Properties

Label 51.2.e.a.4.1
Level $51$
Weight $2$
Character 51.4
Analytic conductor $0.407$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [51,2,Mod(4,51)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(51, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("51.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 51.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.407237050309\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 4.1
Root \(-2.63640i\) of defining polynomial
Character \(\chi\) \(=\) 51.4
Dual form 51.2.e.a.13.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.63640i q^{2} +(-0.707107 + 0.707107i) q^{3} -4.95063 q^{4} +(1.57133 - 1.57133i) q^{5} +(1.86422 + 1.86422i) q^{6} +(1.63640 + 1.63640i) q^{7} +7.77906i q^{8} -1.00000i q^{9} +(-4.14265 - 4.14265i) q^{10} +(1.37930 + 1.37930i) q^{11} +(3.50062 - 3.50062i) q^{12} -1.32218 q^{13} +(4.31423 - 4.31423i) q^{14} +2.22219i q^{15} +10.6075 q^{16} +(-3.88555 - 1.37930i) q^{17} -2.63640 q^{18} +5.95063i q^{19} +(-7.77906 + 7.77906i) q^{20} -2.31423 q^{21} +(3.63640 - 3.63640i) q^{22} +(-3.37930 - 3.37930i) q^{23} +(-5.50062 - 5.50062i) q^{24} +0.0618655i q^{25} +3.48580i q^{26} +(0.707107 + 0.707107i) q^{27} +(-8.10124 - 8.10124i) q^{28} +(-0.122204 + 0.122204i) q^{29} +5.85860 q^{30} +(0.314226 - 0.314226i) q^{31} -12.4075i q^{32} -1.95063 q^{33} +(-3.63640 + 10.2439i) q^{34} +5.14265 q^{35} +4.95063i q^{36} +(3.75861 - 3.75861i) q^{37} +15.6883 q^{38} +(0.934922 - 0.934922i) q^{39} +(12.2234 + 12.2234i) q^{40} +(-2.84414 - 2.84414i) q^{41} +6.10124i q^{42} -8.33468i q^{43} +(-6.82843 - 6.82843i) q^{44} +(-1.57133 - 1.57133i) q^{45} +(-8.90921 + 8.90921i) q^{46} -2.38404 q^{47} +(-7.50062 + 7.50062i) q^{48} -1.64436i q^{49} +0.163102 q^{50} +(3.72282 - 1.77219i) q^{51} +6.54562 q^{52} -0.727190i q^{53} +(1.86422 - 1.86422i) q^{54} +4.33468 q^{55} +(-12.7297 + 12.7297i) q^{56} +(-4.20773 - 4.20773i) q^{57} +(0.322179 + 0.322179i) q^{58} +11.7870i q^{59} -11.0012i q^{60} +(6.14265 + 6.14265i) q^{61} +(-0.828427 - 0.828427i) q^{62} +(1.63640 - 1.63640i) q^{63} -11.4963 q^{64} +(-2.07757 + 2.07757i) q^{65} +5.14265i q^{66} -14.1866 q^{67} +(19.2359 + 6.82843i) q^{68} +4.77906 q^{69} -13.5581i q^{70} +(4.31423 - 4.31423i) q^{71} +7.77906 q^{72} +(7.46483 - 7.46483i) q^{73} +(-9.90921 - 9.90921i) q^{74} +(-0.0437455 - 0.0437455i) q^{75} -29.4594i q^{76} +4.51420i q^{77} +(-2.46483 - 2.46483i) q^{78} +(0.493752 + 0.493752i) q^{79} +(16.6678 - 16.6678i) q^{80} -1.00000 q^{81} +(-7.49830 + 7.49830i) q^{82} +8.52971i q^{83} +11.4569 q^{84} +(-8.27281 + 3.93813i) q^{85} -21.9736 q^{86} -0.172822i q^{87} +(-10.7297 + 10.7297i) q^{88} -5.40297 q^{89} +(-4.14265 + 4.14265i) q^{90} +(-2.16362 - 2.16362i) q^{91} +(16.7297 + 16.7297i) q^{92} +0.444383i q^{93} +6.28531i q^{94} +(9.35038 + 9.35038i) q^{95} +(8.77343 + 8.77343i) q^{96} +(3.33468 - 3.33468i) q^{97} -4.33519 q^{98} +(1.37930 - 1.37930i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} - 4 q^{5} + 4 q^{6} - 4 q^{7} - 4 q^{13} + 24 q^{14} + 12 q^{16} - 4 q^{17} - 4 q^{18} - 12 q^{20} - 8 q^{21} + 12 q^{22} - 16 q^{23} - 16 q^{24} - 8 q^{28} + 4 q^{29} + 24 q^{30} - 8 q^{31}+ \cdots - 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63640i 1.86422i −0.362176 0.932110i \(-0.617966\pi\)
0.362176 0.932110i \(-0.382034\pi\)
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) −4.95063 −2.47532
\(5\) 1.57133 1.57133i 0.702719 0.702719i −0.262275 0.964993i \(-0.584473\pi\)
0.964993 + 0.262275i \(0.0844726\pi\)
\(6\) 1.86422 + 1.86422i 0.761065 + 0.761065i
\(7\) 1.63640 + 1.63640i 0.618503 + 0.618503i 0.945147 0.326644i \(-0.105918\pi\)
−0.326644 + 0.945147i \(0.605918\pi\)
\(8\) 7.77906i 2.75031i
\(9\) 1.00000i 0.333333i
\(10\) −4.14265 4.14265i −1.31002 1.31002i
\(11\) 1.37930 + 1.37930i 0.415876 + 0.415876i 0.883780 0.467904i \(-0.154991\pi\)
−0.467904 + 0.883780i \(0.654991\pi\)
\(12\) 3.50062 3.50062i 1.01054 1.01054i
\(13\) −1.32218 −0.366706 −0.183353 0.983047i \(-0.558695\pi\)
−0.183353 + 0.983047i \(0.558695\pi\)
\(14\) 4.31423 4.31423i 1.15303 1.15303i
\(15\) 2.22219i 0.573767i
\(16\) 10.6075 2.65187
\(17\) −3.88555 1.37930i −0.942385 0.334530i
\(18\) −2.63640 −0.621407
\(19\) 5.95063i 1.36517i 0.730807 + 0.682584i \(0.239144\pi\)
−0.730807 + 0.682584i \(0.760856\pi\)
\(20\) −7.77906 + 7.77906i −1.73945 + 1.73945i
\(21\) −2.31423 −0.505006
\(22\) 3.63640 3.63640i 0.775284 0.775284i
\(23\) −3.37930 3.37930i −0.704634 0.704634i 0.260768 0.965402i \(-0.416024\pi\)
−0.965402 + 0.260768i \(0.916024\pi\)
\(24\) −5.50062 5.50062i −1.12281 1.12281i
\(25\) 0.0618655i 0.0123731i
\(26\) 3.48580i 0.683621i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) −8.10124 8.10124i −1.53099 1.53099i
\(29\) −0.122204 + 0.122204i −0.0226927 + 0.0226927i −0.718362 0.695669i \(-0.755108\pi\)
0.695669 + 0.718362i \(0.255108\pi\)
\(30\) 5.85860 1.06963
\(31\) 0.314226 0.314226i 0.0564367 0.0564367i −0.678325 0.734762i \(-0.737294\pi\)
0.734762 + 0.678325i \(0.237294\pi\)
\(32\) 12.4075i 2.19336i
\(33\) −1.95063 −0.339561
\(34\) −3.63640 + 10.2439i −0.623638 + 1.75681i
\(35\) 5.14265 0.869267
\(36\) 4.95063i 0.825105i
\(37\) 3.75861 3.75861i 0.617911 0.617911i −0.327084 0.944995i \(-0.606066\pi\)
0.944995 + 0.327084i \(0.106066\pi\)
\(38\) 15.6883 2.54497
\(39\) 0.934922 0.934922i 0.149707 0.149707i
\(40\) 12.2234 + 12.2234i 1.93270 + 1.93270i
\(41\) −2.84414 2.84414i −0.444179 0.444179i 0.449234 0.893414i \(-0.351697\pi\)
−0.893414 + 0.449234i \(0.851697\pi\)
\(42\) 6.10124i 0.941441i
\(43\) 8.33468i 1.27103i −0.772090 0.635513i \(-0.780789\pi\)
0.772090 0.635513i \(-0.219211\pi\)
\(44\) −6.82843 6.82843i −1.02942 1.02942i
\(45\) −1.57133 1.57133i −0.234240 0.234240i
\(46\) −8.90921 + 8.90921i −1.31359 + 1.31359i
\(47\) −2.38404 −0.347749 −0.173874 0.984768i \(-0.555629\pi\)
−0.173874 + 0.984768i \(0.555629\pi\)
\(48\) −7.50062 + 7.50062i −1.08262 + 1.08262i
\(49\) 1.64436i 0.234908i
\(50\) 0.163102 0.0230662
\(51\) 3.72282 1.77219i 0.521299 0.248156i
\(52\) 6.54562 0.907714
\(53\) 0.727190i 0.0998872i −0.998752 0.0499436i \(-0.984096\pi\)
0.998752 0.0499436i \(-0.0159042\pi\)
\(54\) 1.86422 1.86422i 0.253688 0.253688i
\(55\) 4.33468 0.584488
\(56\) −12.7297 + 12.7297i −1.70108 + 1.70108i
\(57\) −4.20773 4.20773i −0.557328 0.557328i
\(58\) 0.322179 + 0.322179i 0.0423042 + 0.0423042i
\(59\) 11.7870i 1.53454i 0.641325 + 0.767269i \(0.278385\pi\)
−0.641325 + 0.767269i \(0.721615\pi\)
\(60\) 11.0012i 1.42026i
\(61\) 6.14265 + 6.14265i 0.786486 + 0.786486i 0.980916 0.194430i \(-0.0622858\pi\)
−0.194430 + 0.980916i \(0.562286\pi\)
\(62\) −0.828427 0.828427i −0.105210 0.105210i
\(63\) 1.63640 1.63640i 0.206168 0.206168i
\(64\) −11.4963 −1.43703
\(65\) −2.07757 + 2.07757i −0.257691 + 0.257691i
\(66\) 5.14265i 0.633017i
\(67\) −14.1866 −1.73317 −0.866583 0.499034i \(-0.833688\pi\)
−0.866583 + 0.499034i \(0.833688\pi\)
\(68\) 19.2359 + 6.82843i 2.33270 + 0.828068i
\(69\) 4.77906 0.575331
\(70\) 13.5581i 1.62050i
\(71\) 4.31423 4.31423i 0.512004 0.512004i −0.403136 0.915140i \(-0.632080\pi\)
0.915140 + 0.403136i \(0.132080\pi\)
\(72\) 7.77906 0.916771
\(73\) 7.46483 7.46483i 0.873693 0.873693i −0.119180 0.992873i \(-0.538027\pi\)
0.992873 + 0.119180i \(0.0380266\pi\)
\(74\) −9.90921 9.90921i −1.15192 1.15192i
\(75\) −0.0437455 0.0437455i −0.00505130 0.00505130i
\(76\) 29.4594i 3.37922i
\(77\) 4.51420i 0.514441i
\(78\) −2.46483 2.46483i −0.279087 0.279087i
\(79\) 0.493752 + 0.493752i 0.0555514 + 0.0555514i 0.734337 0.678785i \(-0.237493\pi\)
−0.678785 + 0.734337i \(0.737493\pi\)
\(80\) 16.6678 16.6678i 1.86352 1.86352i
\(81\) −1.00000 −0.111111
\(82\) −7.49830 + 7.49830i −0.828048 + 0.828048i
\(83\) 8.52971i 0.936258i 0.883660 + 0.468129i \(0.155072\pi\)
−0.883660 + 0.468129i \(0.844928\pi\)
\(84\) 11.4569 1.25005
\(85\) −8.27281 + 3.93813i −0.897312 + 0.427151i
\(86\) −21.9736 −2.36947
\(87\) 0.172822i 0.0185285i
\(88\) −10.7297 + 10.7297i −1.14379 + 1.14379i
\(89\) −5.40297 −0.572713 −0.286357 0.958123i \(-0.592444\pi\)
−0.286357 + 0.958123i \(0.592444\pi\)
\(90\) −4.14265 + 4.14265i −0.436674 + 0.436674i
\(91\) −2.16362 2.16362i −0.226809 0.226809i
\(92\) 16.7297 + 16.7297i 1.74419 + 1.74419i
\(93\) 0.444383i 0.0460803i
\(94\) 6.28531i 0.648280i
\(95\) 9.35038 + 9.35038i 0.959329 + 0.959329i
\(96\) 8.77343 + 8.77343i 0.895435 + 0.895435i
\(97\) 3.33468 3.33468i 0.338585 0.338585i −0.517250 0.855835i \(-0.673044\pi\)
0.855835 + 0.517250i \(0.173044\pi\)
\(98\) −4.33519 −0.437921
\(99\) 1.37930 1.37930i 0.138625 0.138625i
\(100\) 0.306273i 0.0306273i
\(101\) −7.11123 −0.707594 −0.353797 0.935322i \(-0.615110\pi\)
−0.353797 + 0.935322i \(0.615110\pi\)
\(102\) −4.67220 9.81485i −0.462616 0.971815i
\(103\) −9.22344 −0.908813 −0.454406 0.890795i \(-0.650149\pi\)
−0.454406 + 0.890795i \(0.650149\pi\)
\(104\) 10.2853i 1.00856i
\(105\) −3.63640 + 3.63640i −0.354877 + 0.354877i
\(106\) −1.91717 −0.186212
\(107\) 3.66461 3.66461i 0.354271 0.354271i −0.507425 0.861696i \(-0.669402\pi\)
0.861696 + 0.507425i \(0.169402\pi\)
\(108\) −3.50062 3.50062i −0.336848 0.336848i
\(109\) 14.1247 + 14.1247i 1.35290 + 1.35290i 0.882399 + 0.470503i \(0.155927\pi\)
0.470503 + 0.882399i \(0.344073\pi\)
\(110\) 11.4280i 1.08961i
\(111\) 5.31548i 0.504523i
\(112\) 17.3581 + 17.3581i 1.64019 + 1.64019i
\(113\) −12.3299 12.3299i −1.15990 1.15990i −0.984496 0.175407i \(-0.943876\pi\)
−0.175407 0.984496i \(-0.556124\pi\)
\(114\) −11.0933 + 11.0933i −1.03898 + 1.03898i
\(115\) −10.6200 −0.990318
\(116\) 0.604986 0.604986i 0.0561716 0.0561716i
\(117\) 1.32218i 0.122235i
\(118\) 31.0753 2.86072
\(119\) −4.10124 8.61544i −0.375960 0.789776i
\(120\) −17.2866 −1.57804
\(121\) 7.19504i 0.654094i
\(122\) 16.1945 16.1945i 1.46618 1.46618i
\(123\) 4.02222 0.362671
\(124\) −1.55562 + 1.55562i −0.139699 + 0.139699i
\(125\) 7.95384 + 7.95384i 0.711413 + 0.711413i
\(126\) −4.31423 4.31423i −0.384342 0.384342i
\(127\) 9.85189i 0.874214i 0.899409 + 0.437107i \(0.143997\pi\)
−0.899409 + 0.437107i \(0.856003\pi\)
\(128\) 5.49375i 0.485584i
\(129\) 5.89351 + 5.89351i 0.518894 + 0.518894i
\(130\) 5.47733 + 5.47733i 0.480393 + 0.480393i
\(131\) 5.37930 5.37930i 0.469992 0.469992i −0.431920 0.901912i \(-0.642164\pi\)
0.901912 + 0.431920i \(0.142164\pi\)
\(132\) 9.65685 0.840521
\(133\) −9.73764 + 9.73764i −0.844361 + 0.844361i
\(134\) 37.4015i 3.23100i
\(135\) 2.22219 0.191256
\(136\) 10.7297 30.2259i 0.920063 2.59185i
\(137\) 22.0723 1.88577 0.942883 0.333125i \(-0.108103\pi\)
0.942883 + 0.333125i \(0.108103\pi\)
\(138\) 12.5995i 1.07254i
\(139\) 2.53465 2.53465i 0.214986 0.214986i −0.591395 0.806382i \(-0.701423\pi\)
0.806382 + 0.591395i \(0.201423\pi\)
\(140\) −25.4594 −2.15171
\(141\) 1.68577 1.68577i 0.141968 0.141968i
\(142\) −11.3740 11.3740i −0.954489 0.954489i
\(143\) −1.82369 1.82369i −0.152504 0.152504i
\(144\) 10.6075i 0.883957i
\(145\) 0.384044i 0.0318931i
\(146\) −19.6803 19.6803i −1.62875 1.62875i
\(147\) 1.16274 + 1.16274i 0.0959009 + 0.0959009i
\(148\) −18.6075 + 18.6075i −1.52953 + 1.52953i
\(149\) 11.7711 0.964327 0.482163 0.876081i \(-0.339851\pi\)
0.482163 + 0.876081i \(0.339851\pi\)
\(150\) −0.115331 + 0.115331i −0.00941673 + 0.00941673i
\(151\) 16.1037i 1.31050i −0.755411 0.655252i \(-0.772563\pi\)
0.755411 0.655252i \(-0.227437\pi\)
\(152\) −46.2903 −3.75464
\(153\) −1.37930 + 3.88555i −0.111510 + 0.314128i
\(154\) 11.9013 0.959031
\(155\) 0.987504i 0.0793182i
\(156\) −4.62845 + 4.62845i −0.370573 + 0.370573i
\(157\) 6.45535 0.515193 0.257597 0.966253i \(-0.417069\pi\)
0.257597 + 0.966253i \(0.417069\pi\)
\(158\) 1.30173 1.30173i 0.103560 0.103560i
\(159\) 0.514201 + 0.514201i 0.0407788 + 0.0407788i
\(160\) −19.4963 19.4963i −1.54131 1.54131i
\(161\) 11.0598i 0.871636i
\(162\) 2.63640i 0.207136i
\(163\) −11.8314 11.8314i −0.926710 0.926710i 0.0707816 0.997492i \(-0.477451\pi\)
−0.997492 + 0.0707816i \(0.977451\pi\)
\(164\) 14.0803 + 14.0803i 1.09948 + 1.09948i
\(165\) −3.06508 + 3.06508i −0.238616 + 0.238616i
\(166\) 22.4878 1.74539
\(167\) 1.13490 1.13490i 0.0878209 0.0878209i −0.661832 0.749653i \(-0.730221\pi\)
0.749653 + 0.661832i \(0.230221\pi\)
\(168\) 18.0025i 1.38892i
\(169\) −11.2518 −0.865526
\(170\) 10.3825 + 21.8105i 0.796303 + 1.67279i
\(171\) 5.95063 0.455056
\(172\) 41.2619i 3.14619i
\(173\) −12.1169 + 12.1169i −0.921234 + 0.921234i −0.997117 0.0758824i \(-0.975823\pi\)
0.0758824 + 0.997117i \(0.475823\pi\)
\(174\) −0.455630 −0.0345412
\(175\) −0.101237 + 0.101237i −0.00765280 + 0.00765280i
\(176\) 14.6310 + 14.6310i 1.10285 + 1.10285i
\(177\) −8.33468 8.33468i −0.626473 0.626473i
\(178\) 14.2444i 1.06766i
\(179\) 11.0753i 0.827809i −0.910320 0.413905i \(-0.864165\pi\)
0.910320 0.413905i \(-0.135835\pi\)
\(180\) 7.77906 + 7.77906i 0.579817 + 0.579817i
\(181\) 13.9297 + 13.9297i 1.03538 + 1.03538i 0.999351 + 0.0360332i \(0.0114722\pi\)
0.0360332 + 0.999351i \(0.488528\pi\)
\(182\) −5.70418 + 5.70418i −0.422822 + 0.422822i
\(183\) −8.68702 −0.642163
\(184\) 26.2878 26.2878i 1.93796 1.93796i
\(185\) 11.8120i 0.868436i
\(186\) 1.17157 0.0859039
\(187\) −3.45688 7.26184i −0.252792 0.531038i
\(188\) 11.8025 0.860788
\(189\) 2.31423i 0.168335i
\(190\) 24.6514 24.6514i 1.78840 1.78840i
\(191\) −1.60953 −0.116461 −0.0582307 0.998303i \(-0.518546\pi\)
−0.0582307 + 0.998303i \(0.518546\pi\)
\(192\) 8.12908 8.12908i 0.586666 0.586666i
\(193\) 3.16362 + 3.16362i 0.227722 + 0.227722i 0.811741 0.584018i \(-0.198520\pi\)
−0.584018 + 0.811741i \(0.698520\pi\)
\(194\) −8.79155 8.79155i −0.631197 0.631197i
\(195\) 2.93813i 0.210404i
\(196\) 8.14061i 0.581472i
\(197\) 5.22818 + 5.22818i 0.372492 + 0.372492i 0.868384 0.495892i \(-0.165159\pi\)
−0.495892 + 0.868384i \(0.665159\pi\)
\(198\) −3.63640 3.63640i −0.258428 0.258428i
\(199\) 5.08874 5.08874i 0.360731 0.360731i −0.503351 0.864082i \(-0.667900\pi\)
0.864082 + 0.503351i \(0.167900\pi\)
\(200\) −0.481255 −0.0340299
\(201\) 10.0314 10.0314i 0.707562 0.707562i
\(202\) 18.7481i 1.31911i
\(203\) −0.399950 −0.0280710
\(204\) −18.4303 + 8.77343i −1.29038 + 0.614263i
\(205\) −8.93813 −0.624266
\(206\) 24.3167i 1.69423i
\(207\) −3.37930 + 3.37930i −0.234878 + 0.234878i
\(208\) −14.0250 −0.972458
\(209\) −8.20773 + 8.20773i −0.567741 + 0.567741i
\(210\) 9.58704 + 9.58704i 0.661568 + 0.661568i
\(211\) −9.48830 9.48830i −0.653201 0.653201i 0.300561 0.953763i \(-0.402826\pi\)
−0.953763 + 0.300561i \(0.902826\pi\)
\(212\) 3.60005i 0.247252i
\(213\) 6.10124i 0.418050i
\(214\) −9.66140 9.66140i −0.660440 0.660440i
\(215\) −13.0965 13.0965i −0.893174 0.893174i
\(216\) −5.50062 + 5.50062i −0.374270 + 0.374270i
\(217\) 1.02840 0.0698125
\(218\) 37.2384 37.2384i 2.52211 2.52211i
\(219\) 10.5569i 0.713367i
\(220\) −21.4594 −1.44679
\(221\) 5.13740 + 1.82369i 0.345579 + 0.122674i
\(222\) 14.0137 0.940541
\(223\) 21.2643i 1.42397i 0.702197 + 0.711983i \(0.252203\pi\)
−0.702197 + 0.711983i \(0.747797\pi\)
\(224\) 20.3037 20.3037i 1.35660 1.35660i
\(225\) 0.0618655 0.00412437
\(226\) −32.5067 + 32.5067i −2.16231 + 2.16231i
\(227\) 3.50304 + 3.50304i 0.232505 + 0.232505i 0.813737 0.581233i \(-0.197429\pi\)
−0.581233 + 0.813737i \(0.697429\pi\)
\(228\) 20.8309 + 20.8309i 1.37956 + 1.37956i
\(229\) 1.83842i 0.121487i −0.998153 0.0607433i \(-0.980653\pi\)
0.998153 0.0607433i \(-0.0193471\pi\)
\(230\) 27.9986i 1.84617i
\(231\) −3.19202 3.19202i −0.210020 0.210020i
\(232\) −0.950631 0.950631i −0.0624120 0.0624120i
\(233\) −1.05713 + 1.05713i −0.0692546 + 0.0692546i −0.740886 0.671631i \(-0.765594\pi\)
0.671631 + 0.740886i \(0.265594\pi\)
\(234\) 3.48580 0.227874
\(235\) −3.74611 + 3.74611i −0.244369 + 0.244369i
\(236\) 58.3531i 3.79847i
\(237\) −0.698270 −0.0453575
\(238\) −22.7138 + 10.8125i −1.47232 + 0.700872i
\(239\) −10.0250 −0.648463 −0.324231 0.945978i \(-0.605106\pi\)
−0.324231 + 0.945978i \(0.605106\pi\)
\(240\) 23.5719i 1.52156i
\(241\) −8.14265 + 8.14265i −0.524514 + 0.524514i −0.918932 0.394417i \(-0.870947\pi\)
0.394417 + 0.918932i \(0.370947\pi\)
\(242\) −18.9690 −1.21938
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) −30.4100 30.4100i −1.94680 1.94680i
\(245\) −2.58382 2.58382i −0.165074 0.165074i
\(246\) 10.6042i 0.676099i
\(247\) 7.86780i 0.500616i
\(248\) 2.44438 + 2.44438i 0.155218 + 0.155218i
\(249\) −6.03142 6.03142i −0.382226 0.382226i
\(250\) 20.9696 20.9696i 1.32623 1.32623i
\(251\) 0.940179 0.0593436 0.0296718 0.999560i \(-0.490554\pi\)
0.0296718 + 0.999560i \(0.490554\pi\)
\(252\) −8.10124 + 8.10124i −0.510330 + 0.510330i
\(253\) 9.32218i 0.586080i
\(254\) 25.9736 1.62973
\(255\) 3.06508 8.63444i 0.191943 0.540710i
\(256\) −8.50875 −0.531797
\(257\) 2.15515i 0.134435i 0.997738 + 0.0672173i \(0.0214121\pi\)
−0.997738 + 0.0672173i \(0.978588\pi\)
\(258\) 15.5377 15.5377i 0.967333 0.967333i
\(259\) 12.3012 0.764360
\(260\) 10.2853 10.2853i 0.637868 0.637868i
\(261\) 0.122204 + 0.122204i 0.00756423 + 0.00756423i
\(262\) −14.1820 14.1820i −0.876168 0.876168i
\(263\) 13.1427i 0.810411i 0.914226 + 0.405205i \(0.132800\pi\)
−0.914226 + 0.405205i \(0.867200\pi\)
\(264\) 15.1741i 0.933900i
\(265\) −1.14265 1.14265i −0.0701926 0.0701926i
\(266\) 25.6724 + 25.6724i 1.57407 + 1.57407i
\(267\) 3.82047 3.82047i 0.233809 0.233809i
\(268\) 70.2325 4.29013
\(269\) −10.7299 + 10.7299i −0.654213 + 0.654213i −0.954005 0.299792i \(-0.903083\pi\)
0.299792 + 0.954005i \(0.403083\pi\)
\(270\) 5.85860i 0.356543i
\(271\) 11.8360 0.718985 0.359493 0.933148i \(-0.382950\pi\)
0.359493 + 0.933148i \(0.382950\pi\)
\(272\) −41.2159 14.6310i −2.49908 0.887132i
\(273\) 3.05982 0.185189
\(274\) 58.1916i 3.51548i
\(275\) −0.0853313 + 0.0853313i −0.00514567 + 0.00514567i
\(276\) −23.6594 −1.42413
\(277\) 19.0229 19.0229i 1.14298 1.14298i 0.155076 0.987903i \(-0.450438\pi\)
0.987903 0.155076i \(-0.0495621\pi\)
\(278\) −6.68236 6.68236i −0.400782 0.400782i
\(279\) −0.314226 0.314226i −0.0188122 0.0188122i
\(280\) 40.0050i 2.39076i
\(281\) 22.2339i 1.32636i 0.748459 + 0.663181i \(0.230794\pi\)
−0.748459 + 0.663181i \(0.769206\pi\)
\(282\) −4.44438 4.44438i −0.264659 0.264659i
\(283\) 16.9406 + 16.9406i 1.00702 + 1.00702i 0.999975 + 0.00704092i \(0.00224121\pi\)
0.00704092 + 0.999975i \(0.497759\pi\)
\(284\) −21.3581 + 21.3581i −1.26737 + 1.26737i
\(285\) −13.2234 −0.783289
\(286\) −4.80798 + 4.80798i −0.284302 + 0.284302i
\(287\) 9.30832i 0.549453i
\(288\) −12.4075 −0.731120
\(289\) 13.1950 + 10.7187i 0.776179 + 0.630513i
\(290\) 1.01250 0.0594558
\(291\) 4.71594i 0.276453i
\(292\) −36.9556 + 36.9556i −2.16266 + 2.16266i
\(293\) −7.44387 −0.434875 −0.217438 0.976074i \(-0.569770\pi\)
−0.217438 + 0.976074i \(0.569770\pi\)
\(294\) 3.06544 3.06544i 0.178780 0.178780i
\(295\) 18.5212 + 18.5212i 1.07835 + 1.07835i
\(296\) 29.2384 + 29.2384i 1.69945 + 1.69945i
\(297\) 1.95063i 0.113187i
\(298\) 31.0334i 1.79772i
\(299\) 4.46804 + 4.46804i 0.258394 + 0.258394i
\(300\) 0.216568 + 0.216568i 0.0125036 + 0.0125036i
\(301\) 13.6389 13.6389i 0.786133 0.786133i
\(302\) −42.4560 −2.44307
\(303\) 5.02840 5.02840i 0.288874 0.288874i
\(304\) 63.1212i 3.62025i
\(305\) 19.3042 1.10536
\(306\) 10.2439 + 3.63640i 0.585604 + 0.207879i
\(307\) −14.2184 −0.811486 −0.405743 0.913987i \(-0.632987\pi\)
−0.405743 + 0.913987i \(0.632987\pi\)
\(308\) 22.3481i 1.27340i
\(309\) 6.52196 6.52196i 0.371021 0.371021i
\(310\) −2.60346 −0.147867
\(311\) −7.32672 + 7.32672i −0.415460 + 0.415460i −0.883636 0.468175i \(-0.844912\pi\)
0.468175 + 0.883636i \(0.344912\pi\)
\(312\) 7.27281 + 7.27281i 0.411742 + 0.411742i
\(313\) −12.3222 12.3222i −0.696491 0.696491i 0.267161 0.963652i \(-0.413914\pi\)
−0.963652 + 0.267161i \(0.913914\pi\)
\(314\) 17.0189i 0.960433i
\(315\) 5.14265i 0.289756i
\(316\) −2.44438 2.44438i −0.137507 0.137507i
\(317\) 10.0235 + 10.0235i 0.562974 + 0.562974i 0.930151 0.367177i \(-0.119676\pi\)
−0.367177 + 0.930151i \(0.619676\pi\)
\(318\) 1.35564 1.35564i 0.0760206 0.0760206i
\(319\) −0.337113 −0.0188747
\(320\) −18.0644 + 18.0644i −1.00983 + 1.00983i
\(321\) 5.18254i 0.289261i
\(322\) −29.1582 −1.62492
\(323\) 8.20773 23.1215i 0.456690 1.28651i
\(324\) 4.95063 0.275035
\(325\) 0.0817972i 0.00453730i
\(326\) −31.1925 + 31.1925i −1.72759 + 1.72759i
\(327\) −19.9753 −1.10464
\(328\) 22.1247 22.1247i 1.22163 1.22163i
\(329\) −3.90126 3.90126i −0.215084 0.215084i
\(330\) 8.08079 + 8.08079i 0.444833 + 0.444833i
\(331\) 10.8485i 0.596287i −0.954521 0.298143i \(-0.903633\pi\)
0.954521 0.298143i \(-0.0963673\pi\)
\(332\) 42.2275i 2.31753i
\(333\) −3.75861 3.75861i −0.205970 0.205970i
\(334\) −2.99205 2.99205i −0.163718 0.163718i
\(335\) −22.2917 + 22.2917i −1.21793 + 1.21793i
\(336\) −24.5481 −1.33921
\(337\) −6.94216 + 6.94216i −0.378164 + 0.378164i −0.870439 0.492276i \(-0.836165\pi\)
0.492276 + 0.870439i \(0.336165\pi\)
\(338\) 29.6644i 1.61353i
\(339\) 17.4372 0.947057
\(340\) 40.9556 19.4963i 2.22113 1.05733i
\(341\) 0.866827 0.0469413
\(342\) 15.6883i 0.848325i
\(343\) 14.1457 14.1457i 0.763794 0.763794i
\(344\) 64.8359 3.49572
\(345\) 7.50946 7.50946i 0.404296 0.404296i
\(346\) 31.9452 + 31.9452i 1.71738 + 1.71738i
\(347\) 18.4180 + 18.4180i 0.988728 + 0.988728i 0.999937 0.0112092i \(-0.00356806\pi\)
−0.0112092 + 0.999937i \(0.503568\pi\)
\(348\) 0.855580i 0.0458639i
\(349\) 18.6609i 0.998894i 0.866344 + 0.499447i \(0.166463\pi\)
−0.866344 + 0.499447i \(0.833537\pi\)
\(350\) 0.266902 + 0.266902i 0.0142665 + 0.0142665i
\(351\) −0.934922 0.934922i −0.0499024 0.0499024i
\(352\) 17.1137 17.1137i 0.912165 0.912165i
\(353\) −11.8339 −0.629857 −0.314929 0.949115i \(-0.601981\pi\)
−0.314929 + 0.949115i \(0.601981\pi\)
\(354\) −21.9736 + 21.9736i −1.16788 + 1.16788i
\(355\) 13.5581i 0.719590i
\(356\) 26.7481 1.41765
\(357\) 8.99205 + 3.19202i 0.475910 + 0.168940i
\(358\) −29.1991 −1.54322
\(359\) 14.1392i 0.746241i −0.927783 0.373120i \(-0.878288\pi\)
0.927783 0.373120i \(-0.121712\pi\)
\(360\) 12.2234 12.2234i 0.644232 0.644232i
\(361\) −16.4100 −0.863685
\(362\) 36.7242 36.7242i 1.93018 1.93018i
\(363\) 5.08766 + 5.08766i 0.267033 + 0.267033i
\(364\) 10.7113 + 10.7113i 0.561424 + 0.561424i
\(365\) 23.4594i 1.22792i
\(366\) 22.9025i 1.19713i
\(367\) 2.63300 + 2.63300i 0.137441 + 0.137441i 0.772480 0.635039i \(-0.219016\pi\)
−0.635039 + 0.772480i \(0.719016\pi\)
\(368\) −35.8459 35.8459i −1.86860 1.86860i
\(369\) −2.84414 + 2.84414i −0.148060 + 0.148060i
\(370\) −31.1412 −1.61896
\(371\) 1.18998 1.18998i 0.0617806 0.0617806i
\(372\) 2.19998i 0.114063i
\(373\) 1.53618 0.0795403 0.0397701 0.999209i \(-0.487337\pi\)
0.0397701 + 0.999209i \(0.487337\pi\)
\(374\) −19.1452 + 9.11373i −0.989972 + 0.471260i
\(375\) −11.2484 −0.580867
\(376\) 18.5456i 0.956417i
\(377\) 0.161575 0.161575i 0.00832156 0.00832156i
\(378\) 6.10124 0.313814
\(379\) −25.5627 + 25.5627i −1.31307 + 1.31307i −0.393922 + 0.919144i \(0.628882\pi\)
−0.919144 + 0.393922i \(0.871118\pi\)
\(380\) −46.2903 46.2903i −2.37464 2.37464i
\(381\) −6.96634 6.96634i −0.356896 0.356896i
\(382\) 4.24337i 0.217110i
\(383\) 16.3492i 0.835404i 0.908584 + 0.417702i \(0.137164\pi\)
−0.908584 + 0.417702i \(0.862836\pi\)
\(384\) −3.88467 3.88467i −0.198239 0.198239i
\(385\) 7.09328 + 7.09328i 0.361507 + 0.361507i
\(386\) 8.34058 8.34058i 0.424525 0.424525i
\(387\) −8.33468 −0.423675
\(388\) −16.5087 + 16.5087i −0.838105 + 0.838105i
\(389\) 16.4533i 0.834216i −0.908857 0.417108i \(-0.863044\pi\)
0.908857 0.417108i \(-0.136956\pi\)
\(390\) −7.74611 −0.392240
\(391\) 8.46938 + 17.7916i 0.428315 + 0.899758i
\(392\) 12.7916 0.646071
\(393\) 7.60749i 0.383747i
\(394\) 13.7836 13.7836i 0.694408 0.694408i
\(395\) 1.55169 0.0780740
\(396\) −6.82843 + 6.82843i −0.343141 + 0.343141i
\(397\) −25.7816 25.7816i −1.29394 1.29394i −0.932330 0.361610i \(-0.882227\pi\)
−0.361610 0.932330i \(-0.617773\pi\)
\(398\) −13.4160 13.4160i −0.672482 0.672482i
\(399\) 13.7711i 0.689418i
\(400\) 0.656237i 0.0328119i
\(401\) −6.84414 6.84414i −0.341780 0.341780i 0.515256 0.857036i \(-0.327697\pi\)
−0.857036 + 0.515256i \(0.827697\pi\)
\(402\) −26.4469 26.4469i −1.31905 1.31905i
\(403\) −0.415463 + 0.415463i −0.0206957 + 0.0206957i
\(404\) 35.2051 1.75152
\(405\) −1.57133 + 1.57133i −0.0780798 + 0.0780798i
\(406\) 1.05443i 0.0523305i
\(407\) 10.3685 0.513949
\(408\) 13.7859 + 28.9600i 0.682505 + 1.43373i
\(409\) −2.52228 −0.124719 −0.0623593 0.998054i \(-0.519862\pi\)
−0.0623593 + 0.998054i \(0.519862\pi\)
\(410\) 23.5645i 1.16377i
\(411\) −15.6075 + 15.6075i −0.769860 + 0.769860i
\(412\) 45.6619 2.24960
\(413\) −19.2883 + 19.2883i −0.949116 + 0.949116i
\(414\) 8.90921 + 8.90921i 0.437864 + 0.437864i
\(415\) 13.4030 + 13.4030i 0.657926 + 0.657926i
\(416\) 16.4049i 0.804319i
\(417\) 3.58454i 0.175536i
\(418\) 21.6389 + 21.6389i 1.05839 + 1.05839i
\(419\) −18.6154 18.6154i −0.909424 0.909424i 0.0868019 0.996226i \(-0.472335\pi\)
−0.996226 + 0.0868019i \(0.972335\pi\)
\(420\) 18.0025 18.0025i 0.878432 0.878432i
\(421\) 6.61089 0.322195 0.161098 0.986938i \(-0.448497\pi\)
0.161098 + 0.986938i \(0.448497\pi\)
\(422\) −25.0150 + 25.0150i −1.21771 + 1.21771i
\(423\) 2.38404i 0.115916i
\(424\) 5.65685 0.274721
\(425\) 0.0853313 0.240382i 0.00413918 0.0116602i
\(426\) 16.0853 0.779337
\(427\) 20.1037i 0.972888i
\(428\) −18.1421 + 18.1421i −0.876933 + 0.876933i
\(429\) 2.57908 0.124519
\(430\) −34.5277 + 34.5277i −1.66507 + 1.66507i
\(431\) 19.8882 + 19.8882i 0.957983 + 0.957983i 0.999152 0.0411690i \(-0.0131082\pi\)
−0.0411690 + 0.999152i \(0.513108\pi\)
\(432\) 7.50062 + 7.50062i 0.360874 + 0.360874i
\(433\) 17.1497i 0.824162i −0.911147 0.412081i \(-0.864802\pi\)
0.911147 0.412081i \(-0.135198\pi\)
\(434\) 2.71128i 0.130146i
\(435\) −0.271560 0.271560i −0.0130203 0.0130203i
\(436\) −69.9262 69.9262i −3.34886 3.34886i
\(437\) 20.1090 20.1090i 0.961944 0.961944i
\(438\) 27.8322 1.32987
\(439\) 5.81593 5.81593i 0.277579 0.277579i −0.554563 0.832142i \(-0.687114\pi\)
0.832142 + 0.554563i \(0.187114\pi\)
\(440\) 33.7197i 1.60752i
\(441\) −1.64436 −0.0783028
\(442\) 4.80798 13.5443i 0.228692 0.644235i
\(443\) −18.4658 −0.877339 −0.438669 0.898649i \(-0.644550\pi\)
−0.438669 + 0.898649i \(0.644550\pi\)
\(444\) 26.3150i 1.24885i
\(445\) −8.48983 + 8.48983i −0.402456 + 0.402456i
\(446\) 56.0614 2.65458
\(447\) −8.32343 + 8.32343i −0.393685 + 0.393685i
\(448\) −18.8125 18.8125i −0.888808 0.888808i
\(449\) −21.8673 21.8673i −1.03198 1.03198i −0.999471 0.0325094i \(-0.989650\pi\)
−0.0325094 0.999471i \(-0.510350\pi\)
\(450\) 0.163102i 0.00768873i
\(451\) 7.84586i 0.369447i
\(452\) 61.0410 + 61.0410i 2.87113 + 2.87113i
\(453\) 11.3871 + 11.3871i 0.535011 + 0.535011i
\(454\) 9.23542 9.23542i 0.433440 0.433440i
\(455\) −6.79951 −0.318766
\(456\) 32.7322 32.7322i 1.53283 1.53283i
\(457\) 15.5337i 0.726638i −0.931665 0.363319i \(-0.881644\pi\)
0.931665 0.363319i \(-0.118356\pi\)
\(458\) −4.84683 −0.226478
\(459\) −1.77219 3.72282i −0.0827185 0.173766i
\(460\) 52.5756 2.45135
\(461\) 38.9032i 1.81190i −0.423380 0.905952i \(-0.639156\pi\)
0.423380 0.905952i \(-0.360844\pi\)
\(462\) −8.41546 + 8.41546i −0.391523 + 0.391523i
\(463\) 22.7572 1.05762 0.528808 0.848742i \(-0.322639\pi\)
0.528808 + 0.848742i \(0.322639\pi\)
\(464\) −1.29628 + 1.29628i −0.0601781 + 0.0601781i
\(465\) 0.698270 + 0.698270i 0.0323815 + 0.0323815i
\(466\) 2.78701 + 2.78701i 0.129106 + 0.129106i
\(467\) 12.5551i 0.580981i 0.956878 + 0.290490i \(0.0938184\pi\)
−0.956878 + 0.290490i \(0.906182\pi\)
\(468\) 6.54562i 0.302571i
\(469\) −23.2150 23.2150i −1.07197 1.07197i
\(470\) 9.87627 + 9.87627i 0.455558 + 0.455558i
\(471\) −4.56462 + 4.56462i −0.210327 + 0.210327i
\(472\) −91.6918 −4.22046
\(473\) 11.4961 11.4961i 0.528589 0.528589i
\(474\) 1.84092i 0.0845564i
\(475\) −0.368139 −0.0168914
\(476\) 20.3037 + 42.6519i 0.930619 + 1.95494i
\(477\) −0.727190 −0.0332957
\(478\) 26.4299i 1.20888i
\(479\) 26.3340 26.3340i 1.20323 1.20323i 0.230051 0.973179i \(-0.426111\pi\)
0.973179 0.230051i \(-0.0738892\pi\)
\(480\) 27.5719 1.25848
\(481\) −4.96955 + 4.96955i −0.226592 + 0.226592i
\(482\) 21.4673 + 21.4673i 0.977810 + 0.977810i
\(483\) 7.82047 + 7.82047i 0.355844 + 0.355844i
\(484\) 35.6200i 1.61909i
\(485\) 10.4797i 0.475860i
\(486\) −1.86422 1.86422i −0.0845627 0.0845627i
\(487\) −1.16310 1.16310i −0.0527052 0.0527052i 0.680263 0.732968i \(-0.261866\pi\)
−0.732968 + 0.680263i \(0.761866\pi\)
\(488\) −47.7841 + 47.7841i −2.16308 + 2.16308i
\(489\) 16.7322 0.756656
\(490\) −6.81200 + 6.81200i −0.307735 + 0.307735i
\(491\) 4.30121i 0.194111i 0.995279 + 0.0970555i \(0.0309424\pi\)
−0.995279 + 0.0970555i \(0.969058\pi\)
\(492\) −19.9125 −0.897725
\(493\) 0.643386 0.306273i 0.0289766 0.0137939i
\(494\) −20.7427 −0.933258
\(495\) 4.33468i 0.194829i
\(496\) 3.33315 3.33315i 0.149663 0.149663i
\(497\) 14.1196 0.633352
\(498\) −15.9013 + 15.9013i −0.712553 + 0.712553i
\(499\) 1.05732 + 1.05732i 0.0473322 + 0.0473322i 0.730377 0.683045i \(-0.239345\pi\)
−0.683045 + 0.730377i \(0.739345\pi\)
\(500\) −39.3765 39.3765i −1.76097 1.76097i
\(501\) 1.60499i 0.0717055i
\(502\) 2.47869i 0.110629i
\(503\) 1.19274 + 1.19274i 0.0531815 + 0.0531815i 0.733197 0.680016i \(-0.238027\pi\)
−0.680016 + 0.733197i \(0.738027\pi\)
\(504\) 12.7297 + 12.7297i 0.567025 + 0.567025i
\(505\) −11.1741 + 11.1741i −0.497240 + 0.497240i
\(506\) −24.5770 −1.09258
\(507\) 7.95625 7.95625i 0.353350 0.353350i
\(508\) 48.7731i 2.16396i
\(509\) −6.91070 −0.306312 −0.153156 0.988202i \(-0.548944\pi\)
−0.153156 + 0.988202i \(0.548944\pi\)
\(510\) −22.7639 8.08079i −1.00800 0.357823i
\(511\) 24.4310 1.08076
\(512\) 33.4200i 1.47697i
\(513\) −4.20773 + 4.20773i −0.185776 + 0.185776i
\(514\) 5.68185 0.250616
\(515\) −14.4930 + 14.4930i −0.638640 + 0.638640i
\(516\) −29.1766 29.1766i −1.28443 1.28443i
\(517\) −3.28832 3.28832i −0.144620 0.144620i
\(518\) 32.4310i 1.42494i
\(519\) 17.1359i 0.752185i
\(520\) −16.1616 16.1616i −0.708732 0.708732i
\(521\) 9.47259 + 9.47259i 0.415002 + 0.415002i 0.883477 0.468475i \(-0.155196\pi\)
−0.468475 + 0.883477i \(0.655196\pi\)
\(522\) 0.322179 0.322179i 0.0141014 0.0141014i
\(523\) 4.40904 0.192794 0.0963969 0.995343i \(-0.469268\pi\)
0.0963969 + 0.995343i \(0.469268\pi\)
\(524\) −26.6310 + 26.6310i −1.16338 + 1.16338i
\(525\) 0.143171i 0.00624848i
\(526\) 34.6494 1.51078
\(527\) −1.65436 + 0.787529i −0.0720648 + 0.0343053i
\(528\) −20.6913 −0.900473
\(529\) 0.160604i 0.00698276i
\(530\) −3.01250 + 3.01250i −0.130854 + 0.130854i
\(531\) 11.7870 0.511513
\(532\) 48.2075 48.2075i 2.09006 2.09006i
\(533\) 3.76046 + 3.76046i 0.162883 + 0.162883i
\(534\) −10.0723 10.0723i −0.435872 0.435872i
\(535\) 11.5166i 0.497906i
\(536\) 110.358i 4.76675i
\(537\) 7.83144 + 7.83144i 0.337952 + 0.337952i
\(538\) 28.2883 + 28.2883i 1.21960 + 1.21960i
\(539\) 2.26807 2.26807i 0.0976927 0.0976927i
\(540\) −11.0012 −0.473418
\(541\) −16.3451 + 16.3451i −0.702732 + 0.702732i −0.964996 0.262264i \(-0.915531\pi\)
0.262264 + 0.964996i \(0.415531\pi\)
\(542\) 31.2045i 1.34035i
\(543\) −19.6995 −0.845387
\(544\) −17.1137 + 48.2100i −0.733745 + 2.06699i
\(545\) 44.3890 1.90142
\(546\) 8.06693i 0.345233i
\(547\) −6.70674 + 6.70674i −0.286760 + 0.286760i −0.835797 0.549038i \(-0.814994\pi\)
0.549038 + 0.835797i \(0.314994\pi\)
\(548\) −109.272 −4.66786
\(549\) 6.14265 6.14265i 0.262162 0.262162i
\(550\) 0.224968 + 0.224968i 0.00959267 + 0.00959267i
\(551\) −0.727190 0.727190i −0.0309793 0.0309793i
\(552\) 37.1766i 1.58234i
\(553\) 1.61596i 0.0687174i
\(554\) −50.1522 50.1522i −2.13076 2.13076i
\(555\) 8.35235 + 8.35235i 0.354537 + 0.354537i
\(556\) −12.5481 + 12.5481i −0.532159 + 0.532159i
\(557\) 38.1670 1.61719 0.808593 0.588368i \(-0.200229\pi\)
0.808593 + 0.588368i \(0.200229\pi\)
\(558\) −0.828427 + 0.828427i −0.0350701 + 0.0350701i
\(559\) 11.0199i 0.466093i
\(560\) 54.5506 2.30518
\(561\) 7.57928 + 2.69051i 0.319997 + 0.113594i
\(562\) 58.6175 2.47263
\(563\) 13.8184i 0.582377i −0.956666 0.291189i \(-0.905949\pi\)
0.956666 0.291189i \(-0.0940507\pi\)
\(564\) −8.34564 + 8.34564i −0.351415 + 0.351415i
\(565\) −38.7487 −1.63017
\(566\) 44.6624 44.6624i 1.87730 1.87730i
\(567\) −1.63640 1.63640i −0.0687225 0.0687225i
\(568\) 33.5606 + 33.5606i 1.40817 + 1.40817i
\(569\) 12.9516i 0.542959i 0.962444 + 0.271480i \(0.0875130\pi\)
−0.962444 + 0.271480i \(0.912487\pi\)
\(570\) 34.8623i 1.46022i
\(571\) 4.60596 + 4.60596i 0.192753 + 0.192753i 0.796885 0.604131i \(-0.206480\pi\)
−0.604131 + 0.796885i \(0.706480\pi\)
\(572\) 9.02840 + 9.02840i 0.377496 + 0.377496i
\(573\) 1.13811 1.13811i 0.0475452 0.0475452i
\(574\) −24.5405 −1.02430
\(575\) 0.209062 0.209062i 0.00871850 0.00871850i
\(576\) 11.4963i 0.479010i
\(577\) 15.6703 0.652364 0.326182 0.945307i \(-0.394238\pi\)
0.326182 + 0.945307i \(0.394238\pi\)
\(578\) 28.2589 34.7875i 1.17541 1.44697i
\(579\) −4.47403 −0.185935
\(580\) 1.90126i 0.0789456i
\(581\) −13.9581 + 13.9581i −0.579078 + 0.579078i
\(582\) 12.4331 0.515370
\(583\) 1.00302 1.00302i 0.0415407 0.0415407i
\(584\) 58.0694 + 58.0694i 2.40293 + 2.40293i
\(585\) 2.07757 + 2.07757i 0.0858971 + 0.0858971i
\(586\) 19.6250i 0.810703i
\(587\) 14.9766i 0.618150i 0.951038 + 0.309075i \(0.100019\pi\)
−0.951038 + 0.309075i \(0.899981\pi\)
\(588\) −5.75628 5.75628i −0.237385 0.237385i
\(589\) 1.86984 + 1.86984i 0.0770456 + 0.0770456i
\(590\) 48.8295 48.8295i 2.01028 2.01028i
\(591\) −7.39376 −0.304139
\(592\) 39.8694 39.8694i 1.63862 1.63862i
\(593\) 46.3701i 1.90419i 0.305801 + 0.952096i \(0.401076\pi\)
−0.305801 + 0.952096i \(0.598924\pi\)
\(594\) 5.14265 0.211006
\(595\) −19.9820 7.09328i −0.819184 0.290796i
\(596\) −58.2744 −2.38701
\(597\) 7.19657i 0.294536i
\(598\) 11.7796 11.7796i 0.481703 0.481703i
\(599\) −28.7068 −1.17293 −0.586464 0.809975i \(-0.699480\pi\)
−0.586464 + 0.809975i \(0.699480\pi\)
\(600\) 0.340299 0.340299i 0.0138926 0.0138926i
\(601\) −14.6998 14.6998i −0.599617 0.599617i 0.340593 0.940211i \(-0.389372\pi\)
−0.940211 + 0.340593i \(0.889372\pi\)
\(602\) −35.9577 35.9577i −1.46553 1.46553i
\(603\) 14.1866i 0.577722i
\(604\) 79.7237i 3.24391i
\(605\) −11.3058 11.3058i −0.459644 0.459644i
\(606\) −13.2569 13.2569i −0.538525 0.538525i
\(607\) −12.1665 + 12.1665i −0.493823 + 0.493823i −0.909509 0.415685i \(-0.863542\pi\)
0.415685 + 0.909509i \(0.363542\pi\)
\(608\) 73.8325 2.99430
\(609\) 0.282807 0.282807i 0.0114599 0.0114599i
\(610\) 50.8938i 2.06063i
\(611\) 3.15213 0.127522
\(612\) 6.82843 19.2359i 0.276023 0.777567i
\(613\) −42.7657 −1.72729 −0.863644 0.504102i \(-0.831824\pi\)
−0.863644 + 0.504102i \(0.831824\pi\)
\(614\) 37.4854i 1.51279i
\(615\) 6.32022 6.32022i 0.254856 0.254856i
\(616\) −35.1162 −1.41487
\(617\) −27.0678 + 27.0678i −1.08971 + 1.08971i −0.0941495 + 0.995558i \(0.530013\pi\)
−0.995558 + 0.0941495i \(0.969987\pi\)
\(618\) −17.1945 17.1945i −0.691665 0.691665i
\(619\) 6.55659 + 6.55659i 0.263532 + 0.263532i 0.826487 0.562956i \(-0.190336\pi\)
−0.562956 + 0.826487i \(0.690336\pi\)
\(620\) 4.88877i 0.196338i
\(621\) 4.77906i 0.191777i
\(622\) 19.3162 + 19.3162i 0.774509 + 0.774509i
\(623\) −8.84144 8.84144i −0.354225 0.354225i
\(624\) 9.91717 9.91717i 0.397004 0.397004i
\(625\) 24.6868 0.987474
\(626\) −32.4863 + 32.4863i −1.29841 + 1.29841i
\(627\) 11.6075i 0.463558i
\(628\) −31.9581 −1.27527
\(629\) −19.7885 + 9.42001i −0.789021 + 0.375600i
\(630\) −13.5581 −0.540168
\(631\) 33.8478i 1.34746i −0.738978 0.673730i \(-0.764691\pi\)
0.738978 0.673730i \(-0.235309\pi\)
\(632\) −3.84092 + 3.84092i −0.152784 + 0.152784i
\(633\) 13.4185 0.533337
\(634\) 26.4259 26.4259i 1.04951 1.04951i
\(635\) 15.4805 + 15.4805i 0.614327 + 0.614327i
\(636\) −2.54562 2.54562i −0.100940 0.100940i
\(637\) 2.17414i 0.0861424i
\(638\) 0.888765i 0.0351866i
\(639\) −4.31423 4.31423i −0.170668 0.170668i
\(640\) 8.63248 + 8.63248i 0.341229 + 0.341229i
\(641\) 7.54594 7.54594i 0.298047 0.298047i −0.542202 0.840248i \(-0.682409\pi\)
0.840248 + 0.542202i \(0.182409\pi\)
\(642\) 13.6633 0.539247
\(643\) 27.7990 27.7990i 1.09629 1.09629i 0.101444 0.994841i \(-0.467654\pi\)
0.994841 0.101444i \(-0.0323462\pi\)
\(644\) 54.7531i 2.15757i
\(645\) 18.5212 0.729273
\(646\) −60.9576 21.6389i −2.39835 0.851371i
\(647\) −27.9895 −1.10038 −0.550190 0.835039i \(-0.685445\pi\)
−0.550190 + 0.835039i \(0.685445\pi\)
\(648\) 7.77906i 0.305590i
\(649\) −16.2579 + 16.2579i −0.638177 + 0.638177i
\(650\) −0.215651 −0.00845852
\(651\) −0.727190 + 0.727190i −0.0285008 + 0.0285008i
\(652\) 58.5731 + 58.5731i 2.29390 + 2.29390i
\(653\) 28.9574 + 28.9574i 1.13319 + 1.13319i 0.989644 + 0.143545i \(0.0458502\pi\)
0.143545 + 0.989644i \(0.454150\pi\)
\(654\) 52.6631i 2.05929i
\(655\) 16.9053i 0.660544i
\(656\) −30.1691 30.1691i −1.17791 1.17791i
\(657\) −7.46483 7.46483i −0.291231 0.291231i
\(658\) −10.2853 + 10.2853i −0.400963 + 0.400963i
\(659\) 10.8164 0.421349 0.210674 0.977556i \(-0.432434\pi\)
0.210674 + 0.977556i \(0.432434\pi\)
\(660\) 15.1741 15.1741i 0.590650 0.590650i
\(661\) 20.0794i 0.780997i 0.920604 + 0.390498i \(0.127697\pi\)
−0.920604 + 0.390498i \(0.872303\pi\)
\(662\) −28.6010 −1.11161
\(663\) −4.92223 + 2.34315i −0.191164 + 0.0910002i
\(664\) −66.3531 −2.57500
\(665\) 30.6020i 1.18670i
\(666\) −9.90921 + 9.90921i −0.383974 + 0.383974i
\(667\) 0.825928 0.0319801
\(668\) −5.61845 + 5.61845i −0.217385 + 0.217385i
\(669\) −15.0362 15.0362i −0.581331 0.581331i
\(670\) 58.7700 + 58.7700i 2.27048 + 2.27048i
\(671\) 16.9452i 0.654161i
\(672\) 28.7138i 1.10766i
\(673\) 19.3820 + 19.3820i 0.747121 + 0.747121i 0.973938 0.226816i \(-0.0728317\pi\)
−0.226816 + 0.973938i \(0.572832\pi\)
\(674\) 18.3023 + 18.3023i 0.704980 + 0.704980i
\(675\) −0.0437455 + 0.0437455i −0.00168377 + 0.00168377i
\(676\) 55.7037 2.14245
\(677\) −16.0696 + 16.0696i −0.617606 + 0.617606i −0.944917 0.327311i \(-0.893858\pi\)
0.327311 + 0.944917i \(0.393858\pi\)
\(678\) 45.9714i 1.76552i
\(679\) 10.9138 0.418832
\(680\) −30.6350 64.3547i −1.17480 2.46789i
\(681\) −4.95404 −0.189839
\(682\) 2.28531i 0.0875089i
\(683\) 26.3090 26.3090i 1.00668 1.00668i 0.00670720 0.999978i \(-0.497865\pi\)
0.999978 0.00670720i \(-0.00213498\pi\)
\(684\) −29.4594 −1.12641
\(685\) 34.6828 34.6828i 1.32516 1.32516i
\(686\) −37.2937 37.2937i −1.42388 1.42388i
\(687\) 1.29996 + 1.29996i 0.0495967 + 0.0495967i
\(688\) 88.4099i 3.37060i
\(689\) 0.961475i 0.0366293i
\(690\) −19.7980 19.7980i −0.753696 0.753696i
\(691\) −12.7675 12.7675i −0.485700 0.485700i 0.421246 0.906946i \(-0.361593\pi\)
−0.906946 + 0.421246i \(0.861593\pi\)
\(692\) 59.9865 59.9865i 2.28035 2.28035i
\(693\) 4.51420 0.171480
\(694\) 48.5572 48.5572i 1.84321 1.84321i
\(695\) 7.96553i 0.302150i
\(696\) 1.34440 0.0509592
\(697\) 7.12811 + 14.9740i 0.269996 + 0.567180i
\(698\) 49.1976 1.86216
\(699\) 1.49500i 0.0565461i
\(700\) 0.501187 0.501187i 0.0189431 0.0189431i
\(701\) −9.99896 −0.377656 −0.188828 0.982010i \(-0.560469\pi\)
−0.188828 + 0.982010i \(0.560469\pi\)
\(702\) −2.46483 + 2.46483i −0.0930291 + 0.0930291i
\(703\) 22.3661 + 22.3661i 0.843553 + 0.843553i
\(704\) −15.8568 15.8568i −0.597627 0.597627i
\(705\) 5.29780i 0.199527i
\(706\) 31.1991i 1.17419i
\(707\) −11.6369 11.6369i −0.437649 0.437649i
\(708\) 41.2619 + 41.2619i 1.55072 + 1.55072i
\(709\) 0.773543 0.773543i 0.0290510 0.0290510i −0.692432 0.721483i \(-0.743461\pi\)
0.721483 + 0.692432i \(0.243461\pi\)
\(710\) −35.7447 −1.34147
\(711\) 0.493752 0.493752i 0.0185171 0.0185171i
\(712\) 42.0300i 1.57514i
\(713\) −2.12373 −0.0795344
\(714\) 8.41546 23.7067i 0.314941 0.887200i
\(715\) −5.73122 −0.214335
\(716\) 54.8299i 2.04909i
\(717\) 7.08874 7.08874i 0.264734 0.264734i
\(718\) −37.2768 −1.39116
\(719\) 30.0392 30.0392i 1.12027 1.12027i 0.128572 0.991700i \(-0.458961\pi\)
0.991700 0.128572i \(-0.0410393\pi\)
\(720\) −16.6678 16.6678i −0.621173 0.621173i
\(721\) −15.0933 15.0933i −0.562103 0.562103i
\(722\) 43.2634i 1.61010i
\(723\) 11.5155i 0.428264i
\(724\) −68.9606 68.9606i −2.56290 2.56290i
\(725\) −0.00756020 0.00756020i −0.000280779 0.000280779i
\(726\) 13.4131 13.4131i 0.497808 0.497808i
\(727\) −45.2169 −1.67700 −0.838501 0.544900i \(-0.816568\pi\)
−0.838501 + 0.544900i \(0.816568\pi\)
\(728\) 16.8309 16.8309i 0.623796 0.623796i
\(729\) 1.00000i 0.0370370i
\(730\) −61.8484 −2.28911
\(731\) −11.4961 + 32.3848i −0.425197 + 1.19780i
\(732\) 43.0062 1.58956
\(733\) 21.5990i 0.797778i −0.916999 0.398889i \(-0.869396\pi\)
0.916999 0.398889i \(-0.130604\pi\)
\(734\) 6.94164 6.94164i 0.256221 0.256221i
\(735\) 3.65408 0.134783
\(736\) −41.9288 + 41.9288i −1.54551 + 1.54551i
\(737\) −19.5676 19.5676i −0.720782 0.720782i
\(738\) 7.49830 + 7.49830i 0.276016 + 0.276016i
\(739\) 19.0419i 0.700467i −0.936663 0.350233i \(-0.886102\pi\)
0.936663 0.350233i \(-0.113898\pi\)
\(740\) 58.4769i 2.14965i
\(741\) 5.56337 + 5.56337i 0.204376 + 0.204376i
\(742\) −3.13726 3.13726i −0.115173 0.115173i
\(743\) −18.6918 + 18.6918i −0.685737 + 0.685737i −0.961287 0.275550i \(-0.911140\pi\)
0.275550 + 0.961287i \(0.411140\pi\)
\(744\) −3.45688 −0.126735
\(745\) 18.4963 18.4963i 0.677650 0.677650i
\(746\) 4.04999i 0.148281i
\(747\) 8.52971 0.312086
\(748\) 17.1137 + 35.9507i 0.625740 + 1.31449i
\(749\) 11.9936 0.438236
\(750\) 29.6554i 1.08286i
\(751\) −3.28582 + 3.28582i −0.119901 + 0.119901i −0.764512 0.644610i \(-0.777020\pi\)
0.644610 + 0.764512i \(0.277020\pi\)
\(752\) −25.2887 −0.922185
\(753\) −0.664807 + 0.664807i −0.0242269 + 0.0242269i
\(754\) −0.425978 0.425978i −0.0155132 0.0155132i
\(755\) −25.3042 25.3042i −0.920915 0.920915i
\(756\) 11.4569i 0.416683i
\(757\) 10.4074i 0.378263i 0.981952 + 0.189131i \(0.0605672\pi\)
−0.981952 + 0.189131i \(0.939433\pi\)
\(758\) 67.3935 + 67.3935i 2.44784 + 2.44784i
\(759\) 6.59178 + 6.59178i 0.239266 + 0.239266i
\(760\) −72.7372 + 72.7372i −2.63846 + 2.63846i
\(761\) 38.6365 1.40057 0.700286 0.713862i \(-0.253056\pi\)
0.700286 + 0.713862i \(0.253056\pi\)
\(762\) −18.3661 + 18.3661i −0.665333 + 0.665333i
\(763\) 46.2275i 1.67355i
\(764\) 7.96819 0.288279
\(765\) 3.93813 + 8.27281i 0.142384 + 0.299104i
\(766\) 43.1031 1.55738
\(767\) 15.5845i 0.562725i
\(768\) 6.01659 6.01659i 0.217105 0.217105i
\(769\) 0.178098 0.00642238 0.00321119 0.999995i \(-0.498978\pi\)
0.00321119 + 0.999995i \(0.498978\pi\)
\(770\) 18.7008 18.7008i 0.673929 0.673929i
\(771\) −1.52392 1.52392i −0.0548827 0.0548827i
\(772\) −15.6619 15.6619i −0.563685 0.563685i
\(773\) 4.15554i 0.149464i −0.997204 0.0747322i \(-0.976190\pi\)
0.997204 0.0747322i \(-0.0238102\pi\)
\(774\) 21.9736i 0.789824i
\(775\) 0.0194398 + 0.0194398i 0.000698296 + 0.000698296i
\(776\) 25.9406 + 25.9406i 0.931214 + 0.931214i
\(777\) −8.69827 + 8.69827i −0.312049 + 0.312049i
\(778\) −43.3776 −1.55516
\(779\) 16.9244 16.9244i 0.606380 0.606380i
\(780\) 14.5456i 0.520817i
\(781\) 11.9013 0.425861
\(782\) 46.9057 22.3287i 1.67735 0.798473i
\(783\) −0.172822 −0.00617617
\(784\) 17.4425i 0.622946i
\(785\) 10.1435 10.1435i 0.362036 0.362036i
\(786\) 20.0564 0.715389
\(787\) 1.22941 1.22941i 0.0438238 0.0438238i −0.684855 0.728679i \(-0.740135\pi\)
0.728679 + 0.684855i \(0.240135\pi\)
\(788\) −25.8828 25.8828i −0.922036 0.922036i
\(789\) −9.29326 9.29326i −0.330849 0.330849i
\(790\) 4.09088i 0.145547i
\(791\) 40.3535i 1.43481i
\(792\) 10.7297 + 10.7297i 0.381263 + 0.381263i
\(793\) −8.12169 8.12169i −0.288410 0.288410i
\(794\) −67.9706 + 67.9706i −2.41219 + 2.41219i
\(795\) 1.61596 0.0573120
\(796\) −25.1925 + 25.1925i −0.892924 + 0.892924i
\(797\) 22.2085i 0.786666i −0.919396 0.393333i \(-0.871322\pi\)
0.919396 0.393333i \(-0.128678\pi\)
\(798\) −36.3062 −1.28523
\(799\) 9.26333 + 3.28832i 0.327713 + 0.116333i
\(800\) 0.767597 0.0271386
\(801\) 5.40297i 0.190904i
\(802\) −18.0439 + 18.0439i −0.637153 + 0.637153i
\(803\) 20.5926 0.726695
\(804\) −49.6619 + 49.6619i −1.75144 + 1.75144i
\(805\) −17.3786 17.3786i −0.612515 0.612515i
\(806\) 1.09533 + 1.09533i 0.0385813 + 0.0385813i
\(807\) 15.1743i 0.534162i
\(808\) 55.3187i 1.94611i
\(809\) −2.28300 2.28300i −0.0802661 0.0802661i 0.665834 0.746100i \(-0.268076\pi\)
−0.746100 + 0.665834i \(0.768076\pi\)
\(810\) 4.14265 + 4.14265i 0.145558 + 0.145558i
\(811\) −17.8304 + 17.8304i −0.626110 + 0.626110i −0.947087 0.320977i \(-0.895989\pi\)
0.320977 + 0.947087i \(0.395989\pi\)
\(812\) 1.98000 0.0694846
\(813\) −8.36931 + 8.36931i −0.293524 + 0.293524i
\(814\) 27.3356i 0.958114i
\(815\) −37.1821 −1.30243
\(816\) 39.4897 18.7984i 1.38242 0.658077i
\(817\) 49.5966 1.73516
\(818\) 6.64975i 0.232503i
\(819\) −2.16362 + 2.16362i −0.0756030 + 0.0756030i
\(820\) 44.2494 1.54526
\(821\) 24.3444 24.3444i 0.849626 0.849626i −0.140460 0.990086i \(-0.544858\pi\)
0.990086 + 0.140460i \(0.0448583\pi\)
\(822\) 41.1477 + 41.1477i 1.43519 + 1.43519i
\(823\) 12.5861 + 12.5861i 0.438723 + 0.438723i 0.891582 0.452859i \(-0.149596\pi\)
−0.452859 + 0.891582i \(0.649596\pi\)
\(824\) 71.7497i 2.49952i
\(825\) 0.120677i 0.00420143i
\(826\) 50.8518 + 50.8518i 1.76936 + 1.76936i
\(827\) −1.37930 1.37930i −0.0479631 0.0479631i 0.682718 0.730682i \(-0.260798\pi\)
−0.730682 + 0.682718i \(0.760798\pi\)
\(828\) 16.7297 16.7297i 0.581397 0.581397i
\(829\) −0.904671 −0.0314205 −0.0157103 0.999877i \(-0.505001\pi\)
−0.0157103 + 0.999877i \(0.505001\pi\)
\(830\) 35.3356 35.3356i 1.22652 1.22652i
\(831\) 26.9025i 0.933238i
\(832\) 15.2001 0.526969
\(833\) −2.26807 + 6.38924i −0.0785840 + 0.221374i
\(834\) 9.45029 0.327237
\(835\) 3.56659i 0.123427i
\(836\) 40.6335 40.6335i 1.40534 1.40534i
\(837\) 0.444383 0.0153601
\(838\) −49.0778 + 49.0778i −1.69537 + 1.69537i
\(839\) −17.1659 17.1659i −0.592633 0.592633i 0.345708 0.938342i \(-0.387639\pi\)
−0.938342 + 0.345708i \(0.887639\pi\)
\(840\) −28.2878 28.2878i −0.976022 0.976022i
\(841\) 28.9701i 0.998970i
\(842\) 17.4290i 0.600643i
\(843\) −15.7217 15.7217i −0.541485 0.541485i
\(844\) 46.9731 + 46.9731i 1.61688 + 1.61688i
\(845\) −17.6803 + 17.6803i −0.608222 + 0.608222i
\(846\) 6.28531 0.216093
\(847\) 11.7740 11.7740i 0.404559 0.404559i
\(848\) 7.71366i 0.264888i
\(849\) −23.9577 −0.822225
\(850\) −0.633743 0.224968i −0.0217372 0.00771634i
\(851\) −25.4030 −0.870802
\(852\) 30.2050i 1.03481i
\(853\) 26.9482 26.9482i 0.922689 0.922689i −0.0745302 0.997219i \(-0.523746\pi\)
0.997219 + 0.0745302i \(0.0237457\pi\)
\(854\) 53.0016 1.81368
\(855\) 9.35038 9.35038i 0.319776 0.319776i
\(856\) 28.5072 + 28.5072i 0.974357 + 0.974357i
\(857\) 4.80850 + 4.80850i 0.164255 + 0.164255i 0.784449 0.620194i \(-0.212946\pi\)
−0.620194 + 0.784449i \(0.712946\pi\)
\(858\) 6.79951i 0.232131i
\(859\) 22.3072i 0.761113i −0.924758 0.380557i \(-0.875732\pi\)
0.924758 0.380557i \(-0.124268\pi\)
\(860\) 64.8359 + 64.8359i 2.21089 + 2.21089i
\(861\) 6.58197 + 6.58197i 0.224313 + 0.224313i
\(862\) 52.4335 52.4335i 1.78589 1.78589i
\(863\) −0.400593 −0.0136363 −0.00681816 0.999977i \(-0.502170\pi\)
−0.00681816 + 0.999977i \(0.502170\pi\)
\(864\) 8.77343 8.77343i 0.298478 0.298478i
\(865\) 38.0794i 1.29474i
\(866\) −45.2135 −1.53642
\(867\) −16.9096 + 1.75102i −0.574279 + 0.0594678i
\(868\) −5.09124 −0.172808
\(869\) 1.36207i 0.0462050i
\(870\) −0.715943 + 0.715943i −0.0242727 + 0.0242727i
\(871\) 18.7572 0.635563
\(872\) −109.877 + 109.877i −3.72090 + 3.72090i
\(873\) −3.33468 3.33468i −0.112862 0.112862i
\(874\) −53.0154 53.0154i −1.79327 1.79327i
\(875\) 26.0314i 0.880023i
\(876\) 52.2632i 1.76581i
\(877\) −0.149079 0.149079i −0.00503404 0.00503404i 0.704585 0.709619i \(-0.251133\pi\)
−0.709619 + 0.704585i \(0.751133\pi\)
\(878\) −15.3331 15.3331i −0.517469 0.517469i
\(879\) 5.26361 5.26361i 0.177537 0.177537i
\(880\) 45.9800 1.54999
\(881\) −36.6255 + 36.6255i −1.23394 + 1.23394i −0.271508 + 0.962436i \(0.587522\pi\)
−0.962436 + 0.271508i \(0.912478\pi\)
\(882\) 4.33519i 0.145974i
\(883\) −23.5757 −0.793385 −0.396692 0.917952i \(-0.629842\pi\)
−0.396692 + 0.917952i \(0.629842\pi\)
\(884\) −25.4334 9.02840i −0.855416 0.303658i
\(885\) −26.1930 −0.880468
\(886\) 48.6834i 1.63555i
\(887\) −11.5500 + 11.5500i −0.387810 + 0.387810i −0.873906 0.486096i \(-0.838421\pi\)
0.486096 + 0.873906i \(0.338421\pi\)
\(888\) −41.3494 −1.38759
\(889\) −16.1217 + 16.1217i −0.540704 + 0.540704i
\(890\) 22.3826 + 22.3826i 0.750267 + 0.750267i
\(891\) −1.37930 1.37930i −0.0462084 0.0462084i
\(892\) 105.272i 3.52476i
\(893\) 14.1866i 0.474735i
\(894\) 21.9439 + 21.9439i 0.733915 + 0.733915i
\(895\) −17.4030 17.4030i −0.581717 0.581717i
\(896\) −8.99000 + 8.99000i −0.300335 + 0.300335i
\(897\) −6.31877 −0.210978
\(898\) −57.6510 + 57.6510i −1.92384 + 1.92384i
\(899\) 0.0767993i 0.00256140i
\(900\) −0.306273 −0.0102091
\(901\) −1.00302 + 2.82554i −0.0334153 + 0.0941322i
\(902\) −20.6849 −0.688731
\(903\) 19.2883i 0.641875i
\(904\) 95.9153 95.9153i 3.19009 3.19009i
\(905\) 43.7761 1.45517
\(906\) 30.0209 30.0209i 0.997378 0.997378i
\(907\) −21.7666 21.7666i −0.722747 0.722747i 0.246417 0.969164i \(-0.420747\pi\)
−0.969164 + 0.246417i \(0.920747\pi\)
\(908\) −17.3422 17.3422i −0.575522 0.575522i
\(909\) 7.11123i 0.235865i
\(910\) 17.9263i 0.594250i
\(911\) 5.08757 + 5.08757i 0.168559 + 0.168559i 0.786346 0.617787i \(-0.211971\pi\)
−0.617787 + 0.786346i \(0.711971\pi\)
\(912\) −44.6335 44.6335i −1.47796 1.47796i
\(913\) −11.7651 + 11.7651i −0.389367 + 0.389367i
\(914\) −40.9532 −1.35461
\(915\) −13.6502 + 13.6502i −0.451260 + 0.451260i
\(916\) 9.10136i 0.300717i
\(917\) 17.6054 0.581383
\(918\) −9.81485 + 4.67220i −0.323938 + 0.154205i
\(919\) 11.6873 0.385527 0.192764 0.981245i \(-0.438255\pi\)
0.192764 + 0.981245i \(0.438255\pi\)
\(920\) 82.6135i 2.72368i
\(921\) 10.0539 10.0539i 0.331288 0.331288i
\(922\) −102.565 −3.37779
\(923\) −5.70418 + 5.70418i −0.187755 + 0.187755i
\(924\) 15.8025 + 15.8025i 0.519865 + 0.519865i
\(925\) 0.232528 + 0.232528i 0.00764548 + 0.00764548i
\(926\) 59.9971i 1.97163i
\(927\) 9.22344i 0.302938i
\(928\) 1.51625 + 1.51625i 0.0497732 + 0.0497732i
\(929\) −10.0287 10.0287i −0.329032 0.329032i 0.523186 0.852218i \(-0.324743\pi\)
−0.852218 + 0.523186i \(0.824743\pi\)
\(930\) 1.84092 1.84092i 0.0603663 0.0603663i
\(931\) 9.78497 0.320689
\(932\) 5.23344 5.23344i 0.171427 0.171427i
\(933\) 10.3616i 0.339222i
\(934\) 33.1003 1.08308
\(935\) −16.8426 5.97884i −0.550812 0.195529i
\(936\) −10.2853 −0.336186
\(937\) 25.4693i 0.832044i 0.909355 + 0.416022i \(0.136576\pi\)
−0.909355 + 0.416022i \(0.863424\pi\)
\(938\) −61.2041 + 61.2041i −1.99838 + 1.99838i
\(939\) 17.4262 0.568682
\(940\) 18.5456 18.5456i 0.604891 0.604891i
\(941\) −41.4250 41.4250i −1.35042 1.35042i −0.885193 0.465223i \(-0.845974\pi\)
−0.465223 0.885193i \(-0.654026\pi\)
\(942\) 12.0342 + 12.0342i 0.392095 + 0.392095i
\(943\) 19.2224i 0.625968i
\(944\) 125.031i 4.06940i
\(945\) 3.63640 + 3.63640i 0.118292 + 0.118292i
\(946\) −30.3083 30.3083i −0.985406 0.985406i
\(947\) 13.4664 13.4664i 0.437598 0.437598i −0.453605 0.891203i \(-0.649862\pi\)
0.891203 + 0.453605i \(0.149862\pi\)
\(948\) 3.45688 0.112274
\(949\) −9.86984 + 9.86984i −0.320389 + 0.320389i
\(950\) 0.970563i 0.0314892i
\(951\) −14.1753 −0.459666
\(952\) 67.0200 31.9038i 2.17213 1.03401i
\(953\) 19.8922 0.644371 0.322185 0.946677i \(-0.395583\pi\)
0.322185 + 0.946677i \(0.395583\pi\)
\(954\) 1.91717i 0.0620706i
\(955\) −2.52910 + 2.52910i −0.0818397 + 0.0818397i
\(956\) 49.6300 1.60515
\(957\) 0.238375 0.238375i 0.00770556 0.00770556i
\(958\) −69.4270 69.4270i −2.24308 2.24308i
\(959\) 36.1192 + 36.1192i 1.16635 + 1.16635i
\(960\) 25.5469i 0.824522i
\(961\) 30.8025i 0.993630i
\(962\) 13.1018 + 13.1018i 0.422418 + 0.422418i
\(963\) −3.66461 3.66461i −0.118090 0.118090i
\(964\) 40.3113 40.3113i 1.29834 1.29834i
\(965\) 9.94216 0.320049
\(966\) 20.6179 20.6179i 0.663371 0.663371i
\(967\) 53.0310i 1.70536i 0.522433 + 0.852680i \(0.325025\pi\)
−0.522433 + 0.852680i \(0.674975\pi\)
\(968\) 55.9706 1.79896
\(969\) 10.5456 + 22.1531i 0.338774 + 0.711660i
\(970\) −27.6288 −0.887108
\(971\) 3.02535i 0.0970880i 0.998821 + 0.0485440i \(0.0154581\pi\)
−0.998821 + 0.0485440i \(0.984542\pi\)
\(972\) −3.50062 + 3.50062i −0.112283 + 0.112283i
\(973\) 8.29543 0.265939
\(974\) −3.06641 + 3.06641i −0.0982541 + 0.0982541i
\(975\) 0.0578394 + 0.0578394i 0.00185234 + 0.00185234i
\(976\) 65.1581 + 65.1581i 2.08566 + 2.08566i
\(977\) 11.2664i 0.360444i −0.983626 0.180222i \(-0.942318\pi\)
0.983626 0.180222i \(-0.0576815\pi\)
\(978\) 44.1128i 1.41057i
\(979\) −7.45234 7.45234i −0.238178 0.238178i
\(980\) 12.7916 + 12.7916i 0.408611 + 0.408611i
\(981\) 14.1247 14.1247i 0.450967 0.450967i
\(982\) 11.3397 0.361866
\(983\) 34.1943 34.1943i 1.09063 1.09063i 0.0951684 0.995461i \(-0.469661\pi\)
0.995461 0.0951684i \(-0.0303390\pi\)
\(984\) 31.2891i 0.997459i
\(985\) 16.4304 0.523515
\(986\) −0.807460 1.69623i −0.0257148 0.0540188i
\(987\) 5.51722 0.175615
\(988\) 38.9506i 1.23918i
\(989\) −28.1654 + 28.1654i −0.895608 + 0.895608i
\(990\) −11.4280 −0.363204
\(991\) 16.9991 16.9991i 0.539994 0.539994i −0.383533 0.923527i \(-0.625293\pi\)
0.923527 + 0.383533i \(0.125293\pi\)
\(992\) −3.89876 3.89876i −0.123786 0.123786i
\(993\) 7.67104 + 7.67104i 0.243433 + 0.243433i
\(994\) 37.2251i 1.18071i
\(995\) 15.9921i 0.506985i
\(996\) 29.8593 + 29.8593i 0.946129 + 0.946129i
\(997\) −18.6250 18.6250i −0.589861 0.589861i 0.347733 0.937594i \(-0.386952\pi\)
−0.937594 + 0.347733i \(0.886952\pi\)
\(998\) 2.78753 2.78753i 0.0882377 0.0882377i
\(999\) 5.31548 0.168174
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.2.e.a.4.1 8
3.2 odd 2 153.2.f.b.55.4 8
4.3 odd 2 816.2.bd.e.769.4 8
12.11 even 2 2448.2.be.x.1585.1 8
17.2 even 8 867.2.d.f.577.8 8
17.3 odd 16 867.2.h.i.733.1 16
17.4 even 4 867.2.e.g.829.4 8
17.5 odd 16 867.2.h.k.712.3 16
17.6 odd 16 867.2.h.k.688.3 16
17.7 odd 16 867.2.h.i.757.2 16
17.8 even 8 867.2.a.l.1.1 4
17.9 even 8 867.2.a.k.1.1 4
17.10 odd 16 867.2.h.i.757.1 16
17.11 odd 16 867.2.h.k.688.4 16
17.12 odd 16 867.2.h.k.712.4 16
17.13 even 4 inner 51.2.e.a.13.4 yes 8
17.14 odd 16 867.2.h.i.733.2 16
17.15 even 8 867.2.d.f.577.7 8
17.16 even 2 867.2.e.g.616.1 8
51.8 odd 8 2601.2.a.be.1.4 4
51.26 odd 8 2601.2.a.bf.1.4 4
51.47 odd 4 153.2.f.b.64.1 8
68.47 odd 4 816.2.bd.e.625.4 8
204.47 even 4 2448.2.be.x.1441.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.1 8 1.1 even 1 trivial
51.2.e.a.13.4 yes 8 17.13 even 4 inner
153.2.f.b.55.4 8 3.2 odd 2
153.2.f.b.64.1 8 51.47 odd 4
816.2.bd.e.625.4 8 68.47 odd 4
816.2.bd.e.769.4 8 4.3 odd 2
867.2.a.k.1.1 4 17.9 even 8
867.2.a.l.1.1 4 17.8 even 8
867.2.d.f.577.7 8 17.15 even 8
867.2.d.f.577.8 8 17.2 even 8
867.2.e.g.616.1 8 17.16 even 2
867.2.e.g.829.4 8 17.4 even 4
867.2.h.i.733.1 16 17.3 odd 16
867.2.h.i.733.2 16 17.14 odd 16
867.2.h.i.757.1 16 17.10 odd 16
867.2.h.i.757.2 16 17.7 odd 16
867.2.h.k.688.3 16 17.6 odd 16
867.2.h.k.688.4 16 17.11 odd 16
867.2.h.k.712.3 16 17.5 odd 16
867.2.h.k.712.4 16 17.12 odd 16
2448.2.be.x.1441.1 8 204.47 even 4
2448.2.be.x.1585.1 8 12.11 even 2
2601.2.a.be.1.4 4 51.8 odd 8
2601.2.a.bf.1.4 4 51.26 odd 8