Properties

Label 2704.2
Level 2704
Weight 2
Dimension 125336
Nonzero newspaces 28
Sturm bound 908544
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2704 = 2^{4} \cdot 13^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 28 \)
Sturm bound: \(908544\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2704))\).

Total New Old
Modular forms 230328 127177 103151
Cusp forms 223945 125336 98609
Eisenstein series 6383 1841 4542

Trace form

\( 125336 q - 266 q^{2} - 200 q^{3} - 264 q^{4} - 332 q^{5} - 260 q^{6} - 198 q^{7} - 260 q^{8} - 66 q^{9} - 264 q^{10} - 196 q^{11} - 268 q^{12} - 360 q^{13} - 508 q^{14} - 194 q^{15} - 272 q^{16} - 598 q^{17}+ \cdots - 392 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2704))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2704.2.a \(\chi_{2704}(1, \cdot)\) 2704.2.a.a 1 1
2704.2.a.b 1
2704.2.a.c 1
2704.2.a.d 1
2704.2.a.e 1
2704.2.a.f 1
2704.2.a.g 1
2704.2.a.h 1
2704.2.a.i 1
2704.2.a.j 1
2704.2.a.k 1
2704.2.a.l 1
2704.2.a.m 1
2704.2.a.n 1
2704.2.a.o 2
2704.2.a.p 2
2704.2.a.q 2
2704.2.a.r 2
2704.2.a.s 2
2704.2.a.t 2
2704.2.a.u 2
2704.2.a.v 3
2704.2.a.w 3
2704.2.a.x 3
2704.2.a.y 3
2704.2.a.z 3
2704.2.a.ba 3
2704.2.a.bb 3
2704.2.a.bc 3
2704.2.a.bd 4
2704.2.a.be 4
2704.2.a.bf 6
2704.2.a.bg 6
2704.2.b \(\chi_{2704}(1353, \cdot)\) None 0 1
2704.2.e \(\chi_{2704}(1689, \cdot)\) None 0 1
2704.2.f \(\chi_{2704}(337, \cdot)\) 2704.2.f.a 2 1
2704.2.f.b 2
2704.2.f.c 2
2704.2.f.d 2
2704.2.f.e 2
2704.2.f.f 2
2704.2.f.g 2
2704.2.f.h 2
2704.2.f.i 2
2704.2.f.j 2
2704.2.f.k 4
2704.2.f.l 4
2704.2.f.m 6
2704.2.f.n 6
2704.2.f.o 6
2704.2.f.p 6
2704.2.f.q 8
2704.2.f.r 12
2704.2.i \(\chi_{2704}(529, \cdot)\) n/a 144 2
2704.2.k \(\chi_{2704}(239, \cdot)\) n/a 154 2
2704.2.l \(\chi_{2704}(915, \cdot)\) n/a 596 2
2704.2.n \(\chi_{2704}(677, \cdot)\) n/a 598 2
2704.2.p \(\chi_{2704}(1013, \cdot)\) n/a 596 2
2704.2.s \(\chi_{2704}(99, \cdot)\) n/a 596 2
2704.2.u \(\chi_{2704}(775, \cdot)\) None 0 2
2704.2.w \(\chi_{2704}(1713, \cdot)\) n/a 144 2
2704.2.z \(\chi_{2704}(1881, \cdot)\) None 0 2
2704.2.ba \(\chi_{2704}(361, \cdot)\) None 0 2
2704.2.bc \(\chi_{2704}(695, \cdot)\) None 0 4
2704.2.bf \(\chi_{2704}(19, \cdot)\) n/a 1192 4
2704.2.bh \(\chi_{2704}(485, \cdot)\) n/a 1192 4
2704.2.bj \(\chi_{2704}(653, \cdot)\) n/a 1192 4
2704.2.bk \(\chi_{2704}(587, \cdot)\) n/a 1192 4
2704.2.bm \(\chi_{2704}(319, \cdot)\) n/a 308 4
2704.2.bo \(\chi_{2704}(209, \cdot)\) n/a 1080 12
2704.2.br \(\chi_{2704}(129, \cdot)\) n/a 1080 12
2704.2.bs \(\chi_{2704}(25, \cdot)\) None 0 12
2704.2.bv \(\chi_{2704}(105, \cdot)\) None 0 12
2704.2.bw \(\chi_{2704}(81, \cdot)\) n/a 2160 24
2704.2.by \(\chi_{2704}(135, \cdot)\) None 0 24
2704.2.bz \(\chi_{2704}(187, \cdot)\) n/a 8688 24
2704.2.cb \(\chi_{2704}(77, \cdot)\) n/a 8688 24
2704.2.cd \(\chi_{2704}(53, \cdot)\) n/a 8688 24
2704.2.cg \(\chi_{2704}(83, \cdot)\) n/a 8688 24
2704.2.ci \(\chi_{2704}(31, \cdot)\) n/a 2184 24
2704.2.ck \(\chi_{2704}(121, \cdot)\) None 0 24
2704.2.cl \(\chi_{2704}(9, \cdot)\) None 0 24
2704.2.co \(\chi_{2704}(17, \cdot)\) n/a 2160 24
2704.2.cq \(\chi_{2704}(15, \cdot)\) n/a 4368 48
2704.2.ct \(\chi_{2704}(115, \cdot)\) n/a 17376 48
2704.2.cv \(\chi_{2704}(29, \cdot)\) n/a 17376 48
2704.2.cx \(\chi_{2704}(69, \cdot)\) n/a 17376 48
2704.2.cy \(\chi_{2704}(11, \cdot)\) n/a 17376 48
2704.2.da \(\chi_{2704}(7, \cdot)\) None 0 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2704))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2704)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(676))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1352))\)\(^{\oplus 2}\)