Properties

Label 51.2
Level 51
Weight 2
Dimension 55
Nonzero newspaces 5
Newform subspaces 7
Sturm bound 384
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 51 = 3 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 7 \)
Sturm bound: \(384\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(51))\).

Total New Old
Modular forms 128 87 41
Cusp forms 65 55 10
Eisenstein series 63 32 31

Trace form

\( 55 q - 3 q^{2} - 9 q^{3} - 23 q^{4} - 6 q^{5} - 11 q^{6} - 24 q^{7} - 15 q^{8} - 9 q^{9} - 26 q^{10} + 4 q^{11} + 9 q^{12} - 14 q^{13} + 8 q^{14} + 10 q^{15} + 25 q^{16} - q^{17} + 13 q^{18} - 20 q^{19}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
51.2.a \(\chi_{51}(1, \cdot)\) 51.2.a.a 1 1
51.2.a.b 2
51.2.d \(\chi_{51}(16, \cdot)\) 51.2.d.a 2 1
51.2.d.b 2
51.2.e \(\chi_{51}(4, \cdot)\) 51.2.e.a 8 2
51.2.h \(\chi_{51}(19, \cdot)\) 51.2.h.a 8 4
51.2.i \(\chi_{51}(5, \cdot)\) 51.2.i.a 32 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(51))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(51)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 2}\)