Properties

Label 3042.2.a.bi.1.3
Level 30423042
Weight 22
Character 3042.1
Self dual yes
Analytic conductor 24.29024.290
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3042,2,Mod(1,3042)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3042.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 3042=232132 3042 = 2 \cdot 3^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3042.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,2,0,4,3,0,2,3,0,0,4,0,3,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 24.290492294924.2904922949
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 338)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 1.801941.80194 of defining polynomial
Character χ\chi == 3042.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+1.00000q4+3.60388q5+1.10992q7+1.00000q8+3.60388q10+2.35690q11+1.10992q14+1.00000q165.96077q17+0.911854q19+3.60388q20+2.35690q223.38404q23+7.98792q25+1.10992q28+3.78017q29+8.49396q31+1.00000q325.96077q34+4.00000q35+4.89008q37+0.911854q38+3.60388q40+7.18598q410.515729q43+2.35690q443.38404q466.98792q475.76809q49+7.98792q50+3.38404q53+8.49396q55+1.10992q56+3.78017q5810.1468q590.439665q61+8.49396q62+1.00000q64+2.14675q675.96077q68+4.00000q700.615957q71+6.32304q73+4.89008q74+0.911854q76+2.61596q7715.4819q79+3.60388q80+7.18598q82+0.911854q8321.4819q850.515729q86+2.35690q883.75063q893.38404q926.98792q94+3.28621q9514.6746q975.76809q98+O(q100)q+1.00000 q^{2} +1.00000 q^{4} +3.60388 q^{5} +1.10992 q^{7} +1.00000 q^{8} +3.60388 q^{10} +2.35690 q^{11} +1.10992 q^{14} +1.00000 q^{16} -5.96077 q^{17} +0.911854 q^{19} +3.60388 q^{20} +2.35690 q^{22} -3.38404 q^{23} +7.98792 q^{25} +1.10992 q^{28} +3.78017 q^{29} +8.49396 q^{31} +1.00000 q^{32} -5.96077 q^{34} +4.00000 q^{35} +4.89008 q^{37} +0.911854 q^{38} +3.60388 q^{40} +7.18598 q^{41} -0.515729 q^{43} +2.35690 q^{44} -3.38404 q^{46} -6.98792 q^{47} -5.76809 q^{49} +7.98792 q^{50} +3.38404 q^{53} +8.49396 q^{55} +1.10992 q^{56} +3.78017 q^{58} -10.1468 q^{59} -0.439665 q^{61} +8.49396 q^{62} +1.00000 q^{64} +2.14675 q^{67} -5.96077 q^{68} +4.00000 q^{70} -0.615957 q^{71} +6.32304 q^{73} +4.89008 q^{74} +0.911854 q^{76} +2.61596 q^{77} -15.4819 q^{79} +3.60388 q^{80} +7.18598 q^{82} +0.911854 q^{83} -21.4819 q^{85} -0.515729 q^{86} +2.35690 q^{88} -3.75063 q^{89} -3.38404 q^{92} -6.98792 q^{94} +3.28621 q^{95} -14.6746 q^{97} -5.76809 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q2+3q4+2q5+4q7+3q8+2q10+3q11+4q14+3q165q17q19+2q20+3q22+5q25+4q28+10q29+16q31+3q325q34++3q98+O(q100) 3 q + 3 q^{2} + 3 q^{4} + 2 q^{5} + 4 q^{7} + 3 q^{8} + 2 q^{10} + 3 q^{11} + 4 q^{14} + 3 q^{16} - 5 q^{17} - q^{19} + 2 q^{20} + 3 q^{22} + 5 q^{25} + 4 q^{28} + 10 q^{29} + 16 q^{31} + 3 q^{32} - 5 q^{34}+ \cdots + 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 0 0
44 1.00000 0.500000
55 3.60388 1.61170 0.805851 0.592118i 0.201708π-0.201708\pi
0.805851 + 0.592118i 0.201708π0.201708\pi
66 0 0
77 1.10992 0.419509 0.209754 0.977754i 0.432734π-0.432734\pi
0.209754 + 0.977754i 0.432734π0.432734\pi
88 1.00000 0.353553
99 0 0
1010 3.60388 1.13965
1111 2.35690 0.710631 0.355315 0.934746i 0.384373π-0.384373\pi
0.355315 + 0.934746i 0.384373π0.384373\pi
1212 0 0
1313 0 0
1414 1.10992 0.296638
1515 0 0
1616 1.00000 0.250000
1717 −5.96077 −1.44570 −0.722850 0.691005i 0.757168π-0.757168\pi
−0.722850 + 0.691005i 0.757168π0.757168\pi
1818 0 0
1919 0.911854 0.209194 0.104597 0.994515i 0.466645π-0.466645\pi
0.104597 + 0.994515i 0.466645π0.466645\pi
2020 3.60388 0.805851
2121 0 0
2222 2.35690 0.502492
2323 −3.38404 −0.705622 −0.352811 0.935695i 0.614774π-0.614774\pi
−0.352811 + 0.935695i 0.614774π0.614774\pi
2424 0 0
2525 7.98792 1.59758
2626 0 0
2727 0 0
2828 1.10992 0.209754
2929 3.78017 0.701959 0.350980 0.936383i 0.385849π-0.385849\pi
0.350980 + 0.936383i 0.385849π0.385849\pi
3030 0 0
3131 8.49396 1.52556 0.762780 0.646658i 0.223834π-0.223834\pi
0.762780 + 0.646658i 0.223834π0.223834\pi
3232 1.00000 0.176777
3333 0 0
3434 −5.96077 −1.02226
3535 4.00000 0.676123
3636 0 0
3737 4.89008 0.803925 0.401962 0.915656i 0.368328π-0.368328\pi
0.401962 + 0.915656i 0.368328π0.368328\pi
3838 0.911854 0.147922
3939 0 0
4040 3.60388 0.569823
4141 7.18598 1.12226 0.561131 0.827727i 0.310366π-0.310366\pi
0.561131 + 0.827727i 0.310366π0.310366\pi
4242 0 0
4343 −0.515729 −0.0786480 −0.0393240 0.999227i 0.512520π-0.512520\pi
−0.0393240 + 0.999227i 0.512520π0.512520\pi
4444 2.35690 0.355315
4545 0 0
4646 −3.38404 −0.498950
4747 −6.98792 −1.01929 −0.509646 0.860384i 0.670224π-0.670224\pi
−0.509646 + 0.860384i 0.670224π0.670224\pi
4848 0 0
4949 −5.76809 −0.824012
5050 7.98792 1.12966
5151 0 0
5252 0 0
5353 3.38404 0.464834 0.232417 0.972616i 0.425337π-0.425337\pi
0.232417 + 0.972616i 0.425337π0.425337\pi
5454 0 0
5555 8.49396 1.14533
5656 1.10992 0.148319
5757 0 0
5858 3.78017 0.496360
5959 −10.1468 −1.32099 −0.660497 0.750828i 0.729655π-0.729655\pi
−0.660497 + 0.750828i 0.729655π0.729655\pi
6060 0 0
6161 −0.439665 −0.0562933 −0.0281467 0.999604i 0.508961π-0.508961\pi
−0.0281467 + 0.999604i 0.508961π0.508961\pi
6262 8.49396 1.07873
6363 0 0
6464 1.00000 0.125000
6565 0 0
6666 0 0
6767 2.14675 0.262268 0.131134 0.991365i 0.458138π-0.458138\pi
0.131134 + 0.991365i 0.458138π0.458138\pi
6868 −5.96077 −0.722850
6969 0 0
7070 4.00000 0.478091
7171 −0.615957 −0.0731007 −0.0365503 0.999332i 0.511637π-0.511637\pi
−0.0365503 + 0.999332i 0.511637π0.511637\pi
7272 0 0
7373 6.32304 0.740056 0.370028 0.929021i 0.379348π-0.379348\pi
0.370028 + 0.929021i 0.379348π0.379348\pi
7474 4.89008 0.568461
7575 0 0
7676 0.911854 0.104597
7777 2.61596 0.298116
7878 0 0
7979 −15.4819 −1.74185 −0.870924 0.491418i 0.836479π-0.836479\pi
−0.870924 + 0.491418i 0.836479π0.836479\pi
8080 3.60388 0.402926
8181 0 0
8282 7.18598 0.793559
8383 0.911854 0.100089 0.0500445 0.998747i 0.484064π-0.484064\pi
0.0500445 + 0.998747i 0.484064π0.484064\pi
8484 0 0
8585 −21.4819 −2.33004
8686 −0.515729 −0.0556125
8787 0 0
8888 2.35690 0.251246
8989 −3.75063 −0.397566 −0.198783 0.980044i 0.563699π-0.563699\pi
−0.198783 + 0.980044i 0.563699π0.563699\pi
9090 0 0
9191 0 0
9292 −3.38404 −0.352811
9393 0 0
9494 −6.98792 −0.720749
9595 3.28621 0.337158
9696 0 0
9797 −14.6746 −1.48998 −0.744988 0.667078i 0.767545π-0.767545\pi
−0.744988 + 0.667078i 0.767545π0.767545\pi
9898 −5.76809 −0.582665
9999 0 0
100100 7.98792 0.798792
101101 −8.76809 −0.872457 −0.436229 0.899836i 0.643686π-0.643686\pi
−0.436229 + 0.899836i 0.643686π0.643686\pi
102102 0 0
103103 18.8116 1.85356 0.926782 0.375599i 0.122563π-0.122563\pi
0.926782 + 0.375599i 0.122563π0.122563\pi
104104 0 0
105105 0 0
106106 3.38404 0.328687
107107 −18.0519 −1.74514 −0.872572 0.488486i 0.837549π-0.837549\pi
−0.872572 + 0.488486i 0.837549π0.837549\pi
108108 0 0
109109 6.09783 0.584067 0.292033 0.956408i 0.405668π-0.405668\pi
0.292033 + 0.956408i 0.405668π0.405668\pi
110110 8.49396 0.809867
111111 0 0
112112 1.10992 0.104877
113113 12.2010 1.14778 0.573889 0.818933i 0.305434π-0.305434\pi
0.573889 + 0.818933i 0.305434π0.305434\pi
114114 0 0
115115 −12.1957 −1.13725
116116 3.78017 0.350980
117117 0 0
118118 −10.1468 −0.934084
119119 −6.61596 −0.606484
120120 0 0
121121 −5.44504 −0.495004
122122 −0.439665 −0.0398054
123123 0 0
124124 8.49396 0.762780
125125 10.7681 0.963127
126126 0 0
127127 11.4276 1.01403 0.507017 0.861936i 0.330748π-0.330748\pi
0.507017 + 0.861936i 0.330748π0.330748\pi
128128 1.00000 0.0883883
129129 0 0
130130 0 0
131131 −2.29590 −0.200593 −0.100297 0.994958i 0.531979π-0.531979\pi
−0.100297 + 0.994958i 0.531979π0.531979\pi
132132 0 0
133133 1.01208 0.0877586
134134 2.14675 0.185451
135135 0 0
136136 −5.96077 −0.511132
137137 −9.08038 −0.775789 −0.387894 0.921704i 0.626797π-0.626797\pi
−0.387894 + 0.921704i 0.626797π0.626797\pi
138138 0 0
139139 18.9051 1.60351 0.801757 0.597650i 0.203899π-0.203899\pi
0.801757 + 0.597650i 0.203899π0.203899\pi
140140 4.00000 0.338062
141141 0 0
142142 −0.615957 −0.0516900
143143 0 0
144144 0 0
145145 13.6233 1.13135
146146 6.32304 0.523299
147147 0 0
148148 4.89008 0.401962
149149 −18.6896 −1.53111 −0.765557 0.643368i 0.777537π-0.777537\pi
−0.765557 + 0.643368i 0.777537π0.777537\pi
150150 0 0
151151 −0.317667 −0.0258514 −0.0129257 0.999916i 0.504114π-0.504114\pi
−0.0129257 + 0.999916i 0.504114π0.504114\pi
152152 0.911854 0.0739611
153153 0 0
154154 2.61596 0.210800
155155 30.6112 2.45875
156156 0 0
157157 18.8901 1.50759 0.753796 0.657108i 0.228220π-0.228220\pi
0.753796 + 0.657108i 0.228220π0.228220\pi
158158 −15.4819 −1.23167
159159 0 0
160160 3.60388 0.284911
161161 −3.75600 −0.296015
162162 0 0
163163 −4.33273 −0.339366 −0.169683 0.985499i 0.554274π-0.554274\pi
−0.169683 + 0.985499i 0.554274π0.554274\pi
164164 7.18598 0.561131
165165 0 0
166166 0.911854 0.0707736
167167 −14.0000 −1.08335 −0.541676 0.840587i 0.682210π-0.682210\pi
−0.541676 + 0.840587i 0.682210π0.682210\pi
168168 0 0
169169 0 0
170170 −21.4819 −1.64758
171171 0 0
172172 −0.515729 −0.0393240
173173 10.9879 0.835396 0.417698 0.908586i 0.362837π-0.362837\pi
0.417698 + 0.908586i 0.362837π0.362837\pi
174174 0 0
175175 8.86592 0.670201
176176 2.35690 0.177658
177177 0 0
178178 −3.75063 −0.281121
179179 −4.65519 −0.347945 −0.173972 0.984751i 0.555660π-0.555660\pi
−0.173972 + 0.984751i 0.555660π0.555660\pi
180180 0 0
181181 −1.06638 −0.0792631 −0.0396315 0.999214i 0.512618π-0.512618\pi
−0.0396315 + 0.999214i 0.512618π0.512618\pi
182182 0 0
183183 0 0
184184 −3.38404 −0.249475
185185 17.6233 1.29569
186186 0 0
187187 −14.0489 −1.02736
188188 −6.98792 −0.509646
189189 0 0
190190 3.28621 0.238407
191191 −0.890084 −0.0644042 −0.0322021 0.999481i 0.510252π-0.510252\pi
−0.0322021 + 0.999481i 0.510252π0.510252\pi
192192 0 0
193193 16.2174 1.16736 0.583678 0.811985i 0.301613π-0.301613\pi
0.583678 + 0.811985i 0.301613π0.301613\pi
194194 −14.6746 −1.05357
195195 0 0
196196 −5.76809 −0.412006
197197 11.4711 0.817284 0.408642 0.912695i 0.366003π-0.366003\pi
0.408642 + 0.912695i 0.366003π0.366003\pi
198198 0 0
199199 −3.79954 −0.269343 −0.134671 0.990890i 0.542998π-0.542998\pi
−0.134671 + 0.990890i 0.542998π0.542998\pi
200200 7.98792 0.564831
201201 0 0
202202 −8.76809 −0.616920
203203 4.19567 0.294478
204204 0 0
205205 25.8974 1.80875
206206 18.8116 1.31067
207207 0 0
208208 0 0
209209 2.14914 0.148659
210210 0 0
211211 −25.0465 −1.72427 −0.862137 0.506675i 0.830874π-0.830874\pi
−0.862137 + 0.506675i 0.830874π0.830874\pi
212212 3.38404 0.232417
213213 0 0
214214 −18.0519 −1.23400
215215 −1.85862 −0.126757
216216 0 0
217217 9.42758 0.639986
218218 6.09783 0.412997
219219 0 0
220220 8.49396 0.572663
221221 0 0
222222 0 0
223223 12.9879 0.869735 0.434868 0.900494i 0.356795π-0.356795\pi
0.434868 + 0.900494i 0.356795π0.356795\pi
224224 1.10992 0.0741594
225225 0 0
226226 12.2010 0.811602
227227 13.8049 0.916265 0.458132 0.888884i 0.348519π-0.348519\pi
0.458132 + 0.888884i 0.348519π0.348519\pi
228228 0 0
229229 −11.5603 −0.763928 −0.381964 0.924177i 0.624752π-0.624752\pi
−0.381964 + 0.924177i 0.624752π0.624752\pi
230230 −12.1957 −0.804159
231231 0 0
232232 3.78017 0.248180
233233 −9.77479 −0.640368 −0.320184 0.947355i 0.603745π-0.603745\pi
−0.320184 + 0.947355i 0.603745π0.603745\pi
234234 0 0
235235 −25.1836 −1.64280
236236 −10.1468 −0.660497
237237 0 0
238238 −6.61596 −0.428849
239239 0.944378 0.0610867 0.0305434 0.999533i 0.490276π-0.490276\pi
0.0305434 + 0.999533i 0.490276π0.490276\pi
240240 0 0
241241 −0.219833 −0.0141607 −0.00708033 0.999975i 0.502254π-0.502254\pi
−0.00708033 + 0.999975i 0.502254π0.502254\pi
242242 −5.44504 −0.350021
243243 0 0
244244 −0.439665 −0.0281467
245245 −20.7875 −1.32806
246246 0 0
247247 0 0
248248 8.49396 0.539367
249249 0 0
250250 10.7681 0.681034
251251 −16.2543 −1.02596 −0.512980 0.858400i 0.671459π-0.671459\pi
−0.512980 + 0.858400i 0.671459π0.671459\pi
252252 0 0
253253 −7.97584 −0.501437
254254 11.4276 0.717030
255255 0 0
256256 1.00000 0.0625000
257257 22.4373 1.39960 0.699799 0.714340i 0.253273π-0.253273\pi
0.699799 + 0.714340i 0.253273π0.253273\pi
258258 0 0
259259 5.42758 0.337254
260260 0 0
261261 0 0
262262 −2.29590 −0.141841
263263 10.4940 0.647085 0.323543 0.946214i 0.395126π-0.395126\pi
0.323543 + 0.946214i 0.395126π0.395126\pi
264264 0 0
265265 12.1957 0.749174
266266 1.01208 0.0620547
267267 0 0
268268 2.14675 0.131134
269269 −26.4155 −1.61058 −0.805291 0.592880i 0.797991π-0.797991\pi
−0.805291 + 0.592880i 0.797991π0.797991\pi
270270 0 0
271271 −22.0301 −1.33824 −0.669118 0.743157i 0.733328π-0.733328\pi
−0.669118 + 0.743157i 0.733328π0.733328\pi
272272 −5.96077 −0.361425
273273 0 0
274274 −9.08038 −0.548566
275275 18.8267 1.13529
276276 0 0
277277 2.17629 0.130761 0.0653804 0.997860i 0.479174π-0.479174\pi
0.0653804 + 0.997860i 0.479174π0.479174\pi
278278 18.9051 1.13386
279279 0 0
280280 4.00000 0.239046
281281 −25.0030 −1.49155 −0.745776 0.666196i 0.767921π-0.767921\pi
−0.745776 + 0.666196i 0.767921π0.767921\pi
282282 0 0
283283 −16.3153 −0.969842 −0.484921 0.874558i 0.661152π-0.661152\pi
−0.484921 + 0.874558i 0.661152π0.661152\pi
284284 −0.615957 −0.0365503
285285 0 0
286286 0 0
287287 7.97584 0.470799
288288 0 0
289289 18.5308 1.09005
290290 13.6233 0.799985
291291 0 0
292292 6.32304 0.370028
293293 1.87800 0.109714 0.0548570 0.998494i 0.482530π-0.482530\pi
0.0548570 + 0.998494i 0.482530π0.482530\pi
294294 0 0
295295 −36.5676 −2.12905
296296 4.89008 0.284230
297297 0 0
298298 −18.6896 −1.08266
299299 0 0
300300 0 0
301301 −0.572417 −0.0329935
302302 −0.317667 −0.0182797
303303 0 0
304304 0.911854 0.0522984
305305 −1.58450 −0.0907281
306306 0 0
307307 −23.9801 −1.36862 −0.684310 0.729192i 0.739896π-0.739896\pi
−0.684310 + 0.729192i 0.739896π0.739896\pi
308308 2.61596 0.149058
309309 0 0
310310 30.6112 1.73860
311311 5.38404 0.305301 0.152651 0.988280i 0.451219π-0.451219\pi
0.152651 + 0.988280i 0.451219π0.451219\pi
312312 0 0
313313 18.9487 1.07104 0.535522 0.844522i 0.320115π-0.320115\pi
0.535522 + 0.844522i 0.320115π0.320115\pi
314314 18.8901 1.06603
315315 0 0
316316 −15.4819 −0.870924
317317 11.5013 0.645975 0.322987 0.946403i 0.395313π-0.395313\pi
0.322987 + 0.946403i 0.395313π0.395313\pi
318318 0 0
319319 8.90946 0.498834
320320 3.60388 0.201463
321321 0 0
322322 −3.75600 −0.209314
323323 −5.43535 −0.302431
324324 0 0
325325 0 0
326326 −4.33273 −0.239968
327327 0 0
328328 7.18598 0.396779
329329 −7.75600 −0.427602
330330 0 0
331331 −34.6112 −1.90240 −0.951201 0.308572i 0.900149π-0.900149\pi
−0.951201 + 0.308572i 0.900149π0.900149\pi
332332 0.911854 0.0500445
333333 0 0
334334 −14.0000 −0.766046
335335 7.73663 0.422697
336336 0 0
337337 1.95407 0.106445 0.0532224 0.998583i 0.483051π-0.483051\pi
0.0532224 + 0.998583i 0.483051π0.483051\pi
338338 0 0
339339 0 0
340340 −21.4819 −1.16502
341341 20.0194 1.08411
342342 0 0
343343 −14.1715 −0.765189
344344 −0.515729 −0.0278063
345345 0 0
346346 10.9879 0.590714
347347 6.41550 0.344402 0.172201 0.985062i 0.444912π-0.444912\pi
0.172201 + 0.985062i 0.444912π0.444912\pi
348348 0 0
349349 −1.08575 −0.0581190 −0.0290595 0.999578i 0.509251π-0.509251\pi
−0.0290595 + 0.999578i 0.509251π0.509251\pi
350350 8.86592 0.473903
351351 0 0
352352 2.35690 0.125623
353353 4.28919 0.228291 0.114145 0.993464i 0.463587π-0.463587\pi
0.114145 + 0.993464i 0.463587π0.463587\pi
354354 0 0
355355 −2.21983 −0.117816
356356 −3.75063 −0.198783
357357 0 0
358358 −4.65519 −0.246034
359359 −15.5060 −0.818378 −0.409189 0.912450i 0.634188π-0.634188\pi
−0.409189 + 0.912450i 0.634188π0.634188\pi
360360 0 0
361361 −18.1685 −0.956238
362362 −1.06638 −0.0560475
363363 0 0
364364 0 0
365365 22.7875 1.19275
366366 0 0
367367 17.4276 0.909712 0.454856 0.890565i 0.349691π-0.349691\pi
0.454856 + 0.890565i 0.349691π0.349691\pi
368368 −3.38404 −0.176405
369369 0 0
370370 17.6233 0.916189
371371 3.75600 0.195002
372372 0 0
373373 8.19567 0.424356 0.212178 0.977231i 0.431944π-0.431944\pi
0.212178 + 0.977231i 0.431944π0.431944\pi
374374 −14.0489 −0.726452
375375 0 0
376376 −6.98792 −0.360374
377377 0 0
378378 0 0
379379 15.0476 0.772943 0.386471 0.922301i 0.373694π-0.373694\pi
0.386471 + 0.922301i 0.373694π0.373694\pi
380380 3.28621 0.168579
381381 0 0
382382 −0.890084 −0.0455406
383383 −11.1207 −0.568240 −0.284120 0.958789i 0.591701π-0.591701\pi
−0.284120 + 0.958789i 0.591701π0.591701\pi
384384 0 0
385385 9.42758 0.480474
386386 16.2174 0.825446
387387 0 0
388388 −14.6746 −0.744988
389389 8.04354 0.407824 0.203912 0.978989i 0.434634π-0.434634\pi
0.203912 + 0.978989i 0.434634π0.434634\pi
390390 0 0
391391 20.1715 1.02012
392392 −5.76809 −0.291332
393393 0 0
394394 11.4711 0.577907
395395 −55.7948 −2.80734
396396 0 0
397397 21.9081 1.09954 0.549769 0.835317i 0.314716π-0.314716\pi
0.549769 + 0.835317i 0.314716π0.314716\pi
398398 −3.79954 −0.190454
399399 0 0
400400 7.98792 0.399396
401401 17.4426 0.871044 0.435522 0.900178i 0.356564π-0.356564\pi
0.435522 + 0.900178i 0.356564π0.356564\pi
402402 0 0
403403 0 0
404404 −8.76809 −0.436229
405405 0 0
406406 4.19567 0.208228
407407 11.5254 0.571294
408408 0 0
409409 17.4330 0.862004 0.431002 0.902351i 0.358160π-0.358160\pi
0.431002 + 0.902351i 0.358160π0.358160\pi
410410 25.8974 1.27898
411411 0 0
412412 18.8116 0.926782
413413 −11.2620 −0.554169
414414 0 0
415415 3.28621 0.161314
416416 0 0
417417 0 0
418418 2.14914 0.105118
419419 −9.97584 −0.487352 −0.243676 0.969857i 0.578353π-0.578353\pi
−0.243676 + 0.969857i 0.578353π0.578353\pi
420420 0 0
421421 −0.615957 −0.0300199 −0.0150100 0.999887i 0.504778π-0.504778\pi
−0.0150100 + 0.999887i 0.504778π0.504778\pi
422422 −25.0465 −1.21925
423423 0 0
424424 3.38404 0.164344
425425 −47.6142 −2.30963
426426 0 0
427427 −0.487991 −0.0236156
428428 −18.0519 −0.872572
429429 0 0
430430 −1.85862 −0.0896308
431431 −14.7922 −0.712518 −0.356259 0.934387i 0.615948π-0.615948\pi
−0.356259 + 0.934387i 0.615948π0.615948\pi
432432 0 0
433433 16.5321 0.794483 0.397242 0.917714i 0.369968π-0.369968\pi
0.397242 + 0.917714i 0.369968π0.369968\pi
434434 9.42758 0.452538
435435 0 0
436436 6.09783 0.292033
437437 −3.08575 −0.147612
438438 0 0
439439 3.50125 0.167106 0.0835529 0.996503i 0.473373π-0.473373\pi
0.0835529 + 0.996503i 0.473373π0.473373\pi
440440 8.49396 0.404934
441441 0 0
442442 0 0
443443 −17.4077 −0.827066 −0.413533 0.910489i 0.635705π-0.635705\pi
−0.413533 + 0.910489i 0.635705π0.635705\pi
444444 0 0
445445 −13.5168 −0.640758
446446 12.9879 0.614996
447447 0 0
448448 1.10992 0.0524386
449449 34.1497 1.61163 0.805813 0.592170i 0.201729π-0.201729\pi
0.805813 + 0.592170i 0.201729π0.201729\pi
450450 0 0
451451 16.9366 0.797514
452452 12.2010 0.573889
453453 0 0
454454 13.8049 0.647897
455455 0 0
456456 0 0
457457 −9.40342 −0.439873 −0.219937 0.975514i 0.570585π-0.570585\pi
−0.219937 + 0.975514i 0.570585π0.570585\pi
458458 −11.5603 −0.540179
459459 0 0
460460 −12.1957 −0.568626
461461 −0.733169 −0.0341471 −0.0170735 0.999854i 0.505435π-0.505435\pi
−0.0170735 + 0.999854i 0.505435π0.505435\pi
462462 0 0
463463 −7.24267 −0.336595 −0.168298 0.985736i 0.553827π-0.553827\pi
−0.168298 + 0.985736i 0.553827π0.553827\pi
464464 3.78017 0.175490
465465 0 0
466466 −9.77479 −0.452808
467467 −30.2446 −1.39955 −0.699776 0.714362i 0.746717π-0.746717\pi
−0.699776 + 0.714362i 0.746717π0.746717\pi
468468 0 0
469469 2.38271 0.110024
470470 −25.1836 −1.16163
471471 0 0
472472 −10.1468 −0.467042
473473 −1.21552 −0.0558897
474474 0 0
475475 7.28382 0.334204
476476 −6.61596 −0.303242
477477 0 0
478478 0.944378 0.0431948
479479 −36.7198 −1.67777 −0.838884 0.544310i 0.816792π-0.816792\pi
−0.838884 + 0.544310i 0.816792π0.816792\pi
480480 0 0
481481 0 0
482482 −0.219833 −0.0100131
483483 0 0
484484 −5.44504 −0.247502
485485 −52.8853 −2.40140
486486 0 0
487487 28.6547 1.29847 0.649234 0.760588i 0.275089π-0.275089\pi
0.649234 + 0.760588i 0.275089π0.275089\pi
488488 −0.439665 −0.0199027
489489 0 0
490490 −20.7875 −0.939082
491491 −30.4295 −1.37326 −0.686632 0.727005i 0.740912π-0.740912\pi
−0.686632 + 0.727005i 0.740912π0.740912\pi
492492 0 0
493493 −22.5327 −1.01482
494494 0 0
495495 0 0
496496 8.49396 0.381390
497497 −0.683661 −0.0306664
498498 0 0
499499 −15.9715 −0.714984 −0.357492 0.933916i 0.616368π-0.616368\pi
−0.357492 + 0.933916i 0.616368π0.616368\pi
500500 10.7681 0.481563
501501 0 0
502502 −16.2543 −0.725464
503503 41.9711 1.87140 0.935698 0.352801i 0.114771π-0.114771\pi
0.935698 + 0.352801i 0.114771π0.114771\pi
504504 0 0
505505 −31.5991 −1.40614
506506 −7.97584 −0.354569
507507 0 0
508508 11.4276 0.507017
509509 0.914247 0.0405233 0.0202616 0.999795i 0.493550π-0.493550\pi
0.0202616 + 0.999795i 0.493550π0.493550\pi
510510 0 0
511511 7.01805 0.310460
512512 1.00000 0.0441942
513513 0 0
514514 22.4373 0.989666
515515 67.7948 2.98739
516516 0 0
517517 −16.4698 −0.724341
518518 5.42758 0.238474
519519 0 0
520520 0 0
521521 3.31096 0.145056 0.0725279 0.997366i 0.476893π-0.476893\pi
0.0725279 + 0.997366i 0.476893π0.476893\pi
522522 0 0
523523 −0.850855 −0.0372053 −0.0186026 0.999827i 0.505922π-0.505922\pi
−0.0186026 + 0.999827i 0.505922π0.505922\pi
524524 −2.29590 −0.100297
525525 0 0
526526 10.4940 0.457558
527527 −50.6305 −2.20550
528528 0 0
529529 −11.5483 −0.502098
530530 12.1957 0.529746
531531 0 0
532532 1.01208 0.0438793
533533 0 0
534534 0 0
535535 −65.0568 −2.81265
536536 2.14675 0.0927256
537537 0 0
538538 −26.4155 −1.13885
539539 −13.5948 −0.585569
540540 0 0
541541 40.8853 1.75780 0.878898 0.477010i 0.158279π-0.158279\pi
0.878898 + 0.477010i 0.158279π0.158279\pi
542542 −22.0301 −0.946275
543543 0 0
544544 −5.96077 −0.255566
545545 21.9758 0.941341
546546 0 0
547547 −2.39075 −0.102221 −0.0511105 0.998693i 0.516276π-0.516276\pi
−0.0511105 + 0.998693i 0.516276π0.516276\pi
548548 −9.08038 −0.387894
549549 0 0
550550 18.8267 0.802773
551551 3.44696 0.146845
552552 0 0
553553 −17.1836 −0.730720
554554 2.17629 0.0924618
555555 0 0
556556 18.9051 0.801757
557557 27.1508 1.15042 0.575208 0.818007i 0.304921π-0.304921\pi
0.575208 + 0.818007i 0.304921π0.304921\pi
558558 0 0
559559 0 0
560560 4.00000 0.169031
561561 0 0
562562 −25.0030 −1.05469
563563 6.52409 0.274958 0.137479 0.990505i 0.456100π-0.456100\pi
0.137479 + 0.990505i 0.456100π0.456100\pi
564564 0 0
565565 43.9711 1.84988
566566 −16.3153 −0.685782
567567 0 0
568568 −0.615957 −0.0258450
569569 −7.30021 −0.306041 −0.153020 0.988223i 0.548900π-0.548900\pi
−0.153020 + 0.988223i 0.548900π0.548900\pi
570570 0 0
571571 −43.6722 −1.82762 −0.913812 0.406138i 0.866875π-0.866875\pi
−0.913812 + 0.406138i 0.866875π0.866875\pi
572572 0 0
573573 0 0
574574 7.97584 0.332905
575575 −27.0315 −1.12729
576576 0 0
577577 −16.8528 −0.701590 −0.350795 0.936452i 0.614089π-0.614089\pi
−0.350795 + 0.936452i 0.614089π0.614089\pi
578578 18.5308 0.770779
579579 0 0
580580 13.6233 0.565675
581581 1.01208 0.0419882
582582 0 0
583583 7.97584 0.330325
584584 6.32304 0.261649
585585 0 0
586586 1.87800 0.0775796
587587 −22.1825 −0.915571 −0.457785 0.889063i 0.651357π-0.651357\pi
−0.457785 + 0.889063i 0.651357π0.651357\pi
588588 0 0
589589 7.74525 0.319137
590590 −36.5676 −1.50547
591591 0 0
592592 4.89008 0.200981
593593 3.98493 0.163642 0.0818208 0.996647i 0.473926π-0.473926\pi
0.0818208 + 0.996647i 0.473926π0.473926\pi
594594 0 0
595595 −23.8431 −0.977471
596596 −18.6896 −0.765557
597597 0 0
598598 0 0
599599 −33.2379 −1.35806 −0.679032 0.734109i 0.737600π-0.737600\pi
−0.679032 + 0.734109i 0.737600π0.737600\pi
600600 0 0
601601 9.79715 0.399634 0.199817 0.979833i 0.435965π-0.435965\pi
0.199817 + 0.979833i 0.435965π0.435965\pi
602602 −0.572417 −0.0233300
603603 0 0
604604 −0.317667 −0.0129257
605605 −19.6233 −0.797799
606606 0 0
607607 −24.2258 −0.983295 −0.491647 0.870794i 0.663605π-0.663605\pi
−0.491647 + 0.870794i 0.663605π0.663605\pi
608608 0.911854 0.0369806
609609 0 0
610610 −1.58450 −0.0641545
611611 0 0
612612 0 0
613613 15.0556 0.608091 0.304045 0.952658i 0.401663π-0.401663\pi
0.304045 + 0.952658i 0.401663π0.401663\pi
614614 −23.9801 −0.967760
615615 0 0
616616 2.61596 0.105400
617617 −2.01879 −0.0812733 −0.0406366 0.999174i 0.512939π-0.512939\pi
−0.0406366 + 0.999174i 0.512939π0.512939\pi
618618 0 0
619619 7.84309 0.315240 0.157620 0.987500i 0.449618π-0.449618\pi
0.157620 + 0.987500i 0.449618π0.449618\pi
620620 30.6112 1.22937
621621 0 0
622622 5.38404 0.215880
623623 −4.16288 −0.166782
624624 0 0
625625 −1.13275 −0.0453101
626626 18.9487 0.757342
627627 0 0
628628 18.8901 0.753796
629629 −29.1487 −1.16223
630630 0 0
631631 −24.5327 −0.976632 −0.488316 0.872667i 0.662389π-0.662389\pi
−0.488316 + 0.872667i 0.662389π0.662389\pi
632632 −15.4819 −0.615836
633633 0 0
634634 11.5013 0.456773
635635 41.1836 1.63432
636636 0 0
637637 0 0
638638 8.90946 0.352729
639639 0 0
640640 3.60388 0.142456
641641 41.6015 1.64316 0.821580 0.570093i 0.193093π-0.193093\pi
0.821580 + 0.570093i 0.193093π0.193093\pi
642642 0 0
643643 −45.4118 −1.79087 −0.895433 0.445196i 0.853134π-0.853134\pi
−0.895433 + 0.445196i 0.853134π0.853134\pi
644644 −3.75600 −0.148007
645645 0 0
646646 −5.43535 −0.213851
647647 −35.8345 −1.40880 −0.704399 0.709804i 0.748783π-0.748783\pi
−0.704399 + 0.709804i 0.748783π0.748783\pi
648648 0 0
649649 −23.9148 −0.938740
650650 0 0
651651 0 0
652652 −4.33273 −0.169683
653653 −18.5590 −0.726270 −0.363135 0.931737i 0.618294π-0.618294\pi
−0.363135 + 0.931737i 0.618294π0.618294\pi
654654 0 0
655655 −8.27413 −0.323297
656656 7.18598 0.280565
657657 0 0
658658 −7.75600 −0.302361
659659 3.97525 0.154854 0.0774268 0.996998i 0.475330π-0.475330\pi
0.0774268 + 0.996998i 0.475330π0.475330\pi
660660 0 0
661661 −1.23191 −0.0479159 −0.0239580 0.999713i 0.507627π-0.507627\pi
−0.0239580 + 0.999713i 0.507627π0.507627\pi
662662 −34.6112 −1.34520
663663 0 0
664664 0.911854 0.0353868
665665 3.64742 0.141441
666666 0 0
667667 −12.7922 −0.495318
668668 −14.0000 −0.541676
669669 0 0
670670 7.73663 0.298892
671671 −1.03624 −0.0400038
672672 0 0
673673 −36.8256 −1.41952 −0.709762 0.704442i 0.751197π-0.751197\pi
−0.709762 + 0.704442i 0.751197π0.751197\pi
674674 1.95407 0.0752678
675675 0 0
676676 0 0
677677 25.9215 0.996246 0.498123 0.867106i 0.334023π-0.334023\pi
0.498123 + 0.867106i 0.334023π0.334023\pi
678678 0 0
679679 −16.2875 −0.625058
680680 −21.4819 −0.823792
681681 0 0
682682 20.0194 0.766582
683683 37.5472 1.43670 0.718352 0.695680i 0.244897π-0.244897\pi
0.718352 + 0.695680i 0.244897π0.244897\pi
684684 0 0
685685 −32.7245 −1.25034
686686 −14.1715 −0.541071
687687 0 0
688688 −0.515729 −0.0196620
689689 0 0
690690 0 0
691691 −45.2549 −1.72158 −0.860788 0.508963i 0.830029π-0.830029\pi
−0.860788 + 0.508963i 0.830029π0.830029\pi
692692 10.9879 0.417698
693693 0 0
694694 6.41550 0.243529
695695 68.1318 2.58439
696696 0 0
697697 −42.8340 −1.62245
698698 −1.08575 −0.0410964
699699 0 0
700700 8.86592 0.335100
701701 −36.0823 −1.36281 −0.681405 0.731907i 0.738631π-0.738631\pi
−0.681405 + 0.731907i 0.738631π0.738631\pi
702702 0 0
703703 4.45904 0.168176
704704 2.35690 0.0888289
705705 0 0
706706 4.28919 0.161426
707707 −9.73184 −0.366004
708708 0 0
709709 19.0664 0.716053 0.358026 0.933711i 0.383450π-0.383450\pi
0.358026 + 0.933711i 0.383450π0.383450\pi
710710 −2.21983 −0.0833088
711711 0 0
712712 −3.75063 −0.140561
713713 −28.7439 −1.07647
714714 0 0
715715 0 0
716716 −4.65519 −0.173972
717717 0 0
718718 −15.5060 −0.578680
719719 15.3056 0.570802 0.285401 0.958408i 0.407873π-0.407873\pi
0.285401 + 0.958408i 0.407873π0.407873\pi
720720 0 0
721721 20.8793 0.777587
722722 −18.1685 −0.676162
723723 0 0
724724 −1.06638 −0.0396315
725725 30.1957 1.12144
726726 0 0
727727 3.46250 0.128417 0.0642085 0.997937i 0.479548π-0.479548\pi
0.0642085 + 0.997937i 0.479548π0.479548\pi
728728 0 0
729729 0 0
730730 22.7875 0.843402
731731 3.07415 0.113701
732732 0 0
733733 26.0930 0.963769 0.481884 0.876235i 0.339953π-0.339953\pi
0.481884 + 0.876235i 0.339953π0.339953\pi
734734 17.4276 0.643264
735735 0 0
736736 −3.38404 −0.124737
737737 5.05967 0.186375
738738 0 0
739739 26.4993 0.974794 0.487397 0.873181i 0.337946π-0.337946\pi
0.487397 + 0.873181i 0.337946π0.337946\pi
740740 17.6233 0.647844
741741 0 0
742742 3.75600 0.137887
743743 −0.415502 −0.0152433 −0.00762164 0.999971i 0.502426π-0.502426\pi
−0.00762164 + 0.999971i 0.502426π0.502426\pi
744744 0 0
745745 −67.3551 −2.46770
746746 8.19567 0.300065
747747 0 0
748748 −14.0489 −0.513679
749749 −20.0361 −0.732103
750750 0 0
751751 2.90946 0.106168 0.0530839 0.998590i 0.483095π-0.483095\pi
0.0530839 + 0.998590i 0.483095π0.483095\pi
752752 −6.98792 −0.254823
753753 0 0
754754 0 0
755755 −1.14483 −0.0416647
756756 0 0
757757 12.3720 0.449667 0.224833 0.974397i 0.427816π-0.427816\pi
0.224833 + 0.974397i 0.427816π0.427816\pi
758758 15.0476 0.546553
759759 0 0
760760 3.28621 0.119203
761761 42.4306 1.53811 0.769053 0.639184i 0.220728π-0.220728\pi
0.769053 + 0.639184i 0.220728π0.220728\pi
762762 0 0
763763 6.76809 0.245021
764764 −0.890084 −0.0322021
765765 0 0
766766 −11.1207 −0.401806
767767 0 0
768768 0 0
769769 −13.3341 −0.480839 −0.240419 0.970669i 0.577285π-0.577285\pi
−0.240419 + 0.970669i 0.577285π0.577285\pi
770770 9.42758 0.339747
771771 0 0
772772 16.2174 0.583678
773773 −5.85384 −0.210548 −0.105274 0.994443i 0.533572π-0.533572\pi
−0.105274 + 0.994443i 0.533572π0.533572\pi
774774 0 0
775775 67.8491 2.43721
776776 −14.6746 −0.526786
777777 0 0
778778 8.04354 0.288375
779779 6.55257 0.234770
780780 0 0
781781 −1.45175 −0.0519476
782782 20.1715 0.721332
783783 0 0
784784 −5.76809 −0.206003
785785 68.0775 2.42979
786786 0 0
787787 23.2965 0.830430 0.415215 0.909723i 0.363706π-0.363706\pi
0.415215 + 0.909723i 0.363706π0.363706\pi
788788 11.4711 0.408642
789789 0 0
790790 −55.7948 −1.98509
791791 13.5421 0.481503
792792 0 0
793793 0 0
794794 21.9081 0.777491
795795 0 0
796796 −3.79954 −0.134671
797797 −35.8103 −1.26847 −0.634233 0.773142i 0.718684π-0.718684\pi
−0.634233 + 0.773142i 0.718684π0.718684\pi
798798 0 0
799799 41.6534 1.47359
800800 7.98792 0.282416
801801 0 0
802802 17.4426 0.615921
803803 14.9028 0.525907
804804 0 0
805805 −13.5362 −0.477087
806806 0 0
807807 0 0
808808 −8.76809 −0.308460
809809 −28.3744 −0.997589 −0.498795 0.866720i 0.666224π-0.666224\pi
−0.498795 + 0.866720i 0.666224π0.666224\pi
810810 0 0
811811 −5.20344 −0.182717 −0.0913587 0.995818i 0.529121π-0.529121\pi
−0.0913587 + 0.995818i 0.529121π0.529121\pi
812812 4.19567 0.147239
813813 0 0
814814 11.5254 0.403966
815815 −15.6146 −0.546957
816816 0 0
817817 −0.470270 −0.0164527
818818 17.4330 0.609529
819819 0 0
820820 25.8974 0.904376
821821 −5.65338 −0.197304 −0.0986522 0.995122i 0.531453π-0.531453\pi
−0.0986522 + 0.995122i 0.531453π0.531453\pi
822822 0 0
823823 39.0616 1.36160 0.680801 0.732469i 0.261632π-0.261632\pi
0.680801 + 0.732469i 0.261632π0.261632\pi
824824 18.8116 0.655334
825825 0 0
826826 −11.2620 −0.391857
827827 −5.40283 −0.187875 −0.0939374 0.995578i 0.529945π-0.529945\pi
−0.0939374 + 0.995578i 0.529945π0.529945\pi
828828 0 0
829829 −8.38537 −0.291236 −0.145618 0.989341i 0.546517π-0.546517\pi
−0.145618 + 0.989341i 0.546517π0.546517\pi
830830 3.28621 0.114066
831831 0 0
832832 0 0
833833 34.3822 1.19127
834834 0 0
835835 −50.4543 −1.74604
836836 2.14914 0.0743297
837837 0 0
838838 −9.97584 −0.344610
839839 −3.98062 −0.137426 −0.0687132 0.997636i 0.521889π-0.521889\pi
−0.0687132 + 0.997636i 0.521889π0.521889\pi
840840 0 0
841841 −14.7103 −0.507253
842842 −0.615957 −0.0212273
843843 0 0
844844 −25.0465 −0.862137
845845 0 0
846846 0 0
847847 −6.04354 −0.207659
848848 3.38404 0.116209
849849 0 0
850850 −47.6142 −1.63315
851851 −16.5483 −0.567267
852852 0 0
853853 −6.29350 −0.215485 −0.107743 0.994179i 0.534362π-0.534362\pi
−0.107743 + 0.994179i 0.534362π0.534362\pi
854854 −0.487991 −0.0166987
855855 0 0
856856 −18.0519 −0.617001
857857 −4.37627 −0.149491 −0.0747453 0.997203i 0.523814π-0.523814\pi
−0.0747453 + 0.997203i 0.523814π0.523814\pi
858858 0 0
859859 15.0261 0.512683 0.256342 0.966586i 0.417483π-0.417483\pi
0.256342 + 0.966586i 0.417483π0.417483\pi
860860 −1.85862 −0.0633786
861861 0 0
862862 −14.7922 −0.503826
863863 6.21121 0.211432 0.105716 0.994396i 0.466287π-0.466287\pi
0.105716 + 0.994396i 0.466287π0.466287\pi
864864 0 0
865865 39.5991 1.34641
866866 16.5321 0.561784
867867 0 0
868868 9.42758 0.319993
869869 −36.4892 −1.23781
870870 0 0
871871 0 0
872872 6.09783 0.206499
873873 0 0
874874 −3.08575 −0.104377
875875 11.9517 0.404040
876876 0 0
877877 −38.2198 −1.29059 −0.645296 0.763933i 0.723266π-0.723266\pi
−0.645296 + 0.763933i 0.723266π0.723266\pi
878878 3.50125 0.118162
879879 0 0
880880 8.49396 0.286331
881881 −26.7832 −0.902347 −0.451174 0.892436i 0.648994π-0.648994\pi
−0.451174 + 0.892436i 0.648994π0.648994\pi
882882 0 0
883883 −34.4956 −1.16087 −0.580435 0.814307i 0.697117π-0.697117\pi
−0.580435 + 0.814307i 0.697117π0.697117\pi
884884 0 0
885885 0 0
886886 −17.4077 −0.584824
887887 23.9866 0.805391 0.402695 0.915334i 0.368073π-0.368073\pi
0.402695 + 0.915334i 0.368073π0.368073\pi
888888 0 0
889889 12.6837 0.425396
890890 −13.5168 −0.453084
891891 0 0
892892 12.9879 0.434868
893893 −6.37196 −0.213230
894894 0 0
895895 −16.7767 −0.560784
896896 1.10992 0.0370797
897897 0 0
898898 34.1497 1.13959
899899 32.1086 1.07088
900900 0 0
901901 −20.1715 −0.672010
902902 16.9366 0.563927
903903 0 0
904904 12.2010 0.405801
905905 −3.84309 −0.127748
906906 0 0
907907 23.9269 0.794480 0.397240 0.917715i 0.369968π-0.369968\pi
0.397240 + 0.917715i 0.369968π0.369968\pi
908908 13.8049 0.458132
909909 0 0
910910 0 0
911911 35.8866 1.18898 0.594488 0.804104i 0.297355π-0.297355\pi
0.594488 + 0.804104i 0.297355π0.297355\pi
912912 0 0
913913 2.14914 0.0711263
914914 −9.40342 −0.311037
915915 0 0
916916 −11.5603 −0.381964
917917 −2.54825 −0.0841507
918918 0 0
919919 33.2465 1.09670 0.548351 0.836249i 0.315256π-0.315256\pi
0.548351 + 0.836249i 0.315256π0.315256\pi
920920 −12.1957 −0.402079
921921 0 0
922922 −0.733169 −0.0241456
923923 0 0
924924 0 0
925925 39.0616 1.28434
926926 −7.24267 −0.238009
927927 0 0
928928 3.78017 0.124090
929929 54.2583 1.78016 0.890079 0.455806i 0.150649π-0.150649\pi
0.890079 + 0.455806i 0.150649π0.150649\pi
930930 0 0
931931 −5.25965 −0.172378
932932 −9.77479 −0.320184
933933 0 0
934934 −30.2446 −0.989633
935935 −50.6305 −1.65580
936936 0 0
937937 16.5265 0.539897 0.269948 0.962875i 0.412993π-0.412993\pi
0.269948 + 0.962875i 0.412993π0.412993\pi
938938 2.38271 0.0777984
939939 0 0
940940 −25.1836 −0.821398
941941 41.7017 1.35944 0.679718 0.733473i 0.262102π-0.262102\pi
0.679718 + 0.733473i 0.262102π0.262102\pi
942942 0 0
943943 −24.3177 −0.791892
944944 −10.1468 −0.330249
945945 0 0
946946 −1.21552 −0.0395200
947947 −3.00106 −0.0975215 −0.0487608 0.998810i 0.515527π-0.515527\pi
−0.0487608 + 0.998810i 0.515527π0.515527\pi
948948 0 0
949949 0 0
950950 7.28382 0.236318
951951 0 0
952952 −6.61596 −0.214424
953953 −38.1450 −1.23564 −0.617818 0.786321i 0.711983π-0.711983\pi
−0.617818 + 0.786321i 0.711983π0.711983\pi
954954 0 0
955955 −3.20775 −0.103800
956956 0.944378 0.0305434
957957 0 0
958958 −36.7198 −1.18636
959959 −10.0785 −0.325450
960960 0 0
961961 41.1473 1.32733
962962 0 0
963963 0 0
964964 −0.219833 −0.00708033
965965 58.4456 1.88143
966966 0 0
967967 −26.8793 −0.864381 −0.432190 0.901782i 0.642259π-0.642259\pi
−0.432190 + 0.901782i 0.642259π0.642259\pi
968968 −5.44504 −0.175010
969969 0 0
970970 −52.8853 −1.69804
971971 −3.13647 −0.100654 −0.0503271 0.998733i 0.516026π-0.516026\pi
−0.0503271 + 0.998733i 0.516026π0.516026\pi
972972 0 0
973973 20.9831 0.672688
974974 28.6547 0.918156
975975 0 0
976976 −0.439665 −0.0140733
977977 −35.8864 −1.14811 −0.574053 0.818818i 0.694630π-0.694630\pi
−0.574053 + 0.818818i 0.694630π0.694630\pi
978978 0 0
979979 −8.83984 −0.282522
980980 −20.7875 −0.664031
981981 0 0
982982 −30.4295 −0.971044
983983 30.4370 0.970790 0.485395 0.874295i 0.338676π-0.338676\pi
0.485395 + 0.874295i 0.338676π0.338676\pi
984984 0 0
985985 41.3405 1.31722
986986 −22.5327 −0.717588
987987 0 0
988988 0 0
989989 1.74525 0.0554957
990990 0 0
991991 31.4470 0.998946 0.499473 0.866330i 0.333527π-0.333527\pi
0.499473 + 0.866330i 0.333527π0.333527\pi
992992 8.49396 0.269683
993993 0 0
994994 −0.683661 −0.0216844
995995 −13.6931 −0.434100
996996 0 0
997997 19.1099 0.605217 0.302609 0.953115i 0.402143π-0.402143\pi
0.302609 + 0.953115i 0.402143π0.402143\pi
998998 −15.9715 −0.505570
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.bi.1.3 3
3.2 odd 2 338.2.a.g.1.1 3
12.11 even 2 2704.2.a.v.1.3 3
13.5 odd 4 3042.2.b.n.1351.1 6
13.8 odd 4 3042.2.b.n.1351.6 6
13.12 even 2 3042.2.a.z.1.1 3
15.14 odd 2 8450.2.a.bx.1.3 3
39.2 even 12 338.2.e.e.147.3 12
39.5 even 4 338.2.b.d.337.4 6
39.8 even 4 338.2.b.d.337.1 6
39.11 even 12 338.2.e.e.147.6 12
39.17 odd 6 338.2.c.h.315.3 6
39.20 even 12 338.2.e.e.23.3 12
39.23 odd 6 338.2.c.h.191.3 6
39.29 odd 6 338.2.c.i.191.3 6
39.32 even 12 338.2.e.e.23.6 12
39.35 odd 6 338.2.c.i.315.3 6
39.38 odd 2 338.2.a.h.1.1 yes 3
156.47 odd 4 2704.2.f.m.337.5 6
156.83 odd 4 2704.2.f.m.337.6 6
156.155 even 2 2704.2.a.w.1.3 3
195.194 odd 2 8450.2.a.bn.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.1 3 3.2 odd 2
338.2.a.h.1.1 yes 3 39.38 odd 2
338.2.b.d.337.1 6 39.8 even 4
338.2.b.d.337.4 6 39.5 even 4
338.2.c.h.191.3 6 39.23 odd 6
338.2.c.h.315.3 6 39.17 odd 6
338.2.c.i.191.3 6 39.29 odd 6
338.2.c.i.315.3 6 39.35 odd 6
338.2.e.e.23.3 12 39.20 even 12
338.2.e.e.23.6 12 39.32 even 12
338.2.e.e.147.3 12 39.2 even 12
338.2.e.e.147.6 12 39.11 even 12
2704.2.a.v.1.3 3 12.11 even 2
2704.2.a.w.1.3 3 156.155 even 2
2704.2.f.m.337.5 6 156.47 odd 4
2704.2.f.m.337.6 6 156.83 odd 4
3042.2.a.z.1.1 3 13.12 even 2
3042.2.a.bi.1.3 3 1.1 even 1 trivial
3042.2.b.n.1351.1 6 13.5 odd 4
3042.2.b.n.1351.6 6 13.8 odd 4
8450.2.a.bn.1.3 3 195.194 odd 2
8450.2.a.bx.1.3 3 15.14 odd 2