Properties

Label 867.2.h
Level $867$
Weight $2$
Character orbit 867.h
Rep. character $\chi_{867}(688,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $184$
Newform subspaces $13$
Sturm bound $204$
Trace bound $16$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 13 \)
Sturm bound: \(204\)
Trace bound: \(16\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(867, [\chi])\).

Total New Old
Modular forms 480 184 296
Cusp forms 336 184 152
Eisenstein series 144 0 144

Trace form

\( 184 q + 8 q^{5} + 8 q^{6} - 8 q^{11} + 16 q^{14} - 208 q^{16} + 8 q^{19} - 16 q^{20} + 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} - 16 q^{26} + 8 q^{28} - 8 q^{31} - 64 q^{35} - 8 q^{36} + 8 q^{37} - 16 q^{39}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(867, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
867.2.h.a 867.h 17.d $8$ $6.923$ \(\Q(\zeta_{16})\) None 867.2.a.g \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1+\zeta_{16}^{4}-\zeta_{16}^{6})q^{2}+\zeta_{16}q^{3}+\cdots\)
867.2.h.b 867.h 17.d $8$ $6.923$ \(\Q(\zeta_{16})\) None 51.2.h.a \(0\) \(0\) \(-8\) \(-8\) $\mathrm{SU}(2)[C_{8}]$ \(q+(\zeta_{16}+\zeta_{16}^{3})q^{2}-\zeta_{16}^{3}q^{3}+(\zeta_{16}^{2}+\cdots)q^{4}+\cdots\)
867.2.h.c 867.h 17.d $8$ $6.923$ \(\Q(\zeta_{16})\) None 51.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+\zeta_{16}^{5}q^{3}+2\zeta_{16}^{4}q^{4}-3\zeta_{16}q^{5}+\cdots\)
867.2.h.d 867.h 17.d $8$ $6.923$ \(\Q(\zeta_{16})\) None 51.2.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+\zeta_{16}^{2}q^{2}-\zeta_{16}^{3}q^{3}-\zeta_{16}^{4}q^{4}+\cdots\)
867.2.h.e 867.h 17.d $8$ $6.923$ \(\Q(\zeta_{16})\) None 51.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q-2\zeta_{16}^{6}q^{2}-\zeta_{16}q^{3}-2\zeta_{16}^{4}q^{4}+\cdots\)
867.2.h.f 867.h 17.d $8$ $6.923$ \(\Q(\zeta_{16})\) None 51.2.h.a \(0\) \(0\) \(8\) \(8\) $\mathrm{SU}(2)[C_{8}]$ \(q+(\zeta_{16}+\zeta_{16}^{3})q^{2}+\zeta_{16}^{3}q^{3}+(\zeta_{16}^{2}+\cdots)q^{4}+\cdots\)
867.2.h.g 867.h 17.d $8$ $6.923$ \(\Q(\zeta_{16})\) None 51.2.h.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(\zeta_{16}+\zeta_{16}^{3})q^{2}-\zeta_{16}^{7}q^{3}+(\zeta_{16}^{2}+\cdots)q^{4}+\cdots\)
867.2.h.h 867.h 17.d $8$ $6.923$ \(\Q(\zeta_{16})\) None 867.2.a.g \(8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(1-\zeta_{16}^{4}-\zeta_{16}^{6})q^{2}-\zeta_{16}q^{3}+\cdots\)
867.2.h.i 867.h 17.d $16$ $6.923$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 51.2.e.a \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(\beta _{2}+\beta _{6})q^{2}+\beta _{15}q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\)
867.2.h.j 867.h 17.d $16$ $6.923$ 16.0.\(\cdots\).1 None 51.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(\beta _{3}+\beta _{5})q^{2}+\beta _{7}q^{3}+(3\beta _{8}+\beta _{9}+\cdots)q^{4}+\cdots\)
867.2.h.k 867.h 17.d $16$ $6.923$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 51.2.e.a \(8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-\beta _{2}-\beta _{6})q^{2}+\beta _{13}q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\)
867.2.h.l 867.h 17.d $24$ $6.923$ None 867.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
867.2.h.m 867.h 17.d $48$ $6.923$ None 867.2.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(867, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(867, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(289, [\chi])\)\(^{\oplus 2}\)