Properties

Label 51.2.e.a.13.4
Level $51$
Weight $2$
Character 51.13
Analytic conductor $0.407$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,2,Mod(4,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 51.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.407237050309\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.4
Root \(2.63640i\) of defining polynomial
Character \(\chi\) \(=\) 51.13
Dual form 51.2.e.a.4.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.63640i q^{2} +(-0.707107 - 0.707107i) q^{3} -4.95063 q^{4} +(1.57133 + 1.57133i) q^{5} +(1.86422 - 1.86422i) q^{6} +(1.63640 - 1.63640i) q^{7} -7.77906i q^{8} +1.00000i q^{9} +(-4.14265 + 4.14265i) q^{10} +(1.37930 - 1.37930i) q^{11} +(3.50062 + 3.50062i) q^{12} -1.32218 q^{13} +(4.31423 + 4.31423i) q^{14} -2.22219i q^{15} +10.6075 q^{16} +(-3.88555 + 1.37930i) q^{17} -2.63640 q^{18} -5.95063i q^{19} +(-7.77906 - 7.77906i) q^{20} -2.31423 q^{21} +(3.63640 + 3.63640i) q^{22} +(-3.37930 + 3.37930i) q^{23} +(-5.50062 + 5.50062i) q^{24} -0.0618655i q^{25} -3.48580i q^{26} +(0.707107 - 0.707107i) q^{27} +(-8.10124 + 8.10124i) q^{28} +(-0.122204 - 0.122204i) q^{29} +5.85860 q^{30} +(0.314226 + 0.314226i) q^{31} +12.4075i q^{32} -1.95063 q^{33} +(-3.63640 - 10.2439i) q^{34} +5.14265 q^{35} -4.95063i q^{36} +(3.75861 + 3.75861i) q^{37} +15.6883 q^{38} +(0.934922 + 0.934922i) q^{39} +(12.2234 - 12.2234i) q^{40} +(-2.84414 + 2.84414i) q^{41} -6.10124i q^{42} +8.33468i q^{43} +(-6.82843 + 6.82843i) q^{44} +(-1.57133 + 1.57133i) q^{45} +(-8.90921 - 8.90921i) q^{46} -2.38404 q^{47} +(-7.50062 - 7.50062i) q^{48} +1.64436i q^{49} +0.163102 q^{50} +(3.72282 + 1.77219i) q^{51} +6.54562 q^{52} +0.727190i q^{53} +(1.86422 + 1.86422i) q^{54} +4.33468 q^{55} +(-12.7297 - 12.7297i) q^{56} +(-4.20773 + 4.20773i) q^{57} +(0.322179 - 0.322179i) q^{58} -11.7870i q^{59} +11.0012i q^{60} +(6.14265 - 6.14265i) q^{61} +(-0.828427 + 0.828427i) q^{62} +(1.63640 + 1.63640i) q^{63} -11.4963 q^{64} +(-2.07757 - 2.07757i) q^{65} -5.14265i q^{66} -14.1866 q^{67} +(19.2359 - 6.82843i) q^{68} +4.77906 q^{69} +13.5581i q^{70} +(4.31423 + 4.31423i) q^{71} +7.77906 q^{72} +(7.46483 + 7.46483i) q^{73} +(-9.90921 + 9.90921i) q^{74} +(-0.0437455 + 0.0437455i) q^{75} +29.4594i q^{76} -4.51420i q^{77} +(-2.46483 + 2.46483i) q^{78} +(0.493752 - 0.493752i) q^{79} +(16.6678 + 16.6678i) q^{80} -1.00000 q^{81} +(-7.49830 - 7.49830i) q^{82} -8.52971i q^{83} +11.4569 q^{84} +(-8.27281 - 3.93813i) q^{85} -21.9736 q^{86} +0.172822i q^{87} +(-10.7297 - 10.7297i) q^{88} -5.40297 q^{89} +(-4.14265 - 4.14265i) q^{90} +(-2.16362 + 2.16362i) q^{91} +(16.7297 - 16.7297i) q^{92} -0.444383i q^{93} -6.28531i q^{94} +(9.35038 - 9.35038i) q^{95} +(8.77343 - 8.77343i) q^{96} +(3.33468 + 3.33468i) q^{97} -4.33519 q^{98} +(1.37930 + 1.37930i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} - 4 q^{5} + 4 q^{6} - 4 q^{7} - 4 q^{13} + 24 q^{14} + 12 q^{16} - 4 q^{17} - 4 q^{18} - 12 q^{20} - 8 q^{21} + 12 q^{22} - 16 q^{23} - 16 q^{24} - 8 q^{28} + 4 q^{29} + 24 q^{30} - 8 q^{31}+ \cdots - 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63640i 1.86422i 0.362176 + 0.932110i \(0.382034\pi\)
−0.362176 + 0.932110i \(0.617966\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) −4.95063 −2.47532
\(5\) 1.57133 + 1.57133i 0.702719 + 0.702719i 0.964993 0.262275i \(-0.0844726\pi\)
−0.262275 + 0.964993i \(0.584473\pi\)
\(6\) 1.86422 1.86422i 0.761065 0.761065i
\(7\) 1.63640 1.63640i 0.618503 0.618503i −0.326644 0.945147i \(-0.605918\pi\)
0.945147 + 0.326644i \(0.105918\pi\)
\(8\) 7.77906i 2.75031i
\(9\) 1.00000i 0.333333i
\(10\) −4.14265 + 4.14265i −1.31002 + 1.31002i
\(11\) 1.37930 1.37930i 0.415876 0.415876i −0.467904 0.883780i \(-0.654991\pi\)
0.883780 + 0.467904i \(0.154991\pi\)
\(12\) 3.50062 + 3.50062i 1.01054 + 1.01054i
\(13\) −1.32218 −0.366706 −0.183353 0.983047i \(-0.558695\pi\)
−0.183353 + 0.983047i \(0.558695\pi\)
\(14\) 4.31423 + 4.31423i 1.15303 + 1.15303i
\(15\) 2.22219i 0.573767i
\(16\) 10.6075 2.65187
\(17\) −3.88555 + 1.37930i −0.942385 + 0.334530i
\(18\) −2.63640 −0.621407
\(19\) 5.95063i 1.36517i −0.730807 0.682584i \(-0.760856\pi\)
0.730807 0.682584i \(-0.239144\pi\)
\(20\) −7.77906 7.77906i −1.73945 1.73945i
\(21\) −2.31423 −0.505006
\(22\) 3.63640 + 3.63640i 0.775284 + 0.775284i
\(23\) −3.37930 + 3.37930i −0.704634 + 0.704634i −0.965402 0.260768i \(-0.916024\pi\)
0.260768 + 0.965402i \(0.416024\pi\)
\(24\) −5.50062 + 5.50062i −1.12281 + 1.12281i
\(25\) 0.0618655i 0.0123731i
\(26\) 3.48580i 0.683621i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −8.10124 + 8.10124i −1.53099 + 1.53099i
\(29\) −0.122204 0.122204i −0.0226927 0.0226927i 0.695669 0.718362i \(-0.255108\pi\)
−0.718362 + 0.695669i \(0.755108\pi\)
\(30\) 5.85860 1.06963
\(31\) 0.314226 + 0.314226i 0.0564367 + 0.0564367i 0.734762 0.678325i \(-0.237294\pi\)
−0.678325 + 0.734762i \(0.737294\pi\)
\(32\) 12.4075i 2.19336i
\(33\) −1.95063 −0.339561
\(34\) −3.63640 10.2439i −0.623638 1.75681i
\(35\) 5.14265 0.869267
\(36\) 4.95063i 0.825105i
\(37\) 3.75861 + 3.75861i 0.617911 + 0.617911i 0.944995 0.327084i \(-0.106066\pi\)
−0.327084 + 0.944995i \(0.606066\pi\)
\(38\) 15.6883 2.54497
\(39\) 0.934922 + 0.934922i 0.149707 + 0.149707i
\(40\) 12.2234 12.2234i 1.93270 1.93270i
\(41\) −2.84414 + 2.84414i −0.444179 + 0.444179i −0.893414 0.449234i \(-0.851697\pi\)
0.449234 + 0.893414i \(0.351697\pi\)
\(42\) 6.10124i 0.941441i
\(43\) 8.33468i 1.27103i 0.772090 + 0.635513i \(0.219211\pi\)
−0.772090 + 0.635513i \(0.780789\pi\)
\(44\) −6.82843 + 6.82843i −1.02942 + 1.02942i
\(45\) −1.57133 + 1.57133i −0.234240 + 0.234240i
\(46\) −8.90921 8.90921i −1.31359 1.31359i
\(47\) −2.38404 −0.347749 −0.173874 0.984768i \(-0.555629\pi\)
−0.173874 + 0.984768i \(0.555629\pi\)
\(48\) −7.50062 7.50062i −1.08262 1.08262i
\(49\) 1.64436i 0.234908i
\(50\) 0.163102 0.0230662
\(51\) 3.72282 + 1.77219i 0.521299 + 0.248156i
\(52\) 6.54562 0.907714
\(53\) 0.727190i 0.0998872i 0.998752 + 0.0499436i \(0.0159042\pi\)
−0.998752 + 0.0499436i \(0.984096\pi\)
\(54\) 1.86422 + 1.86422i 0.253688 + 0.253688i
\(55\) 4.33468 0.584488
\(56\) −12.7297 12.7297i −1.70108 1.70108i
\(57\) −4.20773 + 4.20773i −0.557328 + 0.557328i
\(58\) 0.322179 0.322179i 0.0423042 0.0423042i
\(59\) 11.7870i 1.53454i −0.641325 0.767269i \(-0.721615\pi\)
0.641325 0.767269i \(-0.278385\pi\)
\(60\) 11.0012i 1.42026i
\(61\) 6.14265 6.14265i 0.786486 0.786486i −0.194430 0.980916i \(-0.562286\pi\)
0.980916 + 0.194430i \(0.0622858\pi\)
\(62\) −0.828427 + 0.828427i −0.105210 + 0.105210i
\(63\) 1.63640 + 1.63640i 0.206168 + 0.206168i
\(64\) −11.4963 −1.43703
\(65\) −2.07757 2.07757i −0.257691 0.257691i
\(66\) 5.14265i 0.633017i
\(67\) −14.1866 −1.73317 −0.866583 0.499034i \(-0.833688\pi\)
−0.866583 + 0.499034i \(0.833688\pi\)
\(68\) 19.2359 6.82843i 2.33270 0.828068i
\(69\) 4.77906 0.575331
\(70\) 13.5581i 1.62050i
\(71\) 4.31423 + 4.31423i 0.512004 + 0.512004i 0.915140 0.403136i \(-0.132080\pi\)
−0.403136 + 0.915140i \(0.632080\pi\)
\(72\) 7.77906 0.916771
\(73\) 7.46483 + 7.46483i 0.873693 + 0.873693i 0.992873 0.119180i \(-0.0380266\pi\)
−0.119180 + 0.992873i \(0.538027\pi\)
\(74\) −9.90921 + 9.90921i −1.15192 + 1.15192i
\(75\) −0.0437455 + 0.0437455i −0.00505130 + 0.00505130i
\(76\) 29.4594i 3.37922i
\(77\) 4.51420i 0.514441i
\(78\) −2.46483 + 2.46483i −0.279087 + 0.279087i
\(79\) 0.493752 0.493752i 0.0555514 0.0555514i −0.678785 0.734337i \(-0.737493\pi\)
0.734337 + 0.678785i \(0.237493\pi\)
\(80\) 16.6678 + 16.6678i 1.86352 + 1.86352i
\(81\) −1.00000 −0.111111
\(82\) −7.49830 7.49830i −0.828048 0.828048i
\(83\) 8.52971i 0.936258i −0.883660 0.468129i \(-0.844928\pi\)
0.883660 0.468129i \(-0.155072\pi\)
\(84\) 11.4569 1.25005
\(85\) −8.27281 3.93813i −0.897312 0.427151i
\(86\) −21.9736 −2.36947
\(87\) 0.172822i 0.0185285i
\(88\) −10.7297 10.7297i −1.14379 1.14379i
\(89\) −5.40297 −0.572713 −0.286357 0.958123i \(-0.592444\pi\)
−0.286357 + 0.958123i \(0.592444\pi\)
\(90\) −4.14265 4.14265i −0.436674 0.436674i
\(91\) −2.16362 + 2.16362i −0.226809 + 0.226809i
\(92\) 16.7297 16.7297i 1.74419 1.74419i
\(93\) 0.444383i 0.0460803i
\(94\) 6.28531i 0.648280i
\(95\) 9.35038 9.35038i 0.959329 0.959329i
\(96\) 8.77343 8.77343i 0.895435 0.895435i
\(97\) 3.33468 + 3.33468i 0.338585 + 0.338585i 0.855835 0.517250i \(-0.173044\pi\)
−0.517250 + 0.855835i \(0.673044\pi\)
\(98\) −4.33519 −0.437921
\(99\) 1.37930 + 1.37930i 0.138625 + 0.138625i
\(100\) 0.306273i 0.0306273i
\(101\) −7.11123 −0.707594 −0.353797 0.935322i \(-0.615110\pi\)
−0.353797 + 0.935322i \(0.615110\pi\)
\(102\) −4.67220 + 9.81485i −0.462616 + 0.971815i
\(103\) −9.22344 −0.908813 −0.454406 0.890795i \(-0.650149\pi\)
−0.454406 + 0.890795i \(0.650149\pi\)
\(104\) 10.2853i 1.00856i
\(105\) −3.63640 3.63640i −0.354877 0.354877i
\(106\) −1.91717 −0.186212
\(107\) 3.66461 + 3.66461i 0.354271 + 0.354271i 0.861696 0.507425i \(-0.169402\pi\)
−0.507425 + 0.861696i \(0.669402\pi\)
\(108\) −3.50062 + 3.50062i −0.336848 + 0.336848i
\(109\) 14.1247 14.1247i 1.35290 1.35290i 0.470503 0.882399i \(-0.344073\pi\)
0.882399 0.470503i \(-0.155927\pi\)
\(110\) 11.4280i 1.08961i
\(111\) 5.31548i 0.504523i
\(112\) 17.3581 17.3581i 1.64019 1.64019i
\(113\) −12.3299 + 12.3299i −1.15990 + 1.15990i −0.175407 + 0.984496i \(0.556124\pi\)
−0.984496 + 0.175407i \(0.943876\pi\)
\(114\) −11.0933 11.0933i −1.03898 1.03898i
\(115\) −10.6200 −0.990318
\(116\) 0.604986 + 0.604986i 0.0561716 + 0.0561716i
\(117\) 1.32218i 0.122235i
\(118\) 31.0753 2.86072
\(119\) −4.10124 + 8.61544i −0.375960 + 0.789776i
\(120\) −17.2866 −1.57804
\(121\) 7.19504i 0.654094i
\(122\) 16.1945 + 16.1945i 1.46618 + 1.46618i
\(123\) 4.02222 0.362671
\(124\) −1.55562 1.55562i −0.139699 0.139699i
\(125\) 7.95384 7.95384i 0.711413 0.711413i
\(126\) −4.31423 + 4.31423i −0.384342 + 0.384342i
\(127\) 9.85189i 0.874214i −0.899409 0.437107i \(-0.856003\pi\)
0.899409 0.437107i \(-0.143997\pi\)
\(128\) 5.49375i 0.485584i
\(129\) 5.89351 5.89351i 0.518894 0.518894i
\(130\) 5.47733 5.47733i 0.480393 0.480393i
\(131\) 5.37930 + 5.37930i 0.469992 + 0.469992i 0.901912 0.431920i \(-0.142164\pi\)
−0.431920 + 0.901912i \(0.642164\pi\)
\(132\) 9.65685 0.840521
\(133\) −9.73764 9.73764i −0.844361 0.844361i
\(134\) 37.4015i 3.23100i
\(135\) 2.22219 0.191256
\(136\) 10.7297 + 30.2259i 0.920063 + 2.59185i
\(137\) 22.0723 1.88577 0.942883 0.333125i \(-0.108103\pi\)
0.942883 + 0.333125i \(0.108103\pi\)
\(138\) 12.5995i 1.07254i
\(139\) 2.53465 + 2.53465i 0.214986 + 0.214986i 0.806382 0.591395i \(-0.201423\pi\)
−0.591395 + 0.806382i \(0.701423\pi\)
\(140\) −25.4594 −2.15171
\(141\) 1.68577 + 1.68577i 0.141968 + 0.141968i
\(142\) −11.3740 + 11.3740i −0.954489 + 0.954489i
\(143\) −1.82369 + 1.82369i −0.152504 + 0.152504i
\(144\) 10.6075i 0.883957i
\(145\) 0.384044i 0.0318931i
\(146\) −19.6803 + 19.6803i −1.62875 + 1.62875i
\(147\) 1.16274 1.16274i 0.0959009 0.0959009i
\(148\) −18.6075 18.6075i −1.52953 1.52953i
\(149\) 11.7711 0.964327 0.482163 0.876081i \(-0.339851\pi\)
0.482163 + 0.876081i \(0.339851\pi\)
\(150\) −0.115331 0.115331i −0.00941673 0.00941673i
\(151\) 16.1037i 1.31050i 0.755411 + 0.655252i \(0.227437\pi\)
−0.755411 + 0.655252i \(0.772563\pi\)
\(152\) −46.2903 −3.75464
\(153\) −1.37930 3.88555i −0.111510 0.314128i
\(154\) 11.9013 0.959031
\(155\) 0.987504i 0.0793182i
\(156\) −4.62845 4.62845i −0.370573 0.370573i
\(157\) 6.45535 0.515193 0.257597 0.966253i \(-0.417069\pi\)
0.257597 + 0.966253i \(0.417069\pi\)
\(158\) 1.30173 + 1.30173i 0.103560 + 0.103560i
\(159\) 0.514201 0.514201i 0.0407788 0.0407788i
\(160\) −19.4963 + 19.4963i −1.54131 + 1.54131i
\(161\) 11.0598i 0.871636i
\(162\) 2.63640i 0.207136i
\(163\) −11.8314 + 11.8314i −0.926710 + 0.926710i −0.997492 0.0707816i \(-0.977451\pi\)
0.0707816 + 0.997492i \(0.477451\pi\)
\(164\) 14.0803 14.0803i 1.09948 1.09948i
\(165\) −3.06508 3.06508i −0.238616 0.238616i
\(166\) 22.4878 1.74539
\(167\) 1.13490 + 1.13490i 0.0878209 + 0.0878209i 0.749653 0.661832i \(-0.230221\pi\)
−0.661832 + 0.749653i \(0.730221\pi\)
\(168\) 18.0025i 1.38892i
\(169\) −11.2518 −0.865526
\(170\) 10.3825 21.8105i 0.796303 1.67279i
\(171\) 5.95063 0.455056
\(172\) 41.2619i 3.14619i
\(173\) −12.1169 12.1169i −0.921234 0.921234i 0.0758824 0.997117i \(-0.475823\pi\)
−0.997117 + 0.0758824i \(0.975823\pi\)
\(174\) −0.455630 −0.0345412
\(175\) −0.101237 0.101237i −0.00765280 0.00765280i
\(176\) 14.6310 14.6310i 1.10285 1.10285i
\(177\) −8.33468 + 8.33468i −0.626473 + 0.626473i
\(178\) 14.2444i 1.06766i
\(179\) 11.0753i 0.827809i 0.910320 + 0.413905i \(0.135835\pi\)
−0.910320 + 0.413905i \(0.864165\pi\)
\(180\) 7.77906 7.77906i 0.579817 0.579817i
\(181\) 13.9297 13.9297i 1.03538 1.03538i 0.0360332 0.999351i \(-0.488528\pi\)
0.999351 0.0360332i \(-0.0114722\pi\)
\(182\) −5.70418 5.70418i −0.422822 0.422822i
\(183\) −8.68702 −0.642163
\(184\) 26.2878 + 26.2878i 1.93796 + 1.93796i
\(185\) 11.8120i 0.868436i
\(186\) 1.17157 0.0859039
\(187\) −3.45688 + 7.26184i −0.252792 + 0.531038i
\(188\) 11.8025 0.860788
\(189\) 2.31423i 0.168335i
\(190\) 24.6514 + 24.6514i 1.78840 + 1.78840i
\(191\) −1.60953 −0.116461 −0.0582307 0.998303i \(-0.518546\pi\)
−0.0582307 + 0.998303i \(0.518546\pi\)
\(192\) 8.12908 + 8.12908i 0.586666 + 0.586666i
\(193\) 3.16362 3.16362i 0.227722 0.227722i −0.584018 0.811741i \(-0.698520\pi\)
0.811741 + 0.584018i \(0.198520\pi\)
\(194\) −8.79155 + 8.79155i −0.631197 + 0.631197i
\(195\) 2.93813i 0.210404i
\(196\) 8.14061i 0.581472i
\(197\) 5.22818 5.22818i 0.372492 0.372492i −0.495892 0.868384i \(-0.665159\pi\)
0.868384 + 0.495892i \(0.165159\pi\)
\(198\) −3.63640 + 3.63640i −0.258428 + 0.258428i
\(199\) 5.08874 + 5.08874i 0.360731 + 0.360731i 0.864082 0.503351i \(-0.167900\pi\)
−0.503351 + 0.864082i \(0.667900\pi\)
\(200\) −0.481255 −0.0340299
\(201\) 10.0314 + 10.0314i 0.707562 + 0.707562i
\(202\) 18.7481i 1.31911i
\(203\) −0.399950 −0.0280710
\(204\) −18.4303 8.77343i −1.29038 0.614263i
\(205\) −8.93813 −0.624266
\(206\) 24.3167i 1.69423i
\(207\) −3.37930 3.37930i −0.234878 0.234878i
\(208\) −14.0250 −0.972458
\(209\) −8.20773 8.20773i −0.567741 0.567741i
\(210\) 9.58704 9.58704i 0.661568 0.661568i
\(211\) −9.48830 + 9.48830i −0.653201 + 0.653201i −0.953763 0.300561i \(-0.902826\pi\)
0.300561 + 0.953763i \(0.402826\pi\)
\(212\) 3.60005i 0.247252i
\(213\) 6.10124i 0.418050i
\(214\) −9.66140 + 9.66140i −0.660440 + 0.660440i
\(215\) −13.0965 + 13.0965i −0.893174 + 0.893174i
\(216\) −5.50062 5.50062i −0.374270 0.374270i
\(217\) 1.02840 0.0698125
\(218\) 37.2384 + 37.2384i 2.52211 + 2.52211i
\(219\) 10.5569i 0.713367i
\(220\) −21.4594 −1.44679
\(221\) 5.13740 1.82369i 0.345579 0.122674i
\(222\) 14.0137 0.940541
\(223\) 21.2643i 1.42397i −0.702197 0.711983i \(-0.747797\pi\)
0.702197 0.711983i \(-0.252203\pi\)
\(224\) 20.3037 + 20.3037i 1.35660 + 1.35660i
\(225\) 0.0618655 0.00412437
\(226\) −32.5067 32.5067i −2.16231 2.16231i
\(227\) 3.50304 3.50304i 0.232505 0.232505i −0.581233 0.813737i \(-0.697429\pi\)
0.813737 + 0.581233i \(0.197429\pi\)
\(228\) 20.8309 20.8309i 1.37956 1.37956i
\(229\) 1.83842i 0.121487i 0.998153 + 0.0607433i \(0.0193471\pi\)
−0.998153 + 0.0607433i \(0.980653\pi\)
\(230\) 27.9986i 1.84617i
\(231\) −3.19202 + 3.19202i −0.210020 + 0.210020i
\(232\) −0.950631 + 0.950631i −0.0624120 + 0.0624120i
\(233\) −1.05713 1.05713i −0.0692546 0.0692546i 0.671631 0.740886i \(-0.265594\pi\)
−0.740886 + 0.671631i \(0.765594\pi\)
\(234\) 3.48580 0.227874
\(235\) −3.74611 3.74611i −0.244369 0.244369i
\(236\) 58.3531i 3.79847i
\(237\) −0.698270 −0.0453575
\(238\) −22.7138 10.8125i −1.47232 0.700872i
\(239\) −10.0250 −0.648463 −0.324231 0.945978i \(-0.605106\pi\)
−0.324231 + 0.945978i \(0.605106\pi\)
\(240\) 23.5719i 1.52156i
\(241\) −8.14265 8.14265i −0.524514 0.524514i 0.394417 0.918932i \(-0.370947\pi\)
−0.918932 + 0.394417i \(0.870947\pi\)
\(242\) −18.9690 −1.21938
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −30.4100 + 30.4100i −1.94680 + 1.94680i
\(245\) −2.58382 + 2.58382i −0.165074 + 0.165074i
\(246\) 10.6042i 0.676099i
\(247\) 7.86780i 0.500616i
\(248\) 2.44438 2.44438i 0.155218 0.155218i
\(249\) −6.03142 + 6.03142i −0.382226 + 0.382226i
\(250\) 20.9696 + 20.9696i 1.32623 + 1.32623i
\(251\) 0.940179 0.0593436 0.0296718 0.999560i \(-0.490554\pi\)
0.0296718 + 0.999560i \(0.490554\pi\)
\(252\) −8.10124 8.10124i −0.510330 0.510330i
\(253\) 9.32218i 0.586080i
\(254\) 25.9736 1.62973
\(255\) 3.06508 + 8.63444i 0.191943 + 0.540710i
\(256\) −8.50875 −0.531797
\(257\) 2.15515i 0.134435i −0.997738 0.0672173i \(-0.978588\pi\)
0.997738 0.0672173i \(-0.0214121\pi\)
\(258\) 15.5377 + 15.5377i 0.967333 + 0.967333i
\(259\) 12.3012 0.764360
\(260\) 10.2853 + 10.2853i 0.637868 + 0.637868i
\(261\) 0.122204 0.122204i 0.00756423 0.00756423i
\(262\) −14.1820 + 14.1820i −0.876168 + 0.876168i
\(263\) 13.1427i 0.810411i −0.914226 0.405205i \(-0.867200\pi\)
0.914226 0.405205i \(-0.132800\pi\)
\(264\) 15.1741i 0.933900i
\(265\) −1.14265 + 1.14265i −0.0701926 + 0.0701926i
\(266\) 25.6724 25.6724i 1.57407 1.57407i
\(267\) 3.82047 + 3.82047i 0.233809 + 0.233809i
\(268\) 70.2325 4.29013
\(269\) −10.7299 10.7299i −0.654213 0.654213i 0.299792 0.954005i \(-0.403083\pi\)
−0.954005 + 0.299792i \(0.903083\pi\)
\(270\) 5.85860i 0.356543i
\(271\) 11.8360 0.718985 0.359493 0.933148i \(-0.382950\pi\)
0.359493 + 0.933148i \(0.382950\pi\)
\(272\) −41.2159 + 14.6310i −2.49908 + 0.887132i
\(273\) 3.05982 0.185189
\(274\) 58.1916i 3.51548i
\(275\) −0.0853313 0.0853313i −0.00514567 0.00514567i
\(276\) −23.6594 −1.42413
\(277\) 19.0229 + 19.0229i 1.14298 + 1.14298i 0.987903 + 0.155076i \(0.0495621\pi\)
0.155076 + 0.987903i \(0.450438\pi\)
\(278\) −6.68236 + 6.68236i −0.400782 + 0.400782i
\(279\) −0.314226 + 0.314226i −0.0188122 + 0.0188122i
\(280\) 40.0050i 2.39076i
\(281\) 22.2339i 1.32636i −0.748459 0.663181i \(-0.769206\pi\)
0.748459 0.663181i \(-0.230794\pi\)
\(282\) −4.44438 + 4.44438i −0.264659 + 0.264659i
\(283\) 16.9406 16.9406i 1.00702 1.00702i 0.00704092 0.999975i \(-0.497759\pi\)
0.999975 0.00704092i \(-0.00224121\pi\)
\(284\) −21.3581 21.3581i −1.26737 1.26737i
\(285\) −13.2234 −0.783289
\(286\) −4.80798 4.80798i −0.284302 0.284302i
\(287\) 9.30832i 0.549453i
\(288\) −12.4075 −0.731120
\(289\) 13.1950 10.7187i 0.776179 0.630513i
\(290\) 1.01250 0.0594558
\(291\) 4.71594i 0.276453i
\(292\) −36.9556 36.9556i −2.16266 2.16266i
\(293\) −7.44387 −0.434875 −0.217438 0.976074i \(-0.569770\pi\)
−0.217438 + 0.976074i \(0.569770\pi\)
\(294\) 3.06544 + 3.06544i 0.178780 + 0.178780i
\(295\) 18.5212 18.5212i 1.07835 1.07835i
\(296\) 29.2384 29.2384i 1.69945 1.69945i
\(297\) 1.95063i 0.113187i
\(298\) 31.0334i 1.79772i
\(299\) 4.46804 4.46804i 0.258394 0.258394i
\(300\) 0.216568 0.216568i 0.0125036 0.0125036i
\(301\) 13.6389 + 13.6389i 0.786133 + 0.786133i
\(302\) −42.4560 −2.44307
\(303\) 5.02840 + 5.02840i 0.288874 + 0.288874i
\(304\) 63.1212i 3.62025i
\(305\) 19.3042 1.10536
\(306\) 10.2439 3.63640i 0.585604 0.207879i
\(307\) −14.2184 −0.811486 −0.405743 0.913987i \(-0.632987\pi\)
−0.405743 + 0.913987i \(0.632987\pi\)
\(308\) 22.3481i 1.27340i
\(309\) 6.52196 + 6.52196i 0.371021 + 0.371021i
\(310\) −2.60346 −0.147867
\(311\) −7.32672 7.32672i −0.415460 0.415460i 0.468175 0.883636i \(-0.344912\pi\)
−0.883636 + 0.468175i \(0.844912\pi\)
\(312\) 7.27281 7.27281i 0.411742 0.411742i
\(313\) −12.3222 + 12.3222i −0.696491 + 0.696491i −0.963652 0.267161i \(-0.913914\pi\)
0.267161 + 0.963652i \(0.413914\pi\)
\(314\) 17.0189i 0.960433i
\(315\) 5.14265i 0.289756i
\(316\) −2.44438 + 2.44438i −0.137507 + 0.137507i
\(317\) 10.0235 10.0235i 0.562974 0.562974i −0.367177 0.930151i \(-0.619676\pi\)
0.930151 + 0.367177i \(0.119676\pi\)
\(318\) 1.35564 + 1.35564i 0.0760206 + 0.0760206i
\(319\) −0.337113 −0.0188747
\(320\) −18.0644 18.0644i −1.00983 1.00983i
\(321\) 5.18254i 0.289261i
\(322\) −29.1582 −1.62492
\(323\) 8.20773 + 23.1215i 0.456690 + 1.28651i
\(324\) 4.95063 0.275035
\(325\) 0.0817972i 0.00453730i
\(326\) −31.1925 31.1925i −1.72759 1.72759i
\(327\) −19.9753 −1.10464
\(328\) 22.1247 + 22.1247i 1.22163 + 1.22163i
\(329\) −3.90126 + 3.90126i −0.215084 + 0.215084i
\(330\) 8.08079 8.08079i 0.444833 0.444833i
\(331\) 10.8485i 0.596287i 0.954521 + 0.298143i \(0.0963673\pi\)
−0.954521 + 0.298143i \(0.903633\pi\)
\(332\) 42.2275i 2.31753i
\(333\) −3.75861 + 3.75861i −0.205970 + 0.205970i
\(334\) −2.99205 + 2.99205i −0.163718 + 0.163718i
\(335\) −22.2917 22.2917i −1.21793 1.21793i
\(336\) −24.5481 −1.33921
\(337\) −6.94216 6.94216i −0.378164 0.378164i 0.492276 0.870439i \(-0.336165\pi\)
−0.870439 + 0.492276i \(0.836165\pi\)
\(338\) 29.6644i 1.61353i
\(339\) 17.4372 0.947057
\(340\) 40.9556 + 19.4963i 2.22113 + 1.05733i
\(341\) 0.866827 0.0469413
\(342\) 15.6883i 0.848325i
\(343\) 14.1457 + 14.1457i 0.763794 + 0.763794i
\(344\) 64.8359 3.49572
\(345\) 7.50946 + 7.50946i 0.404296 + 0.404296i
\(346\) 31.9452 31.9452i 1.71738 1.71738i
\(347\) 18.4180 18.4180i 0.988728 0.988728i −0.0112092 0.999937i \(-0.503568\pi\)
0.999937 + 0.0112092i \(0.00356806\pi\)
\(348\) 0.855580i 0.0458639i
\(349\) 18.6609i 0.998894i −0.866344 0.499447i \(-0.833537\pi\)
0.866344 0.499447i \(-0.166463\pi\)
\(350\) 0.266902 0.266902i 0.0142665 0.0142665i
\(351\) −0.934922 + 0.934922i −0.0499024 + 0.0499024i
\(352\) 17.1137 + 17.1137i 0.912165 + 0.912165i
\(353\) −11.8339 −0.629857 −0.314929 0.949115i \(-0.601981\pi\)
−0.314929 + 0.949115i \(0.601981\pi\)
\(354\) −21.9736 21.9736i −1.16788 1.16788i
\(355\) 13.5581i 0.719590i
\(356\) 26.7481 1.41765
\(357\) 8.99205 3.19202i 0.475910 0.168940i
\(358\) −29.1991 −1.54322
\(359\) 14.1392i 0.746241i 0.927783 + 0.373120i \(0.121712\pi\)
−0.927783 + 0.373120i \(0.878288\pi\)
\(360\) 12.2234 + 12.2234i 0.644232 + 0.644232i
\(361\) −16.4100 −0.863685
\(362\) 36.7242 + 36.7242i 1.93018 + 1.93018i
\(363\) 5.08766 5.08766i 0.267033 0.267033i
\(364\) 10.7113 10.7113i 0.561424 0.561424i
\(365\) 23.4594i 1.22792i
\(366\) 22.9025i 1.19713i
\(367\) 2.63300 2.63300i 0.137441 0.137441i −0.635039 0.772480i \(-0.719016\pi\)
0.772480 + 0.635039i \(0.219016\pi\)
\(368\) −35.8459 + 35.8459i −1.86860 + 1.86860i
\(369\) −2.84414 2.84414i −0.148060 0.148060i
\(370\) −31.1412 −1.61896
\(371\) 1.18998 + 1.18998i 0.0617806 + 0.0617806i
\(372\) 2.19998i 0.114063i
\(373\) 1.53618 0.0795403 0.0397701 0.999209i \(-0.487337\pi\)
0.0397701 + 0.999209i \(0.487337\pi\)
\(374\) −19.1452 9.11373i −0.989972 0.471260i
\(375\) −11.2484 −0.580867
\(376\) 18.5456i 0.956417i
\(377\) 0.161575 + 0.161575i 0.00832156 + 0.00832156i
\(378\) 6.10124 0.313814
\(379\) −25.5627 25.5627i −1.31307 1.31307i −0.919144 0.393922i \(-0.871118\pi\)
−0.393922 0.919144i \(-0.628882\pi\)
\(380\) −46.2903 + 46.2903i −2.37464 + 2.37464i
\(381\) −6.96634 + 6.96634i −0.356896 + 0.356896i
\(382\) 4.24337i 0.217110i
\(383\) 16.3492i 0.835404i −0.908584 0.417702i \(-0.862836\pi\)
0.908584 0.417702i \(-0.137164\pi\)
\(384\) −3.88467 + 3.88467i −0.198239 + 0.198239i
\(385\) 7.09328 7.09328i 0.361507 0.361507i
\(386\) 8.34058 + 8.34058i 0.424525 + 0.424525i
\(387\) −8.33468 −0.423675
\(388\) −16.5087 16.5087i −0.838105 0.838105i
\(389\) 16.4533i 0.834216i 0.908857 + 0.417108i \(0.136956\pi\)
−0.908857 + 0.417108i \(0.863044\pi\)
\(390\) −7.74611 −0.392240
\(391\) 8.46938 17.7916i 0.428315 0.899758i
\(392\) 12.7916 0.646071
\(393\) 7.60749i 0.383747i
\(394\) 13.7836 + 13.7836i 0.694408 + 0.694408i
\(395\) 1.55169 0.0780740
\(396\) −6.82843 6.82843i −0.343141 0.343141i
\(397\) −25.7816 + 25.7816i −1.29394 + 1.29394i −0.361610 + 0.932330i \(0.617773\pi\)
−0.932330 + 0.361610i \(0.882227\pi\)
\(398\) −13.4160 + 13.4160i −0.672482 + 0.672482i
\(399\) 13.7711i 0.689418i
\(400\) 0.656237i 0.0328119i
\(401\) −6.84414 + 6.84414i −0.341780 + 0.341780i −0.857036 0.515256i \(-0.827697\pi\)
0.515256 + 0.857036i \(0.327697\pi\)
\(402\) −26.4469 + 26.4469i −1.31905 + 1.31905i
\(403\) −0.415463 0.415463i −0.0206957 0.0206957i
\(404\) 35.2051 1.75152
\(405\) −1.57133 1.57133i −0.0780798 0.0780798i
\(406\) 1.05443i 0.0523305i
\(407\) 10.3685 0.513949
\(408\) 13.7859 28.9600i 0.682505 1.43373i
\(409\) −2.52228 −0.124719 −0.0623593 0.998054i \(-0.519862\pi\)
−0.0623593 + 0.998054i \(0.519862\pi\)
\(410\) 23.5645i 1.16377i
\(411\) −15.6075 15.6075i −0.769860 0.769860i
\(412\) 45.6619 2.24960
\(413\) −19.2883 19.2883i −0.949116 0.949116i
\(414\) 8.90921 8.90921i 0.437864 0.437864i
\(415\) 13.4030 13.4030i 0.657926 0.657926i
\(416\) 16.4049i 0.804319i
\(417\) 3.58454i 0.175536i
\(418\) 21.6389 21.6389i 1.05839 1.05839i
\(419\) −18.6154 + 18.6154i −0.909424 + 0.909424i −0.996226 0.0868019i \(-0.972335\pi\)
0.0868019 + 0.996226i \(0.472335\pi\)
\(420\) 18.0025 + 18.0025i 0.878432 + 0.878432i
\(421\) 6.61089 0.322195 0.161098 0.986938i \(-0.448497\pi\)
0.161098 + 0.986938i \(0.448497\pi\)
\(422\) −25.0150 25.0150i −1.21771 1.21771i
\(423\) 2.38404i 0.115916i
\(424\) 5.65685 0.274721
\(425\) 0.0853313 + 0.240382i 0.00413918 + 0.0116602i
\(426\) 16.0853 0.779337
\(427\) 20.1037i 0.972888i
\(428\) −18.1421 18.1421i −0.876933 0.876933i
\(429\) 2.57908 0.124519
\(430\) −34.5277 34.5277i −1.66507 1.66507i
\(431\) 19.8882 19.8882i 0.957983 0.957983i −0.0411690 0.999152i \(-0.513108\pi\)
0.999152 + 0.0411690i \(0.0131082\pi\)
\(432\) 7.50062 7.50062i 0.360874 0.360874i
\(433\) 17.1497i 0.824162i 0.911147 + 0.412081i \(0.135198\pi\)
−0.911147 + 0.412081i \(0.864802\pi\)
\(434\) 2.71128i 0.130146i
\(435\) −0.271560 + 0.271560i −0.0130203 + 0.0130203i
\(436\) −69.9262 + 69.9262i −3.34886 + 3.34886i
\(437\) 20.1090 + 20.1090i 0.961944 + 0.961944i
\(438\) 27.8322 1.32987
\(439\) 5.81593 + 5.81593i 0.277579 + 0.277579i 0.832142 0.554563i \(-0.187114\pi\)
−0.554563 + 0.832142i \(0.687114\pi\)
\(440\) 33.7197i 1.60752i
\(441\) −1.64436 −0.0783028
\(442\) 4.80798 + 13.5443i 0.228692 + 0.644235i
\(443\) −18.4658 −0.877339 −0.438669 0.898649i \(-0.644550\pi\)
−0.438669 + 0.898649i \(0.644550\pi\)
\(444\) 26.3150i 1.24885i
\(445\) −8.48983 8.48983i −0.402456 0.402456i
\(446\) 56.0614 2.65458
\(447\) −8.32343 8.32343i −0.393685 0.393685i
\(448\) −18.8125 + 18.8125i −0.888808 + 0.888808i
\(449\) −21.8673 + 21.8673i −1.03198 + 1.03198i −0.0325094 + 0.999471i \(0.510350\pi\)
−0.999471 + 0.0325094i \(0.989650\pi\)
\(450\) 0.163102i 0.00768873i
\(451\) 7.84586i 0.369447i
\(452\) 61.0410 61.0410i 2.87113 2.87113i
\(453\) 11.3871 11.3871i 0.535011 0.535011i
\(454\) 9.23542 + 9.23542i 0.433440 + 0.433440i
\(455\) −6.79951 −0.318766
\(456\) 32.7322 + 32.7322i 1.53283 + 1.53283i
\(457\) 15.5337i 0.726638i 0.931665 + 0.363319i \(0.118356\pi\)
−0.931665 + 0.363319i \(0.881644\pi\)
\(458\) −4.84683 −0.226478
\(459\) −1.77219 + 3.72282i −0.0827185 + 0.173766i
\(460\) 52.5756 2.45135
\(461\) 38.9032i 1.81190i 0.423380 + 0.905952i \(0.360844\pi\)
−0.423380 + 0.905952i \(0.639156\pi\)
\(462\) −8.41546 8.41546i −0.391523 0.391523i
\(463\) 22.7572 1.05762 0.528808 0.848742i \(-0.322639\pi\)
0.528808 + 0.848742i \(0.322639\pi\)
\(464\) −1.29628 1.29628i −0.0601781 0.0601781i
\(465\) 0.698270 0.698270i 0.0323815 0.0323815i
\(466\) 2.78701 2.78701i 0.129106 0.129106i
\(467\) 12.5551i 0.580981i −0.956878 0.290490i \(-0.906182\pi\)
0.956878 0.290490i \(-0.0938184\pi\)
\(468\) 6.54562i 0.302571i
\(469\) −23.2150 + 23.2150i −1.07197 + 1.07197i
\(470\) 9.87627 9.87627i 0.455558 0.455558i
\(471\) −4.56462 4.56462i −0.210327 0.210327i
\(472\) −91.6918 −4.22046
\(473\) 11.4961 + 11.4961i 0.528589 + 0.528589i
\(474\) 1.84092i 0.0845564i
\(475\) −0.368139 −0.0168914
\(476\) 20.3037 42.6519i 0.930619 1.95494i
\(477\) −0.727190 −0.0332957
\(478\) 26.4299i 1.20888i
\(479\) 26.3340 + 26.3340i 1.20323 + 1.20323i 0.973179 + 0.230051i \(0.0738892\pi\)
0.230051 + 0.973179i \(0.426111\pi\)
\(480\) 27.5719 1.25848
\(481\) −4.96955 4.96955i −0.226592 0.226592i
\(482\) 21.4673 21.4673i 0.977810 0.977810i
\(483\) 7.82047 7.82047i 0.355844 0.355844i
\(484\) 35.6200i 1.61909i
\(485\) 10.4797i 0.475860i
\(486\) −1.86422 + 1.86422i −0.0845627 + 0.0845627i
\(487\) −1.16310 + 1.16310i −0.0527052 + 0.0527052i −0.732968 0.680263i \(-0.761866\pi\)
0.680263 + 0.732968i \(0.261866\pi\)
\(488\) −47.7841 47.7841i −2.16308 2.16308i
\(489\) 16.7322 0.756656
\(490\) −6.81200 6.81200i −0.307735 0.307735i
\(491\) 4.30121i 0.194111i −0.995279 0.0970555i \(-0.969058\pi\)
0.995279 0.0970555i \(-0.0309424\pi\)
\(492\) −19.9125 −0.897725
\(493\) 0.643386 + 0.306273i 0.0289766 + 0.0137939i
\(494\) −20.7427 −0.933258
\(495\) 4.33468i 0.194829i
\(496\) 3.33315 + 3.33315i 0.149663 + 0.149663i
\(497\) 14.1196 0.633352
\(498\) −15.9013 15.9013i −0.712553 0.712553i
\(499\) 1.05732 1.05732i 0.0473322 0.0473322i −0.683045 0.730377i \(-0.739345\pi\)
0.730377 + 0.683045i \(0.239345\pi\)
\(500\) −39.3765 + 39.3765i −1.76097 + 1.76097i
\(501\) 1.60499i 0.0717055i
\(502\) 2.47869i 0.110629i
\(503\) 1.19274 1.19274i 0.0531815 0.0531815i −0.680016 0.733197i \(-0.738027\pi\)
0.733197 + 0.680016i \(0.238027\pi\)
\(504\) 12.7297 12.7297i 0.567025 0.567025i
\(505\) −11.1741 11.1741i −0.497240 0.497240i
\(506\) −24.5770 −1.09258
\(507\) 7.95625 + 7.95625i 0.353350 + 0.353350i
\(508\) 48.7731i 2.16396i
\(509\) −6.91070 −0.306312 −0.153156 0.988202i \(-0.548944\pi\)
−0.153156 + 0.988202i \(0.548944\pi\)
\(510\) −22.7639 + 8.08079i −1.00800 + 0.357823i
\(511\) 24.4310 1.08076
\(512\) 33.4200i 1.47697i
\(513\) −4.20773 4.20773i −0.185776 0.185776i
\(514\) 5.68185 0.250616
\(515\) −14.4930 14.4930i −0.638640 0.638640i
\(516\) −29.1766 + 29.1766i −1.28443 + 1.28443i
\(517\) −3.28832 + 3.28832i −0.144620 + 0.144620i
\(518\) 32.4310i 1.42494i
\(519\) 17.1359i 0.752185i
\(520\) −16.1616 + 16.1616i −0.708732 + 0.708732i
\(521\) 9.47259 9.47259i 0.415002 0.415002i −0.468475 0.883477i \(-0.655196\pi\)
0.883477 + 0.468475i \(0.155196\pi\)
\(522\) 0.322179 + 0.322179i 0.0141014 + 0.0141014i
\(523\) 4.40904 0.192794 0.0963969 0.995343i \(-0.469268\pi\)
0.0963969 + 0.995343i \(0.469268\pi\)
\(524\) −26.6310 26.6310i −1.16338 1.16338i
\(525\) 0.143171i 0.00624848i
\(526\) 34.6494 1.51078
\(527\) −1.65436 0.787529i −0.0720648 0.0343053i
\(528\) −20.6913 −0.900473
\(529\) 0.160604i 0.00698276i
\(530\) −3.01250 3.01250i −0.130854 0.130854i
\(531\) 11.7870 0.511513
\(532\) 48.2075 + 48.2075i 2.09006 + 2.09006i
\(533\) 3.76046 3.76046i 0.162883 0.162883i
\(534\) −10.0723 + 10.0723i −0.435872 + 0.435872i
\(535\) 11.5166i 0.497906i
\(536\) 110.358i 4.76675i
\(537\) 7.83144 7.83144i 0.337952 0.337952i
\(538\) 28.2883 28.2883i 1.21960 1.21960i
\(539\) 2.26807 + 2.26807i 0.0976927 + 0.0976927i
\(540\) −11.0012 −0.473418
\(541\) −16.3451 16.3451i −0.702732 0.702732i 0.262264 0.964996i \(-0.415531\pi\)
−0.964996 + 0.262264i \(0.915531\pi\)
\(542\) 31.2045i 1.34035i
\(543\) −19.6995 −0.845387
\(544\) −17.1137 48.2100i −0.733745 2.06699i
\(545\) 44.3890 1.90142
\(546\) 8.06693i 0.345233i
\(547\) −6.70674 6.70674i −0.286760 0.286760i 0.549038 0.835797i \(-0.314994\pi\)
−0.835797 + 0.549038i \(0.814994\pi\)
\(548\) −109.272 −4.66786
\(549\) 6.14265 + 6.14265i 0.262162 + 0.262162i
\(550\) 0.224968 0.224968i 0.00959267 0.00959267i
\(551\) −0.727190 + 0.727190i −0.0309793 + 0.0309793i
\(552\) 37.1766i 1.58234i
\(553\) 1.61596i 0.0687174i
\(554\) −50.1522 + 50.1522i −2.13076 + 2.13076i
\(555\) 8.35235 8.35235i 0.354537 0.354537i
\(556\) −12.5481 12.5481i −0.532159 0.532159i
\(557\) 38.1670 1.61719 0.808593 0.588368i \(-0.200229\pi\)
0.808593 + 0.588368i \(0.200229\pi\)
\(558\) −0.828427 0.828427i −0.0350701 0.0350701i
\(559\) 11.0199i 0.466093i
\(560\) 54.5506 2.30518
\(561\) 7.57928 2.69051i 0.319997 0.113594i
\(562\) 58.6175 2.47263
\(563\) 13.8184i 0.582377i 0.956666 + 0.291189i \(0.0940507\pi\)
−0.956666 + 0.291189i \(0.905949\pi\)
\(564\) −8.34564 8.34564i −0.351415 0.351415i
\(565\) −38.7487 −1.63017
\(566\) 44.6624 + 44.6624i 1.87730 + 1.87730i
\(567\) −1.63640 + 1.63640i −0.0687225 + 0.0687225i
\(568\) 33.5606 33.5606i 1.40817 1.40817i
\(569\) 12.9516i 0.542959i −0.962444 0.271480i \(-0.912487\pi\)
0.962444 0.271480i \(-0.0875130\pi\)
\(570\) 34.8623i 1.46022i
\(571\) 4.60596 4.60596i 0.192753 0.192753i −0.604131 0.796885i \(-0.706480\pi\)
0.796885 + 0.604131i \(0.206480\pi\)
\(572\) 9.02840 9.02840i 0.377496 0.377496i
\(573\) 1.13811 + 1.13811i 0.0475452 + 0.0475452i
\(574\) −24.5405 −1.02430
\(575\) 0.209062 + 0.209062i 0.00871850 + 0.00871850i
\(576\) 11.4963i 0.479010i
\(577\) 15.6703 0.652364 0.326182 0.945307i \(-0.394238\pi\)
0.326182 + 0.945307i \(0.394238\pi\)
\(578\) 28.2589 + 34.7875i 1.17541 + 1.44697i
\(579\) −4.47403 −0.185935
\(580\) 1.90126i 0.0789456i
\(581\) −13.9581 13.9581i −0.579078 0.579078i
\(582\) 12.4331 0.515370
\(583\) 1.00302 + 1.00302i 0.0415407 + 0.0415407i
\(584\) 58.0694 58.0694i 2.40293 2.40293i
\(585\) 2.07757 2.07757i 0.0858971 0.0858971i
\(586\) 19.6250i 0.810703i
\(587\) 14.9766i 0.618150i −0.951038 0.309075i \(-0.899981\pi\)
0.951038 0.309075i \(-0.100019\pi\)
\(588\) −5.75628 + 5.75628i −0.237385 + 0.237385i
\(589\) 1.86984 1.86984i 0.0770456 0.0770456i
\(590\) 48.8295 + 48.8295i 2.01028 + 2.01028i
\(591\) −7.39376 −0.304139
\(592\) 39.8694 + 39.8694i 1.63862 + 1.63862i
\(593\) 46.3701i 1.90419i −0.305801 0.952096i \(-0.598924\pi\)
0.305801 0.952096i \(-0.401076\pi\)
\(594\) 5.14265 0.211006
\(595\) −19.9820 + 7.09328i −0.819184 + 0.290796i
\(596\) −58.2744 −2.38701
\(597\) 7.19657i 0.294536i
\(598\) 11.7796 + 11.7796i 0.481703 + 0.481703i
\(599\) −28.7068 −1.17293 −0.586464 0.809975i \(-0.699480\pi\)
−0.586464 + 0.809975i \(0.699480\pi\)
\(600\) 0.340299 + 0.340299i 0.0138926 + 0.0138926i
\(601\) −14.6998 + 14.6998i −0.599617 + 0.599617i −0.940211 0.340593i \(-0.889372\pi\)
0.340593 + 0.940211i \(0.389372\pi\)
\(602\) −35.9577 + 35.9577i −1.46553 + 1.46553i
\(603\) 14.1866i 0.577722i
\(604\) 79.7237i 3.24391i
\(605\) −11.3058 + 11.3058i −0.459644 + 0.459644i
\(606\) −13.2569 + 13.2569i −0.538525 + 0.538525i
\(607\) −12.1665 12.1665i −0.493823 0.493823i 0.415685 0.909509i \(-0.363542\pi\)
−0.909509 + 0.415685i \(0.863542\pi\)
\(608\) 73.8325 2.99430
\(609\) 0.282807 + 0.282807i 0.0114599 + 0.0114599i
\(610\) 50.8938i 2.06063i
\(611\) 3.15213 0.127522
\(612\) 6.82843 + 19.2359i 0.276023 + 0.777567i
\(613\) −42.7657 −1.72729 −0.863644 0.504102i \(-0.831824\pi\)
−0.863644 + 0.504102i \(0.831824\pi\)
\(614\) 37.4854i 1.51279i
\(615\) 6.32022 + 6.32022i 0.254856 + 0.254856i
\(616\) −35.1162 −1.41487
\(617\) −27.0678 27.0678i −1.08971 1.08971i −0.995558 0.0941495i \(-0.969987\pi\)
−0.0941495 0.995558i \(-0.530013\pi\)
\(618\) −17.1945 + 17.1945i −0.691665 + 0.691665i
\(619\) 6.55659 6.55659i 0.263532 0.263532i −0.562956 0.826487i \(-0.690336\pi\)
0.826487 + 0.562956i \(0.190336\pi\)
\(620\) 4.88877i 0.196338i
\(621\) 4.77906i 0.191777i
\(622\) 19.3162 19.3162i 0.774509 0.774509i
\(623\) −8.84144 + 8.84144i −0.354225 + 0.354225i
\(624\) 9.91717 + 9.91717i 0.397004 + 0.397004i
\(625\) 24.6868 0.987474
\(626\) −32.4863 32.4863i −1.29841 1.29841i
\(627\) 11.6075i 0.463558i
\(628\) −31.9581 −1.27527
\(629\) −19.7885 9.42001i −0.789021 0.375600i
\(630\) −13.5581 −0.540168
\(631\) 33.8478i 1.34746i 0.738978 + 0.673730i \(0.235309\pi\)
−0.738978 + 0.673730i \(0.764691\pi\)
\(632\) −3.84092 3.84092i −0.152784 0.152784i
\(633\) 13.4185 0.533337
\(634\) 26.4259 + 26.4259i 1.04951 + 1.04951i
\(635\) 15.4805 15.4805i 0.614327 0.614327i
\(636\) −2.54562 + 2.54562i −0.100940 + 0.100940i
\(637\) 2.17414i 0.0861424i
\(638\) 0.888765i 0.0351866i
\(639\) −4.31423 + 4.31423i −0.170668 + 0.170668i
\(640\) 8.63248 8.63248i 0.341229 0.341229i
\(641\) 7.54594 + 7.54594i 0.298047 + 0.298047i 0.840248 0.542202i \(-0.182409\pi\)
−0.542202 + 0.840248i \(0.682409\pi\)
\(642\) 13.6633 0.539247
\(643\) 27.7990 + 27.7990i 1.09629 + 1.09629i 0.994841 + 0.101444i \(0.0323462\pi\)
0.101444 + 0.994841i \(0.467654\pi\)
\(644\) 54.7531i 2.15757i
\(645\) 18.5212 0.729273
\(646\) −60.9576 + 21.6389i −2.39835 + 0.851371i
\(647\) −27.9895 −1.10038 −0.550190 0.835039i \(-0.685445\pi\)
−0.550190 + 0.835039i \(0.685445\pi\)
\(648\) 7.77906i 0.305590i
\(649\) −16.2579 16.2579i −0.638177 0.638177i
\(650\) −0.215651 −0.00845852
\(651\) −0.727190 0.727190i −0.0285008 0.0285008i
\(652\) 58.5731 58.5731i 2.29390 2.29390i
\(653\) 28.9574 28.9574i 1.13319 1.13319i 0.143545 0.989644i \(-0.454150\pi\)
0.989644 0.143545i \(-0.0458502\pi\)
\(654\) 52.6631i 2.05929i
\(655\) 16.9053i 0.660544i
\(656\) −30.1691 + 30.1691i −1.17791 + 1.17791i
\(657\) −7.46483 + 7.46483i −0.291231 + 0.291231i
\(658\) −10.2853 10.2853i −0.400963 0.400963i
\(659\) 10.8164 0.421349 0.210674 0.977556i \(-0.432434\pi\)
0.210674 + 0.977556i \(0.432434\pi\)
\(660\) 15.1741 + 15.1741i 0.590650 + 0.590650i
\(661\) 20.0794i 0.780997i −0.920604 0.390498i \(-0.872303\pi\)
0.920604 0.390498i \(-0.127697\pi\)
\(662\) −28.6010 −1.11161
\(663\) −4.92223 2.34315i −0.191164 0.0910002i
\(664\) −66.3531 −2.57500
\(665\) 30.6020i 1.18670i
\(666\) −9.90921 9.90921i −0.383974 0.383974i
\(667\) 0.825928 0.0319801
\(668\) −5.61845 5.61845i −0.217385 0.217385i
\(669\) −15.0362 + 15.0362i −0.581331 + 0.581331i
\(670\) 58.7700 58.7700i 2.27048 2.27048i
\(671\) 16.9452i 0.654161i
\(672\) 28.7138i 1.10766i
\(673\) 19.3820 19.3820i 0.747121 0.747121i −0.226816 0.973938i \(-0.572832\pi\)
0.973938 + 0.226816i \(0.0728317\pi\)
\(674\) 18.3023 18.3023i 0.704980 0.704980i
\(675\) −0.0437455 0.0437455i −0.00168377 0.00168377i
\(676\) 55.7037 2.14245
\(677\) −16.0696 16.0696i −0.617606 0.617606i 0.327311 0.944917i \(-0.393858\pi\)
−0.944917 + 0.327311i \(0.893858\pi\)
\(678\) 45.9714i 1.76552i
\(679\) 10.9138 0.418832
\(680\) −30.6350 + 64.3547i −1.17480 + 2.46789i
\(681\) −4.95404 −0.189839
\(682\) 2.28531i 0.0875089i
\(683\) 26.3090 + 26.3090i 1.00668 + 1.00668i 0.999978 + 0.00670720i \(0.00213498\pi\)
0.00670720 + 0.999978i \(0.497865\pi\)
\(684\) −29.4594 −1.12641
\(685\) 34.6828 + 34.6828i 1.32516 + 1.32516i
\(686\) −37.2937 + 37.2937i −1.42388 + 1.42388i
\(687\) 1.29996 1.29996i 0.0495967 0.0495967i
\(688\) 88.4099i 3.37060i
\(689\) 0.961475i 0.0366293i
\(690\) −19.7980 + 19.7980i −0.753696 + 0.753696i
\(691\) −12.7675 + 12.7675i −0.485700 + 0.485700i −0.906946 0.421246i \(-0.861593\pi\)
0.421246 + 0.906946i \(0.361593\pi\)
\(692\) 59.9865 + 59.9865i 2.28035 + 2.28035i
\(693\) 4.51420 0.171480
\(694\) 48.5572 + 48.5572i 1.84321 + 1.84321i
\(695\) 7.96553i 0.302150i
\(696\) 1.34440 0.0509592
\(697\) 7.12811 14.9740i 0.269996 0.567180i
\(698\) 49.1976 1.86216
\(699\) 1.49500i 0.0565461i
\(700\) 0.501187 + 0.501187i 0.0189431 + 0.0189431i
\(701\) −9.99896 −0.377656 −0.188828 0.982010i \(-0.560469\pi\)
−0.188828 + 0.982010i \(0.560469\pi\)
\(702\) −2.46483 2.46483i −0.0930291 0.0930291i
\(703\) 22.3661 22.3661i 0.843553 0.843553i
\(704\) −15.8568 + 15.8568i −0.597627 + 0.597627i
\(705\) 5.29780i 0.199527i
\(706\) 31.1991i 1.17419i
\(707\) −11.6369 + 11.6369i −0.437649 + 0.437649i
\(708\) 41.2619 41.2619i 1.55072 1.55072i
\(709\) 0.773543 + 0.773543i 0.0290510 + 0.0290510i 0.721483 0.692432i \(-0.243461\pi\)
−0.692432 + 0.721483i \(0.743461\pi\)
\(710\) −35.7447 −1.34147
\(711\) 0.493752 + 0.493752i 0.0185171 + 0.0185171i
\(712\) 42.0300i 1.57514i
\(713\) −2.12373 −0.0795344
\(714\) 8.41546 + 23.7067i 0.314941 + 0.887200i
\(715\) −5.73122 −0.214335
\(716\) 54.8299i 2.04909i
\(717\) 7.08874 + 7.08874i 0.264734 + 0.264734i
\(718\) −37.2768 −1.39116
\(719\) 30.0392 + 30.0392i 1.12027 + 1.12027i 0.991700 + 0.128572i \(0.0410393\pi\)
0.128572 + 0.991700i \(0.458961\pi\)
\(720\) −16.6678 + 16.6678i −0.621173 + 0.621173i
\(721\) −15.0933 + 15.0933i −0.562103 + 0.562103i
\(722\) 43.2634i 1.61010i
\(723\) 11.5155i 0.428264i
\(724\) −68.9606 + 68.9606i −2.56290 + 2.56290i
\(725\) −0.00756020 + 0.00756020i −0.000280779 + 0.000280779i
\(726\) 13.4131 + 13.4131i 0.497808 + 0.497808i
\(727\) −45.2169 −1.67700 −0.838501 0.544900i \(-0.816568\pi\)
−0.838501 + 0.544900i \(0.816568\pi\)
\(728\) 16.8309 + 16.8309i 0.623796 + 0.623796i
\(729\) 1.00000i 0.0370370i
\(730\) −61.8484 −2.28911
\(731\) −11.4961 32.3848i −0.425197 1.19780i
\(732\) 43.0062 1.58956
\(733\) 21.5990i 0.797778i 0.916999 + 0.398889i \(0.130604\pi\)
−0.916999 + 0.398889i \(0.869396\pi\)
\(734\) 6.94164 + 6.94164i 0.256221 + 0.256221i
\(735\) 3.65408 0.134783
\(736\) −41.9288 41.9288i −1.54551 1.54551i
\(737\) −19.5676 + 19.5676i −0.720782 + 0.720782i
\(738\) 7.49830 7.49830i 0.276016 0.276016i
\(739\) 19.0419i 0.700467i 0.936663 + 0.350233i \(0.113898\pi\)
−0.936663 + 0.350233i \(0.886102\pi\)
\(740\) 58.4769i 2.14965i
\(741\) 5.56337 5.56337i 0.204376 0.204376i
\(742\) −3.13726 + 3.13726i −0.115173 + 0.115173i
\(743\) −18.6918 18.6918i −0.685737 0.685737i 0.275550 0.961287i \(-0.411140\pi\)
−0.961287 + 0.275550i \(0.911140\pi\)
\(744\) −3.45688 −0.126735
\(745\) 18.4963 + 18.4963i 0.677650 + 0.677650i
\(746\) 4.04999i 0.148281i
\(747\) 8.52971 0.312086
\(748\) 17.1137 35.9507i 0.625740 1.31449i
\(749\) 11.9936 0.438236
\(750\) 29.6554i 1.08286i
\(751\) −3.28582 3.28582i −0.119901 0.119901i 0.644610 0.764512i \(-0.277020\pi\)
−0.764512 + 0.644610i \(0.777020\pi\)
\(752\) −25.2887 −0.922185
\(753\) −0.664807 0.664807i −0.0242269 0.0242269i
\(754\) −0.425978 + 0.425978i −0.0155132 + 0.0155132i
\(755\) −25.3042 + 25.3042i −0.920915 + 0.920915i
\(756\) 11.4569i 0.416683i
\(757\) 10.4074i 0.378263i −0.981952 0.189131i \(-0.939433\pi\)
0.981952 0.189131i \(-0.0605672\pi\)
\(758\) 67.3935 67.3935i 2.44784 2.44784i
\(759\) 6.59178 6.59178i 0.239266 0.239266i
\(760\) −72.7372 72.7372i −2.63846 2.63846i
\(761\) 38.6365 1.40057 0.700286 0.713862i \(-0.253056\pi\)
0.700286 + 0.713862i \(0.253056\pi\)
\(762\) −18.3661 18.3661i −0.665333 0.665333i
\(763\) 46.2275i 1.67355i
\(764\) 7.96819 0.288279
\(765\) 3.93813 8.27281i 0.142384 0.299104i
\(766\) 43.1031 1.55738
\(767\) 15.5845i 0.562725i
\(768\) 6.01659 + 6.01659i 0.217105 + 0.217105i
\(769\) 0.178098 0.00642238 0.00321119 0.999995i \(-0.498978\pi\)
0.00321119 + 0.999995i \(0.498978\pi\)
\(770\) 18.7008 + 18.7008i 0.673929 + 0.673929i
\(771\) −1.52392 + 1.52392i −0.0548827 + 0.0548827i
\(772\) −15.6619 + 15.6619i −0.563685 + 0.563685i
\(773\) 4.15554i 0.149464i 0.997204 + 0.0747322i \(0.0238102\pi\)
−0.997204 + 0.0747322i \(0.976190\pi\)
\(774\) 21.9736i 0.789824i
\(775\) 0.0194398 0.0194398i 0.000698296 0.000698296i
\(776\) 25.9406 25.9406i 0.931214 0.931214i
\(777\) −8.69827 8.69827i −0.312049 0.312049i
\(778\) −43.3776 −1.55516
\(779\) 16.9244 + 16.9244i 0.606380 + 0.606380i
\(780\) 14.5456i 0.520817i
\(781\) 11.9013 0.425861
\(782\) 46.9057 + 22.3287i 1.67735 + 0.798473i
\(783\) −0.172822 −0.00617617
\(784\) 17.4425i 0.622946i
\(785\) 10.1435 + 10.1435i 0.362036 + 0.362036i
\(786\) 20.0564 0.715389
\(787\) 1.22941 + 1.22941i 0.0438238 + 0.0438238i 0.728679 0.684855i \(-0.240135\pi\)
−0.684855 + 0.728679i \(0.740135\pi\)
\(788\) −25.8828 + 25.8828i −0.922036 + 0.922036i
\(789\) −9.29326 + 9.29326i −0.330849 + 0.330849i
\(790\) 4.09088i 0.145547i
\(791\) 40.3535i 1.43481i
\(792\) 10.7297 10.7297i 0.381263 0.381263i
\(793\) −8.12169 + 8.12169i −0.288410 + 0.288410i
\(794\) −67.9706 67.9706i −2.41219 2.41219i
\(795\) 1.61596 0.0573120
\(796\) −25.1925 25.1925i −0.892924 0.892924i
\(797\) 22.2085i 0.786666i 0.919396 + 0.393333i \(0.128678\pi\)
−0.919396 + 0.393333i \(0.871322\pi\)
\(798\) −36.3062 −1.28523
\(799\) 9.26333 3.28832i 0.327713 0.116333i
\(800\) 0.767597 0.0271386
\(801\) 5.40297i 0.190904i
\(802\) −18.0439 18.0439i −0.637153 0.637153i
\(803\) 20.5926 0.726695
\(804\) −49.6619 49.6619i −1.75144 1.75144i
\(805\) −17.3786 + 17.3786i −0.612515 + 0.612515i
\(806\) 1.09533 1.09533i 0.0385813 0.0385813i
\(807\) 15.1743i 0.534162i
\(808\) 55.3187i 1.94611i
\(809\) −2.28300 + 2.28300i −0.0802661 + 0.0802661i −0.746100 0.665834i \(-0.768076\pi\)
0.665834 + 0.746100i \(0.268076\pi\)
\(810\) 4.14265 4.14265i 0.145558 0.145558i
\(811\) −17.8304 17.8304i −0.626110 0.626110i 0.320977 0.947087i \(-0.395989\pi\)
−0.947087 + 0.320977i \(0.895989\pi\)
\(812\) 1.98000 0.0694846
\(813\) −8.36931 8.36931i −0.293524 0.293524i
\(814\) 27.3356i 0.958114i
\(815\) −37.1821 −1.30243
\(816\) 39.4897 + 18.7984i 1.38242 + 0.658077i
\(817\) 49.5966 1.73516
\(818\) 6.64975i 0.232503i
\(819\) −2.16362 2.16362i −0.0756030 0.0756030i
\(820\) 44.2494 1.54526
\(821\) 24.3444 + 24.3444i 0.849626 + 0.849626i 0.990086 0.140460i \(-0.0448583\pi\)
−0.140460 + 0.990086i \(0.544858\pi\)
\(822\) 41.1477 41.1477i 1.43519 1.43519i
\(823\) 12.5861 12.5861i 0.438723 0.438723i −0.452859 0.891582i \(-0.649596\pi\)
0.891582 + 0.452859i \(0.149596\pi\)
\(824\) 71.7497i 2.49952i
\(825\) 0.120677i 0.00420143i
\(826\) 50.8518 50.8518i 1.76936 1.76936i
\(827\) −1.37930 + 1.37930i −0.0479631 + 0.0479631i −0.730682 0.682718i \(-0.760798\pi\)
0.682718 + 0.730682i \(0.260798\pi\)
\(828\) 16.7297 + 16.7297i 0.581397 + 0.581397i
\(829\) −0.904671 −0.0314205 −0.0157103 0.999877i \(-0.505001\pi\)
−0.0157103 + 0.999877i \(0.505001\pi\)
\(830\) 35.3356 + 35.3356i 1.22652 + 1.22652i
\(831\) 26.9025i 0.933238i
\(832\) 15.2001 0.526969
\(833\) −2.26807 6.38924i −0.0785840 0.221374i
\(834\) 9.45029 0.327237
\(835\) 3.56659i 0.123427i
\(836\) 40.6335 + 40.6335i 1.40534 + 1.40534i
\(837\) 0.444383 0.0153601
\(838\) −49.0778 49.0778i −1.69537 1.69537i
\(839\) −17.1659 + 17.1659i −0.592633 + 0.592633i −0.938342 0.345708i \(-0.887639\pi\)
0.345708 + 0.938342i \(0.387639\pi\)
\(840\) −28.2878 + 28.2878i −0.976022 + 0.976022i
\(841\) 28.9701i 0.998970i
\(842\) 17.4290i 0.600643i
\(843\) −15.7217 + 15.7217i −0.541485 + 0.541485i
\(844\) 46.9731 46.9731i 1.61688 1.61688i
\(845\) −17.6803 17.6803i −0.608222 0.608222i
\(846\) 6.28531 0.216093
\(847\) 11.7740 + 11.7740i 0.404559 + 0.404559i
\(848\) 7.71366i 0.264888i
\(849\) −23.9577 −0.822225
\(850\) −0.633743 + 0.224968i −0.0217372 + 0.00771634i
\(851\) −25.4030 −0.870802
\(852\) 30.2050i 1.03481i
\(853\) 26.9482 + 26.9482i 0.922689 + 0.922689i 0.997219 0.0745302i \(-0.0237457\pi\)
−0.0745302 + 0.997219i \(0.523746\pi\)
\(854\) 53.0016 1.81368
\(855\) 9.35038 + 9.35038i 0.319776 + 0.319776i
\(856\) 28.5072 28.5072i 0.974357 0.974357i
\(857\) 4.80850 4.80850i 0.164255 0.164255i −0.620194 0.784449i \(-0.712946\pi\)
0.784449 + 0.620194i \(0.212946\pi\)
\(858\) 6.79951i 0.232131i
\(859\) 22.3072i 0.761113i 0.924758 + 0.380557i \(0.124268\pi\)
−0.924758 + 0.380557i \(0.875732\pi\)
\(860\) 64.8359 64.8359i 2.21089 2.21089i
\(861\) 6.58197 6.58197i 0.224313 0.224313i
\(862\) 52.4335 + 52.4335i 1.78589 + 1.78589i
\(863\) −0.400593 −0.0136363 −0.00681816 0.999977i \(-0.502170\pi\)
−0.00681816 + 0.999977i \(0.502170\pi\)
\(864\) 8.77343 + 8.77343i 0.298478 + 0.298478i
\(865\) 38.0794i 1.29474i
\(866\) −45.2135 −1.53642
\(867\) −16.9096 1.75102i −0.574279 0.0594678i
\(868\) −5.09124 −0.172808
\(869\) 1.36207i 0.0462050i
\(870\) −0.715943 0.715943i −0.0242727 0.0242727i
\(871\) 18.7572 0.635563
\(872\) −109.877 109.877i −3.72090 3.72090i
\(873\) −3.33468 + 3.33468i −0.112862 + 0.112862i
\(874\) −53.0154 + 53.0154i −1.79327 + 1.79327i
\(875\) 26.0314i 0.880023i
\(876\) 52.2632i 1.76581i
\(877\) −0.149079 + 0.149079i −0.00503404 + 0.00503404i −0.709619 0.704585i \(-0.751133\pi\)
0.704585 + 0.709619i \(0.251133\pi\)
\(878\) −15.3331 + 15.3331i −0.517469 + 0.517469i
\(879\) 5.26361 + 5.26361i 0.177537 + 0.177537i
\(880\) 45.9800 1.54999
\(881\) −36.6255 36.6255i −1.23394 1.23394i −0.962436 0.271508i \(-0.912478\pi\)
−0.271508 0.962436i \(-0.587522\pi\)
\(882\) 4.33519i 0.145974i
\(883\) −23.5757 −0.793385 −0.396692 0.917952i \(-0.629842\pi\)
−0.396692 + 0.917952i \(0.629842\pi\)
\(884\) −25.4334 + 9.02840i −0.855416 + 0.303658i
\(885\) −26.1930 −0.880468
\(886\) 48.6834i 1.63555i
\(887\) −11.5500 11.5500i −0.387810 0.387810i 0.486096 0.873906i \(-0.338421\pi\)
−0.873906 + 0.486096i \(0.838421\pi\)
\(888\) −41.3494 −1.38759
\(889\) −16.1217 16.1217i −0.540704 0.540704i
\(890\) 22.3826 22.3826i 0.750267 0.750267i
\(891\) −1.37930 + 1.37930i −0.0462084 + 0.0462084i
\(892\) 105.272i 3.52476i
\(893\) 14.1866i 0.474735i
\(894\) 21.9439 21.9439i 0.733915 0.733915i
\(895\) −17.4030 + 17.4030i −0.581717 + 0.581717i
\(896\) −8.99000 8.99000i −0.300335 0.300335i
\(897\) −6.31877 −0.210978
\(898\) −57.6510 57.6510i −1.92384 1.92384i
\(899\) 0.0767993i 0.00256140i
\(900\) −0.306273 −0.0102091
\(901\) −1.00302 2.82554i −0.0334153 0.0941322i
\(902\) −20.6849 −0.688731
\(903\) 19.2883i 0.641875i
\(904\) 95.9153 + 95.9153i 3.19009 + 3.19009i
\(905\) 43.7761 1.45517
\(906\) 30.0209 + 30.0209i 0.997378 + 0.997378i
\(907\) −21.7666 + 21.7666i −0.722747 + 0.722747i −0.969164 0.246417i \(-0.920747\pi\)
0.246417 + 0.969164i \(0.420747\pi\)
\(908\) −17.3422 + 17.3422i −0.575522 + 0.575522i
\(909\) 7.11123i 0.235865i
\(910\) 17.9263i 0.594250i
\(911\) 5.08757 5.08757i 0.168559 0.168559i −0.617787 0.786346i \(-0.711971\pi\)
0.786346 + 0.617787i \(0.211971\pi\)
\(912\) −44.6335 + 44.6335i −1.47796 + 1.47796i
\(913\) −11.7651 11.7651i −0.389367 0.389367i
\(914\) −40.9532 −1.35461
\(915\) −13.6502 13.6502i −0.451260 0.451260i
\(916\) 9.10136i 0.300717i
\(917\) 17.6054 0.581383
\(918\) −9.81485 4.67220i −0.323938 0.154205i
\(919\) 11.6873 0.385527 0.192764 0.981245i \(-0.438255\pi\)
0.192764 + 0.981245i \(0.438255\pi\)
\(920\) 82.6135i 2.72368i
\(921\) 10.0539 + 10.0539i 0.331288 + 0.331288i
\(922\) −102.565 −3.37779
\(923\) −5.70418 5.70418i −0.187755 0.187755i
\(924\) 15.8025 15.8025i 0.519865 0.519865i
\(925\) 0.232528 0.232528i 0.00764548 0.00764548i
\(926\) 59.9971i 1.97163i
\(927\) 9.22344i 0.302938i
\(928\) 1.51625 1.51625i 0.0497732 0.0497732i
\(929\) −10.0287 + 10.0287i −0.329032 + 0.329032i −0.852218 0.523186i \(-0.824743\pi\)
0.523186 + 0.852218i \(0.324743\pi\)
\(930\) 1.84092 + 1.84092i 0.0603663 + 0.0603663i
\(931\) 9.78497 0.320689
\(932\) 5.23344 + 5.23344i 0.171427 + 0.171427i
\(933\) 10.3616i 0.339222i
\(934\) 33.1003 1.08308
\(935\) −16.8426 + 5.97884i −0.550812 + 0.195529i
\(936\) −10.2853 −0.336186
\(937\) 25.4693i 0.832044i −0.909355 0.416022i \(-0.863424\pi\)
0.909355 0.416022i \(-0.136576\pi\)
\(938\) −61.2041 61.2041i −1.99838 1.99838i
\(939\) 17.4262 0.568682
\(940\) 18.5456 + 18.5456i 0.604891 + 0.604891i
\(941\) −41.4250 + 41.4250i −1.35042 + 1.35042i −0.465223 + 0.885193i \(0.654026\pi\)
−0.885193 + 0.465223i \(0.845974\pi\)
\(942\) 12.0342 12.0342i 0.392095 0.392095i
\(943\) 19.2224i 0.625968i
\(944\) 125.031i 4.06940i
\(945\) 3.63640 3.63640i 0.118292 0.118292i
\(946\) −30.3083 + 30.3083i −0.985406 + 0.985406i
\(947\) 13.4664 + 13.4664i 0.437598 + 0.437598i 0.891203 0.453605i \(-0.149862\pi\)
−0.453605 + 0.891203i \(0.649862\pi\)
\(948\) 3.45688 0.112274
\(949\) −9.86984 9.86984i −0.320389 0.320389i
\(950\) 0.970563i 0.0314892i
\(951\) −14.1753 −0.459666
\(952\) 67.0200 + 31.9038i 2.17213 + 1.03401i
\(953\) 19.8922 0.644371 0.322185 0.946677i \(-0.395583\pi\)
0.322185 + 0.946677i \(0.395583\pi\)
\(954\) 1.91717i 0.0620706i
\(955\) −2.52910 2.52910i −0.0818397 0.0818397i
\(956\) 49.6300 1.60515
\(957\) 0.238375 + 0.238375i 0.00770556 + 0.00770556i
\(958\) −69.4270 + 69.4270i −2.24308 + 2.24308i
\(959\) 36.1192 36.1192i 1.16635 1.16635i
\(960\) 25.5469i 0.824522i
\(961\) 30.8025i 0.993630i
\(962\) 13.1018 13.1018i 0.422418 0.422418i
\(963\) −3.66461 + 3.66461i −0.118090 + 0.118090i
\(964\) 40.3113 + 40.3113i 1.29834 + 1.29834i
\(965\) 9.94216 0.320049
\(966\) 20.6179 + 20.6179i 0.663371 + 0.663371i
\(967\) 53.0310i 1.70536i −0.522433 0.852680i \(-0.674975\pi\)
0.522433 0.852680i \(-0.325025\pi\)
\(968\) 55.9706 1.79896
\(969\) 10.5456 22.1531i 0.338774 0.711660i
\(970\) −27.6288 −0.887108
\(971\) 3.02535i 0.0970880i −0.998821 0.0485440i \(-0.984542\pi\)
0.998821 0.0485440i \(-0.0154581\pi\)
\(972\) −3.50062 3.50062i −0.112283 0.112283i
\(973\) 8.29543 0.265939
\(974\) −3.06641 3.06641i −0.0982541 0.0982541i
\(975\) 0.0578394 0.0578394i 0.00185234 0.00185234i
\(976\) 65.1581 65.1581i 2.08566 2.08566i
\(977\) 11.2664i 0.360444i 0.983626 + 0.180222i \(0.0576815\pi\)
−0.983626 + 0.180222i \(0.942318\pi\)
\(978\) 44.1128i 1.41057i
\(979\) −7.45234 + 7.45234i −0.238178 + 0.238178i
\(980\) 12.7916 12.7916i 0.408611 0.408611i
\(981\) 14.1247 + 14.1247i 0.450967 + 0.450967i
\(982\) 11.3397 0.361866
\(983\) 34.1943 + 34.1943i 1.09063 + 1.09063i 0.995461 + 0.0951684i \(0.0303390\pi\)
0.0951684 + 0.995461i \(0.469661\pi\)
\(984\) 31.2891i 0.997459i
\(985\) 16.4304 0.523515
\(986\) −0.807460 + 1.69623i −0.0257148 + 0.0540188i
\(987\) 5.51722 0.175615
\(988\) 38.9506i 1.23918i
\(989\) −28.1654 28.1654i −0.895608 0.895608i
\(990\) −11.4280 −0.363204
\(991\) 16.9991 + 16.9991i 0.539994 + 0.539994i 0.923527 0.383533i \(-0.125293\pi\)
−0.383533 + 0.923527i \(0.625293\pi\)
\(992\) −3.89876 + 3.89876i −0.123786 + 0.123786i
\(993\) 7.67104 7.67104i 0.243433 0.243433i
\(994\) 37.2251i 1.18071i
\(995\) 15.9921i 0.506985i
\(996\) 29.8593 29.8593i 0.946129 0.946129i
\(997\) −18.6250 + 18.6250i −0.589861 + 0.589861i −0.937594 0.347733i \(-0.886952\pi\)
0.347733 + 0.937594i \(0.386952\pi\)
\(998\) 2.78753 + 2.78753i 0.0882377 + 0.0882377i
\(999\) 5.31548 0.168174
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.2.e.a.13.4 yes 8
3.2 odd 2 153.2.f.b.64.1 8
4.3 odd 2 816.2.bd.e.625.4 8
12.11 even 2 2448.2.be.x.1441.1 8
17.2 even 8 867.2.a.k.1.1 4
17.3 odd 16 867.2.h.k.712.3 16
17.4 even 4 inner 51.2.e.a.4.1 8
17.5 odd 16 867.2.h.i.733.2 16
17.6 odd 16 867.2.h.i.757.1 16
17.7 odd 16 867.2.h.k.688.3 16
17.8 even 8 867.2.d.f.577.8 8
17.9 even 8 867.2.d.f.577.7 8
17.10 odd 16 867.2.h.k.688.4 16
17.11 odd 16 867.2.h.i.757.2 16
17.12 odd 16 867.2.h.i.733.1 16
17.13 even 4 867.2.e.g.616.1 8
17.14 odd 16 867.2.h.k.712.4 16
17.15 even 8 867.2.a.l.1.1 4
17.16 even 2 867.2.e.g.829.4 8
51.2 odd 8 2601.2.a.bf.1.4 4
51.32 odd 8 2601.2.a.be.1.4 4
51.38 odd 4 153.2.f.b.55.4 8
68.55 odd 4 816.2.bd.e.769.4 8
204.191 even 4 2448.2.be.x.1585.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.1 8 17.4 even 4 inner
51.2.e.a.13.4 yes 8 1.1 even 1 trivial
153.2.f.b.55.4 8 51.38 odd 4
153.2.f.b.64.1 8 3.2 odd 2
816.2.bd.e.625.4 8 4.3 odd 2
816.2.bd.e.769.4 8 68.55 odd 4
867.2.a.k.1.1 4 17.2 even 8
867.2.a.l.1.1 4 17.15 even 8
867.2.d.f.577.7 8 17.9 even 8
867.2.d.f.577.8 8 17.8 even 8
867.2.e.g.616.1 8 17.13 even 4
867.2.e.g.829.4 8 17.16 even 2
867.2.h.i.733.1 16 17.12 odd 16
867.2.h.i.733.2 16 17.5 odd 16
867.2.h.i.757.1 16 17.6 odd 16
867.2.h.i.757.2 16 17.11 odd 16
867.2.h.k.688.3 16 17.7 odd 16
867.2.h.k.688.4 16 17.10 odd 16
867.2.h.k.712.3 16 17.3 odd 16
867.2.h.k.712.4 16 17.14 odd 16
2448.2.be.x.1441.1 8 12.11 even 2
2448.2.be.x.1585.1 8 204.191 even 4
2601.2.a.be.1.4 4 51.32 odd 8
2601.2.a.bf.1.4 4 51.2 odd 8