Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2448))\).
|
Total |
New |
Old |
Modular forms
| 169472 |
73966 |
95506 |
Cusp forms
| 162305 |
72752 |
89553 |
Eisenstein series
| 7167 |
1214 |
5953 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2448))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
2448.2.a |
\(\chi_{2448}(1, \cdot)\) |
2448.2.a.a |
1 |
1 |
2448.2.a.b |
1 |
2448.2.a.c |
1 |
2448.2.a.d |
1 |
2448.2.a.e |
1 |
2448.2.a.f |
1 |
2448.2.a.g |
1 |
2448.2.a.h |
1 |
2448.2.a.i |
1 |
2448.2.a.j |
1 |
2448.2.a.k |
1 |
2448.2.a.l |
1 |
2448.2.a.m |
1 |
2448.2.a.n |
1 |
2448.2.a.o |
1 |
2448.2.a.p |
1 |
2448.2.a.q |
1 |
2448.2.a.r |
1 |
2448.2.a.s |
1 |
2448.2.a.t |
1 |
2448.2.a.u |
2 |
2448.2.a.v |
2 |
2448.2.a.w |
2 |
2448.2.a.x |
2 |
2448.2.a.y |
2 |
2448.2.a.z |
2 |
2448.2.a.ba |
2 |
2448.2.a.bb |
3 |
2448.2.a.bc |
3 |
2448.2.c |
\(\chi_{2448}(577, \cdot)\) |
2448.2.c.a |
2 |
1 |
2448.2.c.b |
2 |
2448.2.c.c |
2 |
2448.2.c.d |
2 |
2448.2.c.e |
2 |
2448.2.c.f |
2 |
2448.2.c.g |
2 |
2448.2.c.h |
2 |
2448.2.c.i |
2 |
2448.2.c.j |
2 |
2448.2.c.k |
2 |
2448.2.c.l |
2 |
2448.2.c.m |
2 |
2448.2.c.n |
2 |
2448.2.c.o |
2 |
2448.2.c.p |
4 |
2448.2.c.q |
4 |
2448.2.c.r |
6 |
2448.2.e |
\(\chi_{2448}(1871, \cdot)\) |
2448.2.e.a |
8 |
1 |
2448.2.e.b |
24 |
2448.2.f |
\(\chi_{2448}(1225, \cdot)\) |
None |
0 |
1 |
2448.2.h |
\(\chi_{2448}(1223, \cdot)\) |
None |
0 |
1 |
2448.2.j |
\(\chi_{2448}(647, \cdot)\) |
None |
0 |
1 |
2448.2.l |
\(\chi_{2448}(1801, \cdot)\) |
None |
0 |
1 |
2448.2.o |
\(\chi_{2448}(2447, \cdot)\) |
2448.2.o.a |
4 |
1 |
2448.2.o.b |
4 |
2448.2.o.c |
4 |
2448.2.o.d |
24 |
2448.2.q |
\(\chi_{2448}(817, \cdot)\) |
n/a |
192 |
2 |
2448.2.s |
\(\chi_{2448}(395, \cdot)\) |
n/a |
288 |
2 |
2448.2.t |
\(\chi_{2448}(973, \cdot)\) |
n/a |
356 |
2 |
2448.2.v |
\(\chi_{2448}(613, \cdot)\) |
n/a |
320 |
2 |
2448.2.x |
\(\chi_{2448}(611, \cdot)\) |
n/a |
288 |
2 |
2448.2.z |
\(\chi_{2448}(2087, \cdot)\) |
None |
0 |
2 |
2448.2.bb |
\(\chi_{2448}(217, \cdot)\) |
None |
0 |
2 |
2448.2.be |
\(\chi_{2448}(1441, \cdot)\) |
2448.2.be.a |
2 |
2 |
2448.2.be.b |
2 |
2448.2.be.c |
2 |
2448.2.be.d |
2 |
2448.2.be.e |
2 |
2448.2.be.f |
2 |
2448.2.be.g |
2 |
2448.2.be.h |
2 |
2448.2.be.i |
2 |
2448.2.be.j |
2 |
2448.2.be.k |
2 |
2448.2.be.l |
2 |
2448.2.be.m |
2 |
2448.2.be.n |
2 |
2448.2.be.o |
4 |
2448.2.be.p |
4 |
2448.2.be.q |
4 |
2448.2.be.r |
4 |
2448.2.be.s |
4 |
2448.2.be.t |
4 |
2448.2.be.u |
4 |
2448.2.be.v |
6 |
2448.2.be.w |
6 |
2448.2.be.x |
8 |
2448.2.be.y |
12 |
2448.2.bg |
\(\chi_{2448}(863, \cdot)\) |
2448.2.bg.a |
4 |
2 |
2448.2.bg.b |
4 |
2448.2.bg.c |
8 |
2448.2.bg.d |
8 |
2448.2.bg.e |
8 |
2448.2.bg.f |
40 |
2448.2.bi |
\(\chi_{2448}(35, \cdot)\) |
n/a |
256 |
2 |
2448.2.bk |
\(\chi_{2448}(1189, \cdot)\) |
n/a |
356 |
2 |
2448.2.bm |
\(\chi_{2448}(829, \cdot)\) |
n/a |
356 |
2 |
2448.2.bn |
\(\chi_{2448}(251, \cdot)\) |
n/a |
288 |
2 |
2448.2.bq |
\(\chi_{2448}(815, \cdot)\) |
n/a |
216 |
2 |
2448.2.bt |
\(\chi_{2448}(169, \cdot)\) |
None |
0 |
2 |
2448.2.bv |
\(\chi_{2448}(1463, \cdot)\) |
None |
0 |
2 |
2448.2.bx |
\(\chi_{2448}(407, \cdot)\) |
None |
0 |
2 |
2448.2.bz |
\(\chi_{2448}(409, \cdot)\) |
None |
0 |
2 |
2448.2.ca |
\(\chi_{2448}(239, \cdot)\) |
n/a |
192 |
2 |
2448.2.cc |
\(\chi_{2448}(1393, \cdot)\) |
n/a |
212 |
2 |
2448.2.cg |
\(\chi_{2448}(145, \cdot)\) |
n/a |
176 |
4 |
2448.2.ch |
\(\chi_{2448}(287, \cdot)\) |
n/a |
144 |
4 |
2448.2.ci |
\(\chi_{2448}(179, \cdot)\) |
n/a |
576 |
4 |
2448.2.cj |
\(\chi_{2448}(253, \cdot)\) |
n/a |
712 |
4 |
2448.2.cm |
\(\chi_{2448}(899, \cdot)\) |
n/a |
576 |
4 |
2448.2.cn |
\(\chi_{2448}(325, \cdot)\) |
n/a |
712 |
4 |
2448.2.cq |
\(\chi_{2448}(937, \cdot)\) |
None |
0 |
4 |
2448.2.cr |
\(\chi_{2448}(359, \cdot)\) |
None |
0 |
4 |
2448.2.cu |
\(\chi_{2448}(803, \cdot)\) |
n/a |
1712 |
4 |
2448.2.cx |
\(\chi_{2448}(13, \cdot)\) |
n/a |
1712 |
4 |
2448.2.cy |
\(\chi_{2448}(373, \cdot)\) |
n/a |
1712 |
4 |
2448.2.da |
\(\chi_{2448}(443, \cdot)\) |
n/a |
1536 |
4 |
2448.2.dd |
\(\chi_{2448}(625, \cdot)\) |
n/a |
424 |
4 |
2448.2.df |
\(\chi_{2448}(47, \cdot)\) |
n/a |
432 |
4 |
2448.2.dg |
\(\chi_{2448}(455, \cdot)\) |
None |
0 |
4 |
2448.2.di |
\(\chi_{2448}(1033, \cdot)\) |
None |
0 |
4 |
2448.2.dl |
\(\chi_{2448}(203, \cdot)\) |
n/a |
1712 |
4 |
2448.2.dn |
\(\chi_{2448}(205, \cdot)\) |
n/a |
1536 |
4 |
2448.2.do |
\(\chi_{2448}(157, \cdot)\) |
n/a |
1712 |
4 |
2448.2.dr |
\(\chi_{2448}(659, \cdot)\) |
n/a |
1712 |
4 |
2448.2.dt |
\(\chi_{2448}(197, \cdot)\) |
n/a |
1152 |
8 |
2448.2.du |
\(\chi_{2448}(91, \cdot)\) |
n/a |
1424 |
8 |
2448.2.dx |
\(\chi_{2448}(449, \cdot)\) |
n/a |
288 |
8 |
2448.2.dy |
\(\chi_{2448}(415, \cdot)\) |
n/a |
360 |
8 |
2448.2.eb |
\(\chi_{2448}(199, \cdot)\) |
None |
0 |
8 |
2448.2.ec |
\(\chi_{2448}(233, \cdot)\) |
None |
0 |
8 |
2448.2.ef |
\(\chi_{2448}(125, \cdot)\) |
n/a |
1152 |
8 |
2448.2.eg |
\(\chi_{2448}(163, \cdot)\) |
n/a |
1424 |
8 |
2448.2.ei |
\(\chi_{2448}(25, \cdot)\) |
None |
0 |
8 |
2448.2.ej |
\(\chi_{2448}(263, \cdot)\) |
None |
0 |
8 |
2448.2.eo |
\(\chi_{2448}(155, \cdot)\) |
n/a |
3424 |
8 |
2448.2.ep |
\(\chi_{2448}(229, \cdot)\) |
n/a |
3424 |
8 |
2448.2.es |
\(\chi_{2448}(59, \cdot)\) |
n/a |
3424 |
8 |
2448.2.et |
\(\chi_{2448}(349, \cdot)\) |
n/a |
3424 |
8 |
2448.2.ew |
\(\chi_{2448}(49, \cdot)\) |
n/a |
848 |
8 |
2448.2.ex |
\(\chi_{2448}(383, \cdot)\) |
n/a |
864 |
8 |
2448.2.ez |
\(\chi_{2448}(139, \cdot)\) |
n/a |
6848 |
16 |
2448.2.fa |
\(\chi_{2448}(5, \cdot)\) |
n/a |
6848 |
16 |
2448.2.fd |
\(\chi_{2448}(31, \cdot)\) |
n/a |
1728 |
16 |
2448.2.fe |
\(\chi_{2448}(65, \cdot)\) |
n/a |
1696 |
16 |
2448.2.fh |
\(\chi_{2448}(41, \cdot)\) |
None |
0 |
16 |
2448.2.fi |
\(\chi_{2448}(7, \cdot)\) |
None |
0 |
16 |
2448.2.fl |
\(\chi_{2448}(283, \cdot)\) |
n/a |
6848 |
16 |
2448.2.fm |
\(\chi_{2448}(29, \cdot)\) |
n/a |
6848 |
16 |
"n/a" means that newforms for that character have not been added to the database yet