Properties

Label 2448.2.be.x.1441.1
Level $2448$
Weight $2$
Character 2448.1441
Analytic conductor $19.547$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2448,2,Mod(1441,2448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2448.1441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.be (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.5473784148\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1441.1
Root \(0.222191i\) of defining polynomial
Character \(\chi\) \(=\) 2448.1441
Dual form 2448.2.be.x.1585.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57133 - 1.57133i) q^{5} +(-1.63640 + 1.63640i) q^{7} +(1.37930 - 1.37930i) q^{11} -1.32218 q^{13} +(3.88555 - 1.37930i) q^{17} +5.95063i q^{19} +(-3.37930 + 3.37930i) q^{23} -0.0618655i q^{25} +(0.122204 + 0.122204i) q^{29} +(-0.314226 - 0.314226i) q^{31} +5.14265 q^{35} +(3.75861 + 3.75861i) q^{37} +(2.84414 - 2.84414i) q^{41} -8.33468i q^{43} -2.38404 q^{47} +1.64436i q^{49} -0.727190i q^{53} -4.33468 q^{55} -11.7870i q^{59} +(6.14265 - 6.14265i) q^{61} +(2.07757 + 2.07757i) q^{65} +14.1866 q^{67} +(4.31423 + 4.31423i) q^{71} +(7.46483 + 7.46483i) q^{73} +4.51420i q^{77} +(-0.493752 + 0.493752i) q^{79} -8.52971i q^{83} +(-8.27281 - 3.93813i) q^{85} +5.40297 q^{89} +(2.16362 - 2.16362i) q^{91} +(9.35038 - 9.35038i) q^{95} +(3.33468 + 3.33468i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 4 q^{7} - 4 q^{13} + 4 q^{17} - 16 q^{23} - 4 q^{29} + 8 q^{31} + 8 q^{35} + 8 q^{37} - 28 q^{41} - 8 q^{47} + 4 q^{55} + 16 q^{61} - 16 q^{65} - 8 q^{67} + 24 q^{71} + 20 q^{73} - 20 q^{79}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2448\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(1361\) \(1873\) \(2143\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.57133 1.57133i −0.702719 0.702719i 0.262275 0.964993i \(-0.415527\pi\)
−0.964993 + 0.262275i \(0.915527\pi\)
\(6\) 0 0
\(7\) −1.63640 + 1.63640i −0.618503 + 0.618503i −0.945147 0.326644i \(-0.894082\pi\)
0.326644 + 0.945147i \(0.394082\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.37930 1.37930i 0.415876 0.415876i −0.467904 0.883780i \(-0.654991\pi\)
0.883780 + 0.467904i \(0.154991\pi\)
\(12\) 0 0
\(13\) −1.32218 −0.366706 −0.183353 0.983047i \(-0.558695\pi\)
−0.183353 + 0.983047i \(0.558695\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.88555 1.37930i 0.942385 0.334530i
\(18\) 0 0
\(19\) 5.95063i 1.36517i 0.730807 + 0.682584i \(0.239144\pi\)
−0.730807 + 0.682584i \(0.760856\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.37930 + 3.37930i −0.704634 + 0.704634i −0.965402 0.260768i \(-0.916024\pi\)
0.260768 + 0.965402i \(0.416024\pi\)
\(24\) 0 0
\(25\) 0.0618655i 0.0123731i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.122204 + 0.122204i 0.0226927 + 0.0226927i 0.718362 0.695669i \(-0.244892\pi\)
−0.695669 + 0.718362i \(0.744892\pi\)
\(30\) 0 0
\(31\) −0.314226 0.314226i −0.0564367 0.0564367i 0.678325 0.734762i \(-0.262706\pi\)
−0.734762 + 0.678325i \(0.762706\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.14265 0.869267
\(36\) 0 0
\(37\) 3.75861 + 3.75861i 0.617911 + 0.617911i 0.944995 0.327084i \(-0.106066\pi\)
−0.327084 + 0.944995i \(0.606066\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.84414 2.84414i 0.444179 0.444179i −0.449234 0.893414i \(-0.648303\pi\)
0.893414 + 0.449234i \(0.148303\pi\)
\(42\) 0 0
\(43\) 8.33468i 1.27103i −0.772090 0.635513i \(-0.780789\pi\)
0.772090 0.635513i \(-0.219211\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.38404 −0.347749 −0.173874 0.984768i \(-0.555629\pi\)
−0.173874 + 0.984768i \(0.555629\pi\)
\(48\) 0 0
\(49\) 1.64436i 0.234908i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.727190i 0.0998872i −0.998752 0.0499436i \(-0.984096\pi\)
0.998752 0.0499436i \(-0.0159042\pi\)
\(54\) 0 0
\(55\) −4.33468 −0.584488
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.7870i 1.53454i −0.641325 0.767269i \(-0.721615\pi\)
0.641325 0.767269i \(-0.278385\pi\)
\(60\) 0 0
\(61\) 6.14265 6.14265i 0.786486 0.786486i −0.194430 0.980916i \(-0.562286\pi\)
0.980916 + 0.194430i \(0.0622858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.07757 + 2.07757i 0.257691 + 0.257691i
\(66\) 0 0
\(67\) 14.1866 1.73317 0.866583 0.499034i \(-0.166312\pi\)
0.866583 + 0.499034i \(0.166312\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.31423 + 4.31423i 0.512004 + 0.512004i 0.915140 0.403136i \(-0.132080\pi\)
−0.403136 + 0.915140i \(0.632080\pi\)
\(72\) 0 0
\(73\) 7.46483 + 7.46483i 0.873693 + 0.873693i 0.992873 0.119180i \(-0.0380266\pi\)
−0.119180 + 0.992873i \(0.538027\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.51420i 0.514441i
\(78\) 0 0
\(79\) −0.493752 + 0.493752i −0.0555514 + 0.0555514i −0.734337 0.678785i \(-0.762507\pi\)
0.678785 + 0.734337i \(0.262507\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.52971i 0.936258i −0.883660 0.468129i \(-0.844928\pi\)
0.883660 0.468129i \(-0.155072\pi\)
\(84\) 0 0
\(85\) −8.27281 3.93813i −0.897312 0.427151i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.40297 0.572713 0.286357 0.958123i \(-0.407556\pi\)
0.286357 + 0.958123i \(0.407556\pi\)
\(90\) 0 0
\(91\) 2.16362 2.16362i 0.226809 0.226809i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.35038 9.35038i 0.959329 0.959329i
\(96\) 0 0
\(97\) 3.33468 + 3.33468i 0.338585 + 0.338585i 0.855835 0.517250i \(-0.173044\pi\)
−0.517250 + 0.855835i \(0.673044\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.11123 0.707594 0.353797 0.935322i \(-0.384890\pi\)
0.353797 + 0.935322i \(0.384890\pi\)
\(102\) 0 0
\(103\) 9.22344 0.908813 0.454406 0.890795i \(-0.349851\pi\)
0.454406 + 0.890795i \(0.349851\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.66461 + 3.66461i 0.354271 + 0.354271i 0.861696 0.507425i \(-0.169402\pi\)
−0.507425 + 0.861696i \(0.669402\pi\)
\(108\) 0 0
\(109\) 14.1247 14.1247i 1.35290 1.35290i 0.470503 0.882399i \(-0.344073\pi\)
0.882399 0.470503i \(-0.155927\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.3299 12.3299i 1.15990 1.15990i 0.175407 0.984496i \(-0.443876\pi\)
0.984496 0.175407i \(-0.0561240\pi\)
\(114\) 0 0
\(115\) 10.6200 0.990318
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.10124 + 8.61544i −0.375960 + 0.789776i
\(120\) 0 0
\(121\) 7.19504i 0.654094i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.95384 + 7.95384i −0.711413 + 0.711413i
\(126\) 0 0
\(127\) 9.85189i 0.874214i 0.899409 + 0.437107i \(0.143997\pi\)
−0.899409 + 0.437107i \(0.856003\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.37930 + 5.37930i 0.469992 + 0.469992i 0.901912 0.431920i \(-0.142164\pi\)
−0.431920 + 0.901912i \(0.642164\pi\)
\(132\) 0 0
\(133\) −9.73764 9.73764i −0.844361 0.844361i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −22.0723 −1.88577 −0.942883 0.333125i \(-0.891897\pi\)
−0.942883 + 0.333125i \(0.891897\pi\)
\(138\) 0 0
\(139\) −2.53465 2.53465i −0.214986 0.214986i 0.591395 0.806382i \(-0.298577\pi\)
−0.806382 + 0.591395i \(0.798577\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.82369 + 1.82369i −0.152504 + 0.152504i
\(144\) 0 0
\(145\) 0.384044i 0.0318931i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.7711 −0.964327 −0.482163 0.876081i \(-0.660149\pi\)
−0.482163 + 0.876081i \(0.660149\pi\)
\(150\) 0 0
\(151\) 16.1037i 1.31050i −0.755411 0.655252i \(-0.772563\pi\)
0.755411 0.655252i \(-0.227437\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.987504i 0.0793182i
\(156\) 0 0
\(157\) 6.45535 0.515193 0.257597 0.966253i \(-0.417069\pi\)
0.257597 + 0.966253i \(0.417069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.0598i 0.871636i
\(162\) 0 0
\(163\) 11.8314 11.8314i 0.926710 0.926710i −0.0707816 0.997492i \(-0.522549\pi\)
0.997492 + 0.0707816i \(0.0225494\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.13490 + 1.13490i 0.0878209 + 0.0878209i 0.749653 0.661832i \(-0.230221\pi\)
−0.661832 + 0.749653i \(0.730221\pi\)
\(168\) 0 0
\(169\) −11.2518 −0.865526
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.1169 + 12.1169i 0.921234 + 0.921234i 0.997117 0.0758824i \(-0.0241774\pi\)
−0.0758824 + 0.997117i \(0.524177\pi\)
\(174\) 0 0
\(175\) 0.101237 + 0.101237i 0.00765280 + 0.00765280i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.0753i 0.827809i 0.910320 + 0.413905i \(0.135835\pi\)
−0.910320 + 0.413905i \(0.864165\pi\)
\(180\) 0 0
\(181\) 13.9297 13.9297i 1.03538 1.03538i 0.0360332 0.999351i \(-0.488528\pi\)
0.999351 0.0360332i \(-0.0114722\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.8120i 0.868436i
\(186\) 0 0
\(187\) 3.45688 7.26184i 0.252792 0.531038i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.60953 −0.116461 −0.0582307 0.998303i \(-0.518546\pi\)
−0.0582307 + 0.998303i \(0.518546\pi\)
\(192\) 0 0
\(193\) 3.16362 3.16362i 0.227722 0.227722i −0.584018 0.811741i \(-0.698520\pi\)
0.811741 + 0.584018i \(0.198520\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.22818 + 5.22818i −0.372492 + 0.372492i −0.868384 0.495892i \(-0.834841\pi\)
0.495892 + 0.868384i \(0.334841\pi\)
\(198\) 0 0
\(199\) −5.08874 5.08874i −0.360731 0.360731i 0.503351 0.864082i \(-0.332100\pi\)
−0.864082 + 0.503351i \(0.832100\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.399950 −0.0280710
\(204\) 0 0
\(205\) −8.93813 −0.624266
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.20773 + 8.20773i 0.567741 + 0.567741i
\(210\) 0 0
\(211\) 9.48830 9.48830i 0.653201 0.653201i −0.300561 0.953763i \(-0.597174\pi\)
0.953763 + 0.300561i \(0.0971740\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −13.0965 + 13.0965i −0.893174 + 0.893174i
\(216\) 0 0
\(217\) 1.02840 0.0698125
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.13740 + 1.82369i −0.345579 + 0.122674i
\(222\) 0 0
\(223\) 21.2643i 1.42397i 0.702197 + 0.711983i \(0.252203\pi\)
−0.702197 + 0.711983i \(0.747797\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.50304 3.50304i 0.232505 0.232505i −0.581233 0.813737i \(-0.697429\pi\)
0.813737 + 0.581233i \(0.197429\pi\)
\(228\) 0 0
\(229\) 1.83842i 0.121487i 0.998153 + 0.0607433i \(0.0193471\pi\)
−0.998153 + 0.0607433i \(0.980653\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.05713 + 1.05713i 0.0692546 + 0.0692546i 0.740886 0.671631i \(-0.234406\pi\)
−0.671631 + 0.740886i \(0.734406\pi\)
\(234\) 0 0
\(235\) 3.74611 + 3.74611i 0.244369 + 0.244369i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.0250 −0.648463 −0.324231 0.945978i \(-0.605106\pi\)
−0.324231 + 0.945978i \(0.605106\pi\)
\(240\) 0 0
\(241\) −8.14265 8.14265i −0.524514 0.524514i 0.394417 0.918932i \(-0.370947\pi\)
−0.918932 + 0.394417i \(0.870947\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.58382 2.58382i 0.165074 0.165074i
\(246\) 0 0
\(247\) 7.86780i 0.500616i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.940179 0.0593436 0.0296718 0.999560i \(-0.490554\pi\)
0.0296718 + 0.999560i \(0.490554\pi\)
\(252\) 0 0
\(253\) 9.32218i 0.586080i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.15515i 0.134435i 0.997738 + 0.0672173i \(0.0214121\pi\)
−0.997738 + 0.0672173i \(0.978588\pi\)
\(258\) 0 0
\(259\) −12.3012 −0.764360
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.1427i 0.810411i −0.914226 0.405205i \(-0.867200\pi\)
0.914226 0.405205i \(-0.132800\pi\)
\(264\) 0 0
\(265\) −1.14265 + 1.14265i −0.0701926 + 0.0701926i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.7299 + 10.7299i 0.654213 + 0.654213i 0.954005 0.299792i \(-0.0969173\pi\)
−0.299792 + 0.954005i \(0.596917\pi\)
\(270\) 0 0
\(271\) −11.8360 −0.718985 −0.359493 0.933148i \(-0.617050\pi\)
−0.359493 + 0.933148i \(0.617050\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.0853313 0.0853313i −0.00514567 0.00514567i
\(276\) 0 0
\(277\) 19.0229 + 19.0229i 1.14298 + 1.14298i 0.987903 + 0.155076i \(0.0495621\pi\)
0.155076 + 0.987903i \(0.450438\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.2339i 1.32636i 0.748459 + 0.663181i \(0.230794\pi\)
−0.748459 + 0.663181i \(0.769206\pi\)
\(282\) 0 0
\(283\) −16.9406 + 16.9406i −1.00702 + 1.00702i −0.00704092 + 0.999975i \(0.502241\pi\)
−0.999975 + 0.00704092i \(0.997759\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.30832i 0.549453i
\(288\) 0 0
\(289\) 13.1950 10.7187i 0.776179 0.630513i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.44387 0.434875 0.217438 0.976074i \(-0.430230\pi\)
0.217438 + 0.976074i \(0.430230\pi\)
\(294\) 0 0
\(295\) −18.5212 + 18.5212i −1.07835 + 1.07835i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.46804 4.46804i 0.258394 0.258394i
\(300\) 0 0
\(301\) 13.6389 + 13.6389i 0.786133 + 0.786133i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −19.3042 −1.10536
\(306\) 0 0
\(307\) 14.2184 0.811486 0.405743 0.913987i \(-0.367013\pi\)
0.405743 + 0.913987i \(0.367013\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.32672 7.32672i −0.415460 0.415460i 0.468175 0.883636i \(-0.344912\pi\)
−0.883636 + 0.468175i \(0.844912\pi\)
\(312\) 0 0
\(313\) −12.3222 + 12.3222i −0.696491 + 0.696491i −0.963652 0.267161i \(-0.913914\pi\)
0.267161 + 0.963652i \(0.413914\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.0235 + 10.0235i −0.562974 + 0.562974i −0.930151 0.367177i \(-0.880324\pi\)
0.367177 + 0.930151i \(0.380324\pi\)
\(318\) 0 0
\(319\) 0.337113 0.0188747
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.20773 + 23.1215i 0.456690 + 1.28651i
\(324\) 0 0
\(325\) 0.0817972i 0.00453730i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.90126 3.90126i 0.215084 0.215084i
\(330\) 0 0
\(331\) 10.8485i 0.596287i −0.954521 0.298143i \(-0.903633\pi\)
0.954521 0.298143i \(-0.0963673\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −22.2917 22.2917i −1.21793 1.21793i
\(336\) 0 0
\(337\) −6.94216 6.94216i −0.378164 0.378164i 0.492276 0.870439i \(-0.336165\pi\)
−0.870439 + 0.492276i \(0.836165\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.866827 −0.0469413
\(342\) 0 0
\(343\) −14.1457 14.1457i −0.763794 0.763794i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.4180 18.4180i 0.988728 0.988728i −0.0112092 0.999937i \(-0.503568\pi\)
0.999937 + 0.0112092i \(0.00356806\pi\)
\(348\) 0 0
\(349\) 18.6609i 0.998894i −0.866344 0.499447i \(-0.833537\pi\)
0.866344 0.499447i \(-0.166463\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.8339 0.629857 0.314929 0.949115i \(-0.398019\pi\)
0.314929 + 0.949115i \(0.398019\pi\)
\(354\) 0 0
\(355\) 13.5581i 0.719590i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.1392i 0.746241i 0.927783 + 0.373120i \(0.121712\pi\)
−0.927783 + 0.373120i \(0.878288\pi\)
\(360\) 0 0
\(361\) −16.4100 −0.863685
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 23.4594i 1.22792i
\(366\) 0 0
\(367\) −2.63300 + 2.63300i −0.137441 + 0.137441i −0.772480 0.635039i \(-0.780984\pi\)
0.635039 + 0.772480i \(0.280984\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.18998 + 1.18998i 0.0617806 + 0.0617806i
\(372\) 0 0
\(373\) 1.53618 0.0795403 0.0397701 0.999209i \(-0.487337\pi\)
0.0397701 + 0.999209i \(0.487337\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.161575 0.161575i −0.00832156 0.00832156i
\(378\) 0 0
\(379\) 25.5627 + 25.5627i 1.31307 + 1.31307i 0.919144 + 0.393922i \(0.128882\pi\)
0.393922 + 0.919144i \(0.371118\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.3492i 0.835404i −0.908584 0.417702i \(-0.862836\pi\)
0.908584 0.417702i \(-0.137164\pi\)
\(384\) 0 0
\(385\) 7.09328 7.09328i 0.361507 0.361507i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.4533i 0.834216i −0.908857 0.417108i \(-0.863044\pi\)
0.908857 0.417108i \(-0.136956\pi\)
\(390\) 0 0
\(391\) −8.46938 + 17.7916i −0.428315 + 0.899758i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.55169 0.0780740
\(396\) 0 0
\(397\) −25.7816 + 25.7816i −1.29394 + 1.29394i −0.361610 + 0.932330i \(0.617773\pi\)
−0.932330 + 0.361610i \(0.882227\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.84414 6.84414i 0.341780 0.341780i −0.515256 0.857036i \(-0.672303\pi\)
0.857036 + 0.515256i \(0.172303\pi\)
\(402\) 0 0
\(403\) 0.415463 + 0.415463i 0.0206957 + 0.0206957i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.3685 0.513949
\(408\) 0 0
\(409\) −2.52228 −0.124719 −0.0623593 0.998054i \(-0.519862\pi\)
−0.0623593 + 0.998054i \(0.519862\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 19.2883 + 19.2883i 0.949116 + 0.949116i
\(414\) 0 0
\(415\) −13.4030 + 13.4030i −0.657926 + 0.657926i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.6154 + 18.6154i −0.909424 + 0.909424i −0.996226 0.0868019i \(-0.972335\pi\)
0.0868019 + 0.996226i \(0.472335\pi\)
\(420\) 0 0
\(421\) 6.61089 0.322195 0.161098 0.986938i \(-0.448497\pi\)
0.161098 + 0.986938i \(0.448497\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.0853313 0.240382i −0.00413918 0.0116602i
\(426\) 0 0
\(427\) 20.1037i 0.972888i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 19.8882 19.8882i 0.957983 0.957983i −0.0411690 0.999152i \(-0.513108\pi\)
0.999152 + 0.0411690i \(0.0131082\pi\)
\(432\) 0 0
\(433\) 17.1497i 0.824162i 0.911147 + 0.412081i \(0.135198\pi\)
−0.911147 + 0.412081i \(0.864802\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −20.1090 20.1090i −0.961944 0.961944i
\(438\) 0 0
\(439\) −5.81593 5.81593i −0.277579 0.277579i 0.554563 0.832142i \(-0.312886\pi\)
−0.832142 + 0.554563i \(0.812886\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.4658 −0.877339 −0.438669 0.898649i \(-0.644550\pi\)
−0.438669 + 0.898649i \(0.644550\pi\)
\(444\) 0 0
\(445\) −8.48983 8.48983i −0.402456 0.402456i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.8673 21.8673i 1.03198 1.03198i 0.0325094 0.999471i \(-0.489650\pi\)
0.999471 0.0325094i \(-0.0103499\pi\)
\(450\) 0 0
\(451\) 7.84586i 0.369447i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.79951 −0.318766
\(456\) 0 0
\(457\) 15.5337i 0.726638i 0.931665 + 0.363319i \(0.118356\pi\)
−0.931665 + 0.363319i \(0.881644\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 38.9032i 1.81190i −0.423380 0.905952i \(-0.639156\pi\)
0.423380 0.905952i \(-0.360844\pi\)
\(462\) 0 0
\(463\) −22.7572 −1.05762 −0.528808 0.848742i \(-0.677361\pi\)
−0.528808 + 0.848742i \(0.677361\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.5551i 0.580981i −0.956878 0.290490i \(-0.906182\pi\)
0.956878 0.290490i \(-0.0938184\pi\)
\(468\) 0 0
\(469\) −23.2150 + 23.2150i −1.07197 + 1.07197i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.4961 11.4961i −0.528589 0.528589i
\(474\) 0 0
\(475\) 0.368139 0.0168914
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 26.3340 + 26.3340i 1.20323 + 1.20323i 0.973179 + 0.230051i \(0.0738892\pi\)
0.230051 + 0.973179i \(0.426111\pi\)
\(480\) 0 0
\(481\) −4.96955 4.96955i −0.226592 0.226592i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.4797i 0.475860i
\(486\) 0 0
\(487\) 1.16310 1.16310i 0.0527052 0.0527052i −0.680263 0.732968i \(-0.738134\pi\)
0.732968 + 0.680263i \(0.238134\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.30121i 0.194111i −0.995279 0.0970555i \(-0.969058\pi\)
0.995279 0.0970555i \(-0.0309424\pi\)
\(492\) 0 0
\(493\) 0.643386 + 0.306273i 0.0289766 + 0.0137939i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.1196 −0.633352
\(498\) 0 0
\(499\) −1.05732 + 1.05732i −0.0473322 + 0.0473322i −0.730377 0.683045i \(-0.760655\pi\)
0.683045 + 0.730377i \(0.260655\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.19274 1.19274i 0.0531815 0.0531815i −0.680016 0.733197i \(-0.738027\pi\)
0.733197 + 0.680016i \(0.238027\pi\)
\(504\) 0 0
\(505\) −11.1741 11.1741i −0.497240 0.497240i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.91070 0.306312 0.153156 0.988202i \(-0.451056\pi\)
0.153156 + 0.988202i \(0.451056\pi\)
\(510\) 0 0
\(511\) −24.4310 −1.08076
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14.4930 14.4930i −0.638640 0.638640i
\(516\) 0 0
\(517\) −3.28832 + 3.28832i −0.144620 + 0.144620i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.47259 + 9.47259i −0.415002 + 0.415002i −0.883477 0.468475i \(-0.844804\pi\)
0.468475 + 0.883477i \(0.344804\pi\)
\(522\) 0 0
\(523\) −4.40904 −0.192794 −0.0963969 0.995343i \(-0.530732\pi\)
−0.0963969 + 0.995343i \(0.530732\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.65436 0.787529i −0.0720648 0.0343053i
\(528\) 0 0
\(529\) 0.160604i 0.00698276i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.76046 + 3.76046i −0.162883 + 0.162883i
\(534\) 0 0
\(535\) 11.5166i 0.497906i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.26807 + 2.26807i 0.0976927 + 0.0976927i
\(540\) 0 0
\(541\) −16.3451 16.3451i −0.702732 0.702732i 0.262264 0.964996i \(-0.415531\pi\)
−0.964996 + 0.262264i \(0.915531\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −44.3890 −1.90142
\(546\) 0 0
\(547\) 6.70674 + 6.70674i 0.286760 + 0.286760i 0.835797 0.549038i \(-0.185006\pi\)
−0.549038 + 0.835797i \(0.685006\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.727190 + 0.727190i −0.0309793 + 0.0309793i
\(552\) 0 0
\(553\) 1.61596i 0.0687174i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −38.1670 −1.61719 −0.808593 0.588368i \(-0.799771\pi\)
−0.808593 + 0.588368i \(0.799771\pi\)
\(558\) 0 0
\(559\) 11.0199i 0.466093i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.8184i 0.582377i 0.956666 + 0.291189i \(0.0940507\pi\)
−0.956666 + 0.291189i \(0.905949\pi\)
\(564\) 0 0
\(565\) −38.7487 −1.63017
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.9516i 0.542959i 0.962444 + 0.271480i \(0.0875130\pi\)
−0.962444 + 0.271480i \(0.912487\pi\)
\(570\) 0 0
\(571\) −4.60596 + 4.60596i −0.192753 + 0.192753i −0.796885 0.604131i \(-0.793520\pi\)
0.604131 + 0.796885i \(0.293520\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.209062 + 0.209062i 0.00871850 + 0.00871850i
\(576\) 0 0
\(577\) 15.6703 0.652364 0.326182 0.945307i \(-0.394238\pi\)
0.326182 + 0.945307i \(0.394238\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.9581 + 13.9581i 0.579078 + 0.579078i
\(582\) 0 0
\(583\) −1.00302 1.00302i −0.0415407 0.0415407i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.9766i 0.618150i −0.951038 0.309075i \(-0.899981\pi\)
0.951038 0.309075i \(-0.100019\pi\)
\(588\) 0 0
\(589\) 1.86984 1.86984i 0.0770456 0.0770456i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 46.3701i 1.90419i 0.305801 + 0.952096i \(0.401076\pi\)
−0.305801 + 0.952096i \(0.598924\pi\)
\(594\) 0 0
\(595\) 19.9820 7.09328i 0.819184 0.290796i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −28.7068 −1.17293 −0.586464 0.809975i \(-0.699480\pi\)
−0.586464 + 0.809975i \(0.699480\pi\)
\(600\) 0 0
\(601\) −14.6998 + 14.6998i −0.599617 + 0.599617i −0.940211 0.340593i \(-0.889372\pi\)
0.340593 + 0.940211i \(0.389372\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.3058 11.3058i 0.459644 0.459644i
\(606\) 0 0
\(607\) 12.1665 + 12.1665i 0.493823 + 0.493823i 0.909509 0.415685i \(-0.136458\pi\)
−0.415685 + 0.909509i \(0.636458\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.15213 0.127522
\(612\) 0 0
\(613\) −42.7657 −1.72729 −0.863644 0.504102i \(-0.831824\pi\)
−0.863644 + 0.504102i \(0.831824\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.0678 + 27.0678i 1.08971 + 1.08971i 0.995558 + 0.0941495i \(0.0300132\pi\)
0.0941495 + 0.995558i \(0.469987\pi\)
\(618\) 0 0
\(619\) −6.55659 + 6.55659i −0.263532 + 0.263532i −0.826487 0.562956i \(-0.809664\pi\)
0.562956 + 0.826487i \(0.309664\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.84144 + 8.84144i −0.354225 + 0.354225i
\(624\) 0 0
\(625\) 24.6868 0.987474
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.7885 + 9.42001i 0.789021 + 0.375600i
\(630\) 0 0
\(631\) 33.8478i 1.34746i −0.738978 0.673730i \(-0.764691\pi\)
0.738978 0.673730i \(-0.235309\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.4805 15.4805i 0.614327 0.614327i
\(636\) 0 0
\(637\) 2.17414i 0.0861424i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.54594 7.54594i −0.298047 0.298047i 0.542202 0.840248i \(-0.317591\pi\)
−0.840248 + 0.542202i \(0.817591\pi\)
\(642\) 0 0
\(643\) −27.7990 27.7990i −1.09629 1.09629i −0.994841 0.101444i \(-0.967654\pi\)
−0.101444 0.994841i \(-0.532346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27.9895 −1.10038 −0.550190 0.835039i \(-0.685445\pi\)
−0.550190 + 0.835039i \(0.685445\pi\)
\(648\) 0 0
\(649\) −16.2579 16.2579i −0.638177 0.638177i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.9574 + 28.9574i −1.13319 + 1.13319i −0.143545 + 0.989644i \(0.545850\pi\)
−0.989644 + 0.143545i \(0.954150\pi\)
\(654\) 0 0
\(655\) 16.9053i 0.660544i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.8164 0.421349 0.210674 0.977556i \(-0.432434\pi\)
0.210674 + 0.977556i \(0.432434\pi\)
\(660\) 0 0
\(661\) 20.0794i 0.780997i −0.920604 0.390498i \(-0.872303\pi\)
0.920604 0.390498i \(-0.127697\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 30.6020i 1.18670i
\(666\) 0 0
\(667\) −0.825928 −0.0319801
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.9452i 0.654161i
\(672\) 0 0
\(673\) 19.3820 19.3820i 0.747121 0.747121i −0.226816 0.973938i \(-0.572832\pi\)
0.973938 + 0.226816i \(0.0728317\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.0696 + 16.0696i 0.617606 + 0.617606i 0.944917 0.327311i \(-0.106142\pi\)
−0.327311 + 0.944917i \(0.606142\pi\)
\(678\) 0 0
\(679\) −10.9138 −0.418832
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.3090 + 26.3090i 1.00668 + 1.00668i 0.999978 + 0.00670720i \(0.00213498\pi\)
0.00670720 + 0.999978i \(0.497865\pi\)
\(684\) 0 0
\(685\) 34.6828 + 34.6828i 1.32516 + 1.32516i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.961475i 0.0366293i
\(690\) 0 0
\(691\) 12.7675 12.7675i 0.485700 0.485700i −0.421246 0.906946i \(-0.638407\pi\)
0.906946 + 0.421246i \(0.138407\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.96553i 0.302150i
\(696\) 0 0
\(697\) 7.12811 14.9740i 0.269996 0.567180i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.99896 0.377656 0.188828 0.982010i \(-0.439531\pi\)
0.188828 + 0.982010i \(0.439531\pi\)
\(702\) 0 0
\(703\) −22.3661 + 22.3661i −0.843553 + 0.843553i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.6369 + 11.6369i −0.437649 + 0.437649i
\(708\) 0 0
\(709\) 0.773543 + 0.773543i 0.0290510 + 0.0290510i 0.721483 0.692432i \(-0.243461\pi\)
−0.692432 + 0.721483i \(0.743461\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.12373 0.0795344
\(714\) 0 0
\(715\) 5.73122 0.214335
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30.0392 + 30.0392i 1.12027 + 1.12027i 0.991700 + 0.128572i \(0.0410393\pi\)
0.128572 + 0.991700i \(0.458961\pi\)
\(720\) 0 0
\(721\) −15.0933 + 15.0933i −0.562103 + 0.562103i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.00756020 0.00756020i 0.000280779 0.000280779i
\(726\) 0 0
\(727\) 45.2169 1.67700 0.838501 0.544900i \(-0.183432\pi\)
0.838501 + 0.544900i \(0.183432\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −11.4961 32.3848i −0.425197 1.19780i
\(732\) 0 0
\(733\) 21.5990i 0.797778i 0.916999 + 0.398889i \(0.130604\pi\)
−0.916999 + 0.398889i \(0.869396\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.5676 19.5676i 0.720782 0.720782i
\(738\) 0 0
\(739\) 19.0419i 0.700467i −0.936663 0.350233i \(-0.886102\pi\)
0.936663 0.350233i \(-0.113898\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −18.6918 18.6918i −0.685737 0.685737i 0.275550 0.961287i \(-0.411140\pi\)
−0.961287 + 0.275550i \(0.911140\pi\)
\(744\) 0 0
\(745\) 18.4963 + 18.4963i 0.677650 + 0.677650i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.9936 −0.438236
\(750\) 0 0
\(751\) 3.28582 + 3.28582i 0.119901 + 0.119901i 0.764512 0.644610i \(-0.222980\pi\)
−0.644610 + 0.764512i \(0.722980\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.3042 + 25.3042i −0.920915 + 0.920915i
\(756\) 0 0
\(757\) 10.4074i 0.378263i −0.981952 0.189131i \(-0.939433\pi\)
0.981952 0.189131i \(-0.0605672\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −38.6365 −1.40057 −0.700286 0.713862i \(-0.746944\pi\)
−0.700286 + 0.713862i \(0.746944\pi\)
\(762\) 0 0
\(763\) 46.2275i 1.67355i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.5845i 0.562725i
\(768\) 0 0
\(769\) 0.178098 0.00642238 0.00321119 0.999995i \(-0.498978\pi\)
0.00321119 + 0.999995i \(0.498978\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.15554i 0.149464i −0.997204 0.0747322i \(-0.976190\pi\)
0.997204 0.0747322i \(-0.0238102\pi\)
\(774\) 0 0
\(775\) −0.0194398 + 0.0194398i −0.000698296 + 0.000698296i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.9244 + 16.9244i 0.606380 + 0.606380i
\(780\) 0 0
\(781\) 11.9013 0.425861
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.1435 10.1435i −0.362036 0.362036i
\(786\) 0 0
\(787\) −1.22941 1.22941i −0.0438238 0.0438238i 0.684855 0.728679i \(-0.259865\pi\)
−0.728679 + 0.684855i \(0.759865\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 40.3535i 1.43481i
\(792\) 0 0
\(793\) −8.12169 + 8.12169i −0.288410 + 0.288410i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.2085i 0.786666i −0.919396 0.393333i \(-0.871322\pi\)
0.919396 0.393333i \(-0.128678\pi\)
\(798\) 0 0
\(799\) −9.26333 + 3.28832i −0.327713 + 0.116333i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 20.5926 0.726695
\(804\) 0 0
\(805\) −17.3786 + 17.3786i −0.612515 + 0.612515i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.28300 2.28300i 0.0802661 0.0802661i −0.665834 0.746100i \(-0.731924\pi\)
0.746100 + 0.665834i \(0.231924\pi\)
\(810\) 0 0
\(811\) 17.8304 + 17.8304i 0.626110 + 0.626110i 0.947087 0.320977i \(-0.104011\pi\)
−0.320977 + 0.947087i \(0.604011\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −37.1821 −1.30243
\(816\) 0 0
\(817\) 49.5966 1.73516
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.3444 24.3444i −0.849626 0.849626i 0.140460 0.990086i \(-0.455142\pi\)
−0.990086 + 0.140460i \(0.955142\pi\)
\(822\) 0 0
\(823\) −12.5861 + 12.5861i −0.438723 + 0.438723i −0.891582 0.452859i \(-0.850404\pi\)
0.452859 + 0.891582i \(0.350404\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.37930 + 1.37930i −0.0479631 + 0.0479631i −0.730682 0.682718i \(-0.760798\pi\)
0.682718 + 0.730682i \(0.260798\pi\)
\(828\) 0 0
\(829\) −0.904671 −0.0314205 −0.0157103 0.999877i \(-0.505001\pi\)
−0.0157103 + 0.999877i \(0.505001\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.26807 + 6.38924i 0.0785840 + 0.221374i
\(834\) 0 0
\(835\) 3.56659i 0.123427i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.1659 + 17.1659i −0.592633 + 0.592633i −0.938342 0.345708i \(-0.887639\pi\)
0.345708 + 0.938342i \(0.387639\pi\)
\(840\) 0 0
\(841\) 28.9701i 0.998970i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.6803 + 17.6803i 0.608222 + 0.608222i
\(846\) 0 0
\(847\) −11.7740 11.7740i −0.404559 0.404559i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −25.4030 −0.870802
\(852\) 0 0
\(853\) 26.9482 + 26.9482i 0.922689 + 0.922689i 0.997219 0.0745302i \(-0.0237457\pi\)
−0.0745302 + 0.997219i \(0.523746\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.80850 + 4.80850i −0.164255 + 0.164255i −0.784449 0.620194i \(-0.787054\pi\)
0.620194 + 0.784449i \(0.287054\pi\)
\(858\) 0 0
\(859\) 22.3072i 0.761113i −0.924758 0.380557i \(-0.875732\pi\)
0.924758 0.380557i \(-0.124268\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.400593 −0.0136363 −0.00681816 0.999977i \(-0.502170\pi\)
−0.00681816 + 0.999977i \(0.502170\pi\)
\(864\) 0 0
\(865\) 38.0794i 1.29474i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.36207i 0.0462050i
\(870\) 0 0
\(871\) −18.7572 −0.635563
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 26.0314i 0.880023i
\(876\) 0 0
\(877\) −0.149079 + 0.149079i −0.00503404 + 0.00503404i −0.709619 0.704585i \(-0.751133\pi\)
0.704585 + 0.709619i \(0.251133\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.6255 + 36.6255i 1.23394 + 1.23394i 0.962436 + 0.271508i \(0.0875224\pi\)
0.271508 + 0.962436i \(0.412478\pi\)
\(882\) 0 0
\(883\) 23.5757 0.793385 0.396692 0.917952i \(-0.370158\pi\)
0.396692 + 0.917952i \(0.370158\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.5500 11.5500i −0.387810 0.387810i 0.486096 0.873906i \(-0.338421\pi\)
−0.873906 + 0.486096i \(0.838421\pi\)
\(888\) 0 0
\(889\) −16.1217 16.1217i −0.540704 0.540704i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 14.1866i 0.474735i
\(894\) 0 0
\(895\) 17.4030 17.4030i 0.581717 0.581717i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.0767993i 0.00256140i
\(900\) 0 0
\(901\) −1.00302 2.82554i −0.0334153 0.0941322i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −43.7761 −1.45517
\(906\) 0 0
\(907\) 21.7666 21.7666i 0.722747 0.722747i −0.246417 0.969164i \(-0.579253\pi\)
0.969164 + 0.246417i \(0.0792533\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.08757 5.08757i 0.168559 0.168559i −0.617787 0.786346i \(-0.711971\pi\)
0.786346 + 0.617787i \(0.211971\pi\)
\(912\) 0 0
\(913\) −11.7651 11.7651i −0.389367 0.389367i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −17.6054 −0.581383
\(918\) 0 0
\(919\) −11.6873 −0.385527 −0.192764 0.981245i \(-0.561745\pi\)
−0.192764 + 0.981245i \(0.561745\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.70418 5.70418i −0.187755 0.187755i
\(924\) 0 0
\(925\) 0.232528 0.232528i 0.00764548 0.00764548i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.0287 10.0287i 0.329032 0.329032i −0.523186 0.852218i \(-0.675257\pi\)
0.852218 + 0.523186i \(0.175257\pi\)
\(930\) 0 0
\(931\) −9.78497 −0.320689
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16.8426 + 5.97884i −0.550812 + 0.195529i
\(936\) 0 0
\(937\) 25.4693i 0.832044i −0.909355 0.416022i \(-0.863424\pi\)
0.909355 0.416022i \(-0.136576\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 41.4250 41.4250i 1.35042 1.35042i 0.465223 0.885193i \(-0.345974\pi\)
0.885193 0.465223i \(-0.154026\pi\)
\(942\) 0 0
\(943\) 19.2224i 0.625968i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.4664 + 13.4664i 0.437598 + 0.437598i 0.891203 0.453605i \(-0.149862\pi\)
−0.453605 + 0.891203i \(0.649862\pi\)
\(948\) 0 0
\(949\) −9.86984 9.86984i −0.320389 0.320389i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19.8922 −0.644371 −0.322185 0.946677i \(-0.604417\pi\)
−0.322185 + 0.946677i \(0.604417\pi\)
\(954\) 0 0
\(955\) 2.52910 + 2.52910i 0.0818397 + 0.0818397i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.1192 36.1192i 1.16635 1.16635i
\(960\) 0 0
\(961\) 30.8025i 0.993630i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9.94216 −0.320049
\(966\) 0 0
\(967\) 53.0310i 1.70536i 0.522433 + 0.852680i \(0.325025\pi\)
−0.522433 + 0.852680i \(0.674975\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.02535i 0.0970880i −0.998821 0.0485440i \(-0.984542\pi\)
0.998821 0.0485440i \(-0.0154581\pi\)
\(972\) 0 0
\(973\) 8.29543 0.265939
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.2664i 0.360444i −0.983626 0.180222i \(-0.942318\pi\)
0.983626 0.180222i \(-0.0576815\pi\)
\(978\) 0 0
\(979\) 7.45234 7.45234i 0.238178 0.238178i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 34.1943 + 34.1943i 1.09063 + 1.09063i 0.995461 + 0.0951684i \(0.0303390\pi\)
0.0951684 + 0.995461i \(0.469661\pi\)
\(984\) 0 0
\(985\) 16.4304 0.523515
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.1654 + 28.1654i 0.895608 + 0.895608i
\(990\) 0 0
\(991\) −16.9991 16.9991i −0.539994 0.539994i 0.383533 0.923527i \(-0.374707\pi\)
−0.923527 + 0.383533i \(0.874707\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 15.9921i 0.506985i
\(996\) 0 0
\(997\) −18.6250 + 18.6250i −0.589861 + 0.589861i −0.937594 0.347733i \(-0.886952\pi\)
0.347733 + 0.937594i \(0.386952\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.2.be.x.1441.1 8
3.2 odd 2 816.2.bd.e.625.4 8
4.3 odd 2 153.2.f.b.64.1 8
12.11 even 2 51.2.e.a.13.4 yes 8
17.4 even 4 inner 2448.2.be.x.1585.1 8
51.38 odd 4 816.2.bd.e.769.4 8
68.15 odd 8 2601.2.a.be.1.4 4
68.19 odd 8 2601.2.a.bf.1.4 4
68.55 odd 4 153.2.f.b.55.4 8
204.11 odd 16 867.2.h.i.757.2 16
204.23 odd 16 867.2.h.i.757.1 16
204.47 even 4 867.2.e.g.616.1 8
204.59 even 8 867.2.d.f.577.8 8
204.71 odd 16 867.2.h.k.712.3 16
204.83 even 8 867.2.a.l.1.1 4
204.95 odd 16 867.2.h.k.688.4 16
204.107 odd 16 867.2.h.i.733.2 16
204.131 odd 16 867.2.h.i.733.1 16
204.143 odd 16 867.2.h.k.688.3 16
204.155 even 8 867.2.a.k.1.1 4
204.167 odd 16 867.2.h.k.712.4 16
204.179 even 8 867.2.d.f.577.7 8
204.191 even 4 51.2.e.a.4.1 8
204.203 even 2 867.2.e.g.829.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.1 8 204.191 even 4
51.2.e.a.13.4 yes 8 12.11 even 2
153.2.f.b.55.4 8 68.55 odd 4
153.2.f.b.64.1 8 4.3 odd 2
816.2.bd.e.625.4 8 3.2 odd 2
816.2.bd.e.769.4 8 51.38 odd 4
867.2.a.k.1.1 4 204.155 even 8
867.2.a.l.1.1 4 204.83 even 8
867.2.d.f.577.7 8 204.179 even 8
867.2.d.f.577.8 8 204.59 even 8
867.2.e.g.616.1 8 204.47 even 4
867.2.e.g.829.4 8 204.203 even 2
867.2.h.i.733.1 16 204.131 odd 16
867.2.h.i.733.2 16 204.107 odd 16
867.2.h.i.757.1 16 204.23 odd 16
867.2.h.i.757.2 16 204.11 odd 16
867.2.h.k.688.3 16 204.143 odd 16
867.2.h.k.688.4 16 204.95 odd 16
867.2.h.k.712.3 16 204.71 odd 16
867.2.h.k.712.4 16 204.167 odd 16
2448.2.be.x.1441.1 8 1.1 even 1 trivial
2448.2.be.x.1585.1 8 17.4 even 4 inner
2601.2.a.be.1.4 4 68.15 odd 8
2601.2.a.bf.1.4 4 68.19 odd 8