Properties

Label 338.2.c.h.315.3
Level $338$
Weight $2$
Character 338.315
Analytic conductor $2.699$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,2,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.69894358832\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 315.3
Root \(-0.623490 + 1.07992i\) of defining polynomial
Character \(\chi\) \(=\) 338.315
Dual form 338.2.c.h.191.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.02446 + 1.77441i) q^{3} +(-0.500000 + 0.866025i) q^{4} +3.60388 q^{5} +(1.02446 - 1.77441i) q^{6} +(0.554958 - 0.961216i) q^{7} +1.00000 q^{8} +(-0.599031 + 1.03755i) q^{9} +(-1.80194 - 3.12105i) q^{10} +(-1.17845 - 2.04113i) q^{11} -2.04892 q^{12} -1.10992 q^{14} +(3.69202 + 6.39477i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.98039 + 5.16218i) q^{17} +1.19806 q^{18} +(0.455927 - 0.789689i) q^{19} +(-1.80194 + 3.12105i) q^{20} +2.27413 q^{21} +(-1.17845 + 2.04113i) q^{22} +(-1.69202 - 2.93067i) q^{23} +(1.02446 + 1.77441i) q^{24} +7.98792 q^{25} +3.69202 q^{27} +(0.554958 + 0.961216i) q^{28} +(1.89008 + 3.27372i) q^{29} +(3.69202 - 6.39477i) q^{30} -8.49396 q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.41454 - 4.18211i) q^{33} +5.96077 q^{34} +(2.00000 - 3.46410i) q^{35} +(-0.599031 - 1.03755i) q^{36} +(2.44504 + 4.23494i) q^{37} -0.911854 q^{38} +3.60388 q^{40} +(-3.59299 - 6.22324i) q^{41} +(-1.13706 - 1.96945i) q^{42} +(0.257865 - 0.446635i) q^{43} +2.35690 q^{44} +(-2.15883 + 3.73921i) q^{45} +(-1.69202 + 2.93067i) q^{46} -6.98792 q^{47} +(1.02446 - 1.77441i) q^{48} +(2.88404 + 4.99531i) q^{49} +(-3.99396 - 6.91774i) q^{50} -12.2131 q^{51} -3.38404 q^{53} +(-1.84601 - 3.19738i) q^{54} +(-4.24698 - 7.35598i) q^{55} +(0.554958 - 0.961216i) q^{56} +1.86831 q^{57} +(1.89008 - 3.27372i) q^{58} +(5.07338 - 8.78735i) q^{59} -7.38404 q^{60} +(0.219833 - 0.380761i) q^{61} +(4.24698 + 7.35598i) q^{62} +(0.664874 + 1.15160i) q^{63} +1.00000 q^{64} -4.82908 q^{66} +(1.07338 + 1.85914i) q^{67} +(-2.98039 - 5.16218i) q^{68} +(3.46681 - 6.00469i) q^{69} -4.00000 q^{70} +(0.307979 - 0.533434i) q^{71} +(-0.599031 + 1.03755i) q^{72} -6.32304 q^{73} +(2.44504 - 4.23494i) q^{74} +(8.18329 + 14.1739i) q^{75} +(0.455927 + 0.789689i) q^{76} -2.61596 q^{77} -15.4819 q^{79} +(-1.80194 - 3.12105i) q^{80} +(5.57942 + 9.66383i) q^{81} +(-3.59299 + 6.22324i) q^{82} +0.911854 q^{83} +(-1.13706 + 1.96945i) q^{84} +(-10.7409 + 18.6039i) q^{85} -0.515729 q^{86} +(-3.87263 + 6.70758i) q^{87} +(-1.17845 - 2.04113i) q^{88} +(1.87531 + 3.24814i) q^{89} +4.31767 q^{90} +3.38404 q^{92} +(-8.70171 - 15.0718i) q^{93} +(3.49396 + 6.05171i) q^{94} +(1.64310 - 2.84594i) q^{95} -2.04892 q^{96} +(-7.33728 + 12.7085i) q^{97} +(2.88404 - 4.99531i) q^{98} +2.82371 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{3} - 3 q^{4} + 4 q^{5} - 3 q^{6} + 4 q^{7} + 6 q^{8} - 8 q^{9} - 2 q^{10} - 3 q^{11} + 6 q^{12} - 8 q^{14} + 12 q^{15} - 3 q^{16} - 5 q^{17} + 16 q^{18} - q^{19} - 2 q^{20} - 8 q^{21}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 1.02446 + 1.77441i 0.591471 + 1.02446i 0.994034 + 0.109066i \(0.0347861\pi\)
−0.402563 + 0.915392i \(0.631881\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 3.60388 1.61170 0.805851 0.592118i \(-0.201708\pi\)
0.805851 + 0.592118i \(0.201708\pi\)
\(6\) 1.02446 1.77441i 0.418234 0.724402i
\(7\) 0.554958 0.961216i 0.209754 0.363305i −0.741883 0.670530i \(-0.766067\pi\)
0.951637 + 0.307224i \(0.0994002\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.599031 + 1.03755i −0.199677 + 0.345851i
\(10\) −1.80194 3.12105i −0.569823 0.986962i
\(11\) −1.17845 2.04113i −0.355315 0.615424i 0.631856 0.775085i \(-0.282293\pi\)
−0.987172 + 0.159661i \(0.948960\pi\)
\(12\) −2.04892 −0.591471
\(13\) 0 0
\(14\) −1.10992 −0.296638
\(15\) 3.69202 + 6.39477i 0.953276 + 1.65112i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.98039 + 5.16218i −0.722850 + 1.25201i 0.237003 + 0.971509i \(0.423835\pi\)
−0.959853 + 0.280504i \(0.909499\pi\)
\(18\) 1.19806 0.282386
\(19\) 0.455927 0.789689i 0.104597 0.181167i −0.808977 0.587841i \(-0.799978\pi\)
0.913573 + 0.406674i \(0.133311\pi\)
\(20\) −1.80194 + 3.12105i −0.402926 + 0.697887i
\(21\) 2.27413 0.496255
\(22\) −1.17845 + 2.04113i −0.251246 + 0.435171i
\(23\) −1.69202 2.93067i −0.352811 0.611086i 0.633930 0.773391i \(-0.281441\pi\)
−0.986741 + 0.162304i \(0.948107\pi\)
\(24\) 1.02446 + 1.77441i 0.209117 + 0.362201i
\(25\) 7.98792 1.59758
\(26\) 0 0
\(27\) 3.69202 0.710530
\(28\) 0.554958 + 0.961216i 0.104877 + 0.181653i
\(29\) 1.89008 + 3.27372i 0.350980 + 0.607915i 0.986421 0.164234i \(-0.0525153\pi\)
−0.635442 + 0.772149i \(0.719182\pi\)
\(30\) 3.69202 6.39477i 0.674068 1.16752i
\(31\) −8.49396 −1.52556 −0.762780 0.646658i \(-0.776166\pi\)
−0.762780 + 0.646658i \(0.776166\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 2.41454 4.18211i 0.420318 0.728012i
\(34\) 5.96077 1.02226
\(35\) 2.00000 3.46410i 0.338062 0.585540i
\(36\) −0.599031 1.03755i −0.0998385 0.172925i
\(37\) 2.44504 + 4.23494i 0.401962 + 0.696219i 0.993963 0.109718i \(-0.0349949\pi\)
−0.592000 + 0.805938i \(0.701662\pi\)
\(38\) −0.911854 −0.147922
\(39\) 0 0
\(40\) 3.60388 0.569823
\(41\) −3.59299 6.22324i −0.561131 0.971907i −0.997398 0.0720900i \(-0.977033\pi\)
0.436267 0.899817i \(-0.356300\pi\)
\(42\) −1.13706 1.96945i −0.175453 0.303893i
\(43\) 0.257865 0.446635i 0.0393240 0.0681112i −0.845694 0.533669i \(-0.820813\pi\)
0.885018 + 0.465558i \(0.154146\pi\)
\(44\) 2.35690 0.355315
\(45\) −2.15883 + 3.73921i −0.321820 + 0.557408i
\(46\) −1.69202 + 2.93067i −0.249475 + 0.432103i
\(47\) −6.98792 −1.01929 −0.509646 0.860384i \(-0.670224\pi\)
−0.509646 + 0.860384i \(0.670224\pi\)
\(48\) 1.02446 1.77441i 0.147868 0.256115i
\(49\) 2.88404 + 4.99531i 0.412006 + 0.713616i
\(50\) −3.99396 6.91774i −0.564831 0.978316i
\(51\) −12.2131 −1.71018
\(52\) 0 0
\(53\) −3.38404 −0.464834 −0.232417 0.972616i \(-0.574663\pi\)
−0.232417 + 0.972616i \(0.574663\pi\)
\(54\) −1.84601 3.19738i −0.251210 0.435109i
\(55\) −4.24698 7.35598i −0.572663 0.991881i
\(56\) 0.554958 0.961216i 0.0741594 0.128448i
\(57\) 1.86831 0.247464
\(58\) 1.89008 3.27372i 0.248180 0.429861i
\(59\) 5.07338 8.78735i 0.660497 1.14401i −0.319988 0.947422i \(-0.603679\pi\)
0.980485 0.196593i \(-0.0629878\pi\)
\(60\) −7.38404 −0.953276
\(61\) 0.219833 0.380761i 0.0281467 0.0487515i −0.851609 0.524178i \(-0.824373\pi\)
0.879756 + 0.475426i \(0.157706\pi\)
\(62\) 4.24698 + 7.35598i 0.539367 + 0.934211i
\(63\) 0.664874 + 1.15160i 0.0837663 + 0.145087i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.82908 −0.594419
\(67\) 1.07338 + 1.85914i 0.131134 + 0.227130i 0.924114 0.382117i \(-0.124805\pi\)
−0.792980 + 0.609248i \(0.791472\pi\)
\(68\) −2.98039 5.16218i −0.361425 0.626006i
\(69\) 3.46681 6.00469i 0.417355 0.722880i
\(70\) −4.00000 −0.478091
\(71\) 0.307979 0.533434i 0.0365503 0.0633070i −0.847172 0.531319i \(-0.821696\pi\)
0.883722 + 0.468012i \(0.155030\pi\)
\(72\) −0.599031 + 1.03755i −0.0705965 + 0.122277i
\(73\) −6.32304 −0.740056 −0.370028 0.929021i \(-0.620652\pi\)
−0.370028 + 0.929021i \(0.620652\pi\)
\(74\) 2.44504 4.23494i 0.284230 0.492301i
\(75\) 8.18329 + 14.1739i 0.944925 + 1.63666i
\(76\) 0.455927 + 0.789689i 0.0522984 + 0.0905835i
\(77\) −2.61596 −0.298116
\(78\) 0 0
\(79\) −15.4819 −1.74185 −0.870924 0.491418i \(-0.836479\pi\)
−0.870924 + 0.491418i \(0.836479\pi\)
\(80\) −1.80194 3.12105i −0.201463 0.348944i
\(81\) 5.57942 + 9.66383i 0.619935 + 1.07376i
\(82\) −3.59299 + 6.22324i −0.396779 + 0.687242i
\(83\) 0.911854 0.100089 0.0500445 0.998747i \(-0.484064\pi\)
0.0500445 + 0.998747i \(0.484064\pi\)
\(84\) −1.13706 + 1.96945i −0.124064 + 0.214885i
\(85\) −10.7409 + 18.6039i −1.16502 + 2.01787i
\(86\) −0.515729 −0.0556125
\(87\) −3.87263 + 6.70758i −0.415189 + 0.719128i
\(88\) −1.17845 2.04113i −0.125623 0.217585i
\(89\) 1.87531 + 3.24814i 0.198783 + 0.344302i 0.948134 0.317871i \(-0.102968\pi\)
−0.749351 + 0.662173i \(0.769634\pi\)
\(90\) 4.31767 0.455122
\(91\) 0 0
\(92\) 3.38404 0.352811
\(93\) −8.70171 15.0718i −0.902325 1.56287i
\(94\) 3.49396 + 6.05171i 0.360374 + 0.624187i
\(95\) 1.64310 2.84594i 0.168579 0.291987i
\(96\) −2.04892 −0.209117
\(97\) −7.33728 + 12.7085i −0.744988 + 1.29036i 0.205212 + 0.978717i \(0.434212\pi\)
−0.950200 + 0.311640i \(0.899122\pi\)
\(98\) 2.88404 4.99531i 0.291332 0.504602i
\(99\) 2.82371 0.283793
\(100\) −3.99396 + 6.91774i −0.399396 + 0.691774i
\(101\) −4.38404 7.59339i −0.436229 0.755570i 0.561166 0.827703i \(-0.310353\pi\)
−0.997395 + 0.0721329i \(0.977019\pi\)
\(102\) 6.10656 + 10.5769i 0.604640 + 1.04727i
\(103\) 18.8116 1.85356 0.926782 0.375599i \(-0.122563\pi\)
0.926782 + 0.375599i \(0.122563\pi\)
\(104\) 0 0
\(105\) 8.19567 0.799815
\(106\) 1.69202 + 2.93067i 0.164344 + 0.284652i
\(107\) −9.02595 15.6334i −0.872572 1.51134i −0.859327 0.511426i \(-0.829117\pi\)
−0.0132443 0.999912i \(-0.504216\pi\)
\(108\) −1.84601 + 3.19738i −0.177632 + 0.307668i
\(109\) −6.09783 −0.584067 −0.292033 0.956408i \(-0.594332\pi\)
−0.292033 + 0.956408i \(0.594332\pi\)
\(110\) −4.24698 + 7.35598i −0.404934 + 0.701366i
\(111\) −5.00969 + 8.67704i −0.475499 + 0.823588i
\(112\) −1.10992 −0.104877
\(113\) 6.10052 10.5664i 0.573889 0.994005i −0.422272 0.906469i \(-0.638767\pi\)
0.996161 0.0875358i \(-0.0278992\pi\)
\(114\) −0.934157 1.61801i −0.0874918 0.151540i
\(115\) −6.09783 10.5618i −0.568626 0.984889i
\(116\) −3.78017 −0.350980
\(117\) 0 0
\(118\) −10.1468 −0.934084
\(119\) 3.30798 + 5.72959i 0.303242 + 0.525230i
\(120\) 3.69202 + 6.39477i 0.337034 + 0.583760i
\(121\) 2.72252 4.71554i 0.247502 0.428686i
\(122\) −0.439665 −0.0398054
\(123\) 7.36174 12.7509i 0.663786 1.14971i
\(124\) 4.24698 7.35598i 0.381390 0.660587i
\(125\) 10.7681 0.963127
\(126\) 0.664874 1.15160i 0.0592317 0.102592i
\(127\) −5.71379 9.89658i −0.507017 0.878179i −0.999967 0.00812161i \(-0.997415\pi\)
0.492950 0.870058i \(-0.335919\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 1.05669 0.0930361
\(130\) 0 0
\(131\) 2.29590 0.200593 0.100297 0.994958i \(-0.468021\pi\)
0.100297 + 0.994958i \(0.468021\pi\)
\(132\) 2.41454 + 4.18211i 0.210159 + 0.364006i
\(133\) −0.506041 0.876488i −0.0438793 0.0760012i
\(134\) 1.07338 1.85914i 0.0927256 0.160605i
\(135\) 13.3056 1.14516
\(136\) −2.98039 + 5.16218i −0.255566 + 0.442653i
\(137\) 4.54019 7.86384i 0.387894 0.671853i −0.604272 0.796778i \(-0.706536\pi\)
0.992166 + 0.124925i \(0.0398692\pi\)
\(138\) −6.93362 −0.590229
\(139\) −9.45257 + 16.3723i −0.801757 + 1.38868i 0.116702 + 0.993167i \(0.462768\pi\)
−0.918459 + 0.395517i \(0.870566\pi\)
\(140\) 2.00000 + 3.46410i 0.169031 + 0.292770i
\(141\) −7.15883 12.3995i −0.602883 1.04422i
\(142\) −0.615957 −0.0516900
\(143\) 0 0
\(144\) 1.19806 0.0998385
\(145\) 6.81163 + 11.7981i 0.565675 + 0.979777i
\(146\) 3.16152 + 5.47592i 0.261649 + 0.453190i
\(147\) −5.90917 + 10.2350i −0.487380 + 0.844167i
\(148\) −4.89008 −0.401962
\(149\) 9.34481 16.1857i 0.765557 1.32598i −0.174395 0.984676i \(-0.555797\pi\)
0.939952 0.341308i \(-0.110870\pi\)
\(150\) 8.18329 14.1739i 0.668163 1.15729i
\(151\) 0.317667 0.0258514 0.0129257 0.999916i \(-0.495886\pi\)
0.0129257 + 0.999916i \(0.495886\pi\)
\(152\) 0.455927 0.789689i 0.0369806 0.0640522i
\(153\) −3.57069 6.18461i −0.288673 0.499996i
\(154\) 1.30798 + 2.26549i 0.105400 + 0.182558i
\(155\) −30.6112 −2.45875
\(156\) 0 0
\(157\) 18.8901 1.50759 0.753796 0.657108i \(-0.228220\pi\)
0.753796 + 0.657108i \(0.228220\pi\)
\(158\) 7.74094 + 13.4077i 0.615836 + 1.06666i
\(159\) −3.46681 6.00469i −0.274936 0.476203i
\(160\) −1.80194 + 3.12105i −0.142456 + 0.246740i
\(161\) −3.75600 −0.296015
\(162\) 5.57942 9.66383i 0.438360 0.759262i
\(163\) −2.16637 + 3.75226i −0.169683 + 0.293899i −0.938308 0.345800i \(-0.887608\pi\)
0.768625 + 0.639699i \(0.220941\pi\)
\(164\) 7.18598 0.561131
\(165\) 8.70171 15.0718i 0.677427 1.17334i
\(166\) −0.455927 0.789689i −0.0353868 0.0612917i
\(167\) 7.00000 + 12.1244i 0.541676 + 0.938211i 0.998808 + 0.0488118i \(0.0155435\pi\)
−0.457132 + 0.889399i \(0.651123\pi\)
\(168\) 2.27413 0.175453
\(169\) 0 0
\(170\) 21.4819 1.64758
\(171\) 0.546229 + 0.946096i 0.0417712 + 0.0723498i
\(172\) 0.257865 + 0.446635i 0.0196620 + 0.0340556i
\(173\) 5.49396 9.51582i 0.417698 0.723474i −0.578010 0.816030i \(-0.696170\pi\)
0.995707 + 0.0925559i \(0.0295037\pi\)
\(174\) 7.74525 0.587166
\(175\) 4.43296 7.67811i 0.335100 0.580411i
\(176\) −1.17845 + 2.04113i −0.0888289 + 0.153856i
\(177\) 20.7899 1.56266
\(178\) 1.87531 3.24814i 0.140561 0.243458i
\(179\) −2.32759 4.03151i −0.173972 0.301329i 0.765833 0.643040i \(-0.222327\pi\)
−0.939805 + 0.341711i \(0.888994\pi\)
\(180\) −2.15883 3.73921i −0.160910 0.278704i
\(181\) −1.06638 −0.0792631 −0.0396315 0.999214i \(-0.512618\pi\)
−0.0396315 + 0.999214i \(0.512618\pi\)
\(182\) 0 0
\(183\) 0.900837 0.0665918
\(184\) −1.69202 2.93067i −0.124737 0.216052i
\(185\) 8.81163 + 15.2622i 0.647844 + 1.12210i
\(186\) −8.70171 + 15.0718i −0.638040 + 1.10512i
\(187\) 14.0489 1.02736
\(188\) 3.49396 6.05171i 0.254823 0.441367i
\(189\) 2.04892 3.54883i 0.149037 0.258139i
\(190\) −3.28621 −0.238407
\(191\) −0.445042 + 0.770835i −0.0322021 + 0.0557757i −0.881677 0.471853i \(-0.843585\pi\)
0.849475 + 0.527629i \(0.176919\pi\)
\(192\) 1.02446 + 1.77441i 0.0739339 + 0.128057i
\(193\) 8.10872 + 14.0447i 0.583678 + 1.01096i 0.995039 + 0.0994879i \(0.0317205\pi\)
−0.411360 + 0.911473i \(0.634946\pi\)
\(194\) 14.6746 1.05357
\(195\) 0 0
\(196\) −5.76809 −0.412006
\(197\) −5.73556 9.93428i −0.408642 0.707788i 0.586096 0.810242i \(-0.300664\pi\)
−0.994738 + 0.102453i \(0.967331\pi\)
\(198\) −1.41185 2.44540i −0.100336 0.173787i
\(199\) 1.89977 3.29050i 0.134671 0.233258i −0.790801 0.612074i \(-0.790335\pi\)
0.925472 + 0.378816i \(0.123669\pi\)
\(200\) 7.98792 0.564831
\(201\) −2.19926 + 3.80923i −0.155124 + 0.268682i
\(202\) −4.38404 + 7.59339i −0.308460 + 0.534269i
\(203\) 4.19567 0.294478
\(204\) 6.10656 10.5769i 0.427545 0.740530i
\(205\) −12.9487 22.4278i −0.904376 1.56642i
\(206\) −9.40581 16.2913i −0.655334 1.13507i
\(207\) 4.05429 0.281793
\(208\) 0 0
\(209\) −2.14914 −0.148659
\(210\) −4.09783 7.09766i −0.282777 0.489785i
\(211\) 12.5233 + 21.6909i 0.862137 + 1.49326i 0.869862 + 0.493295i \(0.164208\pi\)
−0.00772527 + 0.999970i \(0.502459\pi\)
\(212\) 1.69202 2.93067i 0.116209 0.201279i
\(213\) 1.26205 0.0864739
\(214\) −9.02595 + 15.6334i −0.617001 + 1.06868i
\(215\) 0.929312 1.60962i 0.0633786 0.109775i
\(216\) 3.69202 0.251210
\(217\) −4.71379 + 8.16453i −0.319993 + 0.554244i
\(218\) 3.04892 + 5.28088i 0.206499 + 0.357666i
\(219\) −6.47770 11.2197i −0.437722 0.758157i
\(220\) 8.49396 0.572663
\(221\) 0 0
\(222\) 10.0194 0.672457
\(223\) 6.49396 + 11.2479i 0.434868 + 0.753213i 0.997285 0.0736407i \(-0.0234618\pi\)
−0.562417 + 0.826854i \(0.690128\pi\)
\(224\) 0.554958 + 0.961216i 0.0370797 + 0.0642239i
\(225\) −4.78501 + 8.28788i −0.319001 + 0.552526i
\(226\) −12.2010 −0.811602
\(227\) −6.90246 + 11.9554i −0.458132 + 0.793509i −0.998862 0.0476877i \(-0.984815\pi\)
0.540730 + 0.841196i \(0.318148\pi\)
\(228\) −0.934157 + 1.61801i −0.0618660 + 0.107155i
\(229\) 11.5603 0.763928 0.381964 0.924177i \(-0.375248\pi\)
0.381964 + 0.924177i \(0.375248\pi\)
\(230\) −6.09783 + 10.5618i −0.402079 + 0.696422i
\(231\) −2.67994 4.64179i −0.176327 0.305407i
\(232\) 1.89008 + 3.27372i 0.124090 + 0.214930i
\(233\) 9.77479 0.640368 0.320184 0.947355i \(-0.396255\pi\)
0.320184 + 0.947355i \(0.396255\pi\)
\(234\) 0 0
\(235\) −25.1836 −1.64280
\(236\) 5.07338 + 8.78735i 0.330249 + 0.572007i
\(237\) −15.8605 27.4713i −1.03025 1.78445i
\(238\) 3.30798 5.72959i 0.214424 0.371394i
\(239\) 0.944378 0.0610867 0.0305434 0.999533i \(-0.490276\pi\)
0.0305434 + 0.999533i \(0.490276\pi\)
\(240\) 3.69202 6.39477i 0.238319 0.412781i
\(241\) −0.109916 + 0.190381i −0.00708033 + 0.0122635i −0.869544 0.493856i \(-0.835587\pi\)
0.862464 + 0.506119i \(0.168920\pi\)
\(242\) −5.44504 −0.350021
\(243\) −5.89373 + 10.2082i −0.378083 + 0.654859i
\(244\) 0.219833 + 0.380761i 0.0140733 + 0.0243757i
\(245\) 10.3937 + 18.0025i 0.664031 + 1.15014i
\(246\) −14.7235 −0.938735
\(247\) 0 0
\(248\) −8.49396 −0.539367
\(249\) 0.934157 + 1.61801i 0.0591998 + 0.102537i
\(250\) −5.38404 9.32544i −0.340517 0.589792i
\(251\) −8.12714 + 14.0766i −0.512980 + 0.888508i 0.486906 + 0.873454i \(0.338125\pi\)
−0.999887 + 0.0150539i \(0.995208\pi\)
\(252\) −1.32975 −0.0837663
\(253\) −3.98792 + 6.90728i −0.250718 + 0.434257i
\(254\) −5.71379 + 9.89658i −0.358515 + 0.620967i
\(255\) −44.0146 −2.75630
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.2186 + 19.4312i 0.699799 + 1.21209i 0.968536 + 0.248874i \(0.0800606\pi\)
−0.268737 + 0.963214i \(0.586606\pi\)
\(258\) −0.528344 0.915118i −0.0328932 0.0569727i
\(259\) 5.42758 0.337254
\(260\) 0 0
\(261\) −4.52888 −0.280330
\(262\) −1.14795 1.98831i −0.0709205 0.122838i
\(263\) 5.24698 + 9.08804i 0.323543 + 0.560392i 0.981216 0.192911i \(-0.0617928\pi\)
−0.657674 + 0.753303i \(0.728459\pi\)
\(264\) 2.41454 4.18211i 0.148605 0.257391i
\(265\) −12.1957 −0.749174
\(266\) −0.506041 + 0.876488i −0.0310274 + 0.0537409i
\(267\) −3.84236 + 6.65517i −0.235149 + 0.407290i
\(268\) −2.14675 −0.131134
\(269\) −13.2078 + 22.8765i −0.805291 + 1.39480i 0.110804 + 0.993842i \(0.464657\pi\)
−0.916095 + 0.400962i \(0.868676\pi\)
\(270\) −6.65279 11.5230i −0.404876 0.701266i
\(271\) −11.0151 19.0787i −0.669118 1.15895i −0.978151 0.207895i \(-0.933339\pi\)
0.309034 0.951051i \(-0.399994\pi\)
\(272\) 5.96077 0.361425
\(273\) 0 0
\(274\) −9.08038 −0.548566
\(275\) −9.41335 16.3044i −0.567646 0.983192i
\(276\) 3.46681 + 6.00469i 0.208678 + 0.361440i
\(277\) −1.08815 + 1.88472i −0.0653804 + 0.113242i −0.896863 0.442309i \(-0.854159\pi\)
0.831482 + 0.555551i \(0.187493\pi\)
\(278\) 18.9051 1.13386
\(279\) 5.08815 8.81293i 0.304619 0.527616i
\(280\) 2.00000 3.46410i 0.119523 0.207020i
\(281\) −25.0030 −1.49155 −0.745776 0.666196i \(-0.767921\pi\)
−0.745776 + 0.666196i \(0.767921\pi\)
\(282\) −7.15883 + 12.3995i −0.426302 + 0.738377i
\(283\) 8.15764 + 14.1294i 0.484921 + 0.839908i 0.999850 0.0173249i \(-0.00551495\pi\)
−0.514929 + 0.857233i \(0.672182\pi\)
\(284\) 0.307979 + 0.533434i 0.0182752 + 0.0316535i
\(285\) 6.73317 0.398839
\(286\) 0 0
\(287\) −7.97584 −0.470799
\(288\) −0.599031 1.03755i −0.0352982 0.0611384i
\(289\) −9.26540 16.0481i −0.545023 0.944008i
\(290\) 6.81163 11.7981i 0.399992 0.692807i
\(291\) −30.0670 −1.76256
\(292\) 3.16152 5.47592i 0.185014 0.320454i
\(293\) −0.939001 + 1.62640i −0.0548570 + 0.0950152i −0.892150 0.451740i \(-0.850804\pi\)
0.837293 + 0.546755i \(0.184137\pi\)
\(294\) 11.8183 0.689259
\(295\) 18.2838 31.6685i 1.06452 1.84381i
\(296\) 2.44504 + 4.23494i 0.142115 + 0.246151i
\(297\) −4.35086 7.53590i −0.252462 0.437277i
\(298\) −18.6896 −1.08266
\(299\) 0 0
\(300\) −16.3666 −0.944925
\(301\) −0.286208 0.495727i −0.0164968 0.0285732i
\(302\) −0.158834 0.275108i −0.00913985 0.0158307i
\(303\) 8.98254 15.5582i 0.516034 0.893796i
\(304\) −0.911854 −0.0522984
\(305\) 0.792249 1.37222i 0.0453640 0.0785728i
\(306\) −3.57069 + 6.18461i −0.204123 + 0.353551i
\(307\) 23.9801 1.36862 0.684310 0.729192i \(-0.260104\pi\)
0.684310 + 0.729192i \(0.260104\pi\)
\(308\) 1.30798 2.26549i 0.0745290 0.129088i
\(309\) 19.2717 + 33.3796i 1.09633 + 1.89890i
\(310\) 15.3056 + 26.5101i 0.869299 + 1.50567i
\(311\) −5.38404 −0.305301 −0.152651 0.988280i \(-0.548781\pi\)
−0.152651 + 0.988280i \(0.548781\pi\)
\(312\) 0 0
\(313\) 18.9487 1.07104 0.535522 0.844522i \(-0.320115\pi\)
0.535522 + 0.844522i \(0.320115\pi\)
\(314\) −9.44504 16.3593i −0.533015 0.923208i
\(315\) 2.39612 + 4.15021i 0.135006 + 0.233838i
\(316\) 7.74094 13.4077i 0.435462 0.754242i
\(317\) 11.5013 0.645975 0.322987 0.946403i \(-0.395313\pi\)
0.322987 + 0.946403i \(0.395313\pi\)
\(318\) −3.46681 + 6.00469i −0.194409 + 0.336727i
\(319\) 4.45473 7.71582i 0.249417 0.432003i
\(320\) 3.60388 0.201463
\(321\) 18.4934 32.0316i 1.03220 1.78783i
\(322\) 1.87800 + 3.25280i 0.104657 + 0.181271i
\(323\) 2.71768 + 4.70715i 0.151216 + 0.261913i
\(324\) −11.1588 −0.619935
\(325\) 0 0
\(326\) 4.33273 0.239968
\(327\) −6.24698 10.8201i −0.345459 0.598352i
\(328\) −3.59299 6.22324i −0.198390 0.343621i
\(329\) −3.87800 + 6.71690i −0.213801 + 0.370315i
\(330\) −17.4034 −0.958027
\(331\) −17.3056 + 29.9742i −0.951201 + 1.64753i −0.208369 + 0.978050i \(0.566816\pi\)
−0.742832 + 0.669478i \(0.766518\pi\)
\(332\) −0.455927 + 0.789689i −0.0250222 + 0.0433398i
\(333\) −5.85862 −0.321051
\(334\) 7.00000 12.1244i 0.383023 0.663415i
\(335\) 3.86831 + 6.70012i 0.211349 + 0.366066i
\(336\) −1.13706 1.96945i −0.0620319 0.107442i
\(337\) 1.95407 0.106445 0.0532224 0.998583i \(-0.483051\pi\)
0.0532224 + 0.998583i \(0.483051\pi\)
\(338\) 0 0
\(339\) 24.9989 1.35776
\(340\) −10.7409 18.6039i −0.582509 1.00894i
\(341\) 10.0097 + 17.3373i 0.542055 + 0.938867i
\(342\) 0.546229 0.946096i 0.0295367 0.0511590i
\(343\) 14.1715 0.765189
\(344\) 0.257865 0.446635i 0.0139031 0.0240809i
\(345\) 12.4940 21.6402i 0.672652 1.16507i
\(346\) −10.9879 −0.590714
\(347\) 3.20775 5.55599i 0.172201 0.298261i −0.766988 0.641661i \(-0.778245\pi\)
0.939189 + 0.343400i \(0.111579\pi\)
\(348\) −3.87263 6.70758i −0.207595 0.359564i
\(349\) −0.542877 0.940290i −0.0290595 0.0503326i 0.851130 0.524955i \(-0.175918\pi\)
−0.880189 + 0.474623i \(0.842585\pi\)
\(350\) −8.86592 −0.473903
\(351\) 0 0
\(352\) 2.35690 0.125623
\(353\) −2.14460 3.71455i −0.114145 0.197706i 0.803292 0.595585i \(-0.203080\pi\)
−0.917438 + 0.397879i \(0.869746\pi\)
\(354\) −10.3949 18.0045i −0.552484 0.956931i
\(355\) 1.10992 1.92243i 0.0589082 0.102032i
\(356\) −3.75063 −0.198783
\(357\) −6.77777 + 11.7394i −0.358718 + 0.621318i
\(358\) −2.32759 + 4.03151i −0.123017 + 0.213072i
\(359\) −15.5060 −0.818378 −0.409189 0.912450i \(-0.634188\pi\)
−0.409189 + 0.912450i \(0.634188\pi\)
\(360\) −2.15883 + 3.73921i −0.113781 + 0.197074i
\(361\) 9.08426 + 15.7344i 0.478119 + 0.828126i
\(362\) 0.533188 + 0.923508i 0.0280237 + 0.0485385i
\(363\) 11.1564 0.585561
\(364\) 0 0
\(365\) −22.7875 −1.19275
\(366\) −0.450419 0.780148i −0.0235438 0.0407790i
\(367\) −8.71379 15.0927i −0.454856 0.787834i 0.543824 0.839199i \(-0.316976\pi\)
−0.998680 + 0.0513654i \(0.983643\pi\)
\(368\) −1.69202 + 2.93067i −0.0882027 + 0.152772i
\(369\) 8.60925 0.448180
\(370\) 8.81163 15.2622i 0.458095 0.793443i
\(371\) −1.87800 + 3.25280i −0.0975010 + 0.168877i
\(372\) 17.4034 0.902325
\(373\) −4.09783 + 7.09766i −0.212178 + 0.367503i −0.952396 0.304864i \(-0.901389\pi\)
0.740218 + 0.672367i \(0.234722\pi\)
\(374\) −7.02446 12.1667i −0.363226 0.629126i
\(375\) 11.0315 + 19.1070i 0.569662 + 0.986684i
\(376\) −6.98792 −0.360374
\(377\) 0 0
\(378\) −4.09783 −0.210770
\(379\) 7.52379 + 13.0316i 0.386471 + 0.669388i 0.991972 0.126457i \(-0.0403605\pi\)
−0.605501 + 0.795845i \(0.707027\pi\)
\(380\) 1.64310 + 2.84594i 0.0842895 + 0.145994i
\(381\) 11.7071 20.2773i 0.599772 1.03884i
\(382\) 0.890084 0.0455406
\(383\) 5.56033 9.63078i 0.284120 0.492110i −0.688276 0.725449i \(-0.741632\pi\)
0.972395 + 0.233339i \(0.0749653\pi\)
\(384\) 1.02446 1.77441i 0.0522792 0.0905502i
\(385\) −9.42758 −0.480474
\(386\) 8.10872 14.0447i 0.412723 0.714857i
\(387\) 0.308938 + 0.535096i 0.0157042 + 0.0272005i
\(388\) −7.33728 12.7085i −0.372494 0.645179i
\(389\) −8.04354 −0.407824 −0.203912 0.978989i \(-0.565366\pi\)
−0.203912 + 0.978989i \(0.565366\pi\)
\(390\) 0 0
\(391\) 20.1715 1.02012
\(392\) 2.88404 + 4.99531i 0.145666 + 0.252301i
\(393\) 2.35205 + 4.07387i 0.118645 + 0.205500i
\(394\) −5.73556 + 9.93428i −0.288953 + 0.500482i
\(395\) −55.7948 −2.80734
\(396\) −1.41185 + 2.44540i −0.0709483 + 0.122886i
\(397\) 10.9541 18.9730i 0.549769 0.952228i −0.448521 0.893772i \(-0.648049\pi\)
0.998290 0.0584554i \(-0.0186175\pi\)
\(398\) −3.79954 −0.190454
\(399\) 1.03684 1.79585i 0.0519067 0.0899051i
\(400\) −3.99396 6.91774i −0.199698 0.345887i
\(401\) −8.72132 15.1058i −0.435522 0.754347i 0.561816 0.827262i \(-0.310103\pi\)
−0.997338 + 0.0729157i \(0.976770\pi\)
\(402\) 4.39852 0.219378
\(403\) 0 0
\(404\) 8.76809 0.436229
\(405\) 20.1075 + 34.8273i 0.999151 + 1.73058i
\(406\) −2.09783 3.63356i −0.104114 0.180330i
\(407\) 5.76271 9.98130i 0.285647 0.494755i
\(408\) −12.2131 −0.604640
\(409\) 8.71648 15.0974i 0.431002 0.746518i −0.565958 0.824434i \(-0.691493\pi\)
0.996960 + 0.0779166i \(0.0248268\pi\)
\(410\) −12.9487 + 22.4278i −0.639490 + 1.10763i
\(411\) 18.6049 0.917714
\(412\) −9.40581 + 16.2913i −0.463391 + 0.802617i
\(413\) −5.63102 9.75322i −0.277085 0.479924i
\(414\) −2.02715 3.51112i −0.0996288 0.172562i
\(415\) 3.28621 0.161314
\(416\) 0 0
\(417\) −38.7351 −1.89687
\(418\) 1.07457 + 1.86121i 0.0525591 + 0.0910350i
\(419\) −4.98792 8.63933i −0.243676 0.422059i 0.718083 0.695958i \(-0.245020\pi\)
−0.961758 + 0.273899i \(0.911687\pi\)
\(420\) −4.09783 + 7.09766i −0.199954 + 0.346330i
\(421\) 0.615957 0.0300199 0.0150100 0.999887i \(-0.495222\pi\)
0.0150100 + 0.999887i \(0.495222\pi\)
\(422\) 12.5233 21.6909i 0.609623 1.05590i
\(423\) 4.18598 7.25033i 0.203529 0.352523i
\(424\) −3.38404 −0.164344
\(425\) −23.8071 + 41.2351i −1.15481 + 2.00019i
\(426\) −0.631023 1.09296i −0.0305731 0.0529542i
\(427\) −0.243996 0.422613i −0.0118078 0.0204517i
\(428\) 18.0519 0.872572
\(429\) 0 0
\(430\) −1.85862 −0.0896308
\(431\) 7.39612 + 12.8105i 0.356259 + 0.617058i 0.987333 0.158665i \(-0.0507188\pi\)
−0.631074 + 0.775723i \(0.717385\pi\)
\(432\) −1.84601 3.19738i −0.0888162 0.153834i
\(433\) −8.26606 + 14.3172i −0.397242 + 0.688043i −0.993384 0.114836i \(-0.963366\pi\)
0.596143 + 0.802878i \(0.296699\pi\)
\(434\) 9.42758 0.452538
\(435\) −13.9565 + 24.1733i −0.669161 + 1.15902i
\(436\) 3.04892 5.28088i 0.146017 0.252908i
\(437\) −3.08575 −0.147612
\(438\) −6.47770 + 11.2197i −0.309516 + 0.536098i
\(439\) −1.75063 3.03218i −0.0835529 0.144718i 0.821221 0.570611i \(-0.193293\pi\)
−0.904774 + 0.425893i \(0.859960\pi\)
\(440\) −4.24698 7.35598i −0.202467 0.350683i
\(441\) −6.91053 −0.329073
\(442\) 0 0
\(443\) 17.4077 0.827066 0.413533 0.910489i \(-0.364295\pi\)
0.413533 + 0.910489i \(0.364295\pi\)
\(444\) −5.00969 8.67704i −0.237749 0.411794i
\(445\) 6.75840 + 11.7059i 0.320379 + 0.554912i
\(446\) 6.49396 11.2479i 0.307498 0.532602i
\(447\) 38.2935 1.81122
\(448\) 0.554958 0.961216i 0.0262193 0.0454132i
\(449\) −17.0749 + 29.5745i −0.805813 + 1.39571i 0.109928 + 0.993940i \(0.464938\pi\)
−0.915741 + 0.401769i \(0.868395\pi\)
\(450\) 9.57002 0.451135
\(451\) −8.46830 + 14.6675i −0.398757 + 0.690667i
\(452\) 6.10052 + 10.5664i 0.286944 + 0.497002i
\(453\) 0.325437 + 0.563673i 0.0152904 + 0.0264837i
\(454\) 13.8049 0.647897
\(455\) 0 0
\(456\) 1.86831 0.0874918
\(457\) −4.70171 8.14360i −0.219937 0.380942i 0.734852 0.678228i \(-0.237252\pi\)
−0.954788 + 0.297286i \(0.903918\pi\)
\(458\) −5.78017 10.0115i −0.270089 0.467809i
\(459\) −11.0036 + 19.0589i −0.513606 + 0.889592i
\(460\) 12.1957 0.568626
\(461\) 0.366585 0.634943i 0.0170735 0.0295722i −0.857362 0.514713i \(-0.827898\pi\)
0.874436 + 0.485141i \(0.161232\pi\)
\(462\) −2.67994 + 4.64179i −0.124682 + 0.215956i
\(463\) 7.24267 0.336595 0.168298 0.985736i \(-0.446173\pi\)
0.168298 + 0.985736i \(0.446173\pi\)
\(464\) 1.89008 3.27372i 0.0877449 0.151979i
\(465\) −31.3599 54.3169i −1.45428 2.51889i
\(466\) −4.88740 8.46522i −0.226404 0.392144i
\(467\) 30.2446 1.39955 0.699776 0.714362i \(-0.253283\pi\)
0.699776 + 0.714362i \(0.253283\pi\)
\(468\) 0 0
\(469\) 2.38271 0.110024
\(470\) 12.5918 + 21.8096i 0.580816 + 1.00600i
\(471\) 19.3521 + 33.5188i 0.891698 + 1.54447i
\(472\) 5.07338 8.78735i 0.233521 0.404470i
\(473\) −1.21552 −0.0558897
\(474\) −15.8605 + 27.4713i −0.728499 + 1.26180i
\(475\) 3.64191 6.30797i 0.167102 0.289429i
\(476\) −6.61596 −0.303242
\(477\) 2.02715 3.51112i 0.0928167 0.160763i
\(478\) −0.472189 0.817855i −0.0215974 0.0374078i
\(479\) 18.3599 + 31.8002i 0.838884 + 1.45299i 0.890828 + 0.454340i \(0.150125\pi\)
−0.0519439 + 0.998650i \(0.516542\pi\)
\(480\) −7.38404 −0.337034
\(481\) 0 0
\(482\) 0.219833 0.0100131
\(483\) −3.84787 6.66471i −0.175084 0.303255i
\(484\) 2.72252 + 4.71554i 0.123751 + 0.214343i
\(485\) −26.4426 + 45.8000i −1.20070 + 2.07967i
\(486\) 11.7875 0.534690
\(487\) 14.3274 24.8157i 0.649234 1.12451i −0.334072 0.942548i \(-0.608423\pi\)
0.983306 0.181959i \(-0.0582439\pi\)
\(488\) 0.219833 0.380761i 0.00995135 0.0172362i
\(489\) −8.87741 −0.401450
\(490\) 10.3937 18.0025i 0.469541 0.813269i
\(491\) −15.2148 26.3527i −0.686632 1.18928i −0.972921 0.231138i \(-0.925755\pi\)
0.286289 0.958143i \(-0.407578\pi\)
\(492\) 7.36174 + 12.7509i 0.331893 + 0.574855i
\(493\) −22.5327 −1.01482
\(494\) 0 0
\(495\) 10.1763 0.457390
\(496\) 4.24698 + 7.35598i 0.190695 + 0.330293i
\(497\) −0.341830 0.592068i −0.0153332 0.0265579i
\(498\) 0.934157 1.61801i 0.0418606 0.0725046i
\(499\) 15.9715 0.714984 0.357492 0.933916i \(-0.383632\pi\)
0.357492 + 0.933916i \(0.383632\pi\)
\(500\) −5.38404 + 9.32544i −0.240782 + 0.417046i
\(501\) −14.3424 + 24.8418i −0.640772 + 1.10985i
\(502\) 16.2543 0.725464
\(503\) 20.9855 36.3480i 0.935698 1.62068i 0.162314 0.986739i \(-0.448104\pi\)
0.773384 0.633938i \(-0.218563\pi\)
\(504\) 0.664874 + 1.15160i 0.0296159 + 0.0512962i
\(505\) −15.7995 27.3656i −0.703071 1.21775i
\(506\) 7.97584 0.354569
\(507\) 0 0
\(508\) 11.4276 0.507017
\(509\) −0.457123 0.791761i −0.0202616 0.0350942i 0.855717 0.517444i \(-0.173117\pi\)
−0.875978 + 0.482350i \(0.839783\pi\)
\(510\) 22.0073 + 38.1178i 0.974499 + 1.68788i
\(511\) −3.50902 + 6.07781i −0.155230 + 0.268866i
\(512\) 1.00000 0.0441942
\(513\) 1.68329 2.91555i 0.0743192 0.128725i
\(514\) 11.2186 19.4312i 0.494833 0.857076i
\(515\) 67.7948 2.98739
\(516\) −0.528344 + 0.915118i −0.0232590 + 0.0402858i
\(517\) 8.23490 + 14.2633i 0.362170 + 0.627298i
\(518\) −2.71379 4.70043i −0.119237 0.206525i
\(519\) 22.5133 0.988226
\(520\) 0 0
\(521\) −3.31096 −0.145056 −0.0725279 0.997366i \(-0.523107\pi\)
−0.0725279 + 0.997366i \(0.523107\pi\)
\(522\) 2.26444 + 3.92212i 0.0991118 + 0.171667i
\(523\) 0.425428 + 0.736862i 0.0186026 + 0.0322207i 0.875177 0.483803i \(-0.160745\pi\)
−0.856574 + 0.516024i \(0.827412\pi\)
\(524\) −1.14795 + 1.98831i −0.0501484 + 0.0868595i
\(525\) 18.1655 0.792809
\(526\) 5.24698 9.08804i 0.228779 0.396257i
\(527\) 25.3153 43.8473i 1.10275 1.91002i
\(528\) −4.82908 −0.210159
\(529\) 5.77413 10.0011i 0.251049 0.434830i
\(530\) 6.09783 + 10.5618i 0.264873 + 0.458774i
\(531\) 6.07822 + 10.5278i 0.263772 + 0.456867i
\(532\) 1.01208 0.0438793
\(533\) 0 0
\(534\) 7.68473 0.332551
\(535\) −32.5284 56.3408i −1.40633 2.43583i
\(536\) 1.07338 + 1.85914i 0.0463628 + 0.0803027i
\(537\) 4.76905 8.26023i 0.205799 0.356455i
\(538\) 26.4155 1.13885
\(539\) 6.79739 11.7734i 0.292784 0.507117i
\(540\) −6.65279 + 11.5230i −0.286291 + 0.495870i
\(541\) −40.8853 −1.75780 −0.878898 0.477010i \(-0.841721\pi\)
−0.878898 + 0.477010i \(0.841721\pi\)
\(542\) −11.0151 + 19.0787i −0.473138 + 0.819498i
\(543\) −1.09246 1.89219i −0.0468819 0.0812018i
\(544\) −2.98039 5.16218i −0.127783 0.221327i
\(545\) −21.9758 −0.941341
\(546\) 0 0
\(547\) −2.39075 −0.102221 −0.0511105 0.998693i \(-0.516276\pi\)
−0.0511105 + 0.998693i \(0.516276\pi\)
\(548\) 4.54019 + 7.86384i 0.193947 + 0.335926i
\(549\) 0.263373 + 0.456176i 0.0112405 + 0.0194691i
\(550\) −9.41335 + 16.3044i −0.401386 + 0.695222i
\(551\) 3.44696 0.146845
\(552\) 3.46681 6.00469i 0.147557 0.255577i
\(553\) −8.59179 + 14.8814i −0.365360 + 0.632822i
\(554\) 2.17629 0.0924618
\(555\) −18.0543 + 31.2710i −0.766362 + 1.32738i
\(556\) −9.45257 16.3723i −0.400878 0.694342i
\(557\) −13.5754 23.5133i −0.575208 0.996290i −0.996019 0.0891414i \(-0.971588\pi\)
0.420811 0.907148i \(-0.361746\pi\)
\(558\) −10.1763 −0.430797
\(559\) 0 0
\(560\) −4.00000 −0.169031
\(561\) 14.3925 + 24.9286i 0.607653 + 1.05249i
\(562\) 12.5015 + 21.6532i 0.527344 + 0.913386i
\(563\) 3.26205 5.65003i 0.137479 0.238120i −0.789063 0.614312i \(-0.789433\pi\)
0.926542 + 0.376192i \(0.122767\pi\)
\(564\) 14.3177 0.602883
\(565\) 21.9855 38.0800i 0.924938 1.60204i
\(566\) 8.15764 14.1294i 0.342891 0.593905i
\(567\) 12.3854 0.520137
\(568\) 0.307979 0.533434i 0.0129225 0.0223824i
\(569\) −3.65010 6.32217i −0.153020 0.265039i 0.779316 0.626631i \(-0.215567\pi\)
−0.932336 + 0.361592i \(0.882233\pi\)
\(570\) −3.36658 5.83110i −0.141011 0.244238i
\(571\) −43.6722 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(572\) 0 0
\(573\) −1.82371 −0.0761865
\(574\) 3.98792 + 6.90728i 0.166452 + 0.288304i
\(575\) −13.5157 23.4099i −0.563645 0.976262i
\(576\) −0.599031 + 1.03755i −0.0249596 + 0.0432313i
\(577\) 16.8528 0.701590 0.350795 0.936452i \(-0.385911\pi\)
0.350795 + 0.936452i \(0.385911\pi\)
\(578\) −9.26540 + 16.0481i −0.385390 + 0.667515i
\(579\) −16.6141 + 28.7765i −0.690458 + 1.19591i
\(580\) −13.6233 −0.565675
\(581\) 0.506041 0.876488i 0.0209941 0.0363629i
\(582\) 15.0335 + 26.0388i 0.623158 + 1.07934i
\(583\) 3.98792 + 6.90728i 0.165163 + 0.286070i
\(584\) −6.32304 −0.261649
\(585\) 0 0
\(586\) 1.87800 0.0775796
\(587\) 11.0913 + 19.2106i 0.457785 + 0.792907i 0.998844 0.0480776i \(-0.0153095\pi\)
−0.541058 + 0.840985i \(0.681976\pi\)
\(588\) −5.90917 10.2350i −0.243690 0.422083i
\(589\) −3.87263 + 6.70758i −0.159569 + 0.276381i
\(590\) −36.5676 −1.50547
\(591\) 11.7517 20.3545i 0.483400 0.837273i
\(592\) 2.44504 4.23494i 0.100491 0.174055i
\(593\) 3.98493 0.163642 0.0818208 0.996647i \(-0.473926\pi\)
0.0818208 + 0.996647i \(0.473926\pi\)
\(594\) −4.35086 + 7.53590i −0.178518 + 0.309202i
\(595\) 11.9215 + 20.6487i 0.488736 + 0.846515i
\(596\) 9.34481 + 16.1857i 0.382779 + 0.662992i
\(597\) 7.78495 0.318617
\(598\) 0 0
\(599\) 33.2379 1.35806 0.679032 0.734109i \(-0.262400\pi\)
0.679032 + 0.734109i \(0.262400\pi\)
\(600\) 8.18329 + 14.1739i 0.334082 + 0.578646i
\(601\) −4.89858 8.48458i −0.199817 0.346093i 0.748652 0.662963i \(-0.230701\pi\)
−0.948469 + 0.316870i \(0.897368\pi\)
\(602\) −0.286208 + 0.495727i −0.0116650 + 0.0202043i
\(603\) −2.57194 −0.104738
\(604\) −0.158834 + 0.275108i −0.00646285 + 0.0111940i
\(605\) 9.81163 16.9942i 0.398899 0.690914i
\(606\) −17.9651 −0.729782
\(607\) 12.1129 20.9802i 0.491647 0.851558i −0.508306 0.861176i \(-0.669728\pi\)
0.999954 + 0.00961799i \(0.00306155\pi\)
\(608\) 0.455927 + 0.789689i 0.0184903 + 0.0320261i
\(609\) 4.29829 + 7.44486i 0.174175 + 0.301681i
\(610\) −1.58450 −0.0641545
\(611\) 0 0
\(612\) 7.14138 0.288673
\(613\) 7.52781 + 13.0386i 0.304045 + 0.526622i 0.977048 0.213018i \(-0.0683292\pi\)
−0.673003 + 0.739640i \(0.734996\pi\)
\(614\) −11.9901 20.7674i −0.483880 0.838105i
\(615\) 26.5308 45.9527i 1.06982 1.85299i
\(616\) −2.61596 −0.105400
\(617\) 1.00939 1.74832i 0.0406366 0.0703847i −0.844992 0.534779i \(-0.820395\pi\)
0.885628 + 0.464395i \(0.153728\pi\)
\(618\) 19.2717 33.3796i 0.775223 1.34273i
\(619\) −7.84309 −0.315240 −0.157620 0.987500i \(-0.550382\pi\)
−0.157620 + 0.987500i \(0.550382\pi\)
\(620\) 15.3056 26.5101i 0.614687 1.06467i
\(621\) −6.24698 10.8201i −0.250683 0.434195i
\(622\) 2.69202 + 4.66272i 0.107940 + 0.186958i
\(623\) 4.16288 0.166782
\(624\) 0 0
\(625\) −1.13275 −0.0453101
\(626\) −9.47434 16.4100i −0.378671 0.655877i
\(627\) −2.20171 3.81347i −0.0879278 0.152295i
\(628\) −9.44504 + 16.3593i −0.376898 + 0.652807i
\(629\) −29.1487 −1.16223
\(630\) 2.39612 4.15021i 0.0954639 0.165348i
\(631\) −12.2664 + 21.2460i −0.488316 + 0.845788i −0.999910 0.0134394i \(-0.995722\pi\)
0.511594 + 0.859227i \(0.329055\pi\)
\(632\) −15.4819 −0.615836
\(633\) −25.6591 + 44.4429i −1.01986 + 1.76645i
\(634\) −5.75063 9.96038i −0.228387 0.395577i
\(635\) −20.5918 35.6660i −0.817160 1.41536i
\(636\) 6.93362 0.274936
\(637\) 0 0
\(638\) −8.90946 −0.352729
\(639\) 0.368977 + 0.639088i 0.0145965 + 0.0252819i
\(640\) −1.80194 3.12105i −0.0712278 0.123370i
\(641\) 20.8007 36.0279i 0.821580 1.42302i −0.0829254 0.996556i \(-0.526426\pi\)
0.904505 0.426462i \(-0.140240\pi\)
\(642\) −36.9869 −1.45975
\(643\) −22.7059 + 39.3278i −0.895433 + 1.55094i −0.0621650 + 0.998066i \(0.519801\pi\)
−0.833268 + 0.552869i \(0.813533\pi\)
\(644\) 1.87800 3.25280i 0.0740037 0.128178i
\(645\) 3.80817 0.149946
\(646\) 2.71768 4.70715i 0.106926 0.185200i
\(647\) −17.9172 31.0336i −0.704399 1.22005i −0.966908 0.255125i \(-0.917883\pi\)
0.262509 0.964930i \(-0.415450\pi\)
\(648\) 5.57942 + 9.66383i 0.219180 + 0.379631i
\(649\) −23.9148 −0.938740
\(650\) 0 0
\(651\) −19.3163 −0.757067
\(652\) −2.16637 3.75226i −0.0848415 0.146950i
\(653\) −9.27950 16.0726i −0.363135 0.628968i 0.625340 0.780352i \(-0.284960\pi\)
−0.988475 + 0.151384i \(0.951627\pi\)
\(654\) −6.24698 + 10.8201i −0.244276 + 0.423099i
\(655\) 8.27413 0.323297
\(656\) −3.59299 + 6.22324i −0.140283 + 0.242977i
\(657\) 3.78770 6.56049i 0.147772 0.255949i
\(658\) 7.75600 0.302361
\(659\) 1.98762 3.44266i 0.0774268 0.134107i −0.824712 0.565553i \(-0.808663\pi\)
0.902139 + 0.431445i \(0.141996\pi\)
\(660\) 8.70171 + 15.0718i 0.338714 + 0.586669i
\(661\) −0.615957 1.06687i −0.0239580 0.0414964i 0.853798 0.520605i \(-0.174293\pi\)
−0.877756 + 0.479108i \(0.840960\pi\)
\(662\) 34.6112 1.34520
\(663\) 0 0
\(664\) 0.911854 0.0353868
\(665\) −1.82371 3.15875i −0.0707204 0.122491i
\(666\) 2.92931 + 5.07372i 0.113509 + 0.196603i
\(667\) 6.39612 11.0784i 0.247659 0.428958i
\(668\) −14.0000 −0.541676
\(669\) −13.3056 + 23.0460i −0.514424 + 0.891008i
\(670\) 3.86831 6.70012i 0.149446 0.258848i
\(671\) −1.03624 −0.0400038
\(672\) −1.13706 + 1.96945i −0.0438632 + 0.0759732i
\(673\) 18.4128 + 31.8919i 0.709762 + 1.22934i 0.964945 + 0.262451i \(0.0845308\pi\)
−0.255184 + 0.966893i \(0.582136\pi\)
\(674\) −0.977033 1.69227i −0.0376339 0.0651839i
\(675\) 29.4916 1.13513
\(676\) 0 0
\(677\) −25.9215 −0.996246 −0.498123 0.867106i \(-0.665977\pi\)
−0.498123 + 0.867106i \(0.665977\pi\)
\(678\) −12.4995 21.6497i −0.480039 0.831452i
\(679\) 8.14377 + 14.1054i 0.312529 + 0.541316i
\(680\) −10.7409 + 18.6039i −0.411896 + 0.713425i
\(681\) −28.2851 −1.08389
\(682\) 10.0097 17.3373i 0.383291 0.663879i
\(683\) −18.7736 + 32.5168i −0.718352 + 1.24422i 0.243301 + 0.969951i \(0.421770\pi\)
−0.961653 + 0.274271i \(0.911564\pi\)
\(684\) −1.09246 −0.0417712
\(685\) 16.3623 28.3403i 0.625170 1.08283i
\(686\) −7.08575 12.2729i −0.270535 0.468581i
\(687\) 11.8431 + 20.5128i 0.451842 + 0.782613i
\(688\) −0.515729 −0.0196620
\(689\) 0 0
\(690\) −24.9879 −0.951274
\(691\) −22.6274 39.1919i −0.860788 1.49093i −0.871169 0.490983i \(-0.836638\pi\)
0.0103812 0.999946i \(-0.496695\pi\)
\(692\) 5.49396 + 9.51582i 0.208849 + 0.361737i
\(693\) 1.56704 2.71419i 0.0595269 0.103104i
\(694\) −6.41550 −0.243529
\(695\) −34.0659 + 59.0039i −1.29219 + 2.23814i
\(696\) −3.87263 + 6.70758i −0.146791 + 0.254250i
\(697\) 42.8340 1.62245
\(698\) −0.542877 + 0.940290i −0.0205482 + 0.0355905i
\(699\) 10.0139 + 17.3445i 0.378759 + 0.656030i
\(700\) 4.43296 + 7.67811i 0.167550 + 0.290205i
\(701\) 36.0823 1.36281 0.681405 0.731907i \(-0.261369\pi\)
0.681405 + 0.731907i \(0.261369\pi\)
\(702\) 0 0
\(703\) 4.45904 0.168176
\(704\) −1.17845 2.04113i −0.0444144 0.0769280i
\(705\) −25.7995 44.6861i −0.971667 1.68298i
\(706\) −2.14460 + 3.71455i −0.0807129 + 0.139799i
\(707\) −9.73184 −0.366004
\(708\) −10.3949 + 18.0045i −0.390665 + 0.676652i
\(709\) 9.53319 16.5120i 0.358026 0.620120i −0.629605 0.776916i \(-0.716783\pi\)
0.987631 + 0.156796i \(0.0501165\pi\)
\(710\) −2.21983 −0.0833088
\(711\) 9.27413 16.0633i 0.347807 0.602419i
\(712\) 1.87531 + 3.24814i 0.0702804 + 0.121729i
\(713\) 14.3720 + 24.8930i 0.538234 + 0.932249i
\(714\) 13.5555 0.507304
\(715\) 0 0
\(716\) 4.65519 0.173972
\(717\) 0.967476 + 1.67572i 0.0361311 + 0.0625808i
\(718\) 7.75302 + 13.4286i 0.289340 + 0.501152i
\(719\) 7.65279 13.2550i 0.285401 0.494329i −0.687305 0.726369i \(-0.741207\pi\)
0.972706 + 0.232040i \(0.0745399\pi\)
\(720\) 4.31767 0.160910
\(721\) 10.4397 18.0820i 0.388793 0.673410i
\(722\) 9.08426 15.7344i 0.338081 0.585574i
\(723\) −0.450419 −0.0167513
\(724\) 0.533188 0.923508i 0.0198158 0.0343219i
\(725\) 15.0978 + 26.1502i 0.560720 + 0.971195i
\(726\) −5.57822 9.66176i −0.207027 0.358582i
\(727\) 3.46250 0.128417 0.0642085 0.997937i \(-0.479548\pi\)
0.0642085 + 0.997937i \(0.479548\pi\)
\(728\) 0 0
\(729\) 9.32496 0.345369
\(730\) 11.3937 + 19.7345i 0.421701 + 0.730407i
\(731\) 1.53707 + 2.66229i 0.0568507 + 0.0984683i
\(732\) −0.450419 + 0.780148i −0.0166480 + 0.0288351i
\(733\) −26.0930 −0.963769 −0.481884 0.876235i \(-0.660047\pi\)
−0.481884 + 0.876235i \(0.660047\pi\)
\(734\) −8.71379 + 15.0927i −0.321632 + 0.557083i
\(735\) −21.2959 + 36.8856i −0.785511 + 1.36054i
\(736\) 3.38404 0.124737
\(737\) 2.52984 4.38180i 0.0931877 0.161406i
\(738\) −4.30463 7.45583i −0.158455 0.274453i
\(739\) 13.2497 + 22.9491i 0.487397 + 0.844196i 0.999895 0.0144922i \(-0.00461316\pi\)
−0.512498 + 0.858688i \(0.671280\pi\)
\(740\) −17.6233 −0.647844
\(741\) 0 0
\(742\) 3.75600 0.137887
\(743\) 0.207751 + 0.359835i 0.00762164 + 0.0132011i 0.869811 0.493385i \(-0.164241\pi\)
−0.862189 + 0.506586i \(0.830907\pi\)
\(744\) −8.70171 15.0718i −0.319020 0.552559i
\(745\) 33.6775 58.3312i 1.23385 2.13709i
\(746\) 8.19567 0.300065
\(747\) −0.546229 + 0.946096i −0.0199855 + 0.0346159i
\(748\) −7.02446 + 12.1667i −0.256840 + 0.444859i
\(749\) −20.0361 −0.732103
\(750\) 11.0315 19.1070i 0.402812 0.697691i
\(751\) −1.45473 2.51967i −0.0530839 0.0919440i 0.838262 0.545267i \(-0.183572\pi\)
−0.891346 + 0.453323i \(0.850238\pi\)
\(752\) 3.49396 + 6.05171i 0.127412 + 0.220683i
\(753\) −33.3037 −1.21365
\(754\) 0 0
\(755\) 1.14483 0.0416647
\(756\) 2.04892 + 3.54883i 0.0745184 + 0.129070i
\(757\) −6.18598 10.7144i −0.224833 0.389423i 0.731436 0.681910i \(-0.238850\pi\)
−0.956269 + 0.292487i \(0.905517\pi\)
\(758\) 7.52379 13.0316i 0.273277 0.473329i
\(759\) −16.3418 −0.593171
\(760\) 1.64310 2.84594i 0.0596017 0.103233i
\(761\) −21.2153 + 36.7459i −0.769053 + 1.33204i 0.169023 + 0.985612i \(0.445939\pi\)
−0.938077 + 0.346428i \(0.887395\pi\)
\(762\) −23.4142 −0.848206
\(763\) −3.38404 + 5.86133i −0.122511 + 0.212195i
\(764\) −0.445042 0.770835i −0.0161010 0.0278878i
\(765\) −12.8683 22.2886i −0.465255 0.805845i
\(766\) −11.1207 −0.401806
\(767\) 0 0
\(768\) −2.04892 −0.0739339
\(769\) −6.66703 11.5476i −0.240419 0.416418i 0.720415 0.693544i \(-0.243952\pi\)
−0.960834 + 0.277125i \(0.910618\pi\)
\(770\) 4.71379 + 8.16453i 0.169873 + 0.294229i
\(771\) −22.9861 + 39.8130i −0.827823 + 1.43383i
\(772\) −16.2174 −0.583678
\(773\) 2.92692 5.06957i 0.105274 0.182340i −0.808576 0.588392i \(-0.799761\pi\)
0.913850 + 0.406052i \(0.133095\pi\)
\(774\) 0.308938 0.535096i 0.0111045 0.0192336i
\(775\) −67.8491 −2.43721
\(776\) −7.33728 + 12.7085i −0.263393 + 0.456210i
\(777\) 5.56033 + 9.63078i 0.199476 + 0.345502i
\(778\) 4.02177 + 6.96591i 0.144187 + 0.249740i
\(779\) −6.55257 −0.234770
\(780\) 0 0
\(781\) −1.45175 −0.0519476
\(782\) −10.0858 17.4690i −0.360666 0.624691i
\(783\) 6.97823 + 12.0866i 0.249382 + 0.431942i
\(784\) 2.88404 4.99531i 0.103002 0.178404i
\(785\) 68.0775 2.42979
\(786\) 2.35205 4.07387i 0.0838949 0.145310i
\(787\) 11.6482 20.1754i 0.415215 0.719174i −0.580236 0.814448i \(-0.697040\pi\)
0.995451 + 0.0952749i \(0.0303730\pi\)
\(788\) 11.4711 0.408642
\(789\) −10.7506 + 18.6206i −0.382732 + 0.662912i
\(790\) 27.8974 + 48.3197i 0.992544 + 1.71914i
\(791\) −6.77107 11.7278i −0.240752 0.416994i
\(792\) 2.82371 0.100336
\(793\) 0 0
\(794\) −21.9081 −0.777491
\(795\) −12.4940 21.6402i −0.443115 0.767498i
\(796\) 1.89977 + 3.29050i 0.0673356 + 0.116629i
\(797\) −17.9051 + 31.0126i −0.634233 + 1.09852i 0.352444 + 0.935833i \(0.385351\pi\)
−0.986677 + 0.162691i \(0.947983\pi\)
\(798\) −2.07367 −0.0734072
\(799\) 20.8267 36.0729i 0.736795 1.27617i
\(800\) −3.99396 + 6.91774i −0.141208 + 0.244579i
\(801\) −4.49349 −0.158769
\(802\) −8.72132 + 15.1058i −0.307961 + 0.533404i
\(803\) 7.45138 + 12.9062i 0.262953 + 0.455449i
\(804\) −2.19926 3.80923i −0.0775619 0.134341i
\(805\) −13.5362 −0.477087
\(806\) 0 0
\(807\) −54.1232 −1.90523
\(808\) −4.38404 7.59339i −0.154230 0.267134i
\(809\) −14.1872 24.5729i −0.498795 0.863938i 0.501204 0.865329i \(-0.332890\pi\)
−0.999999 + 0.00139133i \(0.999557\pi\)
\(810\) 20.1075 34.8273i 0.706506 1.22370i
\(811\) 5.20344 0.182717 0.0913587 0.995818i \(-0.470879\pi\)
0.0913587 + 0.995818i \(0.470879\pi\)
\(812\) −2.09783 + 3.63356i −0.0736196 + 0.127513i
\(813\) 22.5690 39.0906i 0.791528 1.37097i
\(814\) −11.5254 −0.403966
\(815\) −7.80731 + 13.5227i −0.273478 + 0.473678i
\(816\) 6.10656 + 10.5769i 0.213772 + 0.370265i
\(817\) −0.235135 0.407266i −0.00822633 0.0142484i
\(818\) −17.4330 −0.609529
\(819\) 0 0
\(820\) 25.8974 0.904376
\(821\) 2.82669 + 4.89597i 0.0986522 + 0.170871i 0.911127 0.412126i \(-0.135214\pi\)
−0.812475 + 0.582996i \(0.801880\pi\)
\(822\) −9.30247 16.1124i −0.324461 0.561983i
\(823\) −19.5308 + 33.8283i −0.680801 + 1.17918i 0.293936 + 0.955825i \(0.405035\pi\)
−0.974737 + 0.223356i \(0.928299\pi\)
\(824\) 18.8116 0.655334
\(825\) 19.2872 33.4064i 0.671493 1.16306i
\(826\) −5.63102 + 9.75322i −0.195928 + 0.339358i
\(827\) −5.40283 −0.187875 −0.0939374 0.995578i \(-0.529945\pi\)
−0.0939374 + 0.995578i \(0.529945\pi\)
\(828\) −2.02715 + 3.51112i −0.0704482 + 0.122020i
\(829\) 4.19269 + 7.26194i 0.145618 + 0.252218i 0.929603 0.368562i \(-0.120150\pi\)
−0.783985 + 0.620779i \(0.786816\pi\)
\(830\) −1.64310 2.84594i −0.0570330 0.0987840i
\(831\) −4.45904 −0.154682
\(832\) 0 0
\(833\) −34.3822 −1.19127
\(834\) 19.3675 + 33.5456i 0.670643 + 1.16159i
\(835\) 25.2271 + 43.6947i 0.873021 + 1.51212i
\(836\) 1.07457 1.86121i 0.0371649 0.0643714i
\(837\) −31.3599 −1.08396
\(838\) −4.98792 + 8.63933i −0.172305 + 0.298441i
\(839\) 1.99031 3.44732i 0.0687132 0.119015i −0.829622 0.558326i \(-0.811444\pi\)
0.898335 + 0.439311i \(0.144777\pi\)
\(840\) 8.19567 0.282777
\(841\) 7.35517 12.7395i 0.253626 0.439294i
\(842\) −0.307979 0.533434i −0.0106136 0.0183834i
\(843\) −25.6145 44.3657i −0.882211 1.52803i
\(844\) −25.0465 −0.862137
\(845\) 0 0
\(846\) −8.37196 −0.287834
\(847\) −3.02177 5.23386i −0.103829 0.179838i
\(848\) 1.69202 + 2.93067i 0.0581043 + 0.100640i
\(849\) −16.7143 + 28.9501i −0.573634 + 0.993563i
\(850\) 47.6142 1.63315
\(851\) 8.27413 14.3312i 0.283633 0.491267i
\(852\) −0.631023 + 1.09296i −0.0216185 + 0.0374443i
\(853\) 6.29350 0.215485 0.107743 0.994179i \(-0.465638\pi\)
0.107743 + 0.994179i \(0.465638\pi\)
\(854\) −0.243996 + 0.422613i −0.00834936 + 0.0144615i
\(855\) 1.96854 + 3.40961i 0.0673227 + 0.116606i
\(856\) −9.02595 15.6334i −0.308501 0.534339i
\(857\) 4.37627 0.149491 0.0747453 0.997203i \(-0.476186\pi\)
0.0747453 + 0.997203i \(0.476186\pi\)
\(858\) 0 0
\(859\) 15.0261 0.512683 0.256342 0.966586i \(-0.417483\pi\)
0.256342 + 0.966586i \(0.417483\pi\)
\(860\) 0.929312 + 1.60962i 0.0316893 + 0.0548875i
\(861\) −8.17092 14.1524i −0.278464 0.482314i
\(862\) 7.39612 12.8105i 0.251913 0.436326i
\(863\) 6.21121 0.211432 0.105716 0.994396i \(-0.466287\pi\)
0.105716 + 0.994396i \(0.466287\pi\)
\(864\) −1.84601 + 3.19738i −0.0628026 + 0.108777i
\(865\) 19.7995 34.2938i 0.673205 1.16602i
\(866\) 16.5321 0.561784
\(867\) 18.9840 32.8813i 0.644732 1.11671i
\(868\) −4.71379 8.16453i −0.159997 0.277122i
\(869\) 18.2446 + 31.6006i 0.618905 + 1.07198i
\(870\) 27.9129 0.946337
\(871\) 0 0
\(872\) −6.09783 −0.206499
\(873\) −8.79052 15.2256i −0.297514 0.515309i
\(874\) 1.54288 + 2.67234i 0.0521886 + 0.0903933i
\(875\) 5.97584 10.3505i 0.202020 0.349909i
\(876\) 12.9554 0.437722
\(877\) −19.1099 + 33.0993i −0.645296 + 1.11769i 0.338937 + 0.940809i \(0.389933\pi\)
−0.984233 + 0.176876i \(0.943401\pi\)
\(878\) −1.75063 + 3.03218i −0.0590808 + 0.102331i
\(879\) −3.84787 −0.129785
\(880\) −4.24698 + 7.35598i −0.143166 + 0.247970i
\(881\) −13.3916 23.1949i −0.451174 0.781456i 0.547286 0.836946i \(-0.315661\pi\)
−0.998459 + 0.0554902i \(0.982328\pi\)
\(882\) 3.45526 + 5.98469i 0.116345 + 0.201515i
\(883\) −34.4956 −1.16087 −0.580435 0.814307i \(-0.697117\pi\)
−0.580435 + 0.814307i \(0.697117\pi\)
\(884\) 0 0
\(885\) 74.9241 2.51854
\(886\) −8.70387 15.0755i −0.292412 0.506473i
\(887\) 11.9933 + 20.7730i 0.402695 + 0.697489i 0.994050 0.108923i \(-0.0347400\pi\)
−0.591355 + 0.806411i \(0.701407\pi\)
\(888\) −5.00969 + 8.67704i −0.168114 + 0.291182i
\(889\) −12.6837 −0.425396
\(890\) 6.75840 11.7059i 0.226542 0.392382i
\(891\) 13.1501 22.7766i 0.440545 0.763046i
\(892\) −12.9879 −0.434868
\(893\) −3.18598 + 5.51828i −0.106615 + 0.184662i
\(894\) −19.1468 33.1631i −0.640363 1.10914i
\(895\) −8.38835 14.5291i −0.280392 0.485653i
\(896\) −1.10992 −0.0370797
\(897\) 0 0
\(898\) 34.1497 1.13959
\(899\) −16.0543 27.8069i −0.535441 0.927410i
\(900\) −4.78501 8.28788i −0.159500 0.276263i
\(901\) 10.0858 17.4690i 0.336005 0.581978i
\(902\) 16.9366 0.563927
\(903\) 0.586417 1.01570i 0.0195147 0.0338005i
\(904\) 6.10052 10.5664i 0.202900 0.351434i
\(905\) −3.84309 −0.127748
\(906\) 0.325437 0.563673i 0.0108119 0.0187268i
\(907\) −11.9635 20.7213i −0.397240 0.688040i 0.596144 0.802877i \(-0.296699\pi\)
−0.993384 + 0.114837i \(0.963365\pi\)
\(908\) −6.90246 11.9554i −0.229066 0.396754i
\(909\) 10.5047 0.348419
\(910\) 0 0
\(911\) −35.8866 −1.18898 −0.594488 0.804104i \(-0.702645\pi\)
−0.594488 + 0.804104i \(0.702645\pi\)
\(912\) −0.934157 1.61801i −0.0309330 0.0535776i
\(913\) −1.07457 1.86121i −0.0355632 0.0615972i
\(914\) −4.70171 + 8.14360i −0.155519 + 0.269366i
\(915\) 3.24651 0.107326
\(916\) −5.78017 + 10.0115i −0.190982 + 0.330791i
\(917\) 1.27413 2.20685i 0.0420754 0.0728767i
\(918\) 22.0073 0.726349
\(919\) −16.6233 + 28.7923i −0.548351 + 0.949771i 0.450037 + 0.893010i \(0.351411\pi\)
−0.998388 + 0.0567612i \(0.981923\pi\)
\(920\) −6.09783 10.5618i −0.201040 0.348211i
\(921\) 24.5667 + 42.5507i 0.809499 + 1.40209i
\(922\) −0.733169 −0.0241456
\(923\) 0 0
\(924\) 5.35988 0.176327
\(925\) 19.5308 + 33.8283i 0.642169 + 1.11227i
\(926\) −3.62133 6.27233i −0.119004 0.206122i
\(927\) −11.2687 + 19.5180i −0.370114 + 0.641057i
\(928\) −3.78017 −0.124090
\(929\) −27.1292 + 46.9891i −0.890079 + 1.54166i −0.0502995 + 0.998734i \(0.516018\pi\)
−0.839779 + 0.542928i \(0.817316\pi\)
\(930\) −31.3599 + 54.3169i −1.02833 + 1.78112i
\(931\) 5.25965 0.172378
\(932\) −4.88740 + 8.46522i −0.160092 + 0.277287i
\(933\) −5.51573 9.55352i −0.180577 0.312768i
\(934\) −15.1223 26.1926i −0.494817 0.857047i
\(935\) 50.6305 1.65580
\(936\) 0 0
\(937\) 16.5265 0.539897 0.269948 0.962875i \(-0.412993\pi\)
0.269948 + 0.962875i \(0.412993\pi\)
\(938\) −1.19136 2.06349i −0.0388992 0.0673754i
\(939\) 19.4121 + 33.6228i 0.633492 + 1.09724i
\(940\) 12.5918 21.8096i 0.410699 0.711352i
\(941\) 41.7017 1.35944 0.679718 0.733473i \(-0.262102\pi\)
0.679718 + 0.733473i \(0.262102\pi\)
\(942\) 19.3521 33.5188i 0.630526 1.09210i
\(943\) −12.1588 + 21.0597i −0.395946 + 0.685799i
\(944\) −10.1468 −0.330249
\(945\) 7.38404 12.7895i 0.240203 0.416044i
\(946\) 0.607760 + 1.05267i 0.0197600 + 0.0342253i
\(947\) 1.50053 + 2.59900i 0.0487608 + 0.0844561i 0.889376 0.457177i \(-0.151139\pi\)
−0.840615 + 0.541633i \(0.817806\pi\)
\(948\) 31.7211 1.03025
\(949\) 0 0
\(950\) −7.28382 −0.236318
\(951\) 11.7826 + 20.4080i 0.382076 + 0.661775i
\(952\) 3.30798 + 5.72959i 0.107212 + 0.185697i
\(953\) −19.0725 + 33.0345i −0.617818 + 1.07009i 0.372065 + 0.928207i \(0.378650\pi\)
−0.989883 + 0.141886i \(0.954683\pi\)
\(954\) −4.05429 −0.131263
\(955\) −1.60388 + 2.77799i −0.0519002 + 0.0898938i
\(956\) −0.472189 + 0.817855i −0.0152717 + 0.0264513i
\(957\) 18.2547 0.590092
\(958\) 18.3599 31.8002i 0.593181 1.02742i
\(959\) −5.03923 8.72820i −0.162725 0.281848i
\(960\) 3.69202 + 6.39477i 0.119159 + 0.206390i
\(961\) 41.1473 1.32733
\(962\) 0 0
\(963\) 21.6273 0.696930
\(964\) −0.109916 0.190381i −0.00354016 0.00613174i
\(965\) 29.2228 + 50.6154i 0.940716 + 1.62937i
\(966\) −3.84787 + 6.66471i −0.123803 + 0.214433i
\(967\) 26.8793 0.864381 0.432190 0.901782i \(-0.357741\pi\)
0.432190 + 0.901782i \(0.357741\pi\)
\(968\) 2.72252 4.71554i 0.0875051 0.151563i
\(969\) −5.56829 + 9.64457i −0.178879 + 0.309828i
\(970\) 52.8853 1.69804
\(971\) −1.56824 + 2.71626i −0.0503271 + 0.0871691i −0.890092 0.455782i \(-0.849360\pi\)
0.839764 + 0.542951i \(0.182693\pi\)
\(972\) −5.89373 10.2082i −0.189042 0.327430i
\(973\) 10.4916 + 18.1719i 0.336344 + 0.582565i
\(974\) −28.6547 −0.918156
\(975\) 0 0
\(976\) −0.439665 −0.0140733
\(977\) 17.9432 + 31.0785i 0.574053 + 0.994289i 0.996144 + 0.0877357i \(0.0279631\pi\)
−0.422091 + 0.906554i \(0.638704\pi\)
\(978\) 4.43871 + 7.68806i 0.141934 + 0.245837i
\(979\) 4.41992 7.65552i 0.141261 0.244672i
\(980\) −20.7875 −0.664031
\(981\) 3.65279 6.32682i 0.116625 0.202000i
\(982\) −15.2148 + 26.3527i −0.485522 + 0.840949i
\(983\) 30.4370 0.970790 0.485395 0.874295i \(-0.338676\pi\)
0.485395 + 0.874295i \(0.338676\pi\)
\(984\) 7.36174 12.7509i 0.234684 0.406484i
\(985\) −20.6703 35.8019i −0.658609 1.14074i
\(986\) 11.2664 + 19.5139i 0.358794 + 0.621449i
\(987\) −15.8914 −0.505829
\(988\) 0 0
\(989\) −1.74525 −0.0554957
\(990\) −5.08815 8.81293i −0.161712 0.280093i
\(991\) −15.7235 27.2339i −0.499473 0.865112i 0.500527 0.865721i \(-0.333140\pi\)
−1.00000 0.000608632i \(0.999806\pi\)
\(992\) 4.24698 7.35598i 0.134842 0.233553i
\(993\) −70.9154 −2.25043
\(994\) −0.341830 + 0.592068i −0.0108422 + 0.0187792i
\(995\) 6.84654 11.8586i 0.217050 0.375942i
\(996\) −1.86831 −0.0591998
\(997\) −9.55496 + 16.5497i −0.302609 + 0.524133i −0.976726 0.214491i \(-0.931191\pi\)
0.674117 + 0.738624i \(0.264524\pi\)
\(998\) −7.98576 13.8317i −0.252785 0.437836i
\(999\) 9.02715 + 15.6355i 0.285606 + 0.494685i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.2.c.h.315.3 6
13.2 odd 12 338.2.b.d.337.1 6
13.3 even 3 338.2.a.h.1.1 yes 3
13.4 even 6 338.2.c.i.191.3 6
13.5 odd 4 338.2.e.e.23.3 12
13.6 odd 12 338.2.e.e.147.6 12
13.7 odd 12 338.2.e.e.147.3 12
13.8 odd 4 338.2.e.e.23.6 12
13.9 even 3 inner 338.2.c.h.191.3 6
13.10 even 6 338.2.a.g.1.1 3
13.11 odd 12 338.2.b.d.337.4 6
13.12 even 2 338.2.c.i.315.3 6
39.2 even 12 3042.2.b.n.1351.6 6
39.11 even 12 3042.2.b.n.1351.1 6
39.23 odd 6 3042.2.a.bi.1.3 3
39.29 odd 6 3042.2.a.z.1.1 3
52.3 odd 6 2704.2.a.w.1.3 3
52.11 even 12 2704.2.f.m.337.6 6
52.15 even 12 2704.2.f.m.337.5 6
52.23 odd 6 2704.2.a.v.1.3 3
65.29 even 6 8450.2.a.bn.1.3 3
65.49 even 6 8450.2.a.bx.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.1 3 13.10 even 6
338.2.a.h.1.1 yes 3 13.3 even 3
338.2.b.d.337.1 6 13.2 odd 12
338.2.b.d.337.4 6 13.11 odd 12
338.2.c.h.191.3 6 13.9 even 3 inner
338.2.c.h.315.3 6 1.1 even 1 trivial
338.2.c.i.191.3 6 13.4 even 6
338.2.c.i.315.3 6 13.12 even 2
338.2.e.e.23.3 12 13.5 odd 4
338.2.e.e.23.6 12 13.8 odd 4
338.2.e.e.147.3 12 13.7 odd 12
338.2.e.e.147.6 12 13.6 odd 12
2704.2.a.v.1.3 3 52.23 odd 6
2704.2.a.w.1.3 3 52.3 odd 6
2704.2.f.m.337.5 6 52.15 even 12
2704.2.f.m.337.6 6 52.11 even 12
3042.2.a.z.1.1 3 39.29 odd 6
3042.2.a.bi.1.3 3 39.23 odd 6
3042.2.b.n.1351.1 6 39.11 even 12
3042.2.b.n.1351.6 6 39.2 even 12
8450.2.a.bn.1.3 3 65.29 even 6
8450.2.a.bx.1.3 3 65.49 even 6