Properties

Label 3042.2.b.n.1351.1
Level $3042$
Weight $2$
Character 3042.1351
Analytic conductor $24.290$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3042,2,Mod(1351,3042)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3042.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,0,-4,0,0,0,8,0,6,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 338)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.1
Root \(-1.80194i\) of defining polynomial
Character \(\chi\) \(=\) 3042.1351
Dual form 3042.2.b.n.1351.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -3.60388i q^{5} +1.10992i q^{7} +1.00000i q^{8} -3.60388 q^{10} +2.35690i q^{11} +1.10992 q^{14} +1.00000 q^{16} +5.96077 q^{17} -0.911854i q^{19} +3.60388i q^{20} +2.35690 q^{22} +3.38404 q^{23} -7.98792 q^{25} -1.10992i q^{28} +3.78017 q^{29} -8.49396i q^{31} -1.00000i q^{32} -5.96077i q^{34} +4.00000 q^{35} +4.89008i q^{37} -0.911854 q^{38} +3.60388 q^{40} -7.18598i q^{41} +0.515729 q^{43} -2.35690i q^{44} -3.38404i q^{46} -6.98792i q^{47} +5.76809 q^{49} +7.98792i q^{50} +3.38404 q^{53} +8.49396 q^{55} -1.10992 q^{56} -3.78017i q^{58} -10.1468i q^{59} -0.439665 q^{61} -8.49396 q^{62} -1.00000 q^{64} -2.14675i q^{67} -5.96077 q^{68} -4.00000i q^{70} +0.615957i q^{71} +6.32304i q^{73} +4.89008 q^{74} +0.911854i q^{76} -2.61596 q^{77} -15.4819 q^{79} -3.60388i q^{80} -7.18598 q^{82} -0.911854i q^{83} -21.4819i q^{85} -0.515729i q^{86} -2.35690 q^{88} -3.75063i q^{89} -3.38404 q^{92} -6.98792 q^{94} -3.28621 q^{95} +14.6746i q^{97} -5.76809i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 4 q^{10} + 8 q^{14} + 6 q^{16} + 10 q^{17} + 6 q^{22} - 10 q^{25} + 20 q^{29} + 24 q^{35} + 2 q^{38} + 4 q^{40} - 22 q^{43} - 6 q^{49} + 32 q^{55} - 8 q^{56} - 8 q^{61} - 32 q^{62} - 6 q^{64}+ \cdots - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) − 3.60388i − 1.61170i −0.592118 0.805851i \(-0.701708\pi\)
0.592118 0.805851i \(-0.298292\pi\)
\(6\) 0 0
\(7\) 1.10992i 0.419509i 0.977754 + 0.209754i \(0.0672665\pi\)
−0.977754 + 0.209754i \(0.932734\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.60388 −1.13965
\(11\) 2.35690i 0.710631i 0.934746 + 0.355315i \(0.115627\pi\)
−0.934746 + 0.355315i \(0.884373\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 1.10992 0.296638
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.96077 1.44570 0.722850 0.691005i \(-0.242832\pi\)
0.722850 + 0.691005i \(0.242832\pi\)
\(18\) 0 0
\(19\) − 0.911854i − 0.209194i −0.994515 0.104597i \(-0.966645\pi\)
0.994515 0.104597i \(-0.0333552\pi\)
\(20\) 3.60388i 0.805851i
\(21\) 0 0
\(22\) 2.35690 0.502492
\(23\) 3.38404 0.705622 0.352811 0.935695i \(-0.385226\pi\)
0.352811 + 0.935695i \(0.385226\pi\)
\(24\) 0 0
\(25\) −7.98792 −1.59758
\(26\) 0 0
\(27\) 0 0
\(28\) − 1.10992i − 0.209754i
\(29\) 3.78017 0.701959 0.350980 0.936383i \(-0.385849\pi\)
0.350980 + 0.936383i \(0.385849\pi\)
\(30\) 0 0
\(31\) − 8.49396i − 1.52556i −0.646658 0.762780i \(-0.723834\pi\)
0.646658 0.762780i \(-0.276166\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) − 5.96077i − 1.02226i
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 4.89008i 0.803925i 0.915656 + 0.401962i \(0.131672\pi\)
−0.915656 + 0.401962i \(0.868328\pi\)
\(38\) −0.911854 −0.147922
\(39\) 0 0
\(40\) 3.60388 0.569823
\(41\) − 7.18598i − 1.12226i −0.827727 0.561131i \(-0.810366\pi\)
0.827727 0.561131i \(-0.189634\pi\)
\(42\) 0 0
\(43\) 0.515729 0.0786480 0.0393240 0.999227i \(-0.487480\pi\)
0.0393240 + 0.999227i \(0.487480\pi\)
\(44\) − 2.35690i − 0.355315i
\(45\) 0 0
\(46\) − 3.38404i − 0.498950i
\(47\) − 6.98792i − 1.01929i −0.860384 0.509646i \(-0.829776\pi\)
0.860384 0.509646i \(-0.170224\pi\)
\(48\) 0 0
\(49\) 5.76809 0.824012
\(50\) 7.98792i 1.12966i
\(51\) 0 0
\(52\) 0 0
\(53\) 3.38404 0.464834 0.232417 0.972616i \(-0.425337\pi\)
0.232417 + 0.972616i \(0.425337\pi\)
\(54\) 0 0
\(55\) 8.49396 1.14533
\(56\) −1.10992 −0.148319
\(57\) 0 0
\(58\) − 3.78017i − 0.496360i
\(59\) − 10.1468i − 1.32099i −0.750828 0.660497i \(-0.770345\pi\)
0.750828 0.660497i \(-0.229655\pi\)
\(60\) 0 0
\(61\) −0.439665 −0.0562933 −0.0281467 0.999604i \(-0.508961\pi\)
−0.0281467 + 0.999604i \(0.508961\pi\)
\(62\) −8.49396 −1.07873
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.14675i − 0.262268i −0.991365 0.131134i \(-0.958138\pi\)
0.991365 0.131134i \(-0.0418617\pi\)
\(68\) −5.96077 −0.722850
\(69\) 0 0
\(70\) − 4.00000i − 0.478091i
\(71\) 0.615957i 0.0731007i 0.999332 + 0.0365503i \(0.0116369\pi\)
−0.999332 + 0.0365503i \(0.988363\pi\)
\(72\) 0 0
\(73\) 6.32304i 0.740056i 0.929021 + 0.370028i \(0.120652\pi\)
−0.929021 + 0.370028i \(0.879348\pi\)
\(74\) 4.89008 0.568461
\(75\) 0 0
\(76\) 0.911854i 0.104597i
\(77\) −2.61596 −0.298116
\(78\) 0 0
\(79\) −15.4819 −1.74185 −0.870924 0.491418i \(-0.836479\pi\)
−0.870924 + 0.491418i \(0.836479\pi\)
\(80\) − 3.60388i − 0.402926i
\(81\) 0 0
\(82\) −7.18598 −0.793559
\(83\) − 0.911854i − 0.100089i −0.998747 0.0500445i \(-0.984064\pi\)
0.998747 0.0500445i \(-0.0159363\pi\)
\(84\) 0 0
\(85\) − 21.4819i − 2.33004i
\(86\) − 0.515729i − 0.0556125i
\(87\) 0 0
\(88\) −2.35690 −0.251246
\(89\) − 3.75063i − 0.397566i −0.980044 0.198783i \(-0.936301\pi\)
0.980044 0.198783i \(-0.0636988\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −3.38404 −0.352811
\(93\) 0 0
\(94\) −6.98792 −0.720749
\(95\) −3.28621 −0.337158
\(96\) 0 0
\(97\) 14.6746i 1.48998i 0.667078 + 0.744988i \(0.267545\pi\)
−0.667078 + 0.744988i \(0.732455\pi\)
\(98\) − 5.76809i − 0.582665i
\(99\) 0 0
\(100\) 7.98792 0.798792
\(101\) 8.76809 0.872457 0.436229 0.899836i \(-0.356314\pi\)
0.436229 + 0.899836i \(0.356314\pi\)
\(102\) 0 0
\(103\) −18.8116 −1.85356 −0.926782 0.375599i \(-0.877437\pi\)
−0.926782 + 0.375599i \(0.877437\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) − 3.38404i − 0.328687i
\(107\) −18.0519 −1.74514 −0.872572 0.488486i \(-0.837549\pi\)
−0.872572 + 0.488486i \(0.837549\pi\)
\(108\) 0 0
\(109\) − 6.09783i − 0.584067i −0.956408 0.292033i \(-0.905668\pi\)
0.956408 0.292033i \(-0.0943318\pi\)
\(110\) − 8.49396i − 0.809867i
\(111\) 0 0
\(112\) 1.10992i 0.104877i
\(113\) 12.2010 1.14778 0.573889 0.818933i \(-0.305434\pi\)
0.573889 + 0.818933i \(0.305434\pi\)
\(114\) 0 0
\(115\) − 12.1957i − 1.13725i
\(116\) −3.78017 −0.350980
\(117\) 0 0
\(118\) −10.1468 −0.934084
\(119\) 6.61596i 0.606484i
\(120\) 0 0
\(121\) 5.44504 0.495004
\(122\) 0.439665i 0.0398054i
\(123\) 0 0
\(124\) 8.49396i 0.762780i
\(125\) 10.7681i 0.963127i
\(126\) 0 0
\(127\) −11.4276 −1.01403 −0.507017 0.861936i \(-0.669252\pi\)
−0.507017 + 0.861936i \(0.669252\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −2.29590 −0.200593 −0.100297 0.994958i \(-0.531979\pi\)
−0.100297 + 0.994958i \(0.531979\pi\)
\(132\) 0 0
\(133\) 1.01208 0.0877586
\(134\) −2.14675 −0.185451
\(135\) 0 0
\(136\) 5.96077i 0.511132i
\(137\) − 9.08038i − 0.775789i −0.921704 0.387894i \(-0.873203\pi\)
0.921704 0.387894i \(-0.126797\pi\)
\(138\) 0 0
\(139\) 18.9051 1.60351 0.801757 0.597650i \(-0.203899\pi\)
0.801757 + 0.597650i \(0.203899\pi\)
\(140\) −4.00000 −0.338062
\(141\) 0 0
\(142\) 0.615957 0.0516900
\(143\) 0 0
\(144\) 0 0
\(145\) − 13.6233i − 1.13135i
\(146\) 6.32304 0.523299
\(147\) 0 0
\(148\) − 4.89008i − 0.401962i
\(149\) 18.6896i 1.53111i 0.643368 + 0.765557i \(0.277537\pi\)
−0.643368 + 0.765557i \(0.722463\pi\)
\(150\) 0 0
\(151\) − 0.317667i − 0.0258514i −0.999916 0.0129257i \(-0.995886\pi\)
0.999916 0.0129257i \(-0.00411449\pi\)
\(152\) 0.911854 0.0739611
\(153\) 0 0
\(154\) 2.61596i 0.210800i
\(155\) −30.6112 −2.45875
\(156\) 0 0
\(157\) 18.8901 1.50759 0.753796 0.657108i \(-0.228220\pi\)
0.753796 + 0.657108i \(0.228220\pi\)
\(158\) 15.4819i 1.23167i
\(159\) 0 0
\(160\) −3.60388 −0.284911
\(161\) 3.75600i 0.296015i
\(162\) 0 0
\(163\) − 4.33273i − 0.339366i −0.985499 0.169683i \(-0.945726\pi\)
0.985499 0.169683i \(-0.0542744\pi\)
\(164\) 7.18598i 0.561131i
\(165\) 0 0
\(166\) −0.911854 −0.0707736
\(167\) − 14.0000i − 1.08335i −0.840587 0.541676i \(-0.817790\pi\)
0.840587 0.541676i \(-0.182210\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −21.4819 −1.64758
\(171\) 0 0
\(172\) −0.515729 −0.0393240
\(173\) −10.9879 −0.835396 −0.417698 0.908586i \(-0.637163\pi\)
−0.417698 + 0.908586i \(0.637163\pi\)
\(174\) 0 0
\(175\) − 8.86592i − 0.670201i
\(176\) 2.35690i 0.177658i
\(177\) 0 0
\(178\) −3.75063 −0.281121
\(179\) 4.65519 0.347945 0.173972 0.984751i \(-0.444340\pi\)
0.173972 + 0.984751i \(0.444340\pi\)
\(180\) 0 0
\(181\) 1.06638 0.0792631 0.0396315 0.999214i \(-0.487382\pi\)
0.0396315 + 0.999214i \(0.487382\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.38404i 0.249475i
\(185\) 17.6233 1.29569
\(186\) 0 0
\(187\) 14.0489i 1.02736i
\(188\) 6.98792i 0.509646i
\(189\) 0 0
\(190\) 3.28621i 0.238407i
\(191\) −0.890084 −0.0644042 −0.0322021 0.999481i \(-0.510252\pi\)
−0.0322021 + 0.999481i \(0.510252\pi\)
\(192\) 0 0
\(193\) 16.2174i 1.16736i 0.811985 + 0.583678i \(0.198387\pi\)
−0.811985 + 0.583678i \(0.801613\pi\)
\(194\) 14.6746 1.05357
\(195\) 0 0
\(196\) −5.76809 −0.412006
\(197\) − 11.4711i − 0.817284i −0.912695 0.408642i \(-0.866003\pi\)
0.912695 0.408642i \(-0.133997\pi\)
\(198\) 0 0
\(199\) 3.79954 0.269343 0.134671 0.990890i \(-0.457002\pi\)
0.134671 + 0.990890i \(0.457002\pi\)
\(200\) − 7.98792i − 0.564831i
\(201\) 0 0
\(202\) − 8.76809i − 0.616920i
\(203\) 4.19567i 0.294478i
\(204\) 0 0
\(205\) −25.8974 −1.80875
\(206\) 18.8116i 1.31067i
\(207\) 0 0
\(208\) 0 0
\(209\) 2.14914 0.148659
\(210\) 0 0
\(211\) −25.0465 −1.72427 −0.862137 0.506675i \(-0.830874\pi\)
−0.862137 + 0.506675i \(0.830874\pi\)
\(212\) −3.38404 −0.232417
\(213\) 0 0
\(214\) 18.0519i 1.23400i
\(215\) − 1.85862i − 0.126757i
\(216\) 0 0
\(217\) 9.42758 0.639986
\(218\) −6.09783 −0.412997
\(219\) 0 0
\(220\) −8.49396 −0.572663
\(221\) 0 0
\(222\) 0 0
\(223\) − 12.9879i − 0.869735i −0.900494 0.434868i \(-0.856795\pi\)
0.900494 0.434868i \(-0.143205\pi\)
\(224\) 1.10992 0.0741594
\(225\) 0 0
\(226\) − 12.2010i − 0.811602i
\(227\) − 13.8049i − 0.916265i −0.888884 0.458132i \(-0.848519\pi\)
0.888884 0.458132i \(-0.151481\pi\)
\(228\) 0 0
\(229\) − 11.5603i − 0.763928i −0.924177 0.381964i \(-0.875248\pi\)
0.924177 0.381964i \(-0.124752\pi\)
\(230\) −12.1957 −0.804159
\(231\) 0 0
\(232\) 3.78017i 0.248180i
\(233\) 9.77479 0.640368 0.320184 0.947355i \(-0.396255\pi\)
0.320184 + 0.947355i \(0.396255\pi\)
\(234\) 0 0
\(235\) −25.1836 −1.64280
\(236\) 10.1468i 0.660497i
\(237\) 0 0
\(238\) 6.61596 0.428849
\(239\) − 0.944378i − 0.0610867i −0.999533 0.0305434i \(-0.990276\pi\)
0.999533 0.0305434i \(-0.00972377\pi\)
\(240\) 0 0
\(241\) − 0.219833i − 0.0141607i −0.999975 0.00708033i \(-0.997746\pi\)
0.999975 0.00708033i \(-0.00225376\pi\)
\(242\) − 5.44504i − 0.350021i
\(243\) 0 0
\(244\) 0.439665 0.0281467
\(245\) − 20.7875i − 1.32806i
\(246\) 0 0
\(247\) 0 0
\(248\) 8.49396 0.539367
\(249\) 0 0
\(250\) 10.7681 0.681034
\(251\) 16.2543 1.02596 0.512980 0.858400i \(-0.328541\pi\)
0.512980 + 0.858400i \(0.328541\pi\)
\(252\) 0 0
\(253\) 7.97584i 0.501437i
\(254\) 11.4276i 0.717030i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −22.4373 −1.39960 −0.699799 0.714340i \(-0.746727\pi\)
−0.699799 + 0.714340i \(0.746727\pi\)
\(258\) 0 0
\(259\) −5.42758 −0.337254
\(260\) 0 0
\(261\) 0 0
\(262\) 2.29590i 0.141841i
\(263\) 10.4940 0.647085 0.323543 0.946214i \(-0.395126\pi\)
0.323543 + 0.946214i \(0.395126\pi\)
\(264\) 0 0
\(265\) − 12.1957i − 0.749174i
\(266\) − 1.01208i − 0.0620547i
\(267\) 0 0
\(268\) 2.14675i 0.131134i
\(269\) −26.4155 −1.61058 −0.805291 0.592880i \(-0.797991\pi\)
−0.805291 + 0.592880i \(0.797991\pi\)
\(270\) 0 0
\(271\) − 22.0301i − 1.33824i −0.743157 0.669118i \(-0.766672\pi\)
0.743157 0.669118i \(-0.233328\pi\)
\(272\) 5.96077 0.361425
\(273\) 0 0
\(274\) −9.08038 −0.548566
\(275\) − 18.8267i − 1.13529i
\(276\) 0 0
\(277\) −2.17629 −0.130761 −0.0653804 0.997860i \(-0.520826\pi\)
−0.0653804 + 0.997860i \(0.520826\pi\)
\(278\) − 18.9051i − 1.13386i
\(279\) 0 0
\(280\) 4.00000i 0.239046i
\(281\) − 25.0030i − 1.49155i −0.666196 0.745776i \(-0.732079\pi\)
0.666196 0.745776i \(-0.267921\pi\)
\(282\) 0 0
\(283\) 16.3153 0.969842 0.484921 0.874558i \(-0.338848\pi\)
0.484921 + 0.874558i \(0.338848\pi\)
\(284\) − 0.615957i − 0.0365503i
\(285\) 0 0
\(286\) 0 0
\(287\) 7.97584 0.470799
\(288\) 0 0
\(289\) 18.5308 1.09005
\(290\) −13.6233 −0.799985
\(291\) 0 0
\(292\) − 6.32304i − 0.370028i
\(293\) 1.87800i 0.109714i 0.998494 + 0.0548570i \(0.0174703\pi\)
−0.998494 + 0.0548570i \(0.982530\pi\)
\(294\) 0 0
\(295\) −36.5676 −2.12905
\(296\) −4.89008 −0.284230
\(297\) 0 0
\(298\) 18.6896 1.08266
\(299\) 0 0
\(300\) 0 0
\(301\) 0.572417i 0.0329935i
\(302\) −0.317667 −0.0182797
\(303\) 0 0
\(304\) − 0.911854i − 0.0522984i
\(305\) 1.58450i 0.0907281i
\(306\) 0 0
\(307\) − 23.9801i − 1.36862i −0.729192 0.684310i \(-0.760104\pi\)
0.729192 0.684310i \(-0.239896\pi\)
\(308\) 2.61596 0.149058
\(309\) 0 0
\(310\) 30.6112i 1.73860i
\(311\) −5.38404 −0.305301 −0.152651 0.988280i \(-0.548781\pi\)
−0.152651 + 0.988280i \(0.548781\pi\)
\(312\) 0 0
\(313\) 18.9487 1.07104 0.535522 0.844522i \(-0.320115\pi\)
0.535522 + 0.844522i \(0.320115\pi\)
\(314\) − 18.8901i − 1.06603i
\(315\) 0 0
\(316\) 15.4819 0.870924
\(317\) − 11.5013i − 0.645975i −0.946403 0.322987i \(-0.895313\pi\)
0.946403 0.322987i \(-0.104687\pi\)
\(318\) 0 0
\(319\) 8.90946i 0.498834i
\(320\) 3.60388i 0.201463i
\(321\) 0 0
\(322\) 3.75600 0.209314
\(323\) − 5.43535i − 0.302431i
\(324\) 0 0
\(325\) 0 0
\(326\) −4.33273 −0.239968
\(327\) 0 0
\(328\) 7.18598 0.396779
\(329\) 7.75600 0.427602
\(330\) 0 0
\(331\) 34.6112i 1.90240i 0.308572 + 0.951201i \(0.400149\pi\)
−0.308572 + 0.951201i \(0.599851\pi\)
\(332\) 0.911854i 0.0500445i
\(333\) 0 0
\(334\) −14.0000 −0.766046
\(335\) −7.73663 −0.422697
\(336\) 0 0
\(337\) −1.95407 −0.106445 −0.0532224 0.998583i \(-0.516949\pi\)
−0.0532224 + 0.998583i \(0.516949\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 21.4819i 1.16502i
\(341\) 20.0194 1.08411
\(342\) 0 0
\(343\) 14.1715i 0.765189i
\(344\) 0.515729i 0.0278063i
\(345\) 0 0
\(346\) 10.9879i 0.590714i
\(347\) 6.41550 0.344402 0.172201 0.985062i \(-0.444912\pi\)
0.172201 + 0.985062i \(0.444912\pi\)
\(348\) 0 0
\(349\) − 1.08575i − 0.0581190i −0.999578 0.0290595i \(-0.990749\pi\)
0.999578 0.0290595i \(-0.00925123\pi\)
\(350\) −8.86592 −0.473903
\(351\) 0 0
\(352\) 2.35690 0.125623
\(353\) − 4.28919i − 0.228291i −0.993464 0.114145i \(-0.963587\pi\)
0.993464 0.114145i \(-0.0364130\pi\)
\(354\) 0 0
\(355\) 2.21983 0.117816
\(356\) 3.75063i 0.198783i
\(357\) 0 0
\(358\) − 4.65519i − 0.246034i
\(359\) − 15.5060i − 0.818378i −0.912450 0.409189i \(-0.865812\pi\)
0.912450 0.409189i \(-0.134188\pi\)
\(360\) 0 0
\(361\) 18.1685 0.956238
\(362\) − 1.06638i − 0.0560475i
\(363\) 0 0
\(364\) 0 0
\(365\) 22.7875 1.19275
\(366\) 0 0
\(367\) 17.4276 0.909712 0.454856 0.890565i \(-0.349691\pi\)
0.454856 + 0.890565i \(0.349691\pi\)
\(368\) 3.38404 0.176405
\(369\) 0 0
\(370\) − 17.6233i − 0.916189i
\(371\) 3.75600i 0.195002i
\(372\) 0 0
\(373\) 8.19567 0.424356 0.212178 0.977231i \(-0.431944\pi\)
0.212178 + 0.977231i \(0.431944\pi\)
\(374\) 14.0489 0.726452
\(375\) 0 0
\(376\) 6.98792 0.360374
\(377\) 0 0
\(378\) 0 0
\(379\) − 15.0476i − 0.772943i −0.922301 0.386471i \(-0.873694\pi\)
0.922301 0.386471i \(-0.126306\pi\)
\(380\) 3.28621 0.168579
\(381\) 0 0
\(382\) 0.890084i 0.0455406i
\(383\) 11.1207i 0.568240i 0.958789 + 0.284120i \(0.0917014\pi\)
−0.958789 + 0.284120i \(0.908299\pi\)
\(384\) 0 0
\(385\) 9.42758i 0.480474i
\(386\) 16.2174 0.825446
\(387\) 0 0
\(388\) − 14.6746i − 0.744988i
\(389\) −8.04354 −0.407824 −0.203912 0.978989i \(-0.565366\pi\)
−0.203912 + 0.978989i \(0.565366\pi\)
\(390\) 0 0
\(391\) 20.1715 1.02012
\(392\) 5.76809i 0.291332i
\(393\) 0 0
\(394\) −11.4711 −0.577907
\(395\) 55.7948i 2.80734i
\(396\) 0 0
\(397\) 21.9081i 1.09954i 0.835317 + 0.549769i \(0.185284\pi\)
−0.835317 + 0.549769i \(0.814716\pi\)
\(398\) − 3.79954i − 0.190454i
\(399\) 0 0
\(400\) −7.98792 −0.399396
\(401\) 17.4426i 0.871044i 0.900178 + 0.435522i \(0.143436\pi\)
−0.900178 + 0.435522i \(0.856564\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −8.76809 −0.436229
\(405\) 0 0
\(406\) 4.19567 0.208228
\(407\) −11.5254 −0.571294
\(408\) 0 0
\(409\) − 17.4330i − 0.862004i −0.902351 0.431002i \(-0.858160\pi\)
0.902351 0.431002i \(-0.141840\pi\)
\(410\) 25.8974i 1.27898i
\(411\) 0 0
\(412\) 18.8116 0.926782
\(413\) 11.2620 0.554169
\(414\) 0 0
\(415\) −3.28621 −0.161314
\(416\) 0 0
\(417\) 0 0
\(418\) − 2.14914i − 0.105118i
\(419\) −9.97584 −0.487352 −0.243676 0.969857i \(-0.578353\pi\)
−0.243676 + 0.969857i \(0.578353\pi\)
\(420\) 0 0
\(421\) 0.615957i 0.0300199i 0.999887 + 0.0150100i \(0.00477800\pi\)
−0.999887 + 0.0150100i \(0.995222\pi\)
\(422\) 25.0465i 1.21925i
\(423\) 0 0
\(424\) 3.38404i 0.164344i
\(425\) −47.6142 −2.30963
\(426\) 0 0
\(427\) − 0.487991i − 0.0236156i
\(428\) 18.0519 0.872572
\(429\) 0 0
\(430\) −1.85862 −0.0896308
\(431\) 14.7922i 0.712518i 0.934387 + 0.356259i \(0.115948\pi\)
−0.934387 + 0.356259i \(0.884052\pi\)
\(432\) 0 0
\(433\) −16.5321 −0.794483 −0.397242 0.917714i \(-0.630032\pi\)
−0.397242 + 0.917714i \(0.630032\pi\)
\(434\) − 9.42758i − 0.452538i
\(435\) 0 0
\(436\) 6.09783i 0.292033i
\(437\) − 3.08575i − 0.147612i
\(438\) 0 0
\(439\) −3.50125 −0.167106 −0.0835529 0.996503i \(-0.526627\pi\)
−0.0835529 + 0.996503i \(0.526627\pi\)
\(440\) 8.49396i 0.404934i
\(441\) 0 0
\(442\) 0 0
\(443\) −17.4077 −0.827066 −0.413533 0.910489i \(-0.635705\pi\)
−0.413533 + 0.910489i \(0.635705\pi\)
\(444\) 0 0
\(445\) −13.5168 −0.640758
\(446\) −12.9879 −0.614996
\(447\) 0 0
\(448\) − 1.10992i − 0.0524386i
\(449\) 34.1497i 1.61163i 0.592170 + 0.805813i \(0.298271\pi\)
−0.592170 + 0.805813i \(0.701729\pi\)
\(450\) 0 0
\(451\) 16.9366 0.797514
\(452\) −12.2010 −0.573889
\(453\) 0 0
\(454\) −13.8049 −0.647897
\(455\) 0 0
\(456\) 0 0
\(457\) 9.40342i 0.439873i 0.975514 + 0.219937i \(0.0705851\pi\)
−0.975514 + 0.219937i \(0.929415\pi\)
\(458\) −11.5603 −0.540179
\(459\) 0 0
\(460\) 12.1957i 0.568626i
\(461\) 0.733169i 0.0341471i 0.999854 + 0.0170735i \(0.00543494\pi\)
−0.999854 + 0.0170735i \(0.994565\pi\)
\(462\) 0 0
\(463\) − 7.24267i − 0.336595i −0.985736 0.168298i \(-0.946173\pi\)
0.985736 0.168298i \(-0.0538270\pi\)
\(464\) 3.78017 0.175490
\(465\) 0 0
\(466\) − 9.77479i − 0.452808i
\(467\) 30.2446 1.39955 0.699776 0.714362i \(-0.253283\pi\)
0.699776 + 0.714362i \(0.253283\pi\)
\(468\) 0 0
\(469\) 2.38271 0.110024
\(470\) 25.1836i 1.16163i
\(471\) 0 0
\(472\) 10.1468 0.467042
\(473\) 1.21552i 0.0558897i
\(474\) 0 0
\(475\) 7.28382i 0.334204i
\(476\) − 6.61596i − 0.303242i
\(477\) 0 0
\(478\) −0.944378 −0.0431948
\(479\) − 36.7198i − 1.67777i −0.544310 0.838884i \(-0.683208\pi\)
0.544310 0.838884i \(-0.316792\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.219833 −0.0100131
\(483\) 0 0
\(484\) −5.44504 −0.247502
\(485\) 52.8853 2.40140
\(486\) 0 0
\(487\) − 28.6547i − 1.29847i −0.760588 0.649234i \(-0.775089\pi\)
0.760588 0.649234i \(-0.224911\pi\)
\(488\) − 0.439665i − 0.0199027i
\(489\) 0 0
\(490\) −20.7875 −0.939082
\(491\) 30.4295 1.37326 0.686632 0.727005i \(-0.259088\pi\)
0.686632 + 0.727005i \(0.259088\pi\)
\(492\) 0 0
\(493\) 22.5327 1.01482
\(494\) 0 0
\(495\) 0 0
\(496\) − 8.49396i − 0.381390i
\(497\) −0.683661 −0.0306664
\(498\) 0 0
\(499\) 15.9715i 0.714984i 0.933916 + 0.357492i \(0.116368\pi\)
−0.933916 + 0.357492i \(0.883632\pi\)
\(500\) − 10.7681i − 0.481563i
\(501\) 0 0
\(502\) − 16.2543i − 0.725464i
\(503\) 41.9711 1.87140 0.935698 0.352801i \(-0.114771\pi\)
0.935698 + 0.352801i \(0.114771\pi\)
\(504\) 0 0
\(505\) − 31.5991i − 1.40614i
\(506\) 7.97584 0.354569
\(507\) 0 0
\(508\) 11.4276 0.507017
\(509\) − 0.914247i − 0.0405233i −0.999795 0.0202616i \(-0.993550\pi\)
0.999795 0.0202616i \(-0.00644992\pi\)
\(510\) 0 0
\(511\) −7.01805 −0.310460
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) 22.4373i 0.989666i
\(515\) 67.7948i 2.98739i
\(516\) 0 0
\(517\) 16.4698 0.724341
\(518\) 5.42758i 0.238474i
\(519\) 0 0
\(520\) 0 0
\(521\) 3.31096 0.145056 0.0725279 0.997366i \(-0.476893\pi\)
0.0725279 + 0.997366i \(0.476893\pi\)
\(522\) 0 0
\(523\) −0.850855 −0.0372053 −0.0186026 0.999827i \(-0.505922\pi\)
−0.0186026 + 0.999827i \(0.505922\pi\)
\(524\) 2.29590 0.100297
\(525\) 0 0
\(526\) − 10.4940i − 0.457558i
\(527\) − 50.6305i − 2.20550i
\(528\) 0 0
\(529\) −11.5483 −0.502098
\(530\) −12.1957 −0.529746
\(531\) 0 0
\(532\) −1.01208 −0.0438793
\(533\) 0 0
\(534\) 0 0
\(535\) 65.0568i 2.81265i
\(536\) 2.14675 0.0927256
\(537\) 0 0
\(538\) 26.4155i 1.13885i
\(539\) 13.5948i 0.585569i
\(540\) 0 0
\(541\) 40.8853i 1.75780i 0.477010 + 0.878898i \(0.341721\pi\)
−0.477010 + 0.878898i \(0.658279\pi\)
\(542\) −22.0301 −0.946275
\(543\) 0 0
\(544\) − 5.96077i − 0.255566i
\(545\) −21.9758 −0.941341
\(546\) 0 0
\(547\) −2.39075 −0.102221 −0.0511105 0.998693i \(-0.516276\pi\)
−0.0511105 + 0.998693i \(0.516276\pi\)
\(548\) 9.08038i 0.387894i
\(549\) 0 0
\(550\) −18.8267 −0.802773
\(551\) − 3.44696i − 0.146845i
\(552\) 0 0
\(553\) − 17.1836i − 0.730720i
\(554\) 2.17629i 0.0924618i
\(555\) 0 0
\(556\) −18.9051 −0.801757
\(557\) 27.1508i 1.15042i 0.818007 + 0.575208i \(0.195079\pi\)
−0.818007 + 0.575208i \(0.804921\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) −25.0030 −1.05469
\(563\) −6.52409 −0.274958 −0.137479 0.990505i \(-0.543900\pi\)
−0.137479 + 0.990505i \(0.543900\pi\)
\(564\) 0 0
\(565\) − 43.9711i − 1.84988i
\(566\) − 16.3153i − 0.685782i
\(567\) 0 0
\(568\) −0.615957 −0.0258450
\(569\) 7.30021 0.306041 0.153020 0.988223i \(-0.451100\pi\)
0.153020 + 0.988223i \(0.451100\pi\)
\(570\) 0 0
\(571\) 43.6722 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) − 7.97584i − 0.332905i
\(575\) −27.0315 −1.12729
\(576\) 0 0
\(577\) 16.8528i 0.701590i 0.936452 + 0.350795i \(0.114089\pi\)
−0.936452 + 0.350795i \(0.885911\pi\)
\(578\) − 18.5308i − 0.770779i
\(579\) 0 0
\(580\) 13.6233i 0.565675i
\(581\) 1.01208 0.0419882
\(582\) 0 0
\(583\) 7.97584i 0.330325i
\(584\) −6.32304 −0.261649
\(585\) 0 0
\(586\) 1.87800 0.0775796
\(587\) 22.1825i 0.915571i 0.889063 + 0.457785i \(0.151357\pi\)
−0.889063 + 0.457785i \(0.848643\pi\)
\(588\) 0 0
\(589\) −7.74525 −0.319137
\(590\) 36.5676i 1.50547i
\(591\) 0 0
\(592\) 4.89008i 0.200981i
\(593\) 3.98493i 0.163642i 0.996647 + 0.0818208i \(0.0260735\pi\)
−0.996647 + 0.0818208i \(0.973926\pi\)
\(594\) 0 0
\(595\) 23.8431 0.977471
\(596\) − 18.6896i − 0.765557i
\(597\) 0 0
\(598\) 0 0
\(599\) −33.2379 −1.35806 −0.679032 0.734109i \(-0.737600\pi\)
−0.679032 + 0.734109i \(0.737600\pi\)
\(600\) 0 0
\(601\) 9.79715 0.399634 0.199817 0.979833i \(-0.435965\pi\)
0.199817 + 0.979833i \(0.435965\pi\)
\(602\) 0.572417 0.0233300
\(603\) 0 0
\(604\) 0.317667i 0.0129257i
\(605\) − 19.6233i − 0.797799i
\(606\) 0 0
\(607\) −24.2258 −0.983295 −0.491647 0.870794i \(-0.663605\pi\)
−0.491647 + 0.870794i \(0.663605\pi\)
\(608\) −0.911854 −0.0369806
\(609\) 0 0
\(610\) 1.58450 0.0641545
\(611\) 0 0
\(612\) 0 0
\(613\) − 15.0556i − 0.608091i −0.952658 0.304045i \(-0.901663\pi\)
0.952658 0.304045i \(-0.0983375\pi\)
\(614\) −23.9801 −0.967760
\(615\) 0 0
\(616\) − 2.61596i − 0.105400i
\(617\) 2.01879i 0.0812733i 0.999174 + 0.0406366i \(0.0129386\pi\)
−0.999174 + 0.0406366i \(0.987061\pi\)
\(618\) 0 0
\(619\) 7.84309i 0.315240i 0.987500 + 0.157620i \(0.0503821\pi\)
−0.987500 + 0.157620i \(0.949618\pi\)
\(620\) 30.6112 1.22937
\(621\) 0 0
\(622\) 5.38404i 0.215880i
\(623\) 4.16288 0.166782
\(624\) 0 0
\(625\) −1.13275 −0.0453101
\(626\) − 18.9487i − 0.757342i
\(627\) 0 0
\(628\) −18.8901 −0.753796
\(629\) 29.1487i 1.16223i
\(630\) 0 0
\(631\) − 24.5327i − 0.976632i −0.872667 0.488316i \(-0.837611\pi\)
0.872667 0.488316i \(-0.162389\pi\)
\(632\) − 15.4819i − 0.615836i
\(633\) 0 0
\(634\) −11.5013 −0.456773
\(635\) 41.1836i 1.63432i
\(636\) 0 0
\(637\) 0 0
\(638\) 8.90946 0.352729
\(639\) 0 0
\(640\) 3.60388 0.142456
\(641\) −41.6015 −1.64316 −0.821580 0.570093i \(-0.806907\pi\)
−0.821580 + 0.570093i \(0.806907\pi\)
\(642\) 0 0
\(643\) 45.4118i 1.79087i 0.445196 + 0.895433i \(0.353134\pi\)
−0.445196 + 0.895433i \(0.646866\pi\)
\(644\) − 3.75600i − 0.148007i
\(645\) 0 0
\(646\) −5.43535 −0.213851
\(647\) 35.8345 1.40880 0.704399 0.709804i \(-0.251217\pi\)
0.704399 + 0.709804i \(0.251217\pi\)
\(648\) 0 0
\(649\) 23.9148 0.938740
\(650\) 0 0
\(651\) 0 0
\(652\) 4.33273i 0.169683i
\(653\) −18.5590 −0.726270 −0.363135 0.931737i \(-0.618294\pi\)
−0.363135 + 0.931737i \(0.618294\pi\)
\(654\) 0 0
\(655\) 8.27413i 0.323297i
\(656\) − 7.18598i − 0.280565i
\(657\) 0 0
\(658\) − 7.75600i − 0.302361i
\(659\) 3.97525 0.154854 0.0774268 0.996998i \(-0.475330\pi\)
0.0774268 + 0.996998i \(0.475330\pi\)
\(660\) 0 0
\(661\) − 1.23191i − 0.0479159i −0.999713 0.0239580i \(-0.992373\pi\)
0.999713 0.0239580i \(-0.00762678\pi\)
\(662\) 34.6112 1.34520
\(663\) 0 0
\(664\) 0.911854 0.0353868
\(665\) − 3.64742i − 0.141441i
\(666\) 0 0
\(667\) 12.7922 0.495318
\(668\) 14.0000i 0.541676i
\(669\) 0 0
\(670\) 7.73663i 0.298892i
\(671\) − 1.03624i − 0.0400038i
\(672\) 0 0
\(673\) 36.8256 1.41952 0.709762 0.704442i \(-0.248803\pi\)
0.709762 + 0.704442i \(0.248803\pi\)
\(674\) 1.95407i 0.0752678i
\(675\) 0 0
\(676\) 0 0
\(677\) 25.9215 0.996246 0.498123 0.867106i \(-0.334023\pi\)
0.498123 + 0.867106i \(0.334023\pi\)
\(678\) 0 0
\(679\) −16.2875 −0.625058
\(680\) 21.4819 0.823792
\(681\) 0 0
\(682\) − 20.0194i − 0.766582i
\(683\) 37.5472i 1.43670i 0.695680 + 0.718352i \(0.255103\pi\)
−0.695680 + 0.718352i \(0.744897\pi\)
\(684\) 0 0
\(685\) −32.7245 −1.25034
\(686\) 14.1715 0.541071
\(687\) 0 0
\(688\) 0.515729 0.0196620
\(689\) 0 0
\(690\) 0 0
\(691\) 45.2549i 1.72158i 0.508963 + 0.860788i \(0.330029\pi\)
−0.508963 + 0.860788i \(0.669971\pi\)
\(692\) 10.9879 0.417698
\(693\) 0 0
\(694\) − 6.41550i − 0.243529i
\(695\) − 68.1318i − 2.58439i
\(696\) 0 0
\(697\) − 42.8340i − 1.62245i
\(698\) −1.08575 −0.0410964
\(699\) 0 0
\(700\) 8.86592i 0.335100i
\(701\) 36.0823 1.36281 0.681405 0.731907i \(-0.261369\pi\)
0.681405 + 0.731907i \(0.261369\pi\)
\(702\) 0 0
\(703\) 4.45904 0.168176
\(704\) − 2.35690i − 0.0888289i
\(705\) 0 0
\(706\) −4.28919 −0.161426
\(707\) 9.73184i 0.366004i
\(708\) 0 0
\(709\) 19.0664i 0.716053i 0.933711 + 0.358026i \(0.116550\pi\)
−0.933711 + 0.358026i \(0.883450\pi\)
\(710\) − 2.21983i − 0.0833088i
\(711\) 0 0
\(712\) 3.75063 0.140561
\(713\) − 28.7439i − 1.07647i
\(714\) 0 0
\(715\) 0 0
\(716\) −4.65519 −0.173972
\(717\) 0 0
\(718\) −15.5060 −0.578680
\(719\) −15.3056 −0.570802 −0.285401 0.958408i \(-0.592127\pi\)
−0.285401 + 0.958408i \(0.592127\pi\)
\(720\) 0 0
\(721\) − 20.8793i − 0.777587i
\(722\) − 18.1685i − 0.676162i
\(723\) 0 0
\(724\) −1.06638 −0.0396315
\(725\) −30.1957 −1.12144
\(726\) 0 0
\(727\) −3.46250 −0.128417 −0.0642085 0.997937i \(-0.520452\pi\)
−0.0642085 + 0.997937i \(0.520452\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) − 22.7875i − 0.843402i
\(731\) 3.07415 0.113701
\(732\) 0 0
\(733\) − 26.0930i − 0.963769i −0.876235 0.481884i \(-0.839953\pi\)
0.876235 0.481884i \(-0.160047\pi\)
\(734\) − 17.4276i − 0.643264i
\(735\) 0 0
\(736\) − 3.38404i − 0.124737i
\(737\) 5.05967 0.186375
\(738\) 0 0
\(739\) 26.4993i 0.974794i 0.873181 + 0.487397i \(0.162054\pi\)
−0.873181 + 0.487397i \(0.837946\pi\)
\(740\) −17.6233 −0.647844
\(741\) 0 0
\(742\) 3.75600 0.137887
\(743\) 0.415502i 0.0152433i 0.999971 + 0.00762164i \(0.00242607\pi\)
−0.999971 + 0.00762164i \(0.997574\pi\)
\(744\) 0 0
\(745\) 67.3551 2.46770
\(746\) − 8.19567i − 0.300065i
\(747\) 0 0
\(748\) − 14.0489i − 0.513679i
\(749\) − 20.0361i − 0.732103i
\(750\) 0 0
\(751\) −2.90946 −0.106168 −0.0530839 0.998590i \(-0.516905\pi\)
−0.0530839 + 0.998590i \(0.516905\pi\)
\(752\) − 6.98792i − 0.254823i
\(753\) 0 0
\(754\) 0 0
\(755\) −1.14483 −0.0416647
\(756\) 0 0
\(757\) 12.3720 0.449667 0.224833 0.974397i \(-0.427816\pi\)
0.224833 + 0.974397i \(0.427816\pi\)
\(758\) −15.0476 −0.546553
\(759\) 0 0
\(760\) − 3.28621i − 0.119203i
\(761\) 42.4306i 1.53811i 0.639184 + 0.769053i \(0.279272\pi\)
−0.639184 + 0.769053i \(0.720728\pi\)
\(762\) 0 0
\(763\) 6.76809 0.245021
\(764\) 0.890084 0.0322021
\(765\) 0 0
\(766\) 11.1207 0.401806
\(767\) 0 0
\(768\) 0 0
\(769\) 13.3341i 0.480839i 0.970669 + 0.240419i \(0.0772849\pi\)
−0.970669 + 0.240419i \(0.922715\pi\)
\(770\) 9.42758 0.339747
\(771\) 0 0
\(772\) − 16.2174i − 0.583678i
\(773\) 5.85384i 0.210548i 0.994443 + 0.105274i \(0.0335720\pi\)
−0.994443 + 0.105274i \(0.966428\pi\)
\(774\) 0 0
\(775\) 67.8491i 2.43721i
\(776\) −14.6746 −0.526786
\(777\) 0 0
\(778\) 8.04354i 0.288375i
\(779\) −6.55257 −0.234770
\(780\) 0 0
\(781\) −1.45175 −0.0519476
\(782\) − 20.1715i − 0.721332i
\(783\) 0 0
\(784\) 5.76809 0.206003
\(785\) − 68.0775i − 2.42979i
\(786\) 0 0
\(787\) 23.2965i 0.830430i 0.909723 + 0.415215i \(0.136294\pi\)
−0.909723 + 0.415215i \(0.863706\pi\)
\(788\) 11.4711i 0.408642i
\(789\) 0 0
\(790\) 55.7948 1.98509
\(791\) 13.5421i 0.481503i
\(792\) 0 0
\(793\) 0 0
\(794\) 21.9081 0.777491
\(795\) 0 0
\(796\) −3.79954 −0.134671
\(797\) 35.8103 1.26847 0.634233 0.773142i \(-0.281316\pi\)
0.634233 + 0.773142i \(0.281316\pi\)
\(798\) 0 0
\(799\) − 41.6534i − 1.47359i
\(800\) 7.98792i 0.282416i
\(801\) 0 0
\(802\) 17.4426 0.615921
\(803\) −14.9028 −0.525907
\(804\) 0 0
\(805\) 13.5362 0.477087
\(806\) 0 0
\(807\) 0 0
\(808\) 8.76809i 0.308460i
\(809\) −28.3744 −0.997589 −0.498795 0.866720i \(-0.666224\pi\)
−0.498795 + 0.866720i \(0.666224\pi\)
\(810\) 0 0
\(811\) 5.20344i 0.182717i 0.995818 + 0.0913587i \(0.0291210\pi\)
−0.995818 + 0.0913587i \(0.970879\pi\)
\(812\) − 4.19567i − 0.147239i
\(813\) 0 0
\(814\) 11.5254i 0.403966i
\(815\) −15.6146 −0.546957
\(816\) 0 0
\(817\) − 0.470270i − 0.0164527i
\(818\) −17.4330 −0.609529
\(819\) 0 0
\(820\) 25.8974 0.904376
\(821\) 5.65338i 0.197304i 0.995122 + 0.0986522i \(0.0314531\pi\)
−0.995122 + 0.0986522i \(0.968547\pi\)
\(822\) 0 0
\(823\) −39.0616 −1.36160 −0.680801 0.732469i \(-0.738368\pi\)
−0.680801 + 0.732469i \(0.738368\pi\)
\(824\) − 18.8116i − 0.655334i
\(825\) 0 0
\(826\) − 11.2620i − 0.391857i
\(827\) − 5.40283i − 0.187875i −0.995578 0.0939374i \(-0.970055\pi\)
0.995578 0.0939374i \(-0.0299454\pi\)
\(828\) 0 0
\(829\) 8.38537 0.291236 0.145618 0.989341i \(-0.453483\pi\)
0.145618 + 0.989341i \(0.453483\pi\)
\(830\) 3.28621i 0.114066i
\(831\) 0 0
\(832\) 0 0
\(833\) 34.3822 1.19127
\(834\) 0 0
\(835\) −50.4543 −1.74604
\(836\) −2.14914 −0.0743297
\(837\) 0 0
\(838\) 9.97584i 0.344610i
\(839\) − 3.98062i − 0.137426i −0.997636 0.0687132i \(-0.978111\pi\)
0.997636 0.0687132i \(-0.0218893\pi\)
\(840\) 0 0
\(841\) −14.7103 −0.507253
\(842\) 0.615957 0.0212273
\(843\) 0 0
\(844\) 25.0465 0.862137
\(845\) 0 0
\(846\) 0 0
\(847\) 6.04354i 0.207659i
\(848\) 3.38404 0.116209
\(849\) 0 0
\(850\) 47.6142i 1.63315i
\(851\) 16.5483i 0.567267i
\(852\) 0 0
\(853\) − 6.29350i − 0.215485i −0.994179 0.107743i \(-0.965638\pi\)
0.994179 0.107743i \(-0.0343623\pi\)
\(854\) −0.487991 −0.0166987
\(855\) 0 0
\(856\) − 18.0519i − 0.617001i
\(857\) 4.37627 0.149491 0.0747453 0.997203i \(-0.476186\pi\)
0.0747453 + 0.997203i \(0.476186\pi\)
\(858\) 0 0
\(859\) 15.0261 0.512683 0.256342 0.966586i \(-0.417483\pi\)
0.256342 + 0.966586i \(0.417483\pi\)
\(860\) 1.85862i 0.0633786i
\(861\) 0 0
\(862\) 14.7922 0.503826
\(863\) − 6.21121i − 0.211432i −0.994396 0.105716i \(-0.966287\pi\)
0.994396 0.105716i \(-0.0337134\pi\)
\(864\) 0 0
\(865\) 39.5991i 1.34641i
\(866\) 16.5321i 0.561784i
\(867\) 0 0
\(868\) −9.42758 −0.319993
\(869\) − 36.4892i − 1.23781i
\(870\) 0 0
\(871\) 0 0
\(872\) 6.09783 0.206499
\(873\) 0 0
\(874\) −3.08575 −0.104377
\(875\) −11.9517 −0.404040
\(876\) 0 0
\(877\) 38.2198i 1.29059i 0.763933 + 0.645296i \(0.223266\pi\)
−0.763933 + 0.645296i \(0.776734\pi\)
\(878\) 3.50125i 0.118162i
\(879\) 0 0
\(880\) 8.49396 0.286331
\(881\) 26.7832 0.902347 0.451174 0.892436i \(-0.351006\pi\)
0.451174 + 0.892436i \(0.351006\pi\)
\(882\) 0 0
\(883\) 34.4956 1.16087 0.580435 0.814307i \(-0.302883\pi\)
0.580435 + 0.814307i \(0.302883\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 17.4077i 0.584824i
\(887\) 23.9866 0.805391 0.402695 0.915334i \(-0.368073\pi\)
0.402695 + 0.915334i \(0.368073\pi\)
\(888\) 0 0
\(889\) − 12.6837i − 0.425396i
\(890\) 13.5168i 0.453084i
\(891\) 0 0
\(892\) 12.9879i 0.434868i
\(893\) −6.37196 −0.213230
\(894\) 0 0
\(895\) − 16.7767i − 0.560784i
\(896\) −1.10992 −0.0370797
\(897\) 0 0
\(898\) 34.1497 1.13959
\(899\) − 32.1086i − 1.07088i
\(900\) 0 0
\(901\) 20.1715 0.672010
\(902\) − 16.9366i − 0.563927i
\(903\) 0 0
\(904\) 12.2010i 0.405801i
\(905\) − 3.84309i − 0.127748i
\(906\) 0 0
\(907\) −23.9269 −0.794480 −0.397240 0.917715i \(-0.630032\pi\)
−0.397240 + 0.917715i \(0.630032\pi\)
\(908\) 13.8049i 0.458132i
\(909\) 0 0
\(910\) 0 0
\(911\) 35.8866 1.18898 0.594488 0.804104i \(-0.297355\pi\)
0.594488 + 0.804104i \(0.297355\pi\)
\(912\) 0 0
\(913\) 2.14914 0.0711263
\(914\) 9.40342 0.311037
\(915\) 0 0
\(916\) 11.5603i 0.381964i
\(917\) − 2.54825i − 0.0841507i
\(918\) 0 0
\(919\) 33.2465 1.09670 0.548351 0.836249i \(-0.315256\pi\)
0.548351 + 0.836249i \(0.315256\pi\)
\(920\) 12.1957 0.402079
\(921\) 0 0
\(922\) 0.733169 0.0241456
\(923\) 0 0
\(924\) 0 0
\(925\) − 39.0616i − 1.28434i
\(926\) −7.24267 −0.238009
\(927\) 0 0
\(928\) − 3.78017i − 0.124090i
\(929\) − 54.2583i − 1.78016i −0.455806 0.890079i \(-0.650649\pi\)
0.455806 0.890079i \(-0.349351\pi\)
\(930\) 0 0
\(931\) − 5.25965i − 0.172378i
\(932\) −9.77479 −0.320184
\(933\) 0 0
\(934\) − 30.2446i − 0.989633i
\(935\) 50.6305 1.65580
\(936\) 0 0
\(937\) 16.5265 0.539897 0.269948 0.962875i \(-0.412993\pi\)
0.269948 + 0.962875i \(0.412993\pi\)
\(938\) − 2.38271i − 0.0777984i
\(939\) 0 0
\(940\) 25.1836 0.821398
\(941\) − 41.7017i − 1.35944i −0.733473 0.679718i \(-0.762102\pi\)
0.733473 0.679718i \(-0.237898\pi\)
\(942\) 0 0
\(943\) − 24.3177i − 0.791892i
\(944\) − 10.1468i − 0.330249i
\(945\) 0 0
\(946\) 1.21552 0.0395200
\(947\) − 3.00106i − 0.0975215i −0.998810 0.0487608i \(-0.984473\pi\)
0.998810 0.0487608i \(-0.0155272\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 7.28382 0.236318
\(951\) 0 0
\(952\) −6.61596 −0.214424
\(953\) 38.1450 1.23564 0.617818 0.786321i \(-0.288017\pi\)
0.617818 + 0.786321i \(0.288017\pi\)
\(954\) 0 0
\(955\) 3.20775i 0.103800i
\(956\) 0.944378i 0.0305434i
\(957\) 0 0
\(958\) −36.7198 −1.18636
\(959\) 10.0785 0.325450
\(960\) 0 0
\(961\) −41.1473 −1.32733
\(962\) 0 0
\(963\) 0 0
\(964\) 0.219833i 0.00708033i
\(965\) 58.4456 1.88143
\(966\) 0 0
\(967\) 26.8793i 0.864381i 0.901782 + 0.432190i \(0.142259\pi\)
−0.901782 + 0.432190i \(0.857741\pi\)
\(968\) 5.44504i 0.175010i
\(969\) 0 0
\(970\) − 52.8853i − 1.69804i
\(971\) −3.13647 −0.100654 −0.0503271 0.998733i \(-0.516026\pi\)
−0.0503271 + 0.998733i \(0.516026\pi\)
\(972\) 0 0
\(973\) 20.9831i 0.672688i
\(974\) −28.6547 −0.918156
\(975\) 0 0
\(976\) −0.439665 −0.0140733
\(977\) 35.8864i 1.14811i 0.818818 + 0.574053i \(0.194630\pi\)
−0.818818 + 0.574053i \(0.805370\pi\)
\(978\) 0 0
\(979\) 8.83984 0.282522
\(980\) 20.7875i 0.664031i
\(981\) 0 0
\(982\) − 30.4295i − 0.971044i
\(983\) 30.4370i 0.970790i 0.874295 + 0.485395i \(0.161324\pi\)
−0.874295 + 0.485395i \(0.838676\pi\)
\(984\) 0 0
\(985\) −41.3405 −1.31722
\(986\) − 22.5327i − 0.717588i
\(987\) 0 0
\(988\) 0 0
\(989\) 1.74525 0.0554957
\(990\) 0 0
\(991\) 31.4470 0.998946 0.499473 0.866330i \(-0.333527\pi\)
0.499473 + 0.866330i \(0.333527\pi\)
\(992\) −8.49396 −0.269683
\(993\) 0 0
\(994\) 0.683661i 0.0216844i
\(995\) − 13.6931i − 0.434100i
\(996\) 0 0
\(997\) 19.1099 0.605217 0.302609 0.953115i \(-0.402143\pi\)
0.302609 + 0.953115i \(0.402143\pi\)
\(998\) 15.9715 0.505570
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.b.n.1351.1 6
3.2 odd 2 338.2.b.d.337.4 6
12.11 even 2 2704.2.f.m.337.6 6
13.5 odd 4 3042.2.a.z.1.1 3
13.8 odd 4 3042.2.a.bi.1.3 3
13.12 even 2 inner 3042.2.b.n.1351.6 6
39.2 even 12 338.2.c.h.191.3 6
39.5 even 4 338.2.a.h.1.1 yes 3
39.8 even 4 338.2.a.g.1.1 3
39.11 even 12 338.2.c.i.191.3 6
39.17 odd 6 338.2.e.e.23.3 12
39.20 even 12 338.2.c.i.315.3 6
39.23 odd 6 338.2.e.e.147.6 12
39.29 odd 6 338.2.e.e.147.3 12
39.32 even 12 338.2.c.h.315.3 6
39.35 odd 6 338.2.e.e.23.6 12
39.38 odd 2 338.2.b.d.337.1 6
156.47 odd 4 2704.2.a.v.1.3 3
156.83 odd 4 2704.2.a.w.1.3 3
156.155 even 2 2704.2.f.m.337.5 6
195.44 even 4 8450.2.a.bn.1.3 3
195.164 even 4 8450.2.a.bx.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.1 3 39.8 even 4
338.2.a.h.1.1 yes 3 39.5 even 4
338.2.b.d.337.1 6 39.38 odd 2
338.2.b.d.337.4 6 3.2 odd 2
338.2.c.h.191.3 6 39.2 even 12
338.2.c.h.315.3 6 39.32 even 12
338.2.c.i.191.3 6 39.11 even 12
338.2.c.i.315.3 6 39.20 even 12
338.2.e.e.23.3 12 39.17 odd 6
338.2.e.e.23.6 12 39.35 odd 6
338.2.e.e.147.3 12 39.29 odd 6
338.2.e.e.147.6 12 39.23 odd 6
2704.2.a.v.1.3 3 156.47 odd 4
2704.2.a.w.1.3 3 156.83 odd 4
2704.2.f.m.337.5 6 156.155 even 2
2704.2.f.m.337.6 6 12.11 even 2
3042.2.a.z.1.1 3 13.5 odd 4
3042.2.a.bi.1.3 3 13.8 odd 4
3042.2.b.n.1351.1 6 1.1 even 1 trivial
3042.2.b.n.1351.6 6 13.12 even 2 inner
8450.2.a.bn.1.3 3 195.44 even 4
8450.2.a.bx.1.3 3 195.164 even 4