Properties

Label 867.2.d.f.577.7
Level $867$
Weight $2$
Character 867.577
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(577,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.7
Root \(-0.222191i\) of defining polynomial
Character \(\chi\) \(=\) 867.577
Dual form 867.2.d.f.577.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.63640 q^{2} -1.00000i q^{3} +4.95063 q^{4} -2.22219i q^{5} -2.63640i q^{6} +2.31423i q^{7} +7.77906 q^{8} -1.00000 q^{9} -5.85860i q^{10} -1.95063i q^{11} -4.95063i q^{12} +1.32218 q^{13} +6.10124i q^{14} -2.22219 q^{15} +10.6075 q^{16} -2.63640 q^{18} -5.95063 q^{19} -11.0012i q^{20} +2.31423 q^{21} -5.14265i q^{22} +4.77906i q^{23} -7.77906i q^{24} +0.0618655 q^{25} +3.48580 q^{26} +1.00000i q^{27} +11.4569i q^{28} +0.172822i q^{29} -5.85860 q^{30} +0.444383i q^{31} +12.4075 q^{32} -1.95063 q^{33} +5.14265 q^{35} -4.95063 q^{36} +5.31548i q^{37} -15.6883 q^{38} -1.32218i q^{39} -17.2866i q^{40} -4.02222i q^{41} +6.10124 q^{42} -8.33468 q^{43} -9.65685i q^{44} +2.22219i q^{45} +12.5995i q^{46} +2.38404 q^{47} -10.6075i q^{48} +1.64436 q^{49} +0.163102 q^{50} +6.54562 q^{52} +0.727190 q^{53} +2.63640i q^{54} -4.33468 q^{55} +18.0025i q^{56} +5.95063i q^{57} +0.455630i q^{58} +11.7870 q^{59} -11.0012 q^{60} +8.68702i q^{61} +1.17157i q^{62} -2.31423i q^{63} +11.4963 q^{64} -2.93813i q^{65} -5.14265 q^{66} -14.1866 q^{67} +4.77906 q^{69} +13.5581 q^{70} +6.10124i q^{71} -7.77906 q^{72} -10.5569i q^{73} +14.0137i q^{74} -0.0618655i q^{75} -29.4594 q^{76} +4.51420 q^{77} -3.48580i q^{78} -0.698270i q^{79} -23.5719i q^{80} +1.00000 q^{81} -10.6042i q^{82} -8.52971 q^{83} +11.4569 q^{84} -21.9736 q^{86} +0.172822 q^{87} -15.1741i q^{88} +5.40297 q^{89} +5.85860i q^{90} +3.05982i q^{91} +23.6594i q^{92} +0.444383 q^{93} +6.28531 q^{94} +13.2234i q^{95} -12.4075i q^{96} -4.71594i q^{97} +4.33519 q^{98} +1.95063i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 12 q^{4} + 12 q^{8} - 8 q^{9} + 4 q^{13} - 12 q^{15} + 12 q^{16} - 4 q^{18} - 20 q^{19} + 8 q^{21} - 4 q^{25} + 40 q^{26} - 24 q^{30} + 28 q^{32} + 12 q^{33} + 8 q^{35} - 12 q^{36} - 24 q^{38}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63640 1.86422 0.932110 0.362176i \(-0.117966\pi\)
0.932110 + 0.362176i \(0.117966\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 4.95063 2.47532
\(5\) − 2.22219i − 0.993794i −0.867809 0.496897i \(-0.834473\pi\)
0.867809 0.496897i \(-0.165527\pi\)
\(6\) − 2.63640i − 1.07631i
\(7\) 2.31423i 0.874695i 0.899293 + 0.437348i \(0.144082\pi\)
−0.899293 + 0.437348i \(0.855918\pi\)
\(8\) 7.77906 2.75031
\(9\) −1.00000 −0.333333
\(10\) − 5.85860i − 1.85265i
\(11\) − 1.95063i − 0.588137i −0.955784 0.294069i \(-0.904991\pi\)
0.955784 0.294069i \(-0.0950094\pi\)
\(12\) − 4.95063i − 1.42912i
\(13\) 1.32218 0.366706 0.183353 0.983047i \(-0.441305\pi\)
0.183353 + 0.983047i \(0.441305\pi\)
\(14\) 6.10124i 1.63062i
\(15\) −2.22219 −0.573767
\(16\) 10.6075 2.65187
\(17\) 0 0
\(18\) −2.63640 −0.621407
\(19\) −5.95063 −1.36517 −0.682584 0.730807i \(-0.739144\pi\)
−0.682584 + 0.730807i \(0.739144\pi\)
\(20\) − 11.0012i − 2.45995i
\(21\) 2.31423 0.505006
\(22\) − 5.14265i − 1.09642i
\(23\) 4.77906i 0.996503i 0.867033 + 0.498251i \(0.166024\pi\)
−0.867033 + 0.498251i \(0.833976\pi\)
\(24\) − 7.77906i − 1.58789i
\(25\) 0.0618655 0.0123731
\(26\) 3.48580 0.683621
\(27\) 1.00000i 0.192450i
\(28\) 11.4569i 2.16515i
\(29\) 0.172822i 0.0320923i 0.999871 + 0.0160462i \(0.00510787\pi\)
−0.999871 + 0.0160462i \(0.994892\pi\)
\(30\) −5.85860 −1.06963
\(31\) 0.444383i 0.0798135i 0.999203 + 0.0399067i \(0.0127061\pi\)
−0.999203 + 0.0399067i \(0.987294\pi\)
\(32\) 12.4075 2.19336
\(33\) −1.95063 −0.339561
\(34\) 0 0
\(35\) 5.14265 0.869267
\(36\) −4.95063 −0.825105
\(37\) 5.31548i 0.873859i 0.899496 + 0.436929i \(0.143934\pi\)
−0.899496 + 0.436929i \(0.856066\pi\)
\(38\) −15.6883 −2.54497
\(39\) − 1.32218i − 0.211718i
\(40\) − 17.2866i − 2.73324i
\(41\) − 4.02222i − 0.628165i −0.949396 0.314082i \(-0.898303\pi\)
0.949396 0.314082i \(-0.101697\pi\)
\(42\) 6.10124 0.941441
\(43\) −8.33468 −1.27103 −0.635513 0.772090i \(-0.719211\pi\)
−0.635513 + 0.772090i \(0.719211\pi\)
\(44\) − 9.65685i − 1.45583i
\(45\) 2.22219i 0.331265i
\(46\) 12.5995i 1.85770i
\(47\) 2.38404 0.347749 0.173874 0.984768i \(-0.444371\pi\)
0.173874 + 0.984768i \(0.444371\pi\)
\(48\) − 10.6075i − 1.53106i
\(49\) 1.64436 0.234908
\(50\) 0.163102 0.0230662
\(51\) 0 0
\(52\) 6.54562 0.907714
\(53\) 0.727190 0.0998872 0.0499436 0.998752i \(-0.484096\pi\)
0.0499436 + 0.998752i \(0.484096\pi\)
\(54\) 2.63640i 0.358769i
\(55\) −4.33468 −0.584488
\(56\) 18.0025i 2.40569i
\(57\) 5.95063i 0.788180i
\(58\) 0.455630i 0.0598271i
\(59\) 11.7870 1.53454 0.767269 0.641325i \(-0.221615\pi\)
0.767269 + 0.641325i \(0.221615\pi\)
\(60\) −11.0012 −1.42026
\(61\) 8.68702i 1.11226i 0.831096 + 0.556130i \(0.187714\pi\)
−0.831096 + 0.556130i \(0.812286\pi\)
\(62\) 1.17157i 0.148790i
\(63\) − 2.31423i − 0.291565i
\(64\) 11.4963 1.43703
\(65\) − 2.93813i − 0.364431i
\(66\) −5.14265 −0.633017
\(67\) −14.1866 −1.73317 −0.866583 0.499034i \(-0.833688\pi\)
−0.866583 + 0.499034i \(0.833688\pi\)
\(68\) 0 0
\(69\) 4.77906 0.575331
\(70\) 13.5581 1.62050
\(71\) 6.10124i 0.724084i 0.932162 + 0.362042i \(0.117920\pi\)
−0.932162 + 0.362042i \(0.882080\pi\)
\(72\) −7.77906 −0.916771
\(73\) − 10.5569i − 1.23559i −0.786340 0.617794i \(-0.788027\pi\)
0.786340 0.617794i \(-0.211973\pi\)
\(74\) 14.0137i 1.62906i
\(75\) − 0.0618655i − 0.00714361i
\(76\) −29.4594 −3.37922
\(77\) 4.51420 0.514441
\(78\) − 3.48580i − 0.394689i
\(79\) − 0.698270i − 0.0785616i −0.999228 0.0392808i \(-0.987493\pi\)
0.999228 0.0392808i \(-0.0125067\pi\)
\(80\) − 23.5719i − 2.63541i
\(81\) 1.00000 0.111111
\(82\) − 10.6042i − 1.17104i
\(83\) −8.52971 −0.936258 −0.468129 0.883660i \(-0.655072\pi\)
−0.468129 + 0.883660i \(0.655072\pi\)
\(84\) 11.4569 1.25005
\(85\) 0 0
\(86\) −21.9736 −2.36947
\(87\) 0.172822 0.0185285
\(88\) − 15.1741i − 1.61756i
\(89\) 5.40297 0.572713 0.286357 0.958123i \(-0.407556\pi\)
0.286357 + 0.958123i \(0.407556\pi\)
\(90\) 5.85860i 0.617550i
\(91\) 3.05982i 0.320756i
\(92\) 23.6594i 2.46666i
\(93\) 0.444383 0.0460803
\(94\) 6.28531 0.648280
\(95\) 13.2234i 1.35670i
\(96\) − 12.4075i − 1.26634i
\(97\) − 4.71594i − 0.478831i −0.970917 0.239416i \(-0.923044\pi\)
0.970917 0.239416i \(-0.0769559\pi\)
\(98\) 4.33519 0.437921
\(99\) 1.95063i 0.196046i
\(100\) 0.306273 0.0306273
\(101\) −7.11123 −0.707594 −0.353797 0.935322i \(-0.615110\pi\)
−0.353797 + 0.935322i \(0.615110\pi\)
\(102\) 0 0
\(103\) −9.22344 −0.908813 −0.454406 0.890795i \(-0.650149\pi\)
−0.454406 + 0.890795i \(0.650149\pi\)
\(104\) 10.2853 1.00856
\(105\) − 5.14265i − 0.501872i
\(106\) 1.91717 0.186212
\(107\) − 5.18254i − 0.501015i −0.968115 0.250508i \(-0.919402\pi\)
0.968115 0.250508i \(-0.0805975\pi\)
\(108\) 4.95063i 0.476375i
\(109\) 19.9753i 1.91329i 0.291255 + 0.956646i \(0.405927\pi\)
−0.291255 + 0.956646i \(0.594073\pi\)
\(110\) −11.4280 −1.08961
\(111\) 5.31548 0.504523
\(112\) 24.5481i 2.31958i
\(113\) 17.4372i 1.64035i 0.572113 + 0.820175i \(0.306124\pi\)
−0.572113 + 0.820175i \(0.693876\pi\)
\(114\) 15.6883i 1.46934i
\(115\) 10.6200 0.990318
\(116\) 0.855580i 0.0794386i
\(117\) −1.32218 −0.122235
\(118\) 31.0753 2.86072
\(119\) 0 0
\(120\) −17.2866 −1.57804
\(121\) 7.19504 0.654094
\(122\) 22.9025i 2.07350i
\(123\) −4.02222 −0.362671
\(124\) 2.19998i 0.197564i
\(125\) − 11.2484i − 1.00609i
\(126\) − 6.10124i − 0.543541i
\(127\) 9.85189 0.874214 0.437107 0.899409i \(-0.356003\pi\)
0.437107 + 0.899409i \(0.356003\pi\)
\(128\) 5.49375 0.485584
\(129\) 8.33468i 0.733827i
\(130\) − 7.74611i − 0.679379i
\(131\) − 7.60749i − 0.664669i −0.943162 0.332335i \(-0.892164\pi\)
0.943162 0.332335i \(-0.107836\pi\)
\(132\) −9.65685 −0.840521
\(133\) − 13.7711i − 1.19411i
\(134\) −37.4015 −3.23100
\(135\) 2.22219 0.191256
\(136\) 0 0
\(137\) 22.0723 1.88577 0.942883 0.333125i \(-0.108103\pi\)
0.942883 + 0.333125i \(0.108103\pi\)
\(138\) 12.5995 1.07254
\(139\) 3.58454i 0.304036i 0.988378 + 0.152018i \(0.0485772\pi\)
−0.988378 + 0.152018i \(0.951423\pi\)
\(140\) 25.4594 2.15171
\(141\) − 2.38404i − 0.200773i
\(142\) 16.0853i 1.34985i
\(143\) − 2.57908i − 0.215674i
\(144\) −10.6075 −0.883957
\(145\) 0.384044 0.0318931
\(146\) − 27.8322i − 2.30341i
\(147\) − 1.64436i − 0.135624i
\(148\) 26.3150i 2.16308i
\(149\) −11.7711 −0.964327 −0.482163 0.876081i \(-0.660149\pi\)
−0.482163 + 0.876081i \(0.660149\pi\)
\(150\) − 0.163102i − 0.0133173i
\(151\) 16.1037 1.31050 0.655252 0.755411i \(-0.272563\pi\)
0.655252 + 0.755411i \(0.272563\pi\)
\(152\) −46.2903 −3.75464
\(153\) 0 0
\(154\) 11.9013 0.959031
\(155\) 0.987504 0.0793182
\(156\) − 6.54562i − 0.524069i
\(157\) −6.45535 −0.515193 −0.257597 0.966253i \(-0.582931\pi\)
−0.257597 + 0.966253i \(0.582931\pi\)
\(158\) − 1.84092i − 0.146456i
\(159\) − 0.727190i − 0.0576699i
\(160\) − 27.5719i − 2.17975i
\(161\) −11.0598 −0.871636
\(162\) 2.63640 0.207136
\(163\) − 16.7322i − 1.31057i −0.755383 0.655283i \(-0.772549\pi\)
0.755383 0.655283i \(-0.227451\pi\)
\(164\) − 19.9125i − 1.55491i
\(165\) 4.33468i 0.337454i
\(166\) −22.4878 −1.74539
\(167\) 1.60499i 0.124198i 0.998070 + 0.0620988i \(0.0197794\pi\)
−0.998070 + 0.0620988i \(0.980221\pi\)
\(168\) 18.0025 1.38892
\(169\) −11.2518 −0.865526
\(170\) 0 0
\(171\) 5.95063 0.455056
\(172\) −41.2619 −3.14619
\(173\) − 17.1359i − 1.30282i −0.758725 0.651411i \(-0.774177\pi\)
0.758725 0.651411i \(-0.225823\pi\)
\(174\) 0.455630 0.0345412
\(175\) 0.143171i 0.0108227i
\(176\) − 20.6913i − 1.55966i
\(177\) − 11.7870i − 0.885966i
\(178\) 14.2444 1.06766
\(179\) −11.0753 −0.827809 −0.413905 0.910320i \(-0.635835\pi\)
−0.413905 + 0.910320i \(0.635835\pi\)
\(180\) 11.0012i 0.819985i
\(181\) − 19.6995i − 1.46425i −0.681168 0.732127i \(-0.738528\pi\)
0.681168 0.732127i \(-0.261472\pi\)
\(182\) 8.06693i 0.597960i
\(183\) 8.68702 0.642163
\(184\) 37.1766i 2.74069i
\(185\) 11.8120 0.868436
\(186\) 1.17157 0.0859039
\(187\) 0 0
\(188\) 11.8025 0.860788
\(189\) −2.31423 −0.168335
\(190\) 34.8623i 2.52918i
\(191\) 1.60953 0.116461 0.0582307 0.998303i \(-0.481454\pi\)
0.0582307 + 0.998303i \(0.481454\pi\)
\(192\) − 11.4963i − 0.829670i
\(193\) − 4.47403i − 0.322048i −0.986950 0.161024i \(-0.948520\pi\)
0.986950 0.161024i \(-0.0514797\pi\)
\(194\) − 12.4331i − 0.892647i
\(195\) −2.93813 −0.210404
\(196\) 8.14061 0.581472
\(197\) 7.39376i 0.526784i 0.964689 + 0.263392i \(0.0848412\pi\)
−0.964689 + 0.263392i \(0.915159\pi\)
\(198\) 5.14265i 0.365472i
\(199\) − 7.19657i − 0.510151i −0.966921 0.255076i \(-0.917900\pi\)
0.966921 0.255076i \(-0.0821003\pi\)
\(200\) 0.481255 0.0340299
\(201\) 14.1866i 1.00064i
\(202\) −18.7481 −1.31911
\(203\) −0.399950 −0.0280710
\(204\) 0 0
\(205\) −8.93813 −0.624266
\(206\) −24.3167 −1.69423
\(207\) − 4.77906i − 0.332168i
\(208\) 14.0250 0.972458
\(209\) 11.6075i 0.802907i
\(210\) − 13.5581i − 0.935599i
\(211\) − 13.4185i − 0.923766i −0.886941 0.461883i \(-0.847174\pi\)
0.886941 0.461883i \(-0.152826\pi\)
\(212\) 3.60005 0.247252
\(213\) 6.10124 0.418050
\(214\) − 13.6633i − 0.934003i
\(215\) 18.5212i 1.26314i
\(216\) 7.77906i 0.529298i
\(217\) −1.02840 −0.0698125
\(218\) 52.6631i 3.56680i
\(219\) −10.5569 −0.713367
\(220\) −21.4594 −1.44679
\(221\) 0 0
\(222\) 14.0137 0.940541
\(223\) −21.2643 −1.42397 −0.711983 0.702197i \(-0.752203\pi\)
−0.711983 + 0.702197i \(0.752203\pi\)
\(224\) 28.7138i 1.91852i
\(225\) −0.0618655 −0.00412437
\(226\) 45.9714i 3.05797i
\(227\) − 4.95404i − 0.328811i −0.986393 0.164406i \(-0.947429\pi\)
0.986393 0.164406i \(-0.0525706\pi\)
\(228\) 29.4594i 1.95099i
\(229\) −1.83842 −0.121487 −0.0607433 0.998153i \(-0.519347\pi\)
−0.0607433 + 0.998153i \(0.519347\pi\)
\(230\) 27.9986 1.84617
\(231\) − 4.51420i − 0.297013i
\(232\) 1.34440i 0.0882639i
\(233\) 1.49500i 0.0979408i 0.998800 + 0.0489704i \(0.0155940\pi\)
−0.998800 + 0.0489704i \(0.984406\pi\)
\(234\) −3.48580 −0.227874
\(235\) − 5.29780i − 0.345591i
\(236\) 58.3531 3.79847
\(237\) −0.698270 −0.0453575
\(238\) 0 0
\(239\) −10.0250 −0.648463 −0.324231 0.945978i \(-0.605106\pi\)
−0.324231 + 0.945978i \(0.605106\pi\)
\(240\) −23.5719 −1.52156
\(241\) − 11.5155i − 0.741775i −0.928678 0.370888i \(-0.879053\pi\)
0.928678 0.370888i \(-0.120947\pi\)
\(242\) 18.9690 1.21938
\(243\) − 1.00000i − 0.0641500i
\(244\) 43.0062i 2.75319i
\(245\) − 3.65408i − 0.233450i
\(246\) −10.6042 −0.676099
\(247\) −7.86780 −0.500616
\(248\) 3.45688i 0.219512i
\(249\) 8.52971i 0.540549i
\(250\) − 29.6554i − 1.87557i
\(251\) −0.940179 −0.0593436 −0.0296718 0.999560i \(-0.509446\pi\)
−0.0296718 + 0.999560i \(0.509446\pi\)
\(252\) − 11.4569i − 0.721716i
\(253\) 9.32218 0.586080
\(254\) 25.9736 1.62973
\(255\) 0 0
\(256\) −8.50875 −0.531797
\(257\) −2.15515 −0.134435 −0.0672173 0.997738i \(-0.521412\pi\)
−0.0672173 + 0.997738i \(0.521412\pi\)
\(258\) 21.9736i 1.36802i
\(259\) −12.3012 −0.764360
\(260\) − 14.5456i − 0.902081i
\(261\) − 0.172822i − 0.0106974i
\(262\) − 20.0564i − 1.23909i
\(263\) 13.1427 0.810411 0.405205 0.914226i \(-0.367200\pi\)
0.405205 + 0.914226i \(0.367200\pi\)
\(264\) −15.1741 −0.933900
\(265\) − 1.61596i − 0.0992674i
\(266\) − 36.3062i − 2.22608i
\(267\) − 5.40297i − 0.330656i
\(268\) −70.2325 −4.29013
\(269\) − 15.1743i − 0.925196i −0.886568 0.462598i \(-0.846917\pi\)
0.886568 0.462598i \(-0.153083\pi\)
\(270\) 5.85860 0.356543
\(271\) 11.8360 0.718985 0.359493 0.933148i \(-0.382950\pi\)
0.359493 + 0.933148i \(0.382950\pi\)
\(272\) 0 0
\(273\) 3.05982 0.185189
\(274\) 58.1916 3.51548
\(275\) − 0.120677i − 0.00727708i
\(276\) 23.6594 1.42413
\(277\) − 26.9025i − 1.61642i −0.588898 0.808208i \(-0.700438\pi\)
0.588898 0.808208i \(-0.299562\pi\)
\(278\) 9.45029i 0.566791i
\(279\) − 0.444383i − 0.0266045i
\(280\) 40.0050 2.39076
\(281\) 22.2339 1.32636 0.663181 0.748459i \(-0.269206\pi\)
0.663181 + 0.748459i \(0.269206\pi\)
\(282\) − 6.28531i − 0.374285i
\(283\) − 23.9577i − 1.42414i −0.702111 0.712068i \(-0.747759\pi\)
0.702111 0.712068i \(-0.252241\pi\)
\(284\) 30.2050i 1.79234i
\(285\) 13.2234 0.783289
\(286\) − 6.79951i − 0.402063i
\(287\) 9.30832 0.549453
\(288\) −12.4075 −0.731120
\(289\) 0 0
\(290\) 1.01250 0.0594558
\(291\) −4.71594 −0.276453
\(292\) − 52.2632i − 3.05847i
\(293\) 7.44387 0.434875 0.217438 0.976074i \(-0.430230\pi\)
0.217438 + 0.976074i \(0.430230\pi\)
\(294\) − 4.33519i − 0.252834i
\(295\) − 26.1930i − 1.52502i
\(296\) 41.3494i 2.40338i
\(297\) 1.95063 0.113187
\(298\) −31.0334 −1.79772
\(299\) 6.31877i 0.365424i
\(300\) − 0.306273i − 0.0176827i
\(301\) − 19.2883i − 1.11176i
\(302\) 42.4560 2.44307
\(303\) 7.11123i 0.408530i
\(304\) −63.1212 −3.62025
\(305\) 19.3042 1.10536
\(306\) 0 0
\(307\) −14.2184 −0.811486 −0.405743 0.913987i \(-0.632987\pi\)
−0.405743 + 0.913987i \(0.632987\pi\)
\(308\) 22.3481 1.27340
\(309\) 9.22344i 0.524703i
\(310\) 2.60346 0.147867
\(311\) 10.3616i 0.587550i 0.955875 + 0.293775i \(0.0949116\pi\)
−0.955875 + 0.293775i \(0.905088\pi\)
\(312\) − 10.2853i − 0.582291i
\(313\) − 17.4262i − 0.984987i −0.870316 0.492493i \(-0.836086\pi\)
0.870316 0.492493i \(-0.163914\pi\)
\(314\) −17.0189 −0.960433
\(315\) −5.14265 −0.289756
\(316\) − 3.45688i − 0.194465i
\(317\) − 14.1753i − 0.796165i −0.917350 0.398083i \(-0.869676\pi\)
0.917350 0.398083i \(-0.130324\pi\)
\(318\) − 1.91717i − 0.107509i
\(319\) 0.337113 0.0188747
\(320\) − 25.5469i − 1.42811i
\(321\) −5.18254 −0.289261
\(322\) −29.1582 −1.62492
\(323\) 0 0
\(324\) 4.95063 0.275035
\(325\) 0.0817972 0.00453730
\(326\) − 44.1128i − 2.44318i
\(327\) 19.9753 1.10464
\(328\) − 31.2891i − 1.72765i
\(329\) 5.51722i 0.304174i
\(330\) 11.4280i 0.629088i
\(331\) −10.8485 −0.596287 −0.298143 0.954521i \(-0.596367\pi\)
−0.298143 + 0.954521i \(0.596367\pi\)
\(332\) −42.2275 −2.31753
\(333\) − 5.31548i − 0.291286i
\(334\) 4.23139i 0.231532i
\(335\) 31.5253i 1.72241i
\(336\) 24.5481 1.33921
\(337\) − 9.81770i − 0.534804i −0.963585 0.267402i \(-0.913835\pi\)
0.963585 0.267402i \(-0.0861652\pi\)
\(338\) −29.6644 −1.61353
\(339\) 17.4372 0.947057
\(340\) 0 0
\(341\) 0.866827 0.0469413
\(342\) 15.6883 0.848325
\(343\) 20.0050i 1.08017i
\(344\) −64.8359 −3.49572
\(345\) − 10.6200i − 0.571761i
\(346\) − 45.1773i − 2.42875i
\(347\) 26.0469i 1.39827i 0.714988 + 0.699136i \(0.246432\pi\)
−0.714988 + 0.699136i \(0.753568\pi\)
\(348\) 0.855580 0.0458639
\(349\) 18.6609 0.998894 0.499447 0.866344i \(-0.333537\pi\)
0.499447 + 0.866344i \(0.333537\pi\)
\(350\) 0.377456i 0.0201759i
\(351\) 1.32218i 0.0705727i
\(352\) − 24.2025i − 1.29000i
\(353\) 11.8339 0.629857 0.314929 0.949115i \(-0.398019\pi\)
0.314929 + 0.949115i \(0.398019\pi\)
\(354\) − 31.0753i − 1.65164i
\(355\) 13.5581 0.719590
\(356\) 26.7481 1.41765
\(357\) 0 0
\(358\) −29.1991 −1.54322
\(359\) 14.1392 0.746241 0.373120 0.927783i \(-0.378288\pi\)
0.373120 + 0.927783i \(0.378288\pi\)
\(360\) 17.2866i 0.911081i
\(361\) 16.4100 0.863685
\(362\) − 51.9359i − 2.72969i
\(363\) − 7.19504i − 0.377642i
\(364\) 15.1480i 0.793973i
\(365\) −23.4594 −1.22792
\(366\) 22.9025 1.19713
\(367\) 3.72362i 0.194371i 0.995266 + 0.0971856i \(0.0309841\pi\)
−0.995266 + 0.0971856i \(0.969016\pi\)
\(368\) 50.6938i 2.64260i
\(369\) 4.02222i 0.209388i
\(370\) 31.1412 1.61896
\(371\) 1.68288i 0.0873709i
\(372\) 2.19998 0.114063
\(373\) 1.53618 0.0795403 0.0397701 0.999209i \(-0.487337\pi\)
0.0397701 + 0.999209i \(0.487337\pi\)
\(374\) 0 0
\(375\) −11.2484 −0.580867
\(376\) 18.5456 0.956417
\(377\) 0.228502i 0.0117685i
\(378\) −6.10124 −0.313814
\(379\) 36.1511i 1.85696i 0.371388 + 0.928478i \(0.378882\pi\)
−0.371388 + 0.928478i \(0.621118\pi\)
\(380\) 65.4644i 3.35825i
\(381\) − 9.85189i − 0.504728i
\(382\) 4.24337 0.217110
\(383\) 16.3492 0.835404 0.417702 0.908584i \(-0.362836\pi\)
0.417702 + 0.908584i \(0.362836\pi\)
\(384\) − 5.49375i − 0.280352i
\(385\) − 10.0314i − 0.511248i
\(386\) − 11.7954i − 0.600368i
\(387\) 8.33468 0.423675
\(388\) − 23.3469i − 1.18526i
\(389\) 16.4533 0.834216 0.417108 0.908857i \(-0.363044\pi\)
0.417108 + 0.908857i \(0.363044\pi\)
\(390\) −7.74611 −0.392240
\(391\) 0 0
\(392\) 12.7916 0.646071
\(393\) −7.60749 −0.383747
\(394\) 19.4930i 0.982041i
\(395\) −1.55169 −0.0780740
\(396\) 9.65685i 0.485275i
\(397\) 36.4606i 1.82991i 0.403560 + 0.914953i \(0.367773\pi\)
−0.403560 + 0.914953i \(0.632227\pi\)
\(398\) − 18.9731i − 0.951034i
\(399\) −13.7711 −0.689418
\(400\) 0.656237 0.0328119
\(401\) − 9.67907i − 0.483350i −0.970357 0.241675i \(-0.922303\pi\)
0.970357 0.241675i \(-0.0776967\pi\)
\(402\) 37.4015i 1.86542i
\(403\) 0.587553i 0.0292681i
\(404\) −35.2051 −1.75152
\(405\) − 2.22219i − 0.110422i
\(406\) −1.05443 −0.0523305
\(407\) 10.3685 0.513949
\(408\) 0 0
\(409\) −2.52228 −0.124719 −0.0623593 0.998054i \(-0.519862\pi\)
−0.0623593 + 0.998054i \(0.519862\pi\)
\(410\) −23.5645 −1.16377
\(411\) − 22.0723i − 1.08875i
\(412\) −45.6619 −2.24960
\(413\) 27.2778i 1.34225i
\(414\) − 12.5995i − 0.619233i
\(415\) 18.9547i 0.930448i
\(416\) 16.4049 0.804319
\(417\) 3.58454 0.175536
\(418\) 30.6020i 1.49679i
\(419\) 26.3262i 1.28612i 0.765816 + 0.643060i \(0.222335\pi\)
−0.765816 + 0.643060i \(0.777665\pi\)
\(420\) − 25.4594i − 1.24229i
\(421\) −6.61089 −0.322195 −0.161098 0.986938i \(-0.551503\pi\)
−0.161098 + 0.986938i \(0.551503\pi\)
\(422\) − 35.3765i − 1.72210i
\(423\) −2.38404 −0.115916
\(424\) 5.65685 0.274721
\(425\) 0 0
\(426\) 16.0853 0.779337
\(427\) −20.1037 −0.972888
\(428\) − 25.6569i − 1.24017i
\(429\) −2.57908 −0.124519
\(430\) 48.8295i 2.35477i
\(431\) − 28.1262i − 1.35479i −0.735618 0.677396i \(-0.763108\pi\)
0.735618 0.677396i \(-0.236892\pi\)
\(432\) 10.6075i 0.510353i
\(433\) −17.1497 −0.824162 −0.412081 0.911147i \(-0.635198\pi\)
−0.412081 + 0.911147i \(0.635198\pi\)
\(434\) −2.71128 −0.130146
\(435\) − 0.384044i − 0.0184135i
\(436\) 98.8906i 4.73600i
\(437\) − 28.4384i − 1.36039i
\(438\) −27.8322 −1.32987
\(439\) 8.22497i 0.392556i 0.980548 + 0.196278i \(0.0628856\pi\)
−0.980548 + 0.196278i \(0.937114\pi\)
\(440\) −33.7197 −1.60752
\(441\) −1.64436 −0.0783028
\(442\) 0 0
\(443\) −18.4658 −0.877339 −0.438669 0.898649i \(-0.644550\pi\)
−0.438669 + 0.898649i \(0.644550\pi\)
\(444\) 26.3150 1.24885
\(445\) − 12.0064i − 0.569159i
\(446\) −56.0614 −2.65458
\(447\) 11.7711i 0.556754i
\(448\) 26.6049i 1.25696i
\(449\) − 30.9250i − 1.45944i −0.683745 0.729721i \(-0.739650\pi\)
0.683745 0.729721i \(-0.260350\pi\)
\(450\) −0.163102 −0.00768873
\(451\) −7.84586 −0.369447
\(452\) 86.3250i 4.06038i
\(453\) − 16.1037i − 0.756620i
\(454\) − 13.0609i − 0.612976i
\(455\) 6.79951 0.318766
\(456\) 46.2903i 2.16774i
\(457\) 15.5337 0.726638 0.363319 0.931665i \(-0.381644\pi\)
0.363319 + 0.931665i \(0.381644\pi\)
\(458\) −4.84683 −0.226478
\(459\) 0 0
\(460\) 52.5756 2.45135
\(461\) 38.9032 1.81190 0.905952 0.423380i \(-0.139156\pi\)
0.905952 + 0.423380i \(0.139156\pi\)
\(462\) − 11.9013i − 0.553697i
\(463\) −22.7572 −1.05762 −0.528808 0.848742i \(-0.677361\pi\)
−0.528808 + 0.848742i \(0.677361\pi\)
\(464\) 1.83321i 0.0851047i
\(465\) − 0.987504i − 0.0457944i
\(466\) 3.94143i 0.182583i
\(467\) 12.5551 0.580981 0.290490 0.956878i \(-0.406182\pi\)
0.290490 + 0.956878i \(0.406182\pi\)
\(468\) −6.54562 −0.302571
\(469\) − 32.8309i − 1.51599i
\(470\) − 13.9672i − 0.644257i
\(471\) 6.45535i 0.297447i
\(472\) 91.6918 4.22046
\(473\) 16.2579i 0.747538i
\(474\) −1.84092 −0.0845564
\(475\) −0.368139 −0.0168914
\(476\) 0 0
\(477\) −0.727190 −0.0332957
\(478\) −26.4299 −1.20888
\(479\) 37.2418i 1.70162i 0.525471 + 0.850812i \(0.323889\pi\)
−0.525471 + 0.850812i \(0.676111\pi\)
\(480\) −27.5719 −1.25848
\(481\) 7.02801i 0.320450i
\(482\) − 30.3594i − 1.38283i
\(483\) 11.0598i 0.503239i
\(484\) 35.6200 1.61909
\(485\) −10.4797 −0.475860
\(486\) − 2.63640i − 0.119590i
\(487\) 1.64488i 0.0745364i 0.999305 + 0.0372682i \(0.0118656\pi\)
−0.999305 + 0.0372682i \(0.988134\pi\)
\(488\) 67.5769i 3.05906i
\(489\) −16.7322 −0.756656
\(490\) − 9.63363i − 0.435203i
\(491\) −4.30121 −0.194111 −0.0970555 0.995279i \(-0.530942\pi\)
−0.0970555 + 0.995279i \(0.530942\pi\)
\(492\) −19.9125 −0.897725
\(493\) 0 0
\(494\) −20.7427 −0.933258
\(495\) 4.33468 0.194829
\(496\) 4.71378i 0.211655i
\(497\) −14.1196 −0.633352
\(498\) 22.4878i 1.00770i
\(499\) − 1.49528i − 0.0669379i −0.999440 0.0334689i \(-0.989345\pi\)
0.999440 0.0334689i \(-0.0106555\pi\)
\(500\) − 55.6868i − 2.49039i
\(501\) 1.60499 0.0717055
\(502\) −2.47869 −0.110629
\(503\) 1.68678i 0.0752100i 0.999293 + 0.0376050i \(0.0119729\pi\)
−0.999293 + 0.0376050i \(0.988027\pi\)
\(504\) − 18.0025i − 0.801895i
\(505\) 15.8025i 0.703203i
\(506\) 24.5770 1.09258
\(507\) 11.2518i 0.499712i
\(508\) 48.7731 2.16396
\(509\) −6.91070 −0.306312 −0.153156 0.988202i \(-0.548944\pi\)
−0.153156 + 0.988202i \(0.548944\pi\)
\(510\) 0 0
\(511\) 24.4310 1.08076
\(512\) −33.4200 −1.47697
\(513\) − 5.95063i − 0.262727i
\(514\) −5.68185 −0.250616
\(515\) 20.4963i 0.903173i
\(516\) 41.2619i 1.81645i
\(517\) − 4.65039i − 0.204524i
\(518\) −32.4310 −1.42494
\(519\) −17.1359 −0.752185
\(520\) − 22.8559i − 1.00230i
\(521\) − 13.3963i − 0.586901i −0.955974 0.293450i \(-0.905196\pi\)
0.955974 0.293450i \(-0.0948036\pi\)
\(522\) − 0.455630i − 0.0199424i
\(523\) −4.40904 −0.192794 −0.0963969 0.995343i \(-0.530732\pi\)
−0.0963969 + 0.995343i \(0.530732\pi\)
\(524\) − 37.6619i − 1.64527i
\(525\) 0.143171 0.00624848
\(526\) 34.6494 1.51078
\(527\) 0 0
\(528\) −20.6913 −0.900473
\(529\) 0.160604 0.00698276
\(530\) − 4.26031i − 0.185056i
\(531\) −11.7870 −0.511513
\(532\) − 68.1757i − 2.95579i
\(533\) − 5.31809i − 0.230352i
\(534\) − 14.2444i − 0.616416i
\(535\) −11.5166 −0.497906
\(536\) −110.358 −4.76675
\(537\) 11.0753i 0.477936i
\(538\) − 40.0057i − 1.72477i
\(539\) − 3.20754i − 0.138158i
\(540\) 11.0012 0.473418
\(541\) − 23.1155i − 0.993813i −0.867804 0.496906i \(-0.834469\pi\)
0.867804 0.496906i \(-0.165531\pi\)
\(542\) 31.2045 1.34035
\(543\) −19.6995 −0.845387
\(544\) 0 0
\(545\) 44.3890 1.90142
\(546\) 8.06693 0.345233
\(547\) − 9.48476i − 0.405539i −0.979226 0.202770i \(-0.935006\pi\)
0.979226 0.202770i \(-0.0649943\pi\)
\(548\) 109.272 4.66786
\(549\) − 8.68702i − 0.370753i
\(550\) − 0.318153i − 0.0135661i
\(551\) − 1.02840i − 0.0438114i
\(552\) 37.1766 1.58234
\(553\) 1.61596 0.0687174
\(554\) − 70.9259i − 3.01335i
\(555\) − 11.8120i − 0.501392i
\(556\) 17.7457i 0.752586i
\(557\) −38.1670 −1.61719 −0.808593 0.588368i \(-0.799771\pi\)
−0.808593 + 0.588368i \(0.799771\pi\)
\(558\) − 1.17157i − 0.0495966i
\(559\) −11.0199 −0.466093
\(560\) 54.5506 2.30518
\(561\) 0 0
\(562\) 58.6175 2.47263
\(563\) 13.8184 0.582377 0.291189 0.956666i \(-0.405949\pi\)
0.291189 + 0.956666i \(0.405949\pi\)
\(564\) − 11.8025i − 0.496976i
\(565\) 38.7487 1.63017
\(566\) − 63.1621i − 2.65490i
\(567\) 2.31423i 0.0971884i
\(568\) 47.4619i 1.99146i
\(569\) 12.9516 0.542959 0.271480 0.962444i \(-0.412487\pi\)
0.271480 + 0.962444i \(0.412487\pi\)
\(570\) 34.8623 1.46022
\(571\) 6.51381i 0.272594i 0.990668 + 0.136297i \(0.0435202\pi\)
−0.990668 + 0.136297i \(0.956480\pi\)
\(572\) − 12.7681i − 0.533861i
\(573\) − 1.60953i − 0.0672391i
\(574\) 24.5405 1.02430
\(575\) 0.295659i 0.0123298i
\(576\) −11.4963 −0.479010
\(577\) 15.6703 0.652364 0.326182 0.945307i \(-0.394238\pi\)
0.326182 + 0.945307i \(0.394238\pi\)
\(578\) 0 0
\(579\) −4.47403 −0.185935
\(580\) 1.90126 0.0789456
\(581\) − 19.7397i − 0.818940i
\(582\) −12.4331 −0.515370
\(583\) − 1.41848i − 0.0587474i
\(584\) − 82.1225i − 3.39825i
\(585\) 2.93813i 0.121477i
\(586\) 19.6250 0.810703
\(587\) 14.9766 0.618150 0.309075 0.951038i \(-0.399981\pi\)
0.309075 + 0.951038i \(0.399981\pi\)
\(588\) − 8.14061i − 0.335713i
\(589\) − 2.64436i − 0.108959i
\(590\) − 69.0553i − 2.84296i
\(591\) 7.39376 0.304139
\(592\) 56.3838i 2.31736i
\(593\) −46.3701 −1.90419 −0.952096 0.305801i \(-0.901076\pi\)
−0.952096 + 0.305801i \(0.901076\pi\)
\(594\) 5.14265 0.211006
\(595\) 0 0
\(596\) −58.2744 −2.38701
\(597\) −7.19657 −0.294536
\(598\) 16.6588i 0.681230i
\(599\) 28.7068 1.17293 0.586464 0.809975i \(-0.300520\pi\)
0.586464 + 0.809975i \(0.300520\pi\)
\(600\) − 0.481255i − 0.0196472i
\(601\) 20.7887i 0.847987i 0.905665 + 0.423993i \(0.139372\pi\)
−0.905665 + 0.423993i \(0.860628\pi\)
\(602\) − 50.8518i − 2.07257i
\(603\) 14.1866 0.577722
\(604\) 79.7237 3.24391
\(605\) − 15.9888i − 0.650035i
\(606\) 18.7481i 0.761589i
\(607\) 17.2060i 0.698372i 0.937053 + 0.349186i \(0.113542\pi\)
−0.937053 + 0.349186i \(0.886458\pi\)
\(608\) −73.8325 −2.99430
\(609\) 0.399950i 0.0162068i
\(610\) 50.8938 2.06063
\(611\) 3.15213 0.127522
\(612\) 0 0
\(613\) −42.7657 −1.72729 −0.863644 0.504102i \(-0.831824\pi\)
−0.863644 + 0.504102i \(0.831824\pi\)
\(614\) −37.4854 −1.51279
\(615\) 8.93813i 0.360420i
\(616\) 35.1162 1.41487
\(617\) 38.2796i 1.54108i 0.637392 + 0.770540i \(0.280013\pi\)
−0.637392 + 0.770540i \(0.719987\pi\)
\(618\) 24.3167i 0.978162i
\(619\) 9.27242i 0.372690i 0.982484 + 0.186345i \(0.0596642\pi\)
−0.982484 + 0.186345i \(0.940336\pi\)
\(620\) 4.88877 0.196338
\(621\) −4.77906 −0.191777
\(622\) 27.3172i 1.09532i
\(623\) 12.5037i 0.500950i
\(624\) − 14.0250i − 0.561449i
\(625\) −24.6868 −0.987474
\(626\) − 45.9425i − 1.83623i
\(627\) 11.6075 0.463558
\(628\) −31.9581 −1.27527
\(629\) 0 0
\(630\) −13.5581 −0.540168
\(631\) 33.8478 1.34746 0.673730 0.738978i \(-0.264691\pi\)
0.673730 + 0.738978i \(0.264691\pi\)
\(632\) − 5.43189i − 0.216069i
\(633\) −13.4185 −0.533337
\(634\) − 37.3719i − 1.48423i
\(635\) − 21.8928i − 0.868789i
\(636\) − 3.60005i − 0.142751i
\(637\) 2.17414 0.0861424
\(638\) 0.888765 0.0351866
\(639\) − 6.10124i − 0.241361i
\(640\) − 12.2082i − 0.482570i
\(641\) − 10.6716i − 0.421502i −0.977540 0.210751i \(-0.932409\pi\)
0.977540 0.210751i \(-0.0675909\pi\)
\(642\) −13.6633 −0.539247
\(643\) 39.3137i 1.55038i 0.631727 + 0.775191i \(0.282346\pi\)
−0.631727 + 0.775191i \(0.717654\pi\)
\(644\) −54.7531 −2.15757
\(645\) 18.5212 0.729273
\(646\) 0 0
\(647\) −27.9895 −1.10038 −0.550190 0.835039i \(-0.685445\pi\)
−0.550190 + 0.835039i \(0.685445\pi\)
\(648\) 7.77906 0.305590
\(649\) − 22.9921i − 0.902519i
\(650\) 0.215651 0.00845852
\(651\) 1.02840i 0.0403063i
\(652\) − 82.8349i − 3.24406i
\(653\) 40.9519i 1.60257i 0.598282 + 0.801285i \(0.295850\pi\)
−0.598282 + 0.801285i \(0.704150\pi\)
\(654\) 52.6631 2.05929
\(655\) −16.9053 −0.660544
\(656\) − 42.6656i − 1.66581i
\(657\) 10.5569i 0.411863i
\(658\) 14.5456i 0.567047i
\(659\) −10.8164 −0.421349 −0.210674 0.977556i \(-0.567566\pi\)
−0.210674 + 0.977556i \(0.567566\pi\)
\(660\) 21.4594i 0.835305i
\(661\) −20.0794 −0.780997 −0.390498 0.920604i \(-0.627697\pi\)
−0.390498 + 0.920604i \(0.627697\pi\)
\(662\) −28.6010 −1.11161
\(663\) 0 0
\(664\) −66.3531 −2.57500
\(665\) −30.6020 −1.18670
\(666\) − 14.0137i − 0.543022i
\(667\) −0.825928 −0.0319801
\(668\) 7.94569i 0.307428i
\(669\) 21.2643i 0.822127i
\(670\) 83.1134i 3.21095i
\(671\) 16.9452 0.654161
\(672\) 28.7138 1.10766
\(673\) 27.4103i 1.05659i 0.849061 + 0.528294i \(0.177168\pi\)
−0.849061 + 0.528294i \(0.822832\pi\)
\(674\) − 25.8834i − 0.996992i
\(675\) 0.0618655i 0.00238120i
\(676\) −55.7037 −2.14245
\(677\) − 22.7259i − 0.873426i −0.899601 0.436713i \(-0.856142\pi\)
0.899601 0.436713i \(-0.143858\pi\)
\(678\) 45.9714 1.76552
\(679\) 10.9138 0.418832
\(680\) 0 0
\(681\) −4.95404 −0.189839
\(682\) 2.28531 0.0875089
\(683\) 37.2065i 1.42367i 0.702348 + 0.711834i \(0.252135\pi\)
−0.702348 + 0.711834i \(0.747865\pi\)
\(684\) 29.4594 1.12641
\(685\) − 49.0489i − 1.87406i
\(686\) 52.7413i 2.01367i
\(687\) 1.83842i 0.0701403i
\(688\) −88.4099 −3.37060
\(689\) 0.961475 0.0366293
\(690\) − 27.9986i − 1.06589i
\(691\) 18.0560i 0.686883i 0.939174 + 0.343442i \(0.111593\pi\)
−0.939174 + 0.343442i \(0.888407\pi\)
\(692\) − 84.8338i − 3.22490i
\(693\) −4.51420 −0.171480
\(694\) 68.6703i 2.60669i
\(695\) 7.96553 0.302150
\(696\) 1.34440 0.0509592
\(697\) 0 0
\(698\) 49.1976 1.86216
\(699\) 1.49500 0.0565461
\(700\) 0.708785i 0.0267896i
\(701\) 9.99896 0.377656 0.188828 0.982010i \(-0.439531\pi\)
0.188828 + 0.982010i \(0.439531\pi\)
\(702\) 3.48580i 0.131563i
\(703\) − 31.6304i − 1.19296i
\(704\) − 22.4249i − 0.845172i
\(705\) −5.29780 −0.199527
\(706\) 31.1991 1.17419
\(707\) − 16.4570i − 0.618929i
\(708\) − 58.3531i − 2.19305i
\(709\) − 1.09395i − 0.0410843i −0.999789 0.0205422i \(-0.993461\pi\)
0.999789 0.0205422i \(-0.00653923\pi\)
\(710\) 35.7447 1.34147
\(711\) 0.698270i 0.0261872i
\(712\) 42.0300 1.57514
\(713\) −2.12373 −0.0795344
\(714\) 0 0
\(715\) −5.73122 −0.214335
\(716\) −54.8299 −2.04909
\(717\) 10.0250i 0.374390i
\(718\) 37.2768 1.39116
\(719\) − 42.4818i − 1.58430i −0.610324 0.792152i \(-0.708961\pi\)
0.610324 0.792152i \(-0.291039\pi\)
\(720\) 23.5719i 0.878471i
\(721\) − 21.3451i − 0.794934i
\(722\) 43.2634 1.61010
\(723\) −11.5155 −0.428264
\(724\) − 97.5251i − 3.62449i
\(725\) 0.0106917i 0 0.000397081i
\(726\) − 18.9690i − 0.704007i
\(727\) 45.2169 1.67700 0.838501 0.544900i \(-0.183432\pi\)
0.838501 + 0.544900i \(0.183432\pi\)
\(728\) 23.8025i 0.882180i
\(729\) −1.00000 −0.0370370
\(730\) −61.8484 −2.28911
\(731\) 0 0
\(732\) 43.0062 1.58956
\(733\) 21.5990 0.797778 0.398889 0.916999i \(-0.369396\pi\)
0.398889 + 0.916999i \(0.369396\pi\)
\(734\) 9.81697i 0.362351i
\(735\) −3.65408 −0.134783
\(736\) 59.2962i 2.18569i
\(737\) 27.6728i 1.01934i
\(738\) 10.6042i 0.390346i
\(739\) −19.0419 −0.700467 −0.350233 0.936663i \(-0.613898\pi\)
−0.350233 + 0.936663i \(0.613898\pi\)
\(740\) 58.4769 2.14965
\(741\) 7.86780i 0.289031i
\(742\) 4.43676i 0.162879i
\(743\) 26.4343i 0.969779i 0.874575 + 0.484889i \(0.161140\pi\)
−0.874575 + 0.484889i \(0.838860\pi\)
\(744\) 3.45688 0.126735
\(745\) 26.1576i 0.958342i
\(746\) 4.04999 0.148281
\(747\) 8.52971 0.312086
\(748\) 0 0
\(749\) 11.9936 0.438236
\(750\) −29.6554 −1.08286
\(751\) − 4.64686i − 0.169566i −0.996399 0.0847831i \(-0.972980\pi\)
0.996399 0.0847831i \(-0.0270197\pi\)
\(752\) 25.2887 0.922185
\(753\) 0.940179i 0.0342620i
\(754\) 0.602424i 0.0219390i
\(755\) − 35.7856i − 1.30237i
\(756\) −11.4569 −0.416683
\(757\) 10.4074 0.378263 0.189131 0.981952i \(-0.439433\pi\)
0.189131 + 0.981952i \(0.439433\pi\)
\(758\) 95.3088i 3.46177i
\(759\) − 9.32218i − 0.338374i
\(760\) 102.866i 3.73134i
\(761\) −38.6365 −1.40057 −0.700286 0.713862i \(-0.746944\pi\)
−0.700286 + 0.713862i \(0.746944\pi\)
\(762\) − 25.9736i − 0.940924i
\(763\) −46.2275 −1.67355
\(764\) 7.96819 0.288279
\(765\) 0 0
\(766\) 43.1031 1.55738
\(767\) 15.5845 0.562725
\(768\) 8.50875i 0.307033i
\(769\) −0.178098 −0.00642238 −0.00321119 0.999995i \(-0.501022\pi\)
−0.00321119 + 0.999995i \(0.501022\pi\)
\(770\) − 26.4469i − 0.953079i
\(771\) 2.15515i 0.0776158i
\(772\) − 22.1493i − 0.797171i
\(773\) −4.15554 −0.149464 −0.0747322 0.997204i \(-0.523810\pi\)
−0.0747322 + 0.997204i \(0.523810\pi\)
\(774\) 21.9736 0.789824
\(775\) 0.0274920i 0 0.000987540i
\(776\) − 36.6856i − 1.31694i
\(777\) 12.3012i 0.441304i
\(778\) 43.3776 1.55516
\(779\) 23.9347i 0.857551i
\(780\) −14.5456 −0.520817
\(781\) 11.9013 0.425861
\(782\) 0 0
\(783\) −0.172822 −0.00617617
\(784\) 17.4425 0.622946
\(785\) 14.3450i 0.511996i
\(786\) −20.0564 −0.715389
\(787\) − 1.73865i − 0.0619762i −0.999520 0.0309881i \(-0.990135\pi\)
0.999520 0.0309881i \(-0.00986540\pi\)
\(788\) 36.6038i 1.30396i
\(789\) − 13.1427i − 0.467891i
\(790\) −4.09088 −0.145547
\(791\) −40.3535 −1.43481
\(792\) 15.1741i 0.539187i
\(793\) 11.4858i 0.407873i
\(794\) 96.1250i 3.41135i
\(795\) −1.61596 −0.0573120
\(796\) − 35.6275i − 1.26278i
\(797\) 22.2085 0.786666 0.393333 0.919396i \(-0.371322\pi\)
0.393333 + 0.919396i \(0.371322\pi\)
\(798\) −36.3062 −1.28523
\(799\) 0 0
\(800\) 0.767597 0.0271386
\(801\) −5.40297 −0.190904
\(802\) − 25.5179i − 0.901070i
\(803\) −20.5926 −0.726695
\(804\) 70.2325i 2.47691i
\(805\) 24.5770i 0.866227i
\(806\) 1.54903i 0.0545622i
\(807\) −15.1743 −0.534162
\(808\) −55.3187 −1.94611
\(809\) − 3.22865i − 0.113513i −0.998388 0.0567567i \(-0.981924\pi\)
0.998388 0.0567567i \(-0.0180759\pi\)
\(810\) − 5.85860i − 0.205850i
\(811\) 25.2160i 0.885454i 0.896657 + 0.442727i \(0.145989\pi\)
−0.896657 + 0.442727i \(0.854011\pi\)
\(812\) −1.98000 −0.0694846
\(813\) − 11.8360i − 0.415106i
\(814\) 27.3356 0.958114
\(815\) −37.1821 −1.30243
\(816\) 0 0
\(817\) 49.5966 1.73516
\(818\) −6.64975 −0.232503
\(819\) − 3.05982i − 0.106919i
\(820\) −44.2494 −1.54526
\(821\) − 34.4282i − 1.20155i −0.799417 0.600776i \(-0.794858\pi\)
0.799417 0.600776i \(-0.205142\pi\)
\(822\) − 58.1916i − 2.02966i
\(823\) 17.7994i 0.620447i 0.950664 + 0.310224i \(0.100404\pi\)
−0.950664 + 0.310224i \(0.899596\pi\)
\(824\) −71.7497 −2.49952
\(825\) −0.120677 −0.00420143
\(826\) 71.9153i 2.50225i
\(827\) 1.95063i 0.0678301i 0.999425 + 0.0339150i \(0.0107976\pi\)
−0.999425 + 0.0339150i \(0.989202\pi\)
\(828\) − 23.6594i − 0.822219i
\(829\) 0.904671 0.0314205 0.0157103 0.999877i \(-0.494999\pi\)
0.0157103 + 0.999877i \(0.494999\pi\)
\(830\) 49.9722i 1.73456i
\(831\) −26.9025 −0.933238
\(832\) 15.2001 0.526969
\(833\) 0 0
\(834\) 9.45029 0.327237
\(835\) 3.56659 0.123427
\(836\) 57.4644i 1.98745i
\(837\) −0.444383 −0.0153601
\(838\) 69.4065i 2.39761i
\(839\) 24.2763i 0.838110i 0.907961 + 0.419055i \(0.137639\pi\)
−0.907961 + 0.419055i \(0.862361\pi\)
\(840\) − 40.0050i − 1.38030i
\(841\) 28.9701 0.998970
\(842\) −17.4290 −0.600643
\(843\) − 22.2339i − 0.765776i
\(844\) − 66.4299i − 2.28661i
\(845\) 25.0037i 0.860155i
\(846\) −6.28531 −0.216093
\(847\) 16.6509i 0.572133i
\(848\) 7.71366 0.264888
\(849\) −23.9577 −0.822225
\(850\) 0 0
\(851\) −25.4030 −0.870802
\(852\) 30.2050 1.03481
\(853\) 38.1105i 1.30488i 0.757841 + 0.652439i \(0.226254\pi\)
−0.757841 + 0.652439i \(0.773746\pi\)
\(854\) −53.0016 −1.81368
\(855\) − 13.2234i − 0.452232i
\(856\) − 40.3153i − 1.37795i
\(857\) 6.80024i 0.232292i 0.993232 + 0.116146i \(0.0370540\pi\)
−0.993232 + 0.116146i \(0.962946\pi\)
\(858\) −6.79951 −0.232131
\(859\) −22.3072 −0.761113 −0.380557 0.924758i \(-0.624268\pi\)
−0.380557 + 0.924758i \(0.624268\pi\)
\(860\) 91.6918i 3.12667i
\(861\) − 9.30832i − 0.317227i
\(862\) − 74.1521i − 2.52563i
\(863\) 0.400593 0.0136363 0.00681816 0.999977i \(-0.497830\pi\)
0.00681816 + 0.999977i \(0.497830\pi\)
\(864\) 12.4075i 0.422112i
\(865\) −38.0794 −1.29474
\(866\) −45.2135 −1.53642
\(867\) 0 0
\(868\) −5.09124 −0.172808
\(869\) −1.36207 −0.0462050
\(870\) − 1.01250i − 0.0343268i
\(871\) −18.7572 −0.635563
\(872\) 155.389i 5.26215i
\(873\) 4.71594i 0.159610i
\(874\) − 74.9752i − 2.53607i
\(875\) 26.0314 0.880023
\(876\) −52.2632 −1.76581
\(877\) − 0.210829i − 0.00711920i −0.999994 0.00355960i \(-0.998867\pi\)
0.999994 0.00355960i \(-0.00113306\pi\)
\(878\) 21.6843i 0.731811i
\(879\) − 7.44387i − 0.251075i
\(880\) −45.9800 −1.54999
\(881\) − 51.7963i − 1.74506i −0.488560 0.872530i \(-0.662478\pi\)
0.488560 0.872530i \(-0.337522\pi\)
\(882\) −4.33519 −0.145974
\(883\) −23.5757 −0.793385 −0.396692 0.917952i \(-0.629842\pi\)
−0.396692 + 0.917952i \(0.629842\pi\)
\(884\) 0 0
\(885\) −26.1930 −0.880468
\(886\) −48.6834 −1.63555
\(887\) − 16.3341i − 0.548446i −0.961666 0.274223i \(-0.911579\pi\)
0.961666 0.274223i \(-0.0884207\pi\)
\(888\) 41.3494 1.38759
\(889\) 22.7995i 0.764671i
\(890\) − 31.6538i − 1.06104i
\(891\) − 1.95063i − 0.0653486i
\(892\) −105.272 −3.52476
\(893\) −14.1866 −0.474735
\(894\) 31.0334i 1.03791i
\(895\) 24.6115i 0.822672i
\(896\) 12.7138i 0.424738i
\(897\) 6.31877 0.210978
\(898\) − 81.5308i − 2.72072i
\(899\) −0.0767993 −0.00256140
\(900\) −0.306273 −0.0102091
\(901\) 0 0
\(902\) −20.6849 −0.688731
\(903\) −19.2883 −0.641875
\(904\) 135.645i 4.51148i
\(905\) −43.7761 −1.45517
\(906\) − 42.4560i − 1.41051i
\(907\) 30.7826i 1.02212i 0.859546 + 0.511059i \(0.170747\pi\)
−0.859546 + 0.511059i \(0.829253\pi\)
\(908\) − 24.5256i − 0.813911i
\(909\) 7.11123 0.235865
\(910\) 17.9263 0.594250
\(911\) 7.19491i 0.238378i 0.992872 + 0.119189i \(0.0380295\pi\)
−0.992872 + 0.119189i \(0.961971\pi\)
\(912\) 63.1212i 2.09015i
\(913\) 16.6383i 0.550648i
\(914\) 40.9532 1.35461
\(915\) − 19.3042i − 0.638178i
\(916\) −9.10136 −0.300717
\(917\) 17.6054 0.581383
\(918\) 0 0
\(919\) 11.6873 0.385527 0.192764 0.981245i \(-0.438255\pi\)
0.192764 + 0.981245i \(0.438255\pi\)
\(920\) 82.6135 2.72368
\(921\) 14.2184i 0.468512i
\(922\) 102.565 3.37779
\(923\) 8.06693i 0.265526i
\(924\) − 22.3481i − 0.735200i
\(925\) 0.328845i 0.0108123i
\(926\) −59.9971 −1.97163
\(927\) 9.22344 0.302938
\(928\) 2.14430i 0.0703899i
\(929\) 14.1828i 0.465321i 0.972558 + 0.232661i \(0.0747431\pi\)
−0.972558 + 0.232661i \(0.925257\pi\)
\(930\) − 2.60346i − 0.0853708i
\(931\) −9.78497 −0.320689
\(932\) 7.40120i 0.242434i
\(933\) 10.3616 0.339222
\(934\) 33.1003 1.08308
\(935\) 0 0
\(936\) −10.2853 −0.336186
\(937\) −25.4693 −0.832044 −0.416022 0.909355i \(-0.636576\pi\)
−0.416022 + 0.909355i \(0.636576\pi\)
\(938\) − 86.5556i − 2.82614i
\(939\) −17.4262 −0.568682
\(940\) − 26.2275i − 0.855446i
\(941\) 58.5838i 1.90978i 0.296964 + 0.954889i \(0.404026\pi\)
−0.296964 + 0.954889i \(0.595974\pi\)
\(942\) 17.0189i 0.554506i
\(943\) 19.2224 0.625968
\(944\) 125.031 4.06940
\(945\) 5.14265i 0.167291i
\(946\) 42.8623i 1.39358i
\(947\) − 19.0443i − 0.618857i −0.950923 0.309428i \(-0.899862\pi\)
0.950923 0.309428i \(-0.100138\pi\)
\(948\) −3.45688 −0.112274
\(949\) − 13.9581i − 0.453098i
\(950\) −0.970563 −0.0314892
\(951\) −14.1753 −0.459666
\(952\) 0 0
\(953\) 19.8922 0.644371 0.322185 0.946677i \(-0.395583\pi\)
0.322185 + 0.946677i \(0.395583\pi\)
\(954\) −1.91717 −0.0620706
\(955\) − 3.57668i − 0.115739i
\(956\) −49.6300 −1.60515
\(957\) − 0.337113i − 0.0108973i
\(958\) 98.1846i 3.17220i
\(959\) 51.0803i 1.64947i
\(960\) −25.5469 −0.824522
\(961\) 30.8025 0.993630
\(962\) 18.5287i 0.597389i
\(963\) 5.18254i 0.167005i
\(964\) − 57.0087i − 1.83613i
\(965\) −9.94216 −0.320049
\(966\) 29.1582i 0.938149i
\(967\) −53.0310 −1.70536 −0.852680 0.522433i \(-0.825025\pi\)
−0.852680 + 0.522433i \(0.825025\pi\)
\(968\) 55.9706 1.79896
\(969\) 0 0
\(970\) −27.6288 −0.887108
\(971\) −3.02535 −0.0970880 −0.0485440 0.998821i \(-0.515458\pi\)
−0.0485440 + 0.998821i \(0.515458\pi\)
\(972\) − 4.95063i − 0.158792i
\(973\) −8.29543 −0.265939
\(974\) 4.33656i 0.138952i
\(975\) − 0.0817972i − 0.00261961i
\(976\) 92.1475i 2.94957i
\(977\) −11.2664 −0.360444 −0.180222 0.983626i \(-0.557682\pi\)
−0.180222 + 0.983626i \(0.557682\pi\)
\(978\) −44.1128 −1.41057
\(979\) − 10.5392i − 0.336834i
\(980\) − 18.0900i − 0.577864i
\(981\) − 19.9753i − 0.637764i
\(982\) −11.3397 −0.361866
\(983\) 48.3581i 1.54238i 0.636603 + 0.771192i \(0.280339\pi\)
−0.636603 + 0.771192i \(0.719661\pi\)
\(984\) −31.2891 −0.997459
\(985\) 16.4304 0.523515
\(986\) 0 0
\(987\) 5.51722 0.175615
\(988\) −38.9506 −1.23918
\(989\) − 39.8319i − 1.26658i
\(990\) 11.4280 0.363204
\(991\) − 24.0403i − 0.763667i −0.924231 0.381833i \(-0.875293\pi\)
0.924231 0.381833i \(-0.124707\pi\)
\(992\) 5.51368i 0.175060i
\(993\) 10.8485i 0.344266i
\(994\) −37.2251 −1.18071
\(995\) −15.9921 −0.506985
\(996\) 42.2275i 1.33803i
\(997\) 26.3398i 0.834189i 0.908863 + 0.417095i \(0.136952\pi\)
−0.908863 + 0.417095i \(0.863048\pi\)
\(998\) − 3.94216i − 0.124787i
\(999\) −5.31548 −0.168174
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.d.f.577.7 8
17.2 even 8 51.2.e.a.13.4 yes 8
17.3 odd 16 867.2.h.k.688.4 16
17.4 even 4 867.2.a.k.1.1 4
17.5 odd 16 867.2.h.i.757.2 16
17.6 odd 16 867.2.h.k.712.3 16
17.7 odd 16 867.2.h.i.733.1 16
17.8 even 8 51.2.e.a.4.1 8
17.9 even 8 867.2.e.g.616.1 8
17.10 odd 16 867.2.h.i.733.2 16
17.11 odd 16 867.2.h.k.712.4 16
17.12 odd 16 867.2.h.i.757.1 16
17.13 even 4 867.2.a.l.1.1 4
17.14 odd 16 867.2.h.k.688.3 16
17.15 even 8 867.2.e.g.829.4 8
17.16 even 2 inner 867.2.d.f.577.8 8
51.2 odd 8 153.2.f.b.64.1 8
51.8 odd 8 153.2.f.b.55.4 8
51.38 odd 4 2601.2.a.bf.1.4 4
51.47 odd 4 2601.2.a.be.1.4 4
68.19 odd 8 816.2.bd.e.625.4 8
68.59 odd 8 816.2.bd.e.769.4 8
204.59 even 8 2448.2.be.x.1585.1 8
204.155 even 8 2448.2.be.x.1441.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.1 8 17.8 even 8
51.2.e.a.13.4 yes 8 17.2 even 8
153.2.f.b.55.4 8 51.8 odd 8
153.2.f.b.64.1 8 51.2 odd 8
816.2.bd.e.625.4 8 68.19 odd 8
816.2.bd.e.769.4 8 68.59 odd 8
867.2.a.k.1.1 4 17.4 even 4
867.2.a.l.1.1 4 17.13 even 4
867.2.d.f.577.7 8 1.1 even 1 trivial
867.2.d.f.577.8 8 17.16 even 2 inner
867.2.e.g.616.1 8 17.9 even 8
867.2.e.g.829.4 8 17.15 even 8
867.2.h.i.733.1 16 17.7 odd 16
867.2.h.i.733.2 16 17.10 odd 16
867.2.h.i.757.1 16 17.12 odd 16
867.2.h.i.757.2 16 17.5 odd 16
867.2.h.k.688.3 16 17.14 odd 16
867.2.h.k.688.4 16 17.3 odd 16
867.2.h.k.712.3 16 17.6 odd 16
867.2.h.k.712.4 16 17.11 odd 16
2448.2.be.x.1441.1 8 204.155 even 8
2448.2.be.x.1585.1 8 204.59 even 8
2601.2.a.be.1.4 4 51.47 odd 4
2601.2.a.bf.1.4 4 51.38 odd 4