i −0.533876 0.221139i
\(981\) −7.64423 18.4548i −0.244062 0.589217i
\(982\) 11.3397i 0.361866i
\(983\) −44.6770 + 18.5058i −1.42498 + 0.590244i −0.956106 0.293022i \(-0.905339\pi\)
−0.468871 + 0.883267i \(0.655339\pi\)
\(984\) −22.1247 22.1247i −0.705310 0.705310i
\(985\) −16.4304 −0.523515
\(986\) 0 0
\(987\) 5.51722 0.175615
\(988\) 27.5422 + 27.5422i 0.876234 + 0.876234i
\(989\) −36.7999 + 15.2430i −1.17017 + 0.484699i
\(990\) 11.4280i 0.363204i
\(991\) 9.19984 + 22.2104i 0.292243 + 0.705536i 1.00000 0.000919961i \(-0.000292833\pi\)
−0.707757 + 0.706456i \(0.750293\pi\)
\(992\) −5.09398 2.11000i −0.161734 0.0669924i
\(993\) 4.15154 10.0227i 0.131745 0.318061i
\(994\) −26.3221 + 26.3221i −0.834887 + 0.834887i
\(995\) 11.3082 11.3082i 0.358493 0.358493i
\(996\) −16.1598 + 39.0131i −0.512041 + 1.23618i
\(997\) 24.3348 + 10.0798i 0.770691 + 0.319230i 0.733152 0.680065i \(-0.238048\pi\)
0.0375385 + 0.999295i \(0.488048\pi\)
\(998\) −1.50860 3.64208i −0.0477539 0.115288i
\(999\) 5.31548i 0.168174i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.i.733.1 16
17.2 even 8 867.2.h.k.688.3 16
17.3 odd 16 867.2.a.k.1.1 4
17.4 even 4 867.2.h.k.712.4 16
17.5 odd 16 867.2.d.f.577.7 8
17.6 odd 16 51.2.e.a.4.1 8
17.7 odd 16 867.2.e.g.829.4 8
17.8 even 8 inner 867.2.h.i.757.2 16
17.9 even 8 inner 867.2.h.i.757.1 16
17.10 odd 16 51.2.e.a.13.4 yes 8
17.11 odd 16 867.2.e.g.616.1 8
17.12 odd 16 867.2.d.f.577.8 8
17.13 even 4 867.2.h.k.712.3 16
17.14 odd 16 867.2.a.l.1.1 4
17.15 even 8 867.2.h.k.688.4 16
17.16 even 2 inner 867.2.h.i.733.2 16
51.14 even 16 2601.2.a.be.1.4 4
51.20 even 16 2601.2.a.bf.1.4 4
51.23 even 16 153.2.f.b.55.4 8
51.44 even 16 153.2.f.b.64.1 8
68.23 even 16 816.2.bd.e.769.4 8
68.27 even 16 816.2.bd.e.625.4 8
204.23 odd 16 2448.2.be.x.1585.1 8
204.95 odd 16 2448.2.be.x.1441.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.1 8 17.6 odd 16
51.2.e.a.13.4 yes 8 17.10 odd 16
153.2.f.b.55.4 8 51.23 even 16
153.2.f.b.64.1 8 51.44 even 16
816.2.bd.e.625.4 8 68.27 even 16
816.2.bd.e.769.4 8 68.23 even 16
867.2.a.k.1.1 4 17.3 odd 16
867.2.a.l.1.1 4 17.14 odd 16
867.2.d.f.577.7 8 17.5 odd 16
867.2.d.f.577.8 8 17.12 odd 16
867.2.e.g.616.1 8 17.11 odd 16
867.2.e.g.829.4 8 17.7 odd 16
867.2.h.i.733.1 16 1.1 even 1 trivial
867.2.h.i.733.2 16 17.16 even 2 inner
867.2.h.i.757.1 16 17.9 even 8 inner
867.2.h.i.757.2 16 17.8 even 8 inner
867.2.h.k.688.3 16 17.2 even 8
867.2.h.k.688.4 16 17.15 even 8
867.2.h.k.712.3 16 17.13 even 4
867.2.h.k.712.4 16 17.4 even 4
2448.2.be.x.1441.1 8 204.95 odd 16
2448.2.be.x.1585.1 8 204.23 odd 16
2601.2.a.be.1.4 4 51.14 even 16
2601.2.a.bf.1.4 4 51.20 even 16