Defining parameters
| Level: | \( N \) | \(=\) | \( 867 = 3 \cdot 17^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 867.h (of order \(8\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
| Character field: | \(\Q(\zeta_{8})\) | ||
| Newform subspaces: | \( 13 \) | ||
| Sturm bound: | \(204\) | ||
| Trace bound: | \(16\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(867, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 480 | 184 | 296 |
| Cusp forms | 336 | 184 | 152 |
| Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(867, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(867, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(867, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(289, [\chi])\)\(^{\oplus 2}\)