Properties

Label 8450.2.a.bn.1.3
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-3,3,0,3,4,-3,8,0,3,-3,0,-4,0,3,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 338)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.04892 q^{3} +1.00000 q^{4} -2.04892 q^{6} +1.10992 q^{7} -1.00000 q^{8} +1.19806 q^{9} +2.35690 q^{11} +2.04892 q^{12} -1.10992 q^{14} +1.00000 q^{16} -5.96077 q^{17} -1.19806 q^{18} -0.911854 q^{19} +2.27413 q^{21} -2.35690 q^{22} -3.38404 q^{23} -2.04892 q^{24} -3.69202 q^{27} +1.10992 q^{28} -3.78017 q^{29} -8.49396 q^{31} -1.00000 q^{32} +4.82908 q^{33} +5.96077 q^{34} +1.19806 q^{36} +4.89008 q^{37} +0.911854 q^{38} +7.18598 q^{41} -2.27413 q^{42} +0.515729 q^{43} +2.35690 q^{44} +3.38404 q^{46} +6.98792 q^{47} +2.04892 q^{48} -5.76809 q^{49} -12.2131 q^{51} +3.38404 q^{53} +3.69202 q^{54} -1.10992 q^{56} -1.86831 q^{57} +3.78017 q^{58} -10.1468 q^{59} -0.439665 q^{61} +8.49396 q^{62} +1.32975 q^{63} +1.00000 q^{64} -4.82908 q^{66} +2.14675 q^{67} -5.96077 q^{68} -6.93362 q^{69} -0.615957 q^{71} -1.19806 q^{72} +6.32304 q^{73} -4.89008 q^{74} -0.911854 q^{76} +2.61596 q^{77} -15.4819 q^{79} -11.1588 q^{81} -7.18598 q^{82} -0.911854 q^{83} +2.27413 q^{84} -0.515729 q^{86} -7.74525 q^{87} -2.35690 q^{88} -3.75063 q^{89} -3.38404 q^{92} -17.4034 q^{93} -6.98792 q^{94} -2.04892 q^{96} -14.6746 q^{97} +5.76809 q^{98} +2.82371 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} + 4 q^{7} - 3 q^{8} + 8 q^{9} + 3 q^{11} - 3 q^{12} - 4 q^{14} + 3 q^{16} - 5 q^{17} - 8 q^{18} + q^{19} - 4 q^{21} - 3 q^{22} + 3 q^{24} - 6 q^{27} + 4 q^{28}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.04892 1.18294 0.591471 0.806326i \(-0.298547\pi\)
0.591471 + 0.806326i \(0.298547\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −2.04892 −0.836467
\(7\) 1.10992 0.419509 0.209754 0.977754i \(-0.432734\pi\)
0.209754 + 0.977754i \(0.432734\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.19806 0.399354
\(10\) 0 0
\(11\) 2.35690 0.710631 0.355315 0.934746i \(-0.384373\pi\)
0.355315 + 0.934746i \(0.384373\pi\)
\(12\) 2.04892 0.591471
\(13\) 0 0
\(14\) −1.10992 −0.296638
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.96077 −1.44570 −0.722850 0.691005i \(-0.757168\pi\)
−0.722850 + 0.691005i \(0.757168\pi\)
\(18\) −1.19806 −0.282386
\(19\) −0.911854 −0.209194 −0.104597 0.994515i \(-0.533355\pi\)
−0.104597 + 0.994515i \(0.533355\pi\)
\(20\) 0 0
\(21\) 2.27413 0.496255
\(22\) −2.35690 −0.502492
\(23\) −3.38404 −0.705622 −0.352811 0.935695i \(-0.614774\pi\)
−0.352811 + 0.935695i \(0.614774\pi\)
\(24\) −2.04892 −0.418234
\(25\) 0 0
\(26\) 0 0
\(27\) −3.69202 −0.710530
\(28\) 1.10992 0.209754
\(29\) −3.78017 −0.701959 −0.350980 0.936383i \(-0.614151\pi\)
−0.350980 + 0.936383i \(0.614151\pi\)
\(30\) 0 0
\(31\) −8.49396 −1.52556 −0.762780 0.646658i \(-0.776166\pi\)
−0.762780 + 0.646658i \(0.776166\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.82908 0.840636
\(34\) 5.96077 1.02226
\(35\) 0 0
\(36\) 1.19806 0.199677
\(37\) 4.89008 0.803925 0.401962 0.915656i \(-0.368328\pi\)
0.401962 + 0.915656i \(0.368328\pi\)
\(38\) 0.911854 0.147922
\(39\) 0 0
\(40\) 0 0
\(41\) 7.18598 1.12226 0.561131 0.827727i \(-0.310366\pi\)
0.561131 + 0.827727i \(0.310366\pi\)
\(42\) −2.27413 −0.350905
\(43\) 0.515729 0.0786480 0.0393240 0.999227i \(-0.487480\pi\)
0.0393240 + 0.999227i \(0.487480\pi\)
\(44\) 2.35690 0.355315
\(45\) 0 0
\(46\) 3.38404 0.498950
\(47\) 6.98792 1.01929 0.509646 0.860384i \(-0.329776\pi\)
0.509646 + 0.860384i \(0.329776\pi\)
\(48\) 2.04892 0.295736
\(49\) −5.76809 −0.824012
\(50\) 0 0
\(51\) −12.2131 −1.71018
\(52\) 0 0
\(53\) 3.38404 0.464834 0.232417 0.972616i \(-0.425337\pi\)
0.232417 + 0.972616i \(0.425337\pi\)
\(54\) 3.69202 0.502420
\(55\) 0 0
\(56\) −1.10992 −0.148319
\(57\) −1.86831 −0.247464
\(58\) 3.78017 0.496360
\(59\) −10.1468 −1.32099 −0.660497 0.750828i \(-0.729655\pi\)
−0.660497 + 0.750828i \(0.729655\pi\)
\(60\) 0 0
\(61\) −0.439665 −0.0562933 −0.0281467 0.999604i \(-0.508961\pi\)
−0.0281467 + 0.999604i \(0.508961\pi\)
\(62\) 8.49396 1.07873
\(63\) 1.32975 0.167533
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.82908 −0.594419
\(67\) 2.14675 0.262268 0.131134 0.991365i \(-0.458138\pi\)
0.131134 + 0.991365i \(0.458138\pi\)
\(68\) −5.96077 −0.722850
\(69\) −6.93362 −0.834710
\(70\) 0 0
\(71\) −0.615957 −0.0731007 −0.0365503 0.999332i \(-0.511637\pi\)
−0.0365503 + 0.999332i \(0.511637\pi\)
\(72\) −1.19806 −0.141193
\(73\) 6.32304 0.740056 0.370028 0.929021i \(-0.379348\pi\)
0.370028 + 0.929021i \(0.379348\pi\)
\(74\) −4.89008 −0.568461
\(75\) 0 0
\(76\) −0.911854 −0.104597
\(77\) 2.61596 0.298116
\(78\) 0 0
\(79\) −15.4819 −1.74185 −0.870924 0.491418i \(-0.836479\pi\)
−0.870924 + 0.491418i \(0.836479\pi\)
\(80\) 0 0
\(81\) −11.1588 −1.23987
\(82\) −7.18598 −0.793559
\(83\) −0.911854 −0.100089 −0.0500445 0.998747i \(-0.515936\pi\)
−0.0500445 + 0.998747i \(0.515936\pi\)
\(84\) 2.27413 0.248128
\(85\) 0 0
\(86\) −0.515729 −0.0556125
\(87\) −7.74525 −0.830378
\(88\) −2.35690 −0.251246
\(89\) −3.75063 −0.397566 −0.198783 0.980044i \(-0.563699\pi\)
−0.198783 + 0.980044i \(0.563699\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −3.38404 −0.352811
\(93\) −17.4034 −1.80465
\(94\) −6.98792 −0.720749
\(95\) 0 0
\(96\) −2.04892 −0.209117
\(97\) −14.6746 −1.48998 −0.744988 0.667078i \(-0.767545\pi\)
−0.744988 + 0.667078i \(0.767545\pi\)
\(98\) 5.76809 0.582665
\(99\) 2.82371 0.283793
\(100\) 0 0
\(101\) 8.76809 0.872457 0.436229 0.899836i \(-0.356314\pi\)
0.436229 + 0.899836i \(0.356314\pi\)
\(102\) 12.2131 1.20928
\(103\) −18.8116 −1.85356 −0.926782 0.375599i \(-0.877437\pi\)
−0.926782 + 0.375599i \(0.877437\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −3.38404 −0.328687
\(107\) −18.0519 −1.74514 −0.872572 0.488486i \(-0.837549\pi\)
−0.872572 + 0.488486i \(0.837549\pi\)
\(108\) −3.69202 −0.355265
\(109\) −6.09783 −0.584067 −0.292033 0.956408i \(-0.594332\pi\)
−0.292033 + 0.956408i \(0.594332\pi\)
\(110\) 0 0
\(111\) 10.0194 0.950997
\(112\) 1.10992 0.104877
\(113\) 12.2010 1.14778 0.573889 0.818933i \(-0.305434\pi\)
0.573889 + 0.818933i \(0.305434\pi\)
\(114\) 1.86831 0.174984
\(115\) 0 0
\(116\) −3.78017 −0.350980
\(117\) 0 0
\(118\) 10.1468 0.934084
\(119\) −6.61596 −0.606484
\(120\) 0 0
\(121\) −5.44504 −0.495004
\(122\) 0.439665 0.0398054
\(123\) 14.7235 1.32757
\(124\) −8.49396 −0.762780
\(125\) 0 0
\(126\) −1.32975 −0.118463
\(127\) −11.4276 −1.01403 −0.507017 0.861936i \(-0.669252\pi\)
−0.507017 + 0.861936i \(0.669252\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.05669 0.0930361
\(130\) 0 0
\(131\) 2.29590 0.200593 0.100297 0.994958i \(-0.468021\pi\)
0.100297 + 0.994958i \(0.468021\pi\)
\(132\) 4.82908 0.420318
\(133\) −1.01208 −0.0877586
\(134\) −2.14675 −0.185451
\(135\) 0 0
\(136\) 5.96077 0.511132
\(137\) 9.08038 0.775789 0.387894 0.921704i \(-0.373203\pi\)
0.387894 + 0.921704i \(0.373203\pi\)
\(138\) 6.93362 0.590229
\(139\) 18.9051 1.60351 0.801757 0.597650i \(-0.203899\pi\)
0.801757 + 0.597650i \(0.203899\pi\)
\(140\) 0 0
\(141\) 14.3177 1.20577
\(142\) 0.615957 0.0516900
\(143\) 0 0
\(144\) 1.19806 0.0998385
\(145\) 0 0
\(146\) −6.32304 −0.523299
\(147\) −11.8183 −0.974760
\(148\) 4.89008 0.401962
\(149\) −18.6896 −1.53111 −0.765557 0.643368i \(-0.777537\pi\)
−0.765557 + 0.643368i \(0.777537\pi\)
\(150\) 0 0
\(151\) 0.317667 0.0258514 0.0129257 0.999916i \(-0.495886\pi\)
0.0129257 + 0.999916i \(0.495886\pi\)
\(152\) 0.911854 0.0739611
\(153\) −7.14138 −0.577346
\(154\) −2.61596 −0.210800
\(155\) 0 0
\(156\) 0 0
\(157\) −18.8901 −1.50759 −0.753796 0.657108i \(-0.771780\pi\)
−0.753796 + 0.657108i \(0.771780\pi\)
\(158\) 15.4819 1.23167
\(159\) 6.93362 0.549872
\(160\) 0 0
\(161\) −3.75600 −0.296015
\(162\) 11.1588 0.876721
\(163\) −4.33273 −0.339366 −0.169683 0.985499i \(-0.554274\pi\)
−0.169683 + 0.985499i \(0.554274\pi\)
\(164\) 7.18598 0.561131
\(165\) 0 0
\(166\) 0.911854 0.0707736
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) −2.27413 −0.175453
\(169\) 0 0
\(170\) 0 0
\(171\) −1.09246 −0.0835423
\(172\) 0.515729 0.0393240
\(173\) 10.9879 0.835396 0.417698 0.908586i \(-0.362837\pi\)
0.417698 + 0.908586i \(0.362837\pi\)
\(174\) 7.74525 0.587166
\(175\) 0 0
\(176\) 2.35690 0.177658
\(177\) −20.7899 −1.56266
\(178\) 3.75063 0.281121
\(179\) 4.65519 0.347945 0.173972 0.984751i \(-0.444340\pi\)
0.173972 + 0.984751i \(0.444340\pi\)
\(180\) 0 0
\(181\) −1.06638 −0.0792631 −0.0396315 0.999214i \(-0.512618\pi\)
−0.0396315 + 0.999214i \(0.512618\pi\)
\(182\) 0 0
\(183\) −0.900837 −0.0665918
\(184\) 3.38404 0.249475
\(185\) 0 0
\(186\) 17.4034 1.27608
\(187\) −14.0489 −1.02736
\(188\) 6.98792 0.509646
\(189\) −4.09783 −0.298074
\(190\) 0 0
\(191\) 0.890084 0.0644042 0.0322021 0.999481i \(-0.489748\pi\)
0.0322021 + 0.999481i \(0.489748\pi\)
\(192\) 2.04892 0.147868
\(193\) 16.2174 1.16736 0.583678 0.811985i \(-0.301613\pi\)
0.583678 + 0.811985i \(0.301613\pi\)
\(194\) 14.6746 1.05357
\(195\) 0 0
\(196\) −5.76809 −0.412006
\(197\) −11.4711 −0.817284 −0.408642 0.912695i \(-0.633997\pi\)
−0.408642 + 0.912695i \(0.633997\pi\)
\(198\) −2.82371 −0.200672
\(199\) −3.79954 −0.269343 −0.134671 0.990890i \(-0.542998\pi\)
−0.134671 + 0.990890i \(0.542998\pi\)
\(200\) 0 0
\(201\) 4.39852 0.310247
\(202\) −8.76809 −0.616920
\(203\) −4.19567 −0.294478
\(204\) −12.2131 −0.855090
\(205\) 0 0
\(206\) 18.8116 1.31067
\(207\) −4.05429 −0.281793
\(208\) 0 0
\(209\) −2.14914 −0.148659
\(210\) 0 0
\(211\) −25.0465 −1.72427 −0.862137 0.506675i \(-0.830874\pi\)
−0.862137 + 0.506675i \(0.830874\pi\)
\(212\) 3.38404 0.232417
\(213\) −1.26205 −0.0864739
\(214\) 18.0519 1.23400
\(215\) 0 0
\(216\) 3.69202 0.251210
\(217\) −9.42758 −0.639986
\(218\) 6.09783 0.412997
\(219\) 12.9554 0.875444
\(220\) 0 0
\(221\) 0 0
\(222\) −10.0194 −0.672457
\(223\) 12.9879 0.869735 0.434868 0.900494i \(-0.356795\pi\)
0.434868 + 0.900494i \(0.356795\pi\)
\(224\) −1.10992 −0.0741594
\(225\) 0 0
\(226\) −12.2010 −0.811602
\(227\) −13.8049 −0.916265 −0.458132 0.888884i \(-0.651481\pi\)
−0.458132 + 0.888884i \(0.651481\pi\)
\(228\) −1.86831 −0.123732
\(229\) 11.5603 0.763928 0.381964 0.924177i \(-0.375248\pi\)
0.381964 + 0.924177i \(0.375248\pi\)
\(230\) 0 0
\(231\) 5.35988 0.352654
\(232\) 3.78017 0.248180
\(233\) −9.77479 −0.640368 −0.320184 0.947355i \(-0.603745\pi\)
−0.320184 + 0.947355i \(0.603745\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −10.1468 −0.660497
\(237\) −31.7211 −2.06051
\(238\) 6.61596 0.428849
\(239\) 0.944378 0.0610867 0.0305434 0.999533i \(-0.490276\pi\)
0.0305434 + 0.999533i \(0.490276\pi\)
\(240\) 0 0
\(241\) 0.219833 0.0141607 0.00708033 0.999975i \(-0.497746\pi\)
0.00708033 + 0.999975i \(0.497746\pi\)
\(242\) 5.44504 0.350021
\(243\) −11.7875 −0.756166
\(244\) −0.439665 −0.0281467
\(245\) 0 0
\(246\) −14.7235 −0.938735
\(247\) 0 0
\(248\) 8.49396 0.539367
\(249\) −1.86831 −0.118400
\(250\) 0 0
\(251\) 16.2543 1.02596 0.512980 0.858400i \(-0.328541\pi\)
0.512980 + 0.858400i \(0.328541\pi\)
\(252\) 1.32975 0.0837663
\(253\) −7.97584 −0.501437
\(254\) 11.4276 0.717030
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 22.4373 1.39960 0.699799 0.714340i \(-0.253273\pi\)
0.699799 + 0.714340i \(0.253273\pi\)
\(258\) −1.05669 −0.0657865
\(259\) 5.42758 0.337254
\(260\) 0 0
\(261\) −4.52888 −0.280330
\(262\) −2.29590 −0.141841
\(263\) 10.4940 0.647085 0.323543 0.946214i \(-0.395126\pi\)
0.323543 + 0.946214i \(0.395126\pi\)
\(264\) −4.82908 −0.297210
\(265\) 0 0
\(266\) 1.01208 0.0620547
\(267\) −7.68473 −0.470298
\(268\) 2.14675 0.131134
\(269\) 26.4155 1.61058 0.805291 0.592880i \(-0.202009\pi\)
0.805291 + 0.592880i \(0.202009\pi\)
\(270\) 0 0
\(271\) 22.0301 1.33824 0.669118 0.743157i \(-0.266672\pi\)
0.669118 + 0.743157i \(0.266672\pi\)
\(272\) −5.96077 −0.361425
\(273\) 0 0
\(274\) −9.08038 −0.548566
\(275\) 0 0
\(276\) −6.93362 −0.417355
\(277\) −2.17629 −0.130761 −0.0653804 0.997860i \(-0.520826\pi\)
−0.0653804 + 0.997860i \(0.520826\pi\)
\(278\) −18.9051 −1.13386
\(279\) −10.1763 −0.609239
\(280\) 0 0
\(281\) −25.0030 −1.49155 −0.745776 0.666196i \(-0.767921\pi\)
−0.745776 + 0.666196i \(0.767921\pi\)
\(282\) −14.3177 −0.852605
\(283\) 16.3153 0.969842 0.484921 0.874558i \(-0.338848\pi\)
0.484921 + 0.874558i \(0.338848\pi\)
\(284\) −0.615957 −0.0365503
\(285\) 0 0
\(286\) 0 0
\(287\) 7.97584 0.470799
\(288\) −1.19806 −0.0705965
\(289\) 18.5308 1.09005
\(290\) 0 0
\(291\) −30.0670 −1.76256
\(292\) 6.32304 0.370028
\(293\) −1.87800 −0.109714 −0.0548570 0.998494i \(-0.517470\pi\)
−0.0548570 + 0.998494i \(0.517470\pi\)
\(294\) 11.8183 0.689259
\(295\) 0 0
\(296\) −4.89008 −0.284230
\(297\) −8.70171 −0.504924
\(298\) 18.6896 1.08266
\(299\) 0 0
\(300\) 0 0
\(301\) 0.572417 0.0329935
\(302\) −0.317667 −0.0182797
\(303\) 17.9651 1.03207
\(304\) −0.911854 −0.0522984
\(305\) 0 0
\(306\) 7.14138 0.408245
\(307\) −23.9801 −1.36862 −0.684310 0.729192i \(-0.739896\pi\)
−0.684310 + 0.729192i \(0.739896\pi\)
\(308\) 2.61596 0.149058
\(309\) −38.5435 −2.19266
\(310\) 0 0
\(311\) −5.38404 −0.305301 −0.152651 0.988280i \(-0.548781\pi\)
−0.152651 + 0.988280i \(0.548781\pi\)
\(312\) 0 0
\(313\) −18.9487 −1.07104 −0.535522 0.844522i \(-0.679885\pi\)
−0.535522 + 0.844522i \(0.679885\pi\)
\(314\) 18.8901 1.06603
\(315\) 0 0
\(316\) −15.4819 −0.870924
\(317\) −11.5013 −0.645975 −0.322987 0.946403i \(-0.604687\pi\)
−0.322987 + 0.946403i \(0.604687\pi\)
\(318\) −6.93362 −0.388818
\(319\) −8.90946 −0.498834
\(320\) 0 0
\(321\) −36.9869 −2.06440
\(322\) 3.75600 0.209314
\(323\) 5.43535 0.302431
\(324\) −11.1588 −0.619935
\(325\) 0 0
\(326\) 4.33273 0.239968
\(327\) −12.4940 −0.690918
\(328\) −7.18598 −0.396779
\(329\) 7.75600 0.427602
\(330\) 0 0
\(331\) 34.6112 1.90240 0.951201 0.308572i \(-0.0998511\pi\)
0.951201 + 0.308572i \(0.0998511\pi\)
\(332\) −0.911854 −0.0500445
\(333\) 5.85862 0.321051
\(334\) −14.0000 −0.766046
\(335\) 0 0
\(336\) 2.27413 0.124064
\(337\) −1.95407 −0.106445 −0.0532224 0.998583i \(-0.516949\pi\)
−0.0532224 + 0.998583i \(0.516949\pi\)
\(338\) 0 0
\(339\) 24.9989 1.35776
\(340\) 0 0
\(341\) −20.0194 −1.08411
\(342\) 1.09246 0.0590734
\(343\) −14.1715 −0.765189
\(344\) −0.515729 −0.0278063
\(345\) 0 0
\(346\) −10.9879 −0.590714
\(347\) 6.41550 0.344402 0.172201 0.985062i \(-0.444912\pi\)
0.172201 + 0.985062i \(0.444912\pi\)
\(348\) −7.74525 −0.415189
\(349\) 1.08575 0.0581190 0.0290595 0.999578i \(-0.490749\pi\)
0.0290595 + 0.999578i \(0.490749\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.35690 −0.125623
\(353\) −4.28919 −0.228291 −0.114145 0.993464i \(-0.536413\pi\)
−0.114145 + 0.993464i \(0.536413\pi\)
\(354\) 20.7899 1.10497
\(355\) 0 0
\(356\) −3.75063 −0.198783
\(357\) −13.5555 −0.717436
\(358\) −4.65519 −0.246034
\(359\) −15.5060 −0.818378 −0.409189 0.912450i \(-0.634188\pi\)
−0.409189 + 0.912450i \(0.634188\pi\)
\(360\) 0 0
\(361\) −18.1685 −0.956238
\(362\) 1.06638 0.0560475
\(363\) −11.1564 −0.585561
\(364\) 0 0
\(365\) 0 0
\(366\) 0.900837 0.0470875
\(367\) −17.4276 −0.909712 −0.454856 0.890565i \(-0.650309\pi\)
−0.454856 + 0.890565i \(0.650309\pi\)
\(368\) −3.38404 −0.176405
\(369\) 8.60925 0.448180
\(370\) 0 0
\(371\) 3.75600 0.195002
\(372\) −17.4034 −0.902325
\(373\) −8.19567 −0.424356 −0.212178 0.977231i \(-0.568056\pi\)
−0.212178 + 0.977231i \(0.568056\pi\)
\(374\) 14.0489 0.726452
\(375\) 0 0
\(376\) −6.98792 −0.360374
\(377\) 0 0
\(378\) 4.09783 0.210770
\(379\) −15.0476 −0.772943 −0.386471 0.922301i \(-0.626306\pi\)
−0.386471 + 0.922301i \(0.626306\pi\)
\(380\) 0 0
\(381\) −23.4142 −1.19954
\(382\) −0.890084 −0.0455406
\(383\) 11.1207 0.568240 0.284120 0.958789i \(-0.408299\pi\)
0.284120 + 0.958789i \(0.408299\pi\)
\(384\) −2.04892 −0.104558
\(385\) 0 0
\(386\) −16.2174 −0.825446
\(387\) 0.617876 0.0314084
\(388\) −14.6746 −0.744988
\(389\) −8.04354 −0.407824 −0.203912 0.978989i \(-0.565366\pi\)
−0.203912 + 0.978989i \(0.565366\pi\)
\(390\) 0 0
\(391\) 20.1715 1.02012
\(392\) 5.76809 0.291332
\(393\) 4.70410 0.237291
\(394\) 11.4711 0.577907
\(395\) 0 0
\(396\) 2.82371 0.141897
\(397\) 21.9081 1.09954 0.549769 0.835317i \(-0.314716\pi\)
0.549769 + 0.835317i \(0.314716\pi\)
\(398\) 3.79954 0.190454
\(399\) −2.07367 −0.103813
\(400\) 0 0
\(401\) 17.4426 0.871044 0.435522 0.900178i \(-0.356564\pi\)
0.435522 + 0.900178i \(0.356564\pi\)
\(402\) −4.39852 −0.219378
\(403\) 0 0
\(404\) 8.76809 0.436229
\(405\) 0 0
\(406\) 4.19567 0.208228
\(407\) 11.5254 0.571294
\(408\) 12.2131 0.604640
\(409\) −17.4330 −0.862004 −0.431002 0.902351i \(-0.641840\pi\)
−0.431002 + 0.902351i \(0.641840\pi\)
\(410\) 0 0
\(411\) 18.6049 0.917714
\(412\) −18.8116 −0.926782
\(413\) −11.2620 −0.554169
\(414\) 4.05429 0.199258
\(415\) 0 0
\(416\) 0 0
\(417\) 38.7351 1.89687
\(418\) 2.14914 0.105118
\(419\) 9.97584 0.487352 0.243676 0.969857i \(-0.421647\pi\)
0.243676 + 0.969857i \(0.421647\pi\)
\(420\) 0 0
\(421\) 0.615957 0.0300199 0.0150100 0.999887i \(-0.495222\pi\)
0.0150100 + 0.999887i \(0.495222\pi\)
\(422\) 25.0465 1.21925
\(423\) 8.37196 0.407059
\(424\) −3.38404 −0.164344
\(425\) 0 0
\(426\) 1.26205 0.0611463
\(427\) −0.487991 −0.0236156
\(428\) −18.0519 −0.872572
\(429\) 0 0
\(430\) 0 0
\(431\) −14.7922 −0.712518 −0.356259 0.934387i \(-0.615948\pi\)
−0.356259 + 0.934387i \(0.615948\pi\)
\(432\) −3.69202 −0.177632
\(433\) −16.5321 −0.794483 −0.397242 0.917714i \(-0.630032\pi\)
−0.397242 + 0.917714i \(0.630032\pi\)
\(434\) 9.42758 0.452538
\(435\) 0 0
\(436\) −6.09783 −0.292033
\(437\) 3.08575 0.147612
\(438\) −12.9554 −0.619033
\(439\) 3.50125 0.167106 0.0835529 0.996503i \(-0.473373\pi\)
0.0835529 + 0.996503i \(0.473373\pi\)
\(440\) 0 0
\(441\) −6.91053 −0.329073
\(442\) 0 0
\(443\) −17.4077 −0.827066 −0.413533 0.910489i \(-0.635705\pi\)
−0.413533 + 0.910489i \(0.635705\pi\)
\(444\) 10.0194 0.475499
\(445\) 0 0
\(446\) −12.9879 −0.614996
\(447\) −38.2935 −1.81122
\(448\) 1.10992 0.0524386
\(449\) 34.1497 1.61163 0.805813 0.592170i \(-0.201729\pi\)
0.805813 + 0.592170i \(0.201729\pi\)
\(450\) 0 0
\(451\) 16.9366 0.797514
\(452\) 12.2010 0.573889
\(453\) 0.650874 0.0305807
\(454\) 13.8049 0.647897
\(455\) 0 0
\(456\) 1.86831 0.0874918
\(457\) −9.40342 −0.439873 −0.219937 0.975514i \(-0.570585\pi\)
−0.219937 + 0.975514i \(0.570585\pi\)
\(458\) −11.5603 −0.540179
\(459\) 22.0073 1.02721
\(460\) 0 0
\(461\) −0.733169 −0.0341471 −0.0170735 0.999854i \(-0.505435\pi\)
−0.0170735 + 0.999854i \(0.505435\pi\)
\(462\) −5.35988 −0.249364
\(463\) −7.24267 −0.336595 −0.168298 0.985736i \(-0.553827\pi\)
−0.168298 + 0.985736i \(0.553827\pi\)
\(464\) −3.78017 −0.175490
\(465\) 0 0
\(466\) 9.77479 0.452808
\(467\) −30.2446 −1.39955 −0.699776 0.714362i \(-0.746717\pi\)
−0.699776 + 0.714362i \(0.746717\pi\)
\(468\) 0 0
\(469\) 2.38271 0.110024
\(470\) 0 0
\(471\) −38.7042 −1.78340
\(472\) 10.1468 0.467042
\(473\) 1.21552 0.0558897
\(474\) 31.7211 1.45700
\(475\) 0 0
\(476\) −6.61596 −0.303242
\(477\) 4.05429 0.185633
\(478\) −0.944378 −0.0431948
\(479\) −36.7198 −1.67777 −0.838884 0.544310i \(-0.816792\pi\)
−0.838884 + 0.544310i \(0.816792\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.219833 −0.0100131
\(483\) −7.69574 −0.350168
\(484\) −5.44504 −0.247502
\(485\) 0 0
\(486\) 11.7875 0.534690
\(487\) 28.6547 1.29847 0.649234 0.760588i \(-0.275089\pi\)
0.649234 + 0.760588i \(0.275089\pi\)
\(488\) 0.439665 0.0199027
\(489\) −8.87741 −0.401450
\(490\) 0 0
\(491\) 30.4295 1.37326 0.686632 0.727005i \(-0.259088\pi\)
0.686632 + 0.727005i \(0.259088\pi\)
\(492\) 14.7235 0.663786
\(493\) 22.5327 1.01482
\(494\) 0 0
\(495\) 0 0
\(496\) −8.49396 −0.381390
\(497\) −0.683661 −0.0306664
\(498\) 1.86831 0.0837211
\(499\) 15.9715 0.714984 0.357492 0.933916i \(-0.383632\pi\)
0.357492 + 0.933916i \(0.383632\pi\)
\(500\) 0 0
\(501\) 28.6848 1.28154
\(502\) −16.2543 −0.725464
\(503\) 41.9711 1.87140 0.935698 0.352801i \(-0.114771\pi\)
0.935698 + 0.352801i \(0.114771\pi\)
\(504\) −1.32975 −0.0592317
\(505\) 0 0
\(506\) 7.97584 0.354569
\(507\) 0 0
\(508\) −11.4276 −0.507017
\(509\) 0.914247 0.0405233 0.0202616 0.999795i \(-0.493550\pi\)
0.0202616 + 0.999795i \(0.493550\pi\)
\(510\) 0 0
\(511\) 7.01805 0.310460
\(512\) −1.00000 −0.0441942
\(513\) 3.36658 0.148638
\(514\) −22.4373 −0.989666
\(515\) 0 0
\(516\) 1.05669 0.0465181
\(517\) 16.4698 0.724341
\(518\) −5.42758 −0.238474
\(519\) 22.5133 0.988226
\(520\) 0 0
\(521\) −3.31096 −0.145056 −0.0725279 0.997366i \(-0.523107\pi\)
−0.0725279 + 0.997366i \(0.523107\pi\)
\(522\) 4.52888 0.198224
\(523\) 0.850855 0.0372053 0.0186026 0.999827i \(-0.494078\pi\)
0.0186026 + 0.999827i \(0.494078\pi\)
\(524\) 2.29590 0.100297
\(525\) 0 0
\(526\) −10.4940 −0.457558
\(527\) 50.6305 2.20550
\(528\) 4.82908 0.210159
\(529\) −11.5483 −0.502098
\(530\) 0 0
\(531\) −12.1564 −0.527545
\(532\) −1.01208 −0.0438793
\(533\) 0 0
\(534\) 7.68473 0.332551
\(535\) 0 0
\(536\) −2.14675 −0.0927256
\(537\) 9.53809 0.411599
\(538\) −26.4155 −1.13885
\(539\) −13.5948 −0.585569
\(540\) 0 0
\(541\) −40.8853 −1.75780 −0.878898 0.477010i \(-0.841721\pi\)
−0.878898 + 0.477010i \(0.841721\pi\)
\(542\) −22.0301 −0.946275
\(543\) −2.18492 −0.0937637
\(544\) 5.96077 0.255566
\(545\) 0 0
\(546\) 0 0
\(547\) 2.39075 0.102221 0.0511105 0.998693i \(-0.483724\pi\)
0.0511105 + 0.998693i \(0.483724\pi\)
\(548\) 9.08038 0.387894
\(549\) −0.526746 −0.0224810
\(550\) 0 0
\(551\) 3.44696 0.146845
\(552\) 6.93362 0.295115
\(553\) −17.1836 −0.730720
\(554\) 2.17629 0.0924618
\(555\) 0 0
\(556\) 18.9051 0.801757
\(557\) −27.1508 −1.15042 −0.575208 0.818007i \(-0.695079\pi\)
−0.575208 + 0.818007i \(0.695079\pi\)
\(558\) 10.1763 0.430797
\(559\) 0 0
\(560\) 0 0
\(561\) −28.7851 −1.21531
\(562\) 25.0030 1.05469
\(563\) 6.52409 0.274958 0.137479 0.990505i \(-0.456100\pi\)
0.137479 + 0.990505i \(0.456100\pi\)
\(564\) 14.3177 0.602883
\(565\) 0 0
\(566\) −16.3153 −0.685782
\(567\) −12.3854 −0.520137
\(568\) 0.615957 0.0258450
\(569\) 7.30021 0.306041 0.153020 0.988223i \(-0.451100\pi\)
0.153020 + 0.988223i \(0.451100\pi\)
\(570\) 0 0
\(571\) −43.6722 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(572\) 0 0
\(573\) 1.82371 0.0761865
\(574\) −7.97584 −0.332905
\(575\) 0 0
\(576\) 1.19806 0.0499193
\(577\) −16.8528 −0.701590 −0.350795 0.936452i \(-0.614089\pi\)
−0.350795 + 0.936452i \(0.614089\pi\)
\(578\) −18.5308 −0.770779
\(579\) 33.2282 1.38092
\(580\) 0 0
\(581\) −1.01208 −0.0419882
\(582\) 30.0670 1.24632
\(583\) 7.97584 0.330325
\(584\) −6.32304 −0.261649
\(585\) 0 0
\(586\) 1.87800 0.0775796
\(587\) 22.1825 0.915571 0.457785 0.889063i \(-0.348643\pi\)
0.457785 + 0.889063i \(0.348643\pi\)
\(588\) −11.8183 −0.487380
\(589\) 7.74525 0.319137
\(590\) 0 0
\(591\) −23.5034 −0.966800
\(592\) 4.89008 0.200981
\(593\) −3.98493 −0.163642 −0.0818208 0.996647i \(-0.526074\pi\)
−0.0818208 + 0.996647i \(0.526074\pi\)
\(594\) 8.70171 0.357035
\(595\) 0 0
\(596\) −18.6896 −0.765557
\(597\) −7.78495 −0.318617
\(598\) 0 0
\(599\) 33.2379 1.35806 0.679032 0.734109i \(-0.262400\pi\)
0.679032 + 0.734109i \(0.262400\pi\)
\(600\) 0 0
\(601\) 9.79715 0.399634 0.199817 0.979833i \(-0.435965\pi\)
0.199817 + 0.979833i \(0.435965\pi\)
\(602\) −0.572417 −0.0233300
\(603\) 2.57194 0.104738
\(604\) 0.317667 0.0129257
\(605\) 0 0
\(606\) −17.9651 −0.729782
\(607\) 24.2258 0.983295 0.491647 0.870794i \(-0.336395\pi\)
0.491647 + 0.870794i \(0.336395\pi\)
\(608\) 0.911854 0.0369806
\(609\) −8.59658 −0.348351
\(610\) 0 0
\(611\) 0 0
\(612\) −7.14138 −0.288673
\(613\) 15.0556 0.608091 0.304045 0.952658i \(-0.401663\pi\)
0.304045 + 0.952658i \(0.401663\pi\)
\(614\) 23.9801 0.967760
\(615\) 0 0
\(616\) −2.61596 −0.105400
\(617\) 2.01879 0.0812733 0.0406366 0.999174i \(-0.487061\pi\)
0.0406366 + 0.999174i \(0.487061\pi\)
\(618\) 38.5435 1.55045
\(619\) −7.84309 −0.315240 −0.157620 0.987500i \(-0.550382\pi\)
−0.157620 + 0.987500i \(0.550382\pi\)
\(620\) 0 0
\(621\) 12.4940 0.501365
\(622\) 5.38404 0.215880
\(623\) −4.16288 −0.166782
\(624\) 0 0
\(625\) 0 0
\(626\) 18.9487 0.757342
\(627\) −4.40342 −0.175856
\(628\) −18.8901 −0.753796
\(629\) −29.1487 −1.16223
\(630\) 0 0
\(631\) 24.5327 0.976632 0.488316 0.872667i \(-0.337611\pi\)
0.488316 + 0.872667i \(0.337611\pi\)
\(632\) 15.4819 0.615836
\(633\) −51.3183 −2.03972
\(634\) 11.5013 0.456773
\(635\) 0 0
\(636\) 6.93362 0.274936
\(637\) 0 0
\(638\) 8.90946 0.352729
\(639\) −0.737955 −0.0291930
\(640\) 0 0
\(641\) −41.6015 −1.64316 −0.821580 0.570093i \(-0.806907\pi\)
−0.821580 + 0.570093i \(0.806907\pi\)
\(642\) 36.9869 1.45975
\(643\) −45.4118 −1.79087 −0.895433 0.445196i \(-0.853134\pi\)
−0.895433 + 0.445196i \(0.853134\pi\)
\(644\) −3.75600 −0.148007
\(645\) 0 0
\(646\) −5.43535 −0.213851
\(647\) −35.8345 −1.40880 −0.704399 0.709804i \(-0.748783\pi\)
−0.704399 + 0.709804i \(0.748783\pi\)
\(648\) 11.1588 0.438360
\(649\) −23.9148 −0.938740
\(650\) 0 0
\(651\) −19.3163 −0.757067
\(652\) −4.33273 −0.169683
\(653\) −18.5590 −0.726270 −0.363135 0.931737i \(-0.618294\pi\)
−0.363135 + 0.931737i \(0.618294\pi\)
\(654\) 12.4940 0.488552
\(655\) 0 0
\(656\) 7.18598 0.280565
\(657\) 7.57540 0.295545
\(658\) −7.75600 −0.302361
\(659\) −3.97525 −0.154854 −0.0774268 0.996998i \(-0.524670\pi\)
−0.0774268 + 0.996998i \(0.524670\pi\)
\(660\) 0 0
\(661\) 1.23191 0.0479159 0.0239580 0.999713i \(-0.492373\pi\)
0.0239580 + 0.999713i \(0.492373\pi\)
\(662\) −34.6112 −1.34520
\(663\) 0 0
\(664\) 0.911854 0.0353868
\(665\) 0 0
\(666\) −5.85862 −0.227017
\(667\) 12.7922 0.495318
\(668\) 14.0000 0.541676
\(669\) 26.6112 1.02885
\(670\) 0 0
\(671\) −1.03624 −0.0400038
\(672\) −2.27413 −0.0877263
\(673\) 36.8256 1.41952 0.709762 0.704442i \(-0.248803\pi\)
0.709762 + 0.704442i \(0.248803\pi\)
\(674\) 1.95407 0.0752678
\(675\) 0 0
\(676\) 0 0
\(677\) 25.9215 0.996246 0.498123 0.867106i \(-0.334023\pi\)
0.498123 + 0.867106i \(0.334023\pi\)
\(678\) −24.9989 −0.960078
\(679\) −16.2875 −0.625058
\(680\) 0 0
\(681\) −28.2851 −1.08389
\(682\) 20.0194 0.766582
\(683\) −37.5472 −1.43670 −0.718352 0.695680i \(-0.755103\pi\)
−0.718352 + 0.695680i \(0.755103\pi\)
\(684\) −1.09246 −0.0417712
\(685\) 0 0
\(686\) 14.1715 0.541071
\(687\) 23.6862 0.903684
\(688\) 0.515729 0.0196620
\(689\) 0 0
\(690\) 0 0
\(691\) 45.2549 1.72158 0.860788 0.508963i \(-0.169971\pi\)
0.860788 + 0.508963i \(0.169971\pi\)
\(692\) 10.9879 0.417698
\(693\) 3.13408 0.119054
\(694\) −6.41550 −0.243529
\(695\) 0 0
\(696\) 7.74525 0.293583
\(697\) −42.8340 −1.62245
\(698\) −1.08575 −0.0410964
\(699\) −20.0277 −0.757519
\(700\) 0 0
\(701\) 36.0823 1.36281 0.681405 0.731907i \(-0.261369\pi\)
0.681405 + 0.731907i \(0.261369\pi\)
\(702\) 0 0
\(703\) −4.45904 −0.168176
\(704\) 2.35690 0.0888289
\(705\) 0 0
\(706\) 4.28919 0.161426
\(707\) 9.73184 0.366004
\(708\) −20.7899 −0.781331
\(709\) −19.0664 −0.716053 −0.358026 0.933711i \(-0.616550\pi\)
−0.358026 + 0.933711i \(0.616550\pi\)
\(710\) 0 0
\(711\) −18.5483 −0.695614
\(712\) 3.75063 0.140561
\(713\) 28.7439 1.07647
\(714\) 13.5555 0.507304
\(715\) 0 0
\(716\) 4.65519 0.173972
\(717\) 1.93495 0.0722621
\(718\) 15.5060 0.578680
\(719\) −15.3056 −0.570802 −0.285401 0.958408i \(-0.592127\pi\)
−0.285401 + 0.958408i \(0.592127\pi\)
\(720\) 0 0
\(721\) −20.8793 −0.777587
\(722\) 18.1685 0.676162
\(723\) 0.450419 0.0167513
\(724\) −1.06638 −0.0396315
\(725\) 0 0
\(726\) 11.1564 0.414054
\(727\) −3.46250 −0.128417 −0.0642085 0.997937i \(-0.520452\pi\)
−0.0642085 + 0.997937i \(0.520452\pi\)
\(728\) 0 0
\(729\) 9.32496 0.345369
\(730\) 0 0
\(731\) −3.07415 −0.113701
\(732\) −0.900837 −0.0332959
\(733\) 26.0930 0.963769 0.481884 0.876235i \(-0.339953\pi\)
0.481884 + 0.876235i \(0.339953\pi\)
\(734\) 17.4276 0.643264
\(735\) 0 0
\(736\) 3.38404 0.124737
\(737\) 5.05967 0.186375
\(738\) −8.60925 −0.316911
\(739\) −26.4993 −0.974794 −0.487397 0.873181i \(-0.662054\pi\)
−0.487397 + 0.873181i \(0.662054\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −3.75600 −0.137887
\(743\) 0.415502 0.0152433 0.00762164 0.999971i \(-0.497574\pi\)
0.00762164 + 0.999971i \(0.497574\pi\)
\(744\) 17.4034 0.638040
\(745\) 0 0
\(746\) 8.19567 0.300065
\(747\) −1.09246 −0.0399709
\(748\) −14.0489 −0.513679
\(749\) −20.0361 −0.732103
\(750\) 0 0
\(751\) 2.90946 0.106168 0.0530839 0.998590i \(-0.483095\pi\)
0.0530839 + 0.998590i \(0.483095\pi\)
\(752\) 6.98792 0.254823
\(753\) 33.3037 1.21365
\(754\) 0 0
\(755\) 0 0
\(756\) −4.09783 −0.149037
\(757\) −12.3720 −0.449667 −0.224833 0.974397i \(-0.572184\pi\)
−0.224833 + 0.974397i \(0.572184\pi\)
\(758\) 15.0476 0.546553
\(759\) −16.3418 −0.593171
\(760\) 0 0
\(761\) 42.4306 1.53811 0.769053 0.639184i \(-0.220728\pi\)
0.769053 + 0.639184i \(0.220728\pi\)
\(762\) 23.4142 0.848206
\(763\) −6.76809 −0.245021
\(764\) 0.890084 0.0322021
\(765\) 0 0
\(766\) −11.1207 −0.401806
\(767\) 0 0
\(768\) 2.04892 0.0739339
\(769\) 13.3341 0.480839 0.240419 0.970669i \(-0.422715\pi\)
0.240419 + 0.970669i \(0.422715\pi\)
\(770\) 0 0
\(771\) 45.9721 1.65565
\(772\) 16.2174 0.583678
\(773\) 5.85384 0.210548 0.105274 0.994443i \(-0.466428\pi\)
0.105274 + 0.994443i \(0.466428\pi\)
\(774\) −0.617876 −0.0222091
\(775\) 0 0
\(776\) 14.6746 0.526786
\(777\) 11.1207 0.398952
\(778\) 8.04354 0.288375
\(779\) −6.55257 −0.234770
\(780\) 0 0
\(781\) −1.45175 −0.0519476
\(782\) −20.1715 −0.721332
\(783\) 13.9565 0.498763
\(784\) −5.76809 −0.206003
\(785\) 0 0
\(786\) −4.70410 −0.167790
\(787\) 23.2965 0.830430 0.415215 0.909723i \(-0.363706\pi\)
0.415215 + 0.909723i \(0.363706\pi\)
\(788\) −11.4711 −0.408642
\(789\) 21.5013 0.765465
\(790\) 0 0
\(791\) 13.5421 0.481503
\(792\) −2.82371 −0.100336
\(793\) 0 0
\(794\) −21.9081 −0.777491
\(795\) 0 0
\(796\) −3.79954 −0.134671
\(797\) −35.8103 −1.26847 −0.634233 0.773142i \(-0.718684\pi\)
−0.634233 + 0.773142i \(0.718684\pi\)
\(798\) 2.07367 0.0734072
\(799\) −41.6534 −1.47359
\(800\) 0 0
\(801\) −4.49349 −0.158769
\(802\) −17.4426 −0.615921
\(803\) 14.9028 0.525907
\(804\) 4.39852 0.155124
\(805\) 0 0
\(806\) 0 0
\(807\) 54.1232 1.90523
\(808\) −8.76809 −0.308460
\(809\) 28.3744 0.997589 0.498795 0.866720i \(-0.333776\pi\)
0.498795 + 0.866720i \(0.333776\pi\)
\(810\) 0 0
\(811\) 5.20344 0.182717 0.0913587 0.995818i \(-0.470879\pi\)
0.0913587 + 0.995818i \(0.470879\pi\)
\(812\) −4.19567 −0.147239
\(813\) 45.1379 1.58306
\(814\) −11.5254 −0.403966
\(815\) 0 0
\(816\) −12.2131 −0.427545
\(817\) −0.470270 −0.0164527
\(818\) 17.4330 0.609529
\(819\) 0 0
\(820\) 0 0
\(821\) −5.65338 −0.197304 −0.0986522 0.995122i \(-0.531453\pi\)
−0.0986522 + 0.995122i \(0.531453\pi\)
\(822\) −18.6049 −0.648922
\(823\) −39.0616 −1.36160 −0.680801 0.732469i \(-0.738368\pi\)
−0.680801 + 0.732469i \(0.738368\pi\)
\(824\) 18.8116 0.655334
\(825\) 0 0
\(826\) 11.2620 0.391857
\(827\) 5.40283 0.187875 0.0939374 0.995578i \(-0.470055\pi\)
0.0939374 + 0.995578i \(0.470055\pi\)
\(828\) −4.05429 −0.140896
\(829\) −8.38537 −0.291236 −0.145618 0.989341i \(-0.546517\pi\)
−0.145618 + 0.989341i \(0.546517\pi\)
\(830\) 0 0
\(831\) −4.45904 −0.154682
\(832\) 0 0
\(833\) 34.3822 1.19127
\(834\) −38.7351 −1.34129
\(835\) 0 0
\(836\) −2.14914 −0.0743297
\(837\) 31.3599 1.08396
\(838\) −9.97584 −0.344610
\(839\) −3.98062 −0.137426 −0.0687132 0.997636i \(-0.521889\pi\)
−0.0687132 + 0.997636i \(0.521889\pi\)
\(840\) 0 0
\(841\) −14.7103 −0.507253
\(842\) −0.615957 −0.0212273
\(843\) −51.2290 −1.76442
\(844\) −25.0465 −0.862137
\(845\) 0 0
\(846\) −8.37196 −0.287834
\(847\) −6.04354 −0.207659
\(848\) 3.38404 0.116209
\(849\) 33.4286 1.14727
\(850\) 0 0
\(851\) −16.5483 −0.567267
\(852\) −1.26205 −0.0432370
\(853\) −6.29350 −0.215485 −0.107743 0.994179i \(-0.534362\pi\)
−0.107743 + 0.994179i \(0.534362\pi\)
\(854\) 0.487991 0.0166987
\(855\) 0 0
\(856\) 18.0519 0.617001
\(857\) −4.37627 −0.149491 −0.0747453 0.997203i \(-0.523814\pi\)
−0.0747453 + 0.997203i \(0.523814\pi\)
\(858\) 0 0
\(859\) 15.0261 0.512683 0.256342 0.966586i \(-0.417483\pi\)
0.256342 + 0.966586i \(0.417483\pi\)
\(860\) 0 0
\(861\) 16.3418 0.556928
\(862\) 14.7922 0.503826
\(863\) −6.21121 −0.211432 −0.105716 0.994396i \(-0.533713\pi\)
−0.105716 + 0.994396i \(0.533713\pi\)
\(864\) 3.69202 0.125605
\(865\) 0 0
\(866\) 16.5321 0.561784
\(867\) 37.9681 1.28946
\(868\) −9.42758 −0.319993
\(869\) −36.4892 −1.23781
\(870\) 0 0
\(871\) 0 0
\(872\) 6.09783 0.206499
\(873\) −17.5810 −0.595028
\(874\) −3.08575 −0.104377
\(875\) 0 0
\(876\) 12.9554 0.437722
\(877\) −38.2198 −1.29059 −0.645296 0.763933i \(-0.723266\pi\)
−0.645296 + 0.763933i \(0.723266\pi\)
\(878\) −3.50125 −0.118162
\(879\) −3.84787 −0.129785
\(880\) 0 0
\(881\) 26.7832 0.902347 0.451174 0.892436i \(-0.351006\pi\)
0.451174 + 0.892436i \(0.351006\pi\)
\(882\) 6.91053 0.232690
\(883\) 34.4956 1.16087 0.580435 0.814307i \(-0.302883\pi\)
0.580435 + 0.814307i \(0.302883\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 17.4077 0.584824
\(887\) 23.9866 0.805391 0.402695 0.915334i \(-0.368073\pi\)
0.402695 + 0.915334i \(0.368073\pi\)
\(888\) −10.0194 −0.336228
\(889\) −12.6837 −0.425396
\(890\) 0 0
\(891\) −26.3002 −0.881090
\(892\) 12.9879 0.434868
\(893\) −6.37196 −0.213230
\(894\) 38.2935 1.28073
\(895\) 0 0
\(896\) −1.10992 −0.0370797
\(897\) 0 0
\(898\) −34.1497 −1.13959
\(899\) 32.1086 1.07088
\(900\) 0 0
\(901\) −20.1715 −0.672010
\(902\) −16.9366 −0.563927
\(903\) 1.17283 0.0390295
\(904\) −12.2010 −0.405801
\(905\) 0 0
\(906\) −0.650874 −0.0216238
\(907\) −23.9269 −0.794480 −0.397240 0.917715i \(-0.630032\pi\)
−0.397240 + 0.917715i \(0.630032\pi\)
\(908\) −13.8049 −0.458132
\(909\) 10.5047 0.348419
\(910\) 0 0
\(911\) −35.8866 −1.18898 −0.594488 0.804104i \(-0.702645\pi\)
−0.594488 + 0.804104i \(0.702645\pi\)
\(912\) −1.86831 −0.0618660
\(913\) −2.14914 −0.0711263
\(914\) 9.40342 0.311037
\(915\) 0 0
\(916\) 11.5603 0.381964
\(917\) 2.54825 0.0841507
\(918\) −22.0073 −0.726349
\(919\) 33.2465 1.09670 0.548351 0.836249i \(-0.315256\pi\)
0.548351 + 0.836249i \(0.315256\pi\)
\(920\) 0 0
\(921\) −49.1333 −1.61900
\(922\) 0.733169 0.0241456
\(923\) 0 0
\(924\) 5.35988 0.176327
\(925\) 0 0
\(926\) 7.24267 0.238009
\(927\) −22.5375 −0.740229
\(928\) 3.78017 0.124090
\(929\) 54.2583 1.78016 0.890079 0.455806i \(-0.150649\pi\)
0.890079 + 0.455806i \(0.150649\pi\)
\(930\) 0 0
\(931\) 5.25965 0.172378
\(932\) −9.77479 −0.320184
\(933\) −11.0315 −0.361154
\(934\) 30.2446 0.989633
\(935\) 0 0
\(936\) 0 0
\(937\) −16.5265 −0.539897 −0.269948 0.962875i \(-0.587007\pi\)
−0.269948 + 0.962875i \(0.587007\pi\)
\(938\) −2.38271 −0.0777984
\(939\) −38.8243 −1.26698
\(940\) 0 0
\(941\) 41.7017 1.35944 0.679718 0.733473i \(-0.262102\pi\)
0.679718 + 0.733473i \(0.262102\pi\)
\(942\) 38.7042 1.26105
\(943\) −24.3177 −0.791892
\(944\) −10.1468 −0.330249
\(945\) 0 0
\(946\) −1.21552 −0.0395200
\(947\) 3.00106 0.0975215 0.0487608 0.998810i \(-0.484473\pi\)
0.0487608 + 0.998810i \(0.484473\pi\)
\(948\) −31.7211 −1.03025
\(949\) 0 0
\(950\) 0 0
\(951\) −23.5651 −0.764151
\(952\) 6.61596 0.214424
\(953\) −38.1450 −1.23564 −0.617818 0.786321i \(-0.711983\pi\)
−0.617818 + 0.786321i \(0.711983\pi\)
\(954\) −4.05429 −0.131263
\(955\) 0 0
\(956\) 0.944378 0.0305434
\(957\) −18.2547 −0.590092
\(958\) 36.7198 1.18636
\(959\) 10.0785 0.325450
\(960\) 0 0
\(961\) 41.1473 1.32733
\(962\) 0 0
\(963\) −21.6273 −0.696930
\(964\) 0.219833 0.00708033
\(965\) 0 0
\(966\) 7.69574 0.247606
\(967\) −26.8793 −0.864381 −0.432190 0.901782i \(-0.642259\pi\)
−0.432190 + 0.901782i \(0.642259\pi\)
\(968\) 5.44504 0.175010
\(969\) 11.1366 0.357759
\(970\) 0 0
\(971\) 3.13647 0.100654 0.0503271 0.998733i \(-0.483974\pi\)
0.0503271 + 0.998733i \(0.483974\pi\)
\(972\) −11.7875 −0.378083
\(973\) 20.9831 0.672688
\(974\) −28.6547 −0.918156
\(975\) 0 0
\(976\) −0.439665 −0.0140733
\(977\) 35.8864 1.14811 0.574053 0.818818i \(-0.305370\pi\)
0.574053 + 0.818818i \(0.305370\pi\)
\(978\) 8.87741 0.283868
\(979\) −8.83984 −0.282522
\(980\) 0 0
\(981\) −7.30559 −0.233249
\(982\) −30.4295 −0.971044
\(983\) −30.4370 −0.970790 −0.485395 0.874295i \(-0.661324\pi\)
−0.485395 + 0.874295i \(0.661324\pi\)
\(984\) −14.7235 −0.469367
\(985\) 0 0
\(986\) −22.5327 −0.717588
\(987\) 15.8914 0.505829
\(988\) 0 0
\(989\) −1.74525 −0.0554957
\(990\) 0 0
\(991\) 31.4470 0.998946 0.499473 0.866330i \(-0.333527\pi\)
0.499473 + 0.866330i \(0.333527\pi\)
\(992\) 8.49396 0.269683
\(993\) 70.9154 2.25043
\(994\) 0.683661 0.0216844
\(995\) 0 0
\(996\) −1.86831 −0.0591998
\(997\) −19.1099 −0.605217 −0.302609 0.953115i \(-0.597857\pi\)
−0.302609 + 0.953115i \(0.597857\pi\)
\(998\) −15.9715 −0.505570
\(999\) −18.0543 −0.571213
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.bn.1.3 3
5.4 even 2 338.2.a.h.1.1 yes 3
13.12 even 2 8450.2.a.bx.1.3 3
15.14 odd 2 3042.2.a.z.1.1 3
20.19 odd 2 2704.2.a.w.1.3 3
65.4 even 6 338.2.c.i.315.3 6
65.9 even 6 338.2.c.h.315.3 6
65.19 odd 12 338.2.e.e.23.3 12
65.24 odd 12 338.2.e.e.147.3 12
65.29 even 6 338.2.c.h.191.3 6
65.34 odd 4 338.2.b.d.337.4 6
65.44 odd 4 338.2.b.d.337.1 6
65.49 even 6 338.2.c.i.191.3 6
65.54 odd 12 338.2.e.e.147.6 12
65.59 odd 12 338.2.e.e.23.6 12
65.64 even 2 338.2.a.g.1.1 3
195.44 even 4 3042.2.b.n.1351.6 6
195.164 even 4 3042.2.b.n.1351.1 6
195.194 odd 2 3042.2.a.bi.1.3 3
260.99 even 4 2704.2.f.m.337.6 6
260.239 even 4 2704.2.f.m.337.5 6
260.259 odd 2 2704.2.a.v.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.1 3 65.64 even 2
338.2.a.h.1.1 yes 3 5.4 even 2
338.2.b.d.337.1 6 65.44 odd 4
338.2.b.d.337.4 6 65.34 odd 4
338.2.c.h.191.3 6 65.29 even 6
338.2.c.h.315.3 6 65.9 even 6
338.2.c.i.191.3 6 65.49 even 6
338.2.c.i.315.3 6 65.4 even 6
338.2.e.e.23.3 12 65.19 odd 12
338.2.e.e.23.6 12 65.59 odd 12
338.2.e.e.147.3 12 65.24 odd 12
338.2.e.e.147.6 12 65.54 odd 12
2704.2.a.v.1.3 3 260.259 odd 2
2704.2.a.w.1.3 3 20.19 odd 2
2704.2.f.m.337.5 6 260.239 even 4
2704.2.f.m.337.6 6 260.99 even 4
3042.2.a.z.1.1 3 15.14 odd 2
3042.2.a.bi.1.3 3 195.194 odd 2
3042.2.b.n.1351.1 6 195.164 even 4
3042.2.b.n.1351.6 6 195.44 even 4
8450.2.a.bn.1.3 3 1.1 even 1 trivial
8450.2.a.bx.1.3 3 13.12 even 2