Properties

Label 2704.2.f.m.337.6
Level $2704$
Weight $2$
Character 2704.337
Analytic conductor $21.592$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2704,2,Mod(337,2704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2704, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2704.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2704 = 2^{4} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2704.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,0,0,0,0,16,0,0,0,0,0,0,0,-10,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5915487066\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 338)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.6
Root \(-0.445042i\) of defining polynomial
Character \(\chi\) \(=\) 2704.337
Dual form 2704.2.f.m.337.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.04892 q^{3} +3.60388i q^{5} -1.10992i q^{7} +1.19806 q^{9} +2.35690i q^{11} +7.38404i q^{15} -5.96077 q^{17} +0.911854i q^{19} -2.27413i q^{21} +3.38404 q^{23} -7.98792 q^{25} -3.69202 q^{27} -3.78017 q^{29} +8.49396i q^{31} +4.82908i q^{33} +4.00000 q^{35} +4.89008i q^{37} +7.18598i q^{41} -0.515729 q^{43} +4.31767i q^{45} -6.98792i q^{47} +5.76809 q^{49} -12.2131 q^{51} -3.38404 q^{53} -8.49396 q^{55} +1.86831i q^{57} -10.1468i q^{59} -0.439665 q^{61} -1.32975i q^{63} +2.14675i q^{67} +6.93362 q^{69} +0.615957i q^{71} +6.32304i q^{73} -16.3666 q^{75} +2.61596 q^{77} +15.4819 q^{79} -11.1588 q^{81} -0.911854i q^{83} -21.4819i q^{85} -7.74525 q^{87} +3.75063i q^{89} +17.4034i q^{93} -3.28621 q^{95} +14.6746i q^{97} +2.82371i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 16 q^{9} - 10 q^{17} - 10 q^{25} - 12 q^{27} - 20 q^{29} + 24 q^{35} + 22 q^{43} - 6 q^{49} - 32 q^{51} - 32 q^{55} - 8 q^{61} + 28 q^{69} - 46 q^{75} + 36 q^{77} + 36 q^{79} - 50 q^{81}+ \cdots - 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2704\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1185\) \(2367\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.04892 1.18294 0.591471 0.806326i \(-0.298547\pi\)
0.591471 + 0.806326i \(0.298547\pi\)
\(4\) 0 0
\(5\) 3.60388i 1.61170i 0.592118 + 0.805851i \(0.298292\pi\)
−0.592118 + 0.805851i \(0.701708\pi\)
\(6\) 0 0
\(7\) − 1.10992i − 0.419509i −0.977754 0.209754i \(-0.932734\pi\)
0.977754 0.209754i \(-0.0672665\pi\)
\(8\) 0 0
\(9\) 1.19806 0.399354
\(10\) 0 0
\(11\) 2.35690i 0.710631i 0.934746 + 0.355315i \(0.115627\pi\)
−0.934746 + 0.355315i \(0.884373\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 7.38404i 1.90655i
\(16\) 0 0
\(17\) −5.96077 −1.44570 −0.722850 0.691005i \(-0.757168\pi\)
−0.722850 + 0.691005i \(0.757168\pi\)
\(18\) 0 0
\(19\) 0.911854i 0.209194i 0.994515 + 0.104597i \(0.0333552\pi\)
−0.994515 + 0.104597i \(0.966645\pi\)
\(20\) 0 0
\(21\) − 2.27413i − 0.496255i
\(22\) 0 0
\(23\) 3.38404 0.705622 0.352811 0.935695i \(-0.385226\pi\)
0.352811 + 0.935695i \(0.385226\pi\)
\(24\) 0 0
\(25\) −7.98792 −1.59758
\(26\) 0 0
\(27\) −3.69202 −0.710530
\(28\) 0 0
\(29\) −3.78017 −0.701959 −0.350980 0.936383i \(-0.614151\pi\)
−0.350980 + 0.936383i \(0.614151\pi\)
\(30\) 0 0
\(31\) 8.49396i 1.52556i 0.646658 + 0.762780i \(0.276166\pi\)
−0.646658 + 0.762780i \(0.723834\pi\)
\(32\) 0 0
\(33\) 4.82908i 0.840636i
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 4.89008i 0.803925i 0.915656 + 0.401962i \(0.131672\pi\)
−0.915656 + 0.401962i \(0.868328\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.18598i 1.12226i 0.827727 + 0.561131i \(0.189634\pi\)
−0.827727 + 0.561131i \(0.810366\pi\)
\(42\) 0 0
\(43\) −0.515729 −0.0786480 −0.0393240 0.999227i \(-0.512520\pi\)
−0.0393240 + 0.999227i \(0.512520\pi\)
\(44\) 0 0
\(45\) 4.31767i 0.643640i
\(46\) 0 0
\(47\) − 6.98792i − 1.01929i −0.860384 0.509646i \(-0.829776\pi\)
0.860384 0.509646i \(-0.170224\pi\)
\(48\) 0 0
\(49\) 5.76809 0.824012
\(50\) 0 0
\(51\) −12.2131 −1.71018
\(52\) 0 0
\(53\) −3.38404 −0.464834 −0.232417 0.972616i \(-0.574663\pi\)
−0.232417 + 0.972616i \(0.574663\pi\)
\(54\) 0 0
\(55\) −8.49396 −1.14533
\(56\) 0 0
\(57\) 1.86831i 0.247464i
\(58\) 0 0
\(59\) − 10.1468i − 1.32099i −0.750828 0.660497i \(-0.770345\pi\)
0.750828 0.660497i \(-0.229655\pi\)
\(60\) 0 0
\(61\) −0.439665 −0.0562933 −0.0281467 0.999604i \(-0.508961\pi\)
−0.0281467 + 0.999604i \(0.508961\pi\)
\(62\) 0 0
\(63\) − 1.32975i − 0.167533i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.14675i 0.262268i 0.991365 + 0.131134i \(0.0418617\pi\)
−0.991365 + 0.131134i \(0.958138\pi\)
\(68\) 0 0
\(69\) 6.93362 0.834710
\(70\) 0 0
\(71\) 0.615957i 0.0731007i 0.999332 + 0.0365503i \(0.0116369\pi\)
−0.999332 + 0.0365503i \(0.988363\pi\)
\(72\) 0 0
\(73\) 6.32304i 0.740056i 0.929021 + 0.370028i \(0.120652\pi\)
−0.929021 + 0.370028i \(0.879348\pi\)
\(74\) 0 0
\(75\) −16.3666 −1.88985
\(76\) 0 0
\(77\) 2.61596 0.298116
\(78\) 0 0
\(79\) 15.4819 1.74185 0.870924 0.491418i \(-0.163521\pi\)
0.870924 + 0.491418i \(0.163521\pi\)
\(80\) 0 0
\(81\) −11.1588 −1.23987
\(82\) 0 0
\(83\) − 0.911854i − 0.100089i −0.998747 0.0500445i \(-0.984064\pi\)
0.998747 0.0500445i \(-0.0159363\pi\)
\(84\) 0 0
\(85\) − 21.4819i − 2.33004i
\(86\) 0 0
\(87\) −7.74525 −0.830378
\(88\) 0 0
\(89\) 3.75063i 0.397566i 0.980044 + 0.198783i \(0.0636988\pi\)
−0.980044 + 0.198783i \(0.936301\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 17.4034i 1.80465i
\(94\) 0 0
\(95\) −3.28621 −0.337158
\(96\) 0 0
\(97\) 14.6746i 1.48998i 0.667078 + 0.744988i \(0.267545\pi\)
−0.667078 + 0.744988i \(0.732455\pi\)
\(98\) 0 0
\(99\) 2.82371i 0.283793i
\(100\) 0 0
\(101\) −8.76809 −0.872457 −0.436229 0.899836i \(-0.643686\pi\)
−0.436229 + 0.899836i \(0.643686\pi\)
\(102\) 0 0
\(103\) 18.8116 1.85356 0.926782 0.375599i \(-0.122563\pi\)
0.926782 + 0.375599i \(0.122563\pi\)
\(104\) 0 0
\(105\) 8.19567 0.799815
\(106\) 0 0
\(107\) −18.0519 −1.74514 −0.872572 0.488486i \(-0.837549\pi\)
−0.872572 + 0.488486i \(0.837549\pi\)
\(108\) 0 0
\(109\) − 6.09783i − 0.584067i −0.956408 0.292033i \(-0.905668\pi\)
0.956408 0.292033i \(-0.0943318\pi\)
\(110\) 0 0
\(111\) 10.0194i 0.950997i
\(112\) 0 0
\(113\) −12.2010 −1.14778 −0.573889 0.818933i \(-0.694566\pi\)
−0.573889 + 0.818933i \(0.694566\pi\)
\(114\) 0 0
\(115\) 12.1957i 1.13725i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.61596i 0.606484i
\(120\) 0 0
\(121\) 5.44504 0.495004
\(122\) 0 0
\(123\) 14.7235i 1.32757i
\(124\) 0 0
\(125\) − 10.7681i − 0.963127i
\(126\) 0 0
\(127\) 11.4276 1.01403 0.507017 0.861936i \(-0.330748\pi\)
0.507017 + 0.861936i \(0.330748\pi\)
\(128\) 0 0
\(129\) −1.05669 −0.0930361
\(130\) 0 0
\(131\) −2.29590 −0.200593 −0.100297 0.994958i \(-0.531979\pi\)
−0.100297 + 0.994958i \(0.531979\pi\)
\(132\) 0 0
\(133\) 1.01208 0.0877586
\(134\) 0 0
\(135\) − 13.3056i − 1.14516i
\(136\) 0 0
\(137\) 9.08038i 0.775789i 0.921704 + 0.387894i \(0.126797\pi\)
−0.921704 + 0.387894i \(0.873203\pi\)
\(138\) 0 0
\(139\) −18.9051 −1.60351 −0.801757 0.597650i \(-0.796101\pi\)
−0.801757 + 0.597650i \(0.796101\pi\)
\(140\) 0 0
\(141\) − 14.3177i − 1.20577i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 13.6233i − 1.13135i
\(146\) 0 0
\(147\) 11.8183 0.974760
\(148\) 0 0
\(149\) − 18.6896i − 1.53111i −0.643368 0.765557i \(-0.722463\pi\)
0.643368 0.765557i \(-0.277537\pi\)
\(150\) 0 0
\(151\) 0.317667i 0.0258514i 0.999916 + 0.0129257i \(0.00411449\pi\)
−0.999916 + 0.0129257i \(0.995886\pi\)
\(152\) 0 0
\(153\) −7.14138 −0.577346
\(154\) 0 0
\(155\) −30.6112 −2.45875
\(156\) 0 0
\(157\) 18.8901 1.50759 0.753796 0.657108i \(-0.228220\pi\)
0.753796 + 0.657108i \(0.228220\pi\)
\(158\) 0 0
\(159\) −6.93362 −0.549872
\(160\) 0 0
\(161\) − 3.75600i − 0.296015i
\(162\) 0 0
\(163\) 4.33273i 0.339366i 0.985499 + 0.169683i \(0.0542744\pi\)
−0.985499 + 0.169683i \(0.945726\pi\)
\(164\) 0 0
\(165\) −17.4034 −1.35485
\(166\) 0 0
\(167\) − 14.0000i − 1.08335i −0.840587 0.541676i \(-0.817790\pi\)
0.840587 0.541676i \(-0.182210\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 1.09246i 0.0835423i
\(172\) 0 0
\(173\) 10.9879 0.835396 0.417698 0.908586i \(-0.362837\pi\)
0.417698 + 0.908586i \(0.362837\pi\)
\(174\) 0 0
\(175\) 8.86592i 0.670201i
\(176\) 0 0
\(177\) − 20.7899i − 1.56266i
\(178\) 0 0
\(179\) 4.65519 0.347945 0.173972 0.984751i \(-0.444340\pi\)
0.173972 + 0.984751i \(0.444340\pi\)
\(180\) 0 0
\(181\) 1.06638 0.0792631 0.0396315 0.999214i \(-0.487382\pi\)
0.0396315 + 0.999214i \(0.487382\pi\)
\(182\) 0 0
\(183\) −0.900837 −0.0665918
\(184\) 0 0
\(185\) −17.6233 −1.29569
\(186\) 0 0
\(187\) − 14.0489i − 1.02736i
\(188\) 0 0
\(189\) 4.09783i 0.298074i
\(190\) 0 0
\(191\) −0.890084 −0.0644042 −0.0322021 0.999481i \(-0.510252\pi\)
−0.0322021 + 0.999481i \(0.510252\pi\)
\(192\) 0 0
\(193\) 16.2174i 1.16736i 0.811985 + 0.583678i \(0.198387\pi\)
−0.811985 + 0.583678i \(0.801613\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.4711i 0.817284i 0.912695 + 0.408642i \(0.133997\pi\)
−0.912695 + 0.408642i \(0.866003\pi\)
\(198\) 0 0
\(199\) −3.79954 −0.269343 −0.134671 0.990890i \(-0.542998\pi\)
−0.134671 + 0.990890i \(0.542998\pi\)
\(200\) 0 0
\(201\) 4.39852i 0.310247i
\(202\) 0 0
\(203\) 4.19567i 0.294478i
\(204\) 0 0
\(205\) −25.8974 −1.80875
\(206\) 0 0
\(207\) 4.05429 0.281793
\(208\) 0 0
\(209\) −2.14914 −0.148659
\(210\) 0 0
\(211\) 25.0465 1.72427 0.862137 0.506675i \(-0.169126\pi\)
0.862137 + 0.506675i \(0.169126\pi\)
\(212\) 0 0
\(213\) 1.26205i 0.0864739i
\(214\) 0 0
\(215\) − 1.85862i − 0.126757i
\(216\) 0 0
\(217\) 9.42758 0.639986
\(218\) 0 0
\(219\) 12.9554i 0.875444i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.9879i 0.869735i 0.900494 + 0.434868i \(0.143205\pi\)
−0.900494 + 0.434868i \(0.856795\pi\)
\(224\) 0 0
\(225\) −9.57002 −0.638002
\(226\) 0 0
\(227\) − 13.8049i − 0.916265i −0.888884 0.458132i \(-0.848519\pi\)
0.888884 0.458132i \(-0.151481\pi\)
\(228\) 0 0
\(229\) − 11.5603i − 0.763928i −0.924177 0.381964i \(-0.875248\pi\)
0.924177 0.381964i \(-0.124752\pi\)
\(230\) 0 0
\(231\) 5.35988 0.352654
\(232\) 0 0
\(233\) −9.77479 −0.640368 −0.320184 0.947355i \(-0.603745\pi\)
−0.320184 + 0.947355i \(0.603745\pi\)
\(234\) 0 0
\(235\) 25.1836 1.64280
\(236\) 0 0
\(237\) 31.7211 2.06051
\(238\) 0 0
\(239\) − 0.944378i − 0.0610867i −0.999533 0.0305434i \(-0.990276\pi\)
0.999533 0.0305434i \(-0.00972377\pi\)
\(240\) 0 0
\(241\) − 0.219833i − 0.0141607i −0.999975 0.00708033i \(-0.997746\pi\)
0.999975 0.00708033i \(-0.00225376\pi\)
\(242\) 0 0
\(243\) −11.7875 −0.756166
\(244\) 0 0
\(245\) 20.7875i 1.32806i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 1.86831i − 0.118400i
\(250\) 0 0
\(251\) 16.2543 1.02596 0.512980 0.858400i \(-0.328541\pi\)
0.512980 + 0.858400i \(0.328541\pi\)
\(252\) 0 0
\(253\) 7.97584i 0.501437i
\(254\) 0 0
\(255\) − 44.0146i − 2.75630i
\(256\) 0 0
\(257\) 22.4373 1.39960 0.699799 0.714340i \(-0.253273\pi\)
0.699799 + 0.714340i \(0.253273\pi\)
\(258\) 0 0
\(259\) 5.42758 0.337254
\(260\) 0 0
\(261\) −4.52888 −0.280330
\(262\) 0 0
\(263\) 10.4940 0.647085 0.323543 0.946214i \(-0.395126\pi\)
0.323543 + 0.946214i \(0.395126\pi\)
\(264\) 0 0
\(265\) − 12.1957i − 0.749174i
\(266\) 0 0
\(267\) 7.68473i 0.470298i
\(268\) 0 0
\(269\) 26.4155 1.61058 0.805291 0.592880i \(-0.202009\pi\)
0.805291 + 0.592880i \(0.202009\pi\)
\(270\) 0 0
\(271\) 22.0301i 1.33824i 0.743157 + 0.669118i \(0.233328\pi\)
−0.743157 + 0.669118i \(0.766672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 18.8267i − 1.13529i
\(276\) 0 0
\(277\) −2.17629 −0.130761 −0.0653804 0.997860i \(-0.520826\pi\)
−0.0653804 + 0.997860i \(0.520826\pi\)
\(278\) 0 0
\(279\) 10.1763i 0.609239i
\(280\) 0 0
\(281\) 25.0030i 1.49155i 0.666196 + 0.745776i \(0.267921\pi\)
−0.666196 + 0.745776i \(0.732079\pi\)
\(282\) 0 0
\(283\) −16.3153 −0.969842 −0.484921 0.874558i \(-0.661152\pi\)
−0.484921 + 0.874558i \(0.661152\pi\)
\(284\) 0 0
\(285\) −6.73317 −0.398839
\(286\) 0 0
\(287\) 7.97584 0.470799
\(288\) 0 0
\(289\) 18.5308 1.09005
\(290\) 0 0
\(291\) 30.0670i 1.76256i
\(292\) 0 0
\(293\) − 1.87800i − 0.109714i −0.998494 0.0548570i \(-0.982530\pi\)
0.998494 0.0548570i \(-0.0174703\pi\)
\(294\) 0 0
\(295\) 36.5676 2.12905
\(296\) 0 0
\(297\) − 8.70171i − 0.504924i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.572417i 0.0329935i
\(302\) 0 0
\(303\) −17.9651 −1.03207
\(304\) 0 0
\(305\) − 1.58450i − 0.0907281i
\(306\) 0 0
\(307\) 23.9801i 1.36862i 0.729192 + 0.684310i \(0.239896\pi\)
−0.729192 + 0.684310i \(0.760104\pi\)
\(308\) 0 0
\(309\) 38.5435 2.19266
\(310\) 0 0
\(311\) −5.38404 −0.305301 −0.152651 0.988280i \(-0.548781\pi\)
−0.152651 + 0.988280i \(0.548781\pi\)
\(312\) 0 0
\(313\) 18.9487 1.07104 0.535522 0.844522i \(-0.320115\pi\)
0.535522 + 0.844522i \(0.320115\pi\)
\(314\) 0 0
\(315\) 4.79225 0.270013
\(316\) 0 0
\(317\) 11.5013i 0.645975i 0.946403 + 0.322987i \(0.104687\pi\)
−0.946403 + 0.322987i \(0.895313\pi\)
\(318\) 0 0
\(319\) − 8.90946i − 0.498834i
\(320\) 0 0
\(321\) −36.9869 −2.06440
\(322\) 0 0
\(323\) − 5.43535i − 0.302431i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 12.4940i − 0.690918i
\(328\) 0 0
\(329\) −7.75600 −0.427602
\(330\) 0 0
\(331\) − 34.6112i − 1.90240i −0.308572 0.951201i \(-0.599851\pi\)
0.308572 0.951201i \(-0.400149\pi\)
\(332\) 0 0
\(333\) 5.85862i 0.321051i
\(334\) 0 0
\(335\) −7.73663 −0.422697
\(336\) 0 0
\(337\) −1.95407 −0.106445 −0.0532224 0.998583i \(-0.516949\pi\)
−0.0532224 + 0.998583i \(0.516949\pi\)
\(338\) 0 0
\(339\) −24.9989 −1.35776
\(340\) 0 0
\(341\) −20.0194 −1.08411
\(342\) 0 0
\(343\) − 14.1715i − 0.765189i
\(344\) 0 0
\(345\) 24.9879i 1.34530i
\(346\) 0 0
\(347\) 6.41550 0.344402 0.172201 0.985062i \(-0.444912\pi\)
0.172201 + 0.985062i \(0.444912\pi\)
\(348\) 0 0
\(349\) − 1.08575i − 0.0581190i −0.999578 0.0290595i \(-0.990749\pi\)
0.999578 0.0290595i \(-0.00925123\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.28919i 0.228291i 0.993464 + 0.114145i \(0.0364130\pi\)
−0.993464 + 0.114145i \(0.963587\pi\)
\(354\) 0 0
\(355\) −2.21983 −0.117816
\(356\) 0 0
\(357\) 13.5555i 0.717436i
\(358\) 0 0
\(359\) − 15.5060i − 0.818378i −0.912450 0.409189i \(-0.865812\pi\)
0.912450 0.409189i \(-0.134188\pi\)
\(360\) 0 0
\(361\) 18.1685 0.956238
\(362\) 0 0
\(363\) 11.1564 0.585561
\(364\) 0 0
\(365\) −22.7875 −1.19275
\(366\) 0 0
\(367\) −17.4276 −0.909712 −0.454856 0.890565i \(-0.650309\pi\)
−0.454856 + 0.890565i \(0.650309\pi\)
\(368\) 0 0
\(369\) 8.60925i 0.448180i
\(370\) 0 0
\(371\) 3.75600i 0.195002i
\(372\) 0 0
\(373\) 8.19567 0.424356 0.212178 0.977231i \(-0.431944\pi\)
0.212178 + 0.977231i \(0.431944\pi\)
\(374\) 0 0
\(375\) − 22.0629i − 1.13932i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 15.0476i 0.772943i 0.922301 + 0.386471i \(0.126306\pi\)
−0.922301 + 0.386471i \(0.873694\pi\)
\(380\) 0 0
\(381\) 23.4142 1.19954
\(382\) 0 0
\(383\) 11.1207i 0.568240i 0.958789 + 0.284120i \(0.0917014\pi\)
−0.958789 + 0.284120i \(0.908299\pi\)
\(384\) 0 0
\(385\) 9.42758i 0.480474i
\(386\) 0 0
\(387\) −0.617876 −0.0314084
\(388\) 0 0
\(389\) 8.04354 0.407824 0.203912 0.978989i \(-0.434634\pi\)
0.203912 + 0.978989i \(0.434634\pi\)
\(390\) 0 0
\(391\) −20.1715 −1.02012
\(392\) 0 0
\(393\) −4.70410 −0.237291
\(394\) 0 0
\(395\) 55.7948i 2.80734i
\(396\) 0 0
\(397\) 21.9081i 1.09954i 0.835317 + 0.549769i \(0.185284\pi\)
−0.835317 + 0.549769i \(0.814716\pi\)
\(398\) 0 0
\(399\) 2.07367 0.103813
\(400\) 0 0
\(401\) − 17.4426i − 0.871044i −0.900178 0.435522i \(-0.856564\pi\)
0.900178 0.435522i \(-0.143436\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 40.2150i − 1.99830i
\(406\) 0 0
\(407\) −11.5254 −0.571294
\(408\) 0 0
\(409\) − 17.4330i − 0.862004i −0.902351 0.431002i \(-0.858160\pi\)
0.902351 0.431002i \(-0.141840\pi\)
\(410\) 0 0
\(411\) 18.6049i 0.917714i
\(412\) 0 0
\(413\) −11.2620 −0.554169
\(414\) 0 0
\(415\) 3.28621 0.161314
\(416\) 0 0
\(417\) −38.7351 −1.89687
\(418\) 0 0
\(419\) −9.97584 −0.487352 −0.243676 0.969857i \(-0.578353\pi\)
−0.243676 + 0.969857i \(0.578353\pi\)
\(420\) 0 0
\(421\) 0.615957i 0.0300199i 0.999887 + 0.0150100i \(0.00477800\pi\)
−0.999887 + 0.0150100i \(0.995222\pi\)
\(422\) 0 0
\(423\) − 8.37196i − 0.407059i
\(424\) 0 0
\(425\) 47.6142 2.30963
\(426\) 0 0
\(427\) 0.487991i 0.0236156i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.7922i 0.712518i 0.934387 + 0.356259i \(0.115948\pi\)
−0.934387 + 0.356259i \(0.884052\pi\)
\(432\) 0 0
\(433\) −16.5321 −0.794483 −0.397242 0.917714i \(-0.630032\pi\)
−0.397242 + 0.917714i \(0.630032\pi\)
\(434\) 0 0
\(435\) − 27.9129i − 1.33832i
\(436\) 0 0
\(437\) 3.08575i 0.147612i
\(438\) 0 0
\(439\) 3.50125 0.167106 0.0835529 0.996503i \(-0.473373\pi\)
0.0835529 + 0.996503i \(0.473373\pi\)
\(440\) 0 0
\(441\) 6.91053 0.329073
\(442\) 0 0
\(443\) −17.4077 −0.827066 −0.413533 0.910489i \(-0.635705\pi\)
−0.413533 + 0.910489i \(0.635705\pi\)
\(444\) 0 0
\(445\) −13.5168 −0.640758
\(446\) 0 0
\(447\) − 38.2935i − 1.81122i
\(448\) 0 0
\(449\) − 34.1497i − 1.61163i −0.592170 0.805813i \(-0.701729\pi\)
0.592170 0.805813i \(-0.298271\pi\)
\(450\) 0 0
\(451\) −16.9366 −0.797514
\(452\) 0 0
\(453\) 0.650874i 0.0305807i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.40342i 0.439873i 0.975514 + 0.219937i \(0.0705851\pi\)
−0.975514 + 0.219937i \(0.929415\pi\)
\(458\) 0 0
\(459\) 22.0073 1.02721
\(460\) 0 0
\(461\) − 0.733169i − 0.0341471i −0.999854 0.0170735i \(-0.994565\pi\)
0.999854 0.0170735i \(-0.00543494\pi\)
\(462\) 0 0
\(463\) 7.24267i 0.336595i 0.985736 + 0.168298i \(0.0538270\pi\)
−0.985736 + 0.168298i \(0.946173\pi\)
\(464\) 0 0
\(465\) −62.7198 −2.90856
\(466\) 0 0
\(467\) 30.2446 1.39955 0.699776 0.714362i \(-0.253283\pi\)
0.699776 + 0.714362i \(0.253283\pi\)
\(468\) 0 0
\(469\) 2.38271 0.110024
\(470\) 0 0
\(471\) 38.7042 1.78340
\(472\) 0 0
\(473\) − 1.21552i − 0.0558897i
\(474\) 0 0
\(475\) − 7.28382i − 0.334204i
\(476\) 0 0
\(477\) −4.05429 −0.185633
\(478\) 0 0
\(479\) − 36.7198i − 1.67777i −0.544310 0.838884i \(-0.683208\pi\)
0.544310 0.838884i \(-0.316792\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 7.69574i − 0.350168i
\(484\) 0 0
\(485\) −52.8853 −2.40140
\(486\) 0 0
\(487\) 28.6547i 1.29847i 0.760588 + 0.649234i \(0.224911\pi\)
−0.760588 + 0.649234i \(0.775089\pi\)
\(488\) 0 0
\(489\) 8.87741i 0.401450i
\(490\) 0 0
\(491\) 30.4295 1.37326 0.686632 0.727005i \(-0.259088\pi\)
0.686632 + 0.727005i \(0.259088\pi\)
\(492\) 0 0
\(493\) 22.5327 1.01482
\(494\) 0 0
\(495\) −10.1763 −0.457390
\(496\) 0 0
\(497\) 0.683661 0.0306664
\(498\) 0 0
\(499\) − 15.9715i − 0.714984i −0.933916 0.357492i \(-0.883632\pi\)
0.933916 0.357492i \(-0.116368\pi\)
\(500\) 0 0
\(501\) − 28.6848i − 1.28154i
\(502\) 0 0
\(503\) 41.9711 1.87140 0.935698 0.352801i \(-0.114771\pi\)
0.935698 + 0.352801i \(0.114771\pi\)
\(504\) 0 0
\(505\) − 31.5991i − 1.40614i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.914247i 0.0405233i 0.999795 + 0.0202616i \(0.00644992\pi\)
−0.999795 + 0.0202616i \(0.993550\pi\)
\(510\) 0 0
\(511\) 7.01805 0.310460
\(512\) 0 0
\(513\) − 3.36658i − 0.148638i
\(514\) 0 0
\(515\) 67.7948i 2.98739i
\(516\) 0 0
\(517\) 16.4698 0.724341
\(518\) 0 0
\(519\) 22.5133 0.988226
\(520\) 0 0
\(521\) −3.31096 −0.145056 −0.0725279 0.997366i \(-0.523107\pi\)
−0.0725279 + 0.997366i \(0.523107\pi\)
\(522\) 0 0
\(523\) 0.850855 0.0372053 0.0186026 0.999827i \(-0.494078\pi\)
0.0186026 + 0.999827i \(0.494078\pi\)
\(524\) 0 0
\(525\) 18.1655i 0.792809i
\(526\) 0 0
\(527\) − 50.6305i − 2.20550i
\(528\) 0 0
\(529\) −11.5483 −0.502098
\(530\) 0 0
\(531\) − 12.1564i − 0.527545i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 65.0568i − 2.81265i
\(536\) 0 0
\(537\) 9.53809 0.411599
\(538\) 0 0
\(539\) 13.5948i 0.585569i
\(540\) 0 0
\(541\) 40.8853i 1.75780i 0.477010 + 0.878898i \(0.341721\pi\)
−0.477010 + 0.878898i \(0.658279\pi\)
\(542\) 0 0
\(543\) 2.18492 0.0937637
\(544\) 0 0
\(545\) 21.9758 0.941341
\(546\) 0 0
\(547\) 2.39075 0.102221 0.0511105 0.998693i \(-0.483724\pi\)
0.0511105 + 0.998693i \(0.483724\pi\)
\(548\) 0 0
\(549\) −0.526746 −0.0224810
\(550\) 0 0
\(551\) − 3.44696i − 0.146845i
\(552\) 0 0
\(553\) − 17.1836i − 0.730720i
\(554\) 0 0
\(555\) −36.1086 −1.53272
\(556\) 0 0
\(557\) − 27.1508i − 1.15042i −0.818007 0.575208i \(-0.804921\pi\)
0.818007 0.575208i \(-0.195079\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 28.7851i − 1.21531i
\(562\) 0 0
\(563\) −6.52409 −0.274958 −0.137479 0.990505i \(-0.543900\pi\)
−0.137479 + 0.990505i \(0.543900\pi\)
\(564\) 0 0
\(565\) − 43.9711i − 1.84988i
\(566\) 0 0
\(567\) 12.3854i 0.520137i
\(568\) 0 0
\(569\) −7.30021 −0.306041 −0.153020 0.988223i \(-0.548900\pi\)
−0.153020 + 0.988223i \(0.548900\pi\)
\(570\) 0 0
\(571\) −43.6722 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(572\) 0 0
\(573\) −1.82371 −0.0761865
\(574\) 0 0
\(575\) −27.0315 −1.12729
\(576\) 0 0
\(577\) 16.8528i 0.701590i 0.936452 + 0.350795i \(0.114089\pi\)
−0.936452 + 0.350795i \(0.885911\pi\)
\(578\) 0 0
\(579\) 33.2282i 1.38092i
\(580\) 0 0
\(581\) −1.01208 −0.0419882
\(582\) 0 0
\(583\) − 7.97584i − 0.330325i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.1825i 0.915571i 0.889063 + 0.457785i \(0.151357\pi\)
−0.889063 + 0.457785i \(0.848643\pi\)
\(588\) 0 0
\(589\) −7.74525 −0.319137
\(590\) 0 0
\(591\) 23.5034i 0.966800i
\(592\) 0 0
\(593\) − 3.98493i − 0.163642i −0.996647 0.0818208i \(-0.973926\pi\)
0.996647 0.0818208i \(-0.0260735\pi\)
\(594\) 0 0
\(595\) −23.8431 −0.977471
\(596\) 0 0
\(597\) −7.78495 −0.318617
\(598\) 0 0
\(599\) −33.2379 −1.35806 −0.679032 0.734109i \(-0.737600\pi\)
−0.679032 + 0.734109i \(0.737600\pi\)
\(600\) 0 0
\(601\) 9.79715 0.399634 0.199817 0.979833i \(-0.435965\pi\)
0.199817 + 0.979833i \(0.435965\pi\)
\(602\) 0 0
\(603\) 2.57194i 0.104738i
\(604\) 0 0
\(605\) 19.6233i 0.797799i
\(606\) 0 0
\(607\) 24.2258 0.983295 0.491647 0.870794i \(-0.336395\pi\)
0.491647 + 0.870794i \(0.336395\pi\)
\(608\) 0 0
\(609\) 8.59658i 0.348351i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 15.0556i − 0.608091i −0.952658 0.304045i \(-0.901663\pi\)
0.952658 0.304045i \(-0.0983375\pi\)
\(614\) 0 0
\(615\) −53.0616 −2.13965
\(616\) 0 0
\(617\) − 2.01879i − 0.0812733i −0.999174 0.0406366i \(-0.987061\pi\)
0.999174 0.0406366i \(-0.0129386\pi\)
\(618\) 0 0
\(619\) − 7.84309i − 0.315240i −0.987500 0.157620i \(-0.949618\pi\)
0.987500 0.157620i \(-0.0503821\pi\)
\(620\) 0 0
\(621\) −12.4940 −0.501365
\(622\) 0 0
\(623\) 4.16288 0.166782
\(624\) 0 0
\(625\) −1.13275 −0.0453101
\(626\) 0 0
\(627\) −4.40342 −0.175856
\(628\) 0 0
\(629\) − 29.1487i − 1.16223i
\(630\) 0 0
\(631\) 24.5327i 0.976632i 0.872667 + 0.488316i \(0.162389\pi\)
−0.872667 + 0.488316i \(0.837611\pi\)
\(632\) 0 0
\(633\) 51.3183 2.03972
\(634\) 0 0
\(635\) 41.1836i 1.63432i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.737955i 0.0291930i
\(640\) 0 0
\(641\) 41.6015 1.64316 0.821580 0.570093i \(-0.193093\pi\)
0.821580 + 0.570093i \(0.193093\pi\)
\(642\) 0 0
\(643\) − 45.4118i − 1.79087i −0.445196 0.895433i \(-0.646866\pi\)
0.445196 0.895433i \(-0.353134\pi\)
\(644\) 0 0
\(645\) − 3.80817i − 0.149946i
\(646\) 0 0
\(647\) 35.8345 1.40880 0.704399 0.709804i \(-0.251217\pi\)
0.704399 + 0.709804i \(0.251217\pi\)
\(648\) 0 0
\(649\) 23.9148 0.938740
\(650\) 0 0
\(651\) 19.3163 0.757067
\(652\) 0 0
\(653\) 18.5590 0.726270 0.363135 0.931737i \(-0.381706\pi\)
0.363135 + 0.931737i \(0.381706\pi\)
\(654\) 0 0
\(655\) − 8.27413i − 0.323297i
\(656\) 0 0
\(657\) 7.57540i 0.295545i
\(658\) 0 0
\(659\) 3.97525 0.154854 0.0774268 0.996998i \(-0.475330\pi\)
0.0774268 + 0.996998i \(0.475330\pi\)
\(660\) 0 0
\(661\) − 1.23191i − 0.0479159i −0.999713 0.0239580i \(-0.992373\pi\)
0.999713 0.0239580i \(-0.00762678\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.64742i 0.141441i
\(666\) 0 0
\(667\) −12.7922 −0.495318
\(668\) 0 0
\(669\) 26.6112i 1.02885i
\(670\) 0 0
\(671\) − 1.03624i − 0.0400038i
\(672\) 0 0
\(673\) 36.8256 1.41952 0.709762 0.704442i \(-0.248803\pi\)
0.709762 + 0.704442i \(0.248803\pi\)
\(674\) 0 0
\(675\) 29.4916 1.13513
\(676\) 0 0
\(677\) −25.9215 −0.996246 −0.498123 0.867106i \(-0.665977\pi\)
−0.498123 + 0.867106i \(0.665977\pi\)
\(678\) 0 0
\(679\) 16.2875 0.625058
\(680\) 0 0
\(681\) − 28.2851i − 1.08389i
\(682\) 0 0
\(683\) 37.5472i 1.43670i 0.695680 + 0.718352i \(0.255103\pi\)
−0.695680 + 0.718352i \(0.744897\pi\)
\(684\) 0 0
\(685\) −32.7245 −1.25034
\(686\) 0 0
\(687\) − 23.6862i − 0.903684i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 45.2549i − 1.72158i −0.508963 0.860788i \(-0.669971\pi\)
0.508963 0.860788i \(-0.330029\pi\)
\(692\) 0 0
\(693\) 3.13408 0.119054
\(694\) 0 0
\(695\) − 68.1318i − 2.58439i
\(696\) 0 0
\(697\) − 42.8340i − 1.62245i
\(698\) 0 0
\(699\) −20.0277 −0.757519
\(700\) 0 0
\(701\) −36.0823 −1.36281 −0.681405 0.731907i \(-0.738631\pi\)
−0.681405 + 0.731907i \(0.738631\pi\)
\(702\) 0 0
\(703\) −4.45904 −0.168176
\(704\) 0 0
\(705\) 51.5991 1.94333
\(706\) 0 0
\(707\) 9.73184i 0.366004i
\(708\) 0 0
\(709\) 19.0664i 0.716053i 0.933711 + 0.358026i \(0.116550\pi\)
−0.933711 + 0.358026i \(0.883450\pi\)
\(710\) 0 0
\(711\) 18.5483 0.695614
\(712\) 0 0
\(713\) 28.7439i 1.07647i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1.93495i − 0.0722621i
\(718\) 0 0
\(719\) −15.3056 −0.570802 −0.285401 0.958408i \(-0.592127\pi\)
−0.285401 + 0.958408i \(0.592127\pi\)
\(720\) 0 0
\(721\) − 20.8793i − 0.777587i
\(722\) 0 0
\(723\) − 0.450419i − 0.0167513i
\(724\) 0 0
\(725\) 30.1957 1.12144
\(726\) 0 0
\(727\) 3.46250 0.128417 0.0642085 0.997937i \(-0.479548\pi\)
0.0642085 + 0.997937i \(0.479548\pi\)
\(728\) 0 0
\(729\) 9.32496 0.345369
\(730\) 0 0
\(731\) 3.07415 0.113701
\(732\) 0 0
\(733\) − 26.0930i − 0.963769i −0.876235 0.481884i \(-0.839953\pi\)
0.876235 0.481884i \(-0.160047\pi\)
\(734\) 0 0
\(735\) 42.5918i 1.57102i
\(736\) 0 0
\(737\) −5.05967 −0.186375
\(738\) 0 0
\(739\) − 26.4993i − 0.974794i −0.873181 0.487397i \(-0.837946\pi\)
0.873181 0.487397i \(-0.162054\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.415502i 0.0152433i 0.999971 + 0.00762164i \(0.00242607\pi\)
−0.999971 + 0.00762164i \(0.997574\pi\)
\(744\) 0 0
\(745\) 67.3551 2.46770
\(746\) 0 0
\(747\) − 1.09246i − 0.0399709i
\(748\) 0 0
\(749\) 20.0361i 0.732103i
\(750\) 0 0
\(751\) 2.90946 0.106168 0.0530839 0.998590i \(-0.483095\pi\)
0.0530839 + 0.998590i \(0.483095\pi\)
\(752\) 0 0
\(753\) 33.3037 1.21365
\(754\) 0 0
\(755\) −1.14483 −0.0416647
\(756\) 0 0
\(757\) 12.3720 0.449667 0.224833 0.974397i \(-0.427816\pi\)
0.224833 + 0.974397i \(0.427816\pi\)
\(758\) 0 0
\(759\) 16.3418i 0.593171i
\(760\) 0 0
\(761\) − 42.4306i − 1.53811i −0.639184 0.769053i \(-0.720728\pi\)
0.639184 0.769053i \(-0.279272\pi\)
\(762\) 0 0
\(763\) −6.76809 −0.245021
\(764\) 0 0
\(765\) − 25.7366i − 0.930510i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 13.3341i 0.480839i 0.970669 + 0.240419i \(0.0772849\pi\)
−0.970669 + 0.240419i \(0.922715\pi\)
\(770\) 0 0
\(771\) 45.9721 1.65565
\(772\) 0 0
\(773\) − 5.85384i − 0.210548i −0.994443 0.105274i \(-0.966428\pi\)
0.994443 0.105274i \(-0.0335720\pi\)
\(774\) 0 0
\(775\) − 67.8491i − 2.43721i
\(776\) 0 0
\(777\) 11.1207 0.398952
\(778\) 0 0
\(779\) −6.55257 −0.234770
\(780\) 0 0
\(781\) −1.45175 −0.0519476
\(782\) 0 0
\(783\) 13.9565 0.498763
\(784\) 0 0
\(785\) 68.0775i 2.42979i
\(786\) 0 0
\(787\) − 23.2965i − 0.830430i −0.909723 0.415215i \(-0.863706\pi\)
0.909723 0.415215i \(-0.136294\pi\)
\(788\) 0 0
\(789\) 21.5013 0.765465
\(790\) 0 0
\(791\) 13.5421i 0.481503i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 24.9879i − 0.886230i
\(796\) 0 0
\(797\) −35.8103 −1.26847 −0.634233 0.773142i \(-0.718684\pi\)
−0.634233 + 0.773142i \(0.718684\pi\)
\(798\) 0 0
\(799\) 41.6534i 1.47359i
\(800\) 0 0
\(801\) 4.49349i 0.158769i
\(802\) 0 0
\(803\) −14.9028 −0.525907
\(804\) 0 0
\(805\) 13.5362 0.477087
\(806\) 0 0
\(807\) 54.1232 1.90523
\(808\) 0 0
\(809\) 28.3744 0.997589 0.498795 0.866720i \(-0.333776\pi\)
0.498795 + 0.866720i \(0.333776\pi\)
\(810\) 0 0
\(811\) − 5.20344i − 0.182717i −0.995818 0.0913587i \(-0.970879\pi\)
0.995818 0.0913587i \(-0.0291210\pi\)
\(812\) 0 0
\(813\) 45.1379i 1.58306i
\(814\) 0 0
\(815\) −15.6146 −0.546957
\(816\) 0 0
\(817\) − 0.470270i − 0.0164527i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 5.65338i − 0.197304i −0.995122 0.0986522i \(-0.968547\pi\)
0.995122 0.0986522i \(-0.0314531\pi\)
\(822\) 0 0
\(823\) 39.0616 1.36160 0.680801 0.732469i \(-0.261632\pi\)
0.680801 + 0.732469i \(0.261632\pi\)
\(824\) 0 0
\(825\) − 38.5743i − 1.34299i
\(826\) 0 0
\(827\) − 5.40283i − 0.187875i −0.995578 0.0939374i \(-0.970055\pi\)
0.995578 0.0939374i \(-0.0299454\pi\)
\(828\) 0 0
\(829\) 8.38537 0.291236 0.145618 0.989341i \(-0.453483\pi\)
0.145618 + 0.989341i \(0.453483\pi\)
\(830\) 0 0
\(831\) −4.45904 −0.154682
\(832\) 0 0
\(833\) −34.3822 −1.19127
\(834\) 0 0
\(835\) 50.4543 1.74604
\(836\) 0 0
\(837\) − 31.3599i − 1.08396i
\(838\) 0 0
\(839\) − 3.98062i − 0.137426i −0.997636 0.0687132i \(-0.978111\pi\)
0.997636 0.0687132i \(-0.0218893\pi\)
\(840\) 0 0
\(841\) −14.7103 −0.507253
\(842\) 0 0
\(843\) 51.2290i 1.76442i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 6.04354i − 0.207659i
\(848\) 0 0
\(849\) −33.4286 −1.14727
\(850\) 0 0
\(851\) 16.5483i 0.567267i
\(852\) 0 0
\(853\) − 6.29350i − 0.215485i −0.994179 0.107743i \(-0.965638\pi\)
0.994179 0.107743i \(-0.0343623\pi\)
\(854\) 0 0
\(855\) −3.93708 −0.134645
\(856\) 0 0
\(857\) −4.37627 −0.149491 −0.0747453 0.997203i \(-0.523814\pi\)
−0.0747453 + 0.997203i \(0.523814\pi\)
\(858\) 0 0
\(859\) −15.0261 −0.512683 −0.256342 0.966586i \(-0.582517\pi\)
−0.256342 + 0.966586i \(0.582517\pi\)
\(860\) 0 0
\(861\) 16.3418 0.556928
\(862\) 0 0
\(863\) − 6.21121i − 0.211432i −0.994396 0.105716i \(-0.966287\pi\)
0.994396 0.105716i \(-0.0337134\pi\)
\(864\) 0 0
\(865\) 39.5991i 1.34641i
\(866\) 0 0
\(867\) 37.9681 1.28946
\(868\) 0 0
\(869\) 36.4892i 1.23781i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 17.5810i 0.595028i
\(874\) 0 0
\(875\) −11.9517 −0.404040
\(876\) 0 0
\(877\) 38.2198i 1.29059i 0.763933 + 0.645296i \(0.223266\pi\)
−0.763933 + 0.645296i \(0.776734\pi\)
\(878\) 0 0
\(879\) − 3.84787i − 0.129785i
\(880\) 0 0
\(881\) −26.7832 −0.902347 −0.451174 0.892436i \(-0.648994\pi\)
−0.451174 + 0.892436i \(0.648994\pi\)
\(882\) 0 0
\(883\) −34.4956 −1.16087 −0.580435 0.814307i \(-0.697117\pi\)
−0.580435 + 0.814307i \(0.697117\pi\)
\(884\) 0 0
\(885\) 74.9241 2.51854
\(886\) 0 0
\(887\) 23.9866 0.805391 0.402695 0.915334i \(-0.368073\pi\)
0.402695 + 0.915334i \(0.368073\pi\)
\(888\) 0 0
\(889\) − 12.6837i − 0.425396i
\(890\) 0 0
\(891\) − 26.3002i − 0.881090i
\(892\) 0 0
\(893\) 6.37196 0.213230
\(894\) 0 0
\(895\) 16.7767i 0.560784i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 32.1086i − 1.07088i
\(900\) 0 0
\(901\) 20.1715 0.672010
\(902\) 0 0
\(903\) 1.17283i 0.0390295i
\(904\) 0 0
\(905\) 3.84309i 0.127748i
\(906\) 0 0
\(907\) 23.9269 0.794480 0.397240 0.917715i \(-0.369968\pi\)
0.397240 + 0.917715i \(0.369968\pi\)
\(908\) 0 0
\(909\) −10.5047 −0.348419
\(910\) 0 0
\(911\) 35.8866 1.18898 0.594488 0.804104i \(-0.297355\pi\)
0.594488 + 0.804104i \(0.297355\pi\)
\(912\) 0 0
\(913\) 2.14914 0.0711263
\(914\) 0 0
\(915\) − 3.24651i − 0.107326i
\(916\) 0 0
\(917\) 2.54825i 0.0841507i
\(918\) 0 0
\(919\) −33.2465 −1.09670 −0.548351 0.836249i \(-0.684744\pi\)
−0.548351 + 0.836249i \(0.684744\pi\)
\(920\) 0 0
\(921\) 49.1333i 1.61900i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 39.0616i − 1.28434i
\(926\) 0 0
\(927\) 22.5375 0.740229
\(928\) 0 0
\(929\) 54.2583i 1.78016i 0.455806 + 0.890079i \(0.349351\pi\)
−0.455806 + 0.890079i \(0.650649\pi\)
\(930\) 0 0
\(931\) 5.25965i 0.172378i
\(932\) 0 0
\(933\) −11.0315 −0.361154
\(934\) 0 0
\(935\) 50.6305 1.65580
\(936\) 0 0
\(937\) 16.5265 0.539897 0.269948 0.962875i \(-0.412993\pi\)
0.269948 + 0.962875i \(0.412993\pi\)
\(938\) 0 0
\(939\) 38.8243 1.26698
\(940\) 0 0
\(941\) 41.7017i 1.35944i 0.733473 + 0.679718i \(0.237898\pi\)
−0.733473 + 0.679718i \(0.762102\pi\)
\(942\) 0 0
\(943\) 24.3177i 0.791892i
\(944\) 0 0
\(945\) −14.7681 −0.480406
\(946\) 0 0
\(947\) − 3.00106i − 0.0975215i −0.998810 0.0487608i \(-0.984473\pi\)
0.998810 0.0487608i \(-0.0155272\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 23.5651i 0.764151i
\(952\) 0 0
\(953\) −38.1450 −1.23564 −0.617818 0.786321i \(-0.711983\pi\)
−0.617818 + 0.786321i \(0.711983\pi\)
\(954\) 0 0
\(955\) − 3.20775i − 0.103800i
\(956\) 0 0
\(957\) − 18.2547i − 0.590092i
\(958\) 0 0
\(959\) 10.0785 0.325450
\(960\) 0 0
\(961\) −41.1473 −1.32733
\(962\) 0 0
\(963\) −21.6273 −0.696930
\(964\) 0 0
\(965\) −58.4456 −1.88143
\(966\) 0 0
\(967\) − 26.8793i − 0.864381i −0.901782 0.432190i \(-0.857741\pi\)
0.901782 0.432190i \(-0.142259\pi\)
\(968\) 0 0
\(969\) − 11.1366i − 0.357759i
\(970\) 0 0
\(971\) −3.13647 −0.100654 −0.0503271 0.998733i \(-0.516026\pi\)
−0.0503271 + 0.998733i \(0.516026\pi\)
\(972\) 0 0
\(973\) 20.9831i 0.672688i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 35.8864i − 1.14811i −0.818818 0.574053i \(-0.805370\pi\)
0.818818 0.574053i \(-0.194630\pi\)
\(978\) 0 0
\(979\) −8.83984 −0.282522
\(980\) 0 0
\(981\) − 7.30559i − 0.233249i
\(982\) 0 0
\(983\) 30.4370i 0.970790i 0.874295 + 0.485395i \(0.161324\pi\)
−0.874295 + 0.485395i \(0.838676\pi\)
\(984\) 0 0
\(985\) −41.3405 −1.31722
\(986\) 0 0
\(987\) −15.8914 −0.505829
\(988\) 0 0
\(989\) −1.74525 −0.0554957
\(990\) 0 0
\(991\) −31.4470 −0.998946 −0.499473 0.866330i \(-0.666473\pi\)
−0.499473 + 0.866330i \(0.666473\pi\)
\(992\) 0 0
\(993\) − 70.9154i − 2.25043i
\(994\) 0 0
\(995\) − 13.6931i − 0.434100i
\(996\) 0 0
\(997\) 19.1099 0.605217 0.302609 0.953115i \(-0.402143\pi\)
0.302609 + 0.953115i \(0.402143\pi\)
\(998\) 0 0
\(999\) − 18.0543i − 0.571213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2704.2.f.m.337.6 6
4.3 odd 2 338.2.b.d.337.4 6
12.11 even 2 3042.2.b.n.1351.1 6
13.5 odd 4 2704.2.a.w.1.3 3
13.8 odd 4 2704.2.a.v.1.3 3
13.12 even 2 inner 2704.2.f.m.337.5 6
52.3 odd 6 338.2.e.e.147.3 12
52.7 even 12 338.2.c.i.315.3 6
52.11 even 12 338.2.c.i.191.3 6
52.15 even 12 338.2.c.h.191.3 6
52.19 even 12 338.2.c.h.315.3 6
52.23 odd 6 338.2.e.e.147.6 12
52.31 even 4 338.2.a.h.1.1 yes 3
52.35 odd 6 338.2.e.e.23.6 12
52.43 odd 6 338.2.e.e.23.3 12
52.47 even 4 338.2.a.g.1.1 3
52.51 odd 2 338.2.b.d.337.1 6
156.47 odd 4 3042.2.a.bi.1.3 3
156.83 odd 4 3042.2.a.z.1.1 3
156.155 even 2 3042.2.b.n.1351.6 6
260.99 even 4 8450.2.a.bx.1.3 3
260.239 even 4 8450.2.a.bn.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.2.a.g.1.1 3 52.47 even 4
338.2.a.h.1.1 yes 3 52.31 even 4
338.2.b.d.337.1 6 52.51 odd 2
338.2.b.d.337.4 6 4.3 odd 2
338.2.c.h.191.3 6 52.15 even 12
338.2.c.h.315.3 6 52.19 even 12
338.2.c.i.191.3 6 52.11 even 12
338.2.c.i.315.3 6 52.7 even 12
338.2.e.e.23.3 12 52.43 odd 6
338.2.e.e.23.6 12 52.35 odd 6
338.2.e.e.147.3 12 52.3 odd 6
338.2.e.e.147.6 12 52.23 odd 6
2704.2.a.v.1.3 3 13.8 odd 4
2704.2.a.w.1.3 3 13.5 odd 4
2704.2.f.m.337.5 6 13.12 even 2 inner
2704.2.f.m.337.6 6 1.1 even 1 trivial
3042.2.a.z.1.1 3 156.83 odd 4
3042.2.a.bi.1.3 3 156.47 odd 4
3042.2.b.n.1351.1 6 12.11 even 2
3042.2.b.n.1351.6 6 156.155 even 2
8450.2.a.bn.1.3 3 260.239 even 4
8450.2.a.bx.1.3 3 260.99 even 4