Properties

Label 8450.2.a.bn
Level $8450$
Weight $2$
Character orbit 8450.a
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-3,3,0,3,4,-3,8,0,3,-3,0,-4,0,3,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 338)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + (\beta_{2} + \beta_1 - 1) q^{3} + q^{4} + ( - \beta_{2} - \beta_1 + 1) q^{6} + ( - 2 \beta_{2} + 2 \beta_1) q^{7} - q^{8} + ( - \beta_1 + 3) q^{9} + ( - \beta_{2} + 2 \beta_1) q^{11} + (\beta_{2} + \beta_1 - 1) q^{12}+ \cdots + ( - 4 \beta_{2} + 6 \beta_1 - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} + 4 q^{7} - 3 q^{8} + 8 q^{9} + 3 q^{11} - 3 q^{12} - 4 q^{14} + 3 q^{16} - 5 q^{17} - 8 q^{18} + q^{19} - 4 q^{21} - 3 q^{22} + 3 q^{24} - 6 q^{27} + 4 q^{28}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.24698
0.445042
1.80194
−1.00000 −2.69202 1.00000 0 2.69202 −1.60388 −1.00000 4.24698 0
1.2 −1.00000 −2.35690 1.00000 0 2.35690 4.49396 −1.00000 2.55496 0
1.3 −1.00000 2.04892 1.00000 0 −2.04892 1.10992 −1.00000 1.19806 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8450.2.a.bn 3
5.b even 2 1 338.2.a.h yes 3
13.b even 2 1 8450.2.a.bx 3
15.d odd 2 1 3042.2.a.z 3
20.d odd 2 1 2704.2.a.w 3
65.d even 2 1 338.2.a.g 3
65.g odd 4 2 338.2.b.d 6
65.l even 6 2 338.2.c.i 6
65.n even 6 2 338.2.c.h 6
65.s odd 12 4 338.2.e.e 12
195.e odd 2 1 3042.2.a.bi 3
195.n even 4 2 3042.2.b.n 6
260.g odd 2 1 2704.2.a.v 3
260.u even 4 2 2704.2.f.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
338.2.a.g 3 65.d even 2 1
338.2.a.h yes 3 5.b even 2 1
338.2.b.d 6 65.g odd 4 2
338.2.c.h 6 65.n even 6 2
338.2.c.i 6 65.l even 6 2
338.2.e.e 12 65.s odd 12 4
2704.2.a.v 3 260.g odd 2 1
2704.2.a.w 3 20.d odd 2 1
2704.2.f.m 6 260.u even 4 2
3042.2.a.z 3 15.d odd 2 1
3042.2.a.bi 3 195.e odd 2 1
3042.2.b.n 6 195.n even 4 2
8450.2.a.bn 3 1.a even 1 1 trivial
8450.2.a.bx 3 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8450))\):

\( T_{3}^{3} + 3T_{3}^{2} - 4T_{3} - 13 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 4T_{7} + 8 \) Copy content Toggle raw display
\( T_{11}^{3} - 3T_{11}^{2} - 4T_{11} + 13 \) Copy content Toggle raw display
\( T_{17}^{3} + 5T_{17}^{2} - 22T_{17} - 97 \) Copy content Toggle raw display
\( T_{31}^{3} + 16T_{31}^{2} + 76T_{31} + 104 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 3 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$11$ \( T^{3} - 3 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 5 T^{2} + \cdots - 97 \) Copy content Toggle raw display
$19$ \( T^{3} - T^{2} + \cdots - 13 \) Copy content Toggle raw display
$23$ \( T^{3} - 28T - 56 \) Copy content Toggle raw display
$29$ \( T^{3} + 10 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$31$ \( T^{3} + 16 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$37$ \( T^{3} - 14 T^{2} + \cdots - 56 \) Copy content Toggle raw display
$41$ \( T^{3} - 7 T^{2} + \cdots + 91 \) Copy content Toggle raw display
$43$ \( T^{3} + 11 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$47$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$53$ \( T^{3} - 28T + 56 \) Copy content Toggle raw display
$59$ \( T^{3} + 3 T^{2} + \cdots + 127 \) Copy content Toggle raw display
$61$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$67$ \( T^{3} + 21 T^{2} + \cdots - 287 \) Copy content Toggle raw display
$71$ \( T^{3} + 12 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$73$ \( T^{3} + T^{2} + \cdots + 251 \) Copy content Toggle raw display
$79$ \( T^{3} + 18 T^{2} + \cdots - 232 \) Copy content Toggle raw display
$83$ \( T^{3} - T^{2} + \cdots - 13 \) Copy content Toggle raw display
$89$ \( T^{3} - 25 T^{2} + \cdots + 757 \) Copy content Toggle raw display
$97$ \( T^{3} + 23 T^{2} + \cdots - 883 \) Copy content Toggle raw display
show more
show less