Properties

Label 845.2.t.g.657.4
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.4
Root \(1.83163i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.g.418.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58624 + 0.915816i) q^{2} +(-0.512942 - 1.91432i) q^{3} +(0.677439 + 1.17336i) q^{4} +(1.69810 - 1.45480i) q^{5} +(0.939520 - 3.50634i) q^{6} +(1.76945 + 3.06478i) q^{7} -1.18163i q^{8} +(-0.803451 + 0.463873i) q^{9} +(4.02593 - 0.752519i) q^{10} +(1.00269 + 3.74209i) q^{11} +(1.89870 - 1.89870i) q^{12} +6.48197i q^{14} +(-3.65599 - 2.50449i) q^{15} +(2.43703 - 4.22106i) q^{16} +(1.95684 + 0.524334i) q^{17} -1.69929 q^{18} +(-0.518968 - 0.139057i) q^{19} +(2.85736 + 1.00694i) q^{20} +(4.95936 - 4.95936i) q^{21} +(-1.83656 + 6.85414i) q^{22} +(0.294095 - 0.0788026i) q^{23} +(-2.26202 + 0.606106i) q^{24} +(0.767094 - 4.94081i) q^{25} +(-2.90402 - 2.90402i) q^{27} +(-2.39739 + 4.15240i) q^{28} +(-1.71273 - 0.988843i) q^{29} +(-3.50563 - 7.32093i) q^{30} +(-4.13563 - 4.13563i) q^{31} +(5.68479 - 3.28212i) q^{32} +(6.64926 - 3.83895i) q^{33} +(2.62382 + 2.62382i) q^{34} +(7.46336 + 2.63010i) q^{35} +(-1.08858 - 0.628491i) q^{36} +(2.70887 - 4.69189i) q^{37} +(-0.695857 - 0.695857i) q^{38} +(-1.71904 - 2.00652i) q^{40} +(-0.649884 + 0.174136i) q^{41} +(12.4086 - 3.32487i) q^{42} +(-2.28069 + 8.51164i) q^{43} +(-3.71155 + 3.71155i) q^{44} +(-0.689498 + 1.95657i) q^{45} +(0.538675 + 0.144337i) q^{46} -9.75201 q^{47} +(-9.33053 - 2.50011i) q^{48} +(-2.76192 + 4.78379i) q^{49} +(5.74167 - 7.13479i) q^{50} -4.01498i q^{51} +(3.16254 - 3.16254i) q^{53} +(-1.94693 - 7.26602i) q^{54} +(7.14668 + 4.89574i) q^{55} +(3.62143 - 2.09083i) q^{56} +1.06480i q^{57} +(-1.81120 - 3.13709i) q^{58} +(-3.14703 + 11.7449i) q^{59} +(0.461950 - 5.98642i) q^{60} +(1.44316 + 2.49963i) q^{61} +(-2.77263 - 10.3476i) q^{62} +(-2.84334 - 1.64160i) q^{63} +2.27514 q^{64} +14.0631 q^{66} +(1.98310 + 1.14494i) q^{67} +(0.710408 + 2.65128i) q^{68} +(-0.301707 - 0.522573i) q^{69} +(9.43000 + 11.0070i) q^{70} +(1.19607 - 4.46378i) q^{71} +(0.548125 + 0.949380i) q^{72} +14.7546i q^{73} +(8.59382 - 4.96165i) q^{74} +(-9.85178 + 1.06588i) q^{75} +(-0.188405 - 0.703137i) q^{76} +(-9.69449 + 9.69449i) q^{77} +1.59718i q^{79} +(-2.00249 - 10.7132i) q^{80} +(-5.46126 + 9.45918i) q^{81} +(-1.19035 - 0.318953i) q^{82} +7.57341 q^{83} +(9.17877 + 2.45944i) q^{84} +(4.08571 - 1.95645i) q^{85} +(-11.4128 + 11.4128i) q^{86} +(-1.01444 + 3.78593i) q^{87} +(4.42176 - 1.18481i) q^{88} +(-4.54423 + 1.21762i) q^{89} +(-2.88556 + 2.47213i) q^{90} +(0.291695 + 0.291695i) q^{92} +(-5.79560 + 10.0383i) q^{93} +(-15.4690 - 8.93105i) q^{94} +(-1.08356 + 0.518863i) q^{95} +(-9.19900 - 9.19900i) q^{96} +(-15.4372 + 8.91268i) q^{97} +(-8.76215 + 5.05883i) q^{98} +(-2.54147 - 2.54147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 8 q^{6} + 2 q^{7} + 12 q^{9} - 2 q^{10} + 16 q^{11} - 24 q^{12} + 20 q^{15} - 2 q^{16} + 4 q^{17} + 20 q^{19} - 4 q^{21} + 16 q^{22} - 10 q^{23} - 32 q^{24} + 18 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58624 + 0.915816i 1.12164 + 0.647580i 0.941819 0.336119i \(-0.109115\pi\)
0.179822 + 0.983699i \(0.442448\pi\)
\(3\) −0.512942 1.91432i −0.296147 1.10524i −0.940302 0.340341i \(-0.889458\pi\)
0.644155 0.764895i \(-0.277209\pi\)
\(4\) 0.677439 + 1.17336i 0.338719 + 0.586679i
\(5\) 1.69810 1.45480i 0.759414 0.650608i
\(6\) 0.939520 3.50634i 0.383558 1.43146i
\(7\) 1.76945 + 3.06478i 0.668790 + 1.15838i 0.978243 + 0.207464i \(0.0665209\pi\)
−0.309453 + 0.950915i \(0.600146\pi\)
\(8\) 1.18163i 0.417769i
\(9\) −0.803451 + 0.463873i −0.267817 + 0.154624i
\(10\) 4.02593 0.752519i 1.27311 0.237967i
\(11\) 1.00269 + 3.74209i 0.302323 + 1.12828i 0.935226 + 0.354053i \(0.115197\pi\)
−0.632903 + 0.774231i \(0.718137\pi\)
\(12\) 1.89870 1.89870i 0.548108 0.548108i
\(13\) 0 0
\(14\) 6.48197i 1.73238i
\(15\) −3.65599 2.50449i −0.943973 0.646656i
\(16\) 2.43703 4.22106i 0.609258 1.05527i
\(17\) 1.95684 + 0.524334i 0.474603 + 0.127170i 0.488189 0.872738i \(-0.337658\pi\)
−0.0135853 + 0.999908i \(0.504324\pi\)
\(18\) −1.69929 −0.400526
\(19\) −0.518968 0.139057i −0.119059 0.0319019i 0.198797 0.980041i \(-0.436296\pi\)
−0.317857 + 0.948139i \(0.602963\pi\)
\(20\) 2.85736 + 1.00694i 0.638926 + 0.225159i
\(21\) 4.95936 4.95936i 1.08222 1.08222i
\(22\) −1.83656 + 6.85414i −0.391556 + 1.46131i
\(23\) 0.294095 0.0788026i 0.0613231 0.0164315i −0.228027 0.973655i \(-0.573227\pi\)
0.289350 + 0.957223i \(0.406561\pi\)
\(24\) −2.26202 + 0.606106i −0.461733 + 0.123721i
\(25\) 0.767094 4.94081i 0.153419 0.988161i
\(26\) 0 0
\(27\) −2.90402 2.90402i −0.558879 0.558879i
\(28\) −2.39739 + 4.15240i −0.453064 + 0.784730i
\(29\) −1.71273 0.988843i −0.318045 0.183624i 0.332476 0.943112i \(-0.392116\pi\)
−0.650521 + 0.759488i \(0.725449\pi\)
\(30\) −3.50563 7.32093i −0.640038 1.33661i
\(31\) −4.13563 4.13563i −0.742781 0.742781i 0.230331 0.973112i \(-0.426019\pi\)
−0.973112 + 0.230331i \(0.926019\pi\)
\(32\) 5.68479 3.28212i 1.00494 0.580202i
\(33\) 6.64926 3.83895i 1.15749 0.668276i
\(34\) 2.62382 + 2.62382i 0.449982 + 0.449982i
\(35\) 7.46336 + 2.63010i 1.26154 + 0.444569i
\(36\) −1.08858 0.628491i −0.181430 0.104748i
\(37\) 2.70887 4.69189i 0.445335 0.771342i −0.552741 0.833353i \(-0.686418\pi\)
0.998075 + 0.0620109i \(0.0197514\pi\)
\(38\) −0.695857 0.695857i −0.112883 0.112883i
\(39\) 0 0
\(40\) −1.71904 2.00652i −0.271803 0.317259i
\(41\) −0.649884 + 0.174136i −0.101495 + 0.0271955i −0.309209 0.950994i \(-0.600064\pi\)
0.207714 + 0.978190i \(0.433398\pi\)
\(42\) 12.4086 3.32487i 1.91469 0.513039i
\(43\) −2.28069 + 8.51164i −0.347802 + 1.29801i 0.541504 + 0.840698i \(0.317855\pi\)
−0.889305 + 0.457314i \(0.848811\pi\)
\(44\) −3.71155 + 3.71155i −0.559538 + 0.559538i
\(45\) −0.689498 + 1.95657i −0.102784 + 0.291668i
\(46\) 0.538675 + 0.144337i 0.0794232 + 0.0212814i
\(47\) −9.75201 −1.42248 −0.711238 0.702951i \(-0.751865\pi\)
−0.711238 + 0.702951i \(0.751865\pi\)
\(48\) −9.33053 2.50011i −1.34675 0.360860i
\(49\) −2.76192 + 4.78379i −0.394561 + 0.683399i
\(50\) 5.74167 7.13479i 0.811994 1.00901i
\(51\) 4.01498i 0.562209i
\(52\) 0 0
\(53\) 3.16254 3.16254i 0.434409 0.434409i −0.455716 0.890125i \(-0.650617\pi\)
0.890125 + 0.455716i \(0.150617\pi\)
\(54\) −1.94693 7.26602i −0.264943 0.988781i
\(55\) 7.14668 + 4.89574i 0.963658 + 0.660141i
\(56\) 3.62143 2.09083i 0.483934 0.279399i
\(57\) 1.06480i 0.141036i
\(58\) −1.81120 3.13709i −0.237822 0.411919i
\(59\) −3.14703 + 11.7449i −0.409708 + 1.52905i 0.385495 + 0.922710i \(0.374031\pi\)
−0.795203 + 0.606343i \(0.792636\pi\)
\(60\) 0.461950 5.98642i 0.0596374 0.772844i
\(61\) 1.44316 + 2.49963i 0.184778 + 0.320044i 0.943502 0.331368i \(-0.107510\pi\)
−0.758724 + 0.651412i \(0.774177\pi\)
\(62\) −2.77263 10.3476i −0.352124 1.31414i
\(63\) −2.84334 1.64160i −0.358227 0.206822i
\(64\) 2.27514 0.284392
\(65\) 0 0
\(66\) 14.0631 1.73105
\(67\) 1.98310 + 1.14494i 0.242274 + 0.139877i 0.616222 0.787573i \(-0.288663\pi\)
−0.373947 + 0.927450i \(0.621996\pi\)
\(68\) 0.710408 + 2.65128i 0.0861496 + 0.321515i
\(69\) −0.301707 0.522573i −0.0363213 0.0629104i
\(70\) 9.43000 + 11.0070i 1.12710 + 1.31559i
\(71\) 1.19607 4.46378i 0.141947 0.529753i −0.857925 0.513774i \(-0.828247\pi\)
0.999872 0.0159789i \(-0.00508645\pi\)
\(72\) 0.548125 + 0.949380i 0.0645972 + 0.111886i
\(73\) 14.7546i 1.72690i 0.504436 + 0.863449i \(0.331701\pi\)
−0.504436 + 0.863449i \(0.668299\pi\)
\(74\) 8.59382 4.96165i 0.999011 0.576780i
\(75\) −9.85178 + 1.06588i −1.13759 + 0.123077i
\(76\) −0.188405 0.703137i −0.0216115 0.0806554i
\(77\) −9.69449 + 9.69449i −1.10479 + 1.10479i
\(78\) 0 0
\(79\) 1.59718i 0.179696i 0.995955 + 0.0898482i \(0.0286382\pi\)
−0.995955 + 0.0898482i \(0.971362\pi\)
\(80\) −2.00249 10.7132i −0.223885 1.19777i
\(81\) −5.46126 + 9.45918i −0.606807 + 1.05102i
\(82\) −1.19035 0.318953i −0.131452 0.0352225i
\(83\) 7.57341 0.831290 0.415645 0.909527i \(-0.363556\pi\)
0.415645 + 0.909527i \(0.363556\pi\)
\(84\) 9.17877 + 2.45944i 1.00149 + 0.268347i
\(85\) 4.08571 1.95645i 0.443158 0.212206i
\(86\) −11.4128 + 11.4128i −1.23068 + 1.23068i
\(87\) −1.01444 + 3.78593i −0.108759 + 0.405895i
\(88\) 4.42176 1.18481i 0.471361 0.126301i
\(89\) −4.54423 + 1.21762i −0.481687 + 0.129068i −0.491488 0.870884i \(-0.663547\pi\)
0.00980081 + 0.999952i \(0.496880\pi\)
\(90\) −2.88556 + 2.47213i −0.304165 + 0.260586i
\(91\) 0 0
\(92\) 0.291695 + 0.291695i 0.0304113 + 0.0304113i
\(93\) −5.79560 + 10.0383i −0.600976 + 1.04092i
\(94\) −15.4690 8.93105i −1.59551 0.921167i
\(95\) −1.08356 + 0.518863i −0.111171 + 0.0532342i
\(96\) −9.19900 9.19900i −0.938869 0.938869i
\(97\) −15.4372 + 8.91268i −1.56741 + 0.904945i −0.570942 + 0.820991i \(0.693422\pi\)
−0.996470 + 0.0839547i \(0.973245\pi\)
\(98\) −8.76215 + 5.05883i −0.885111 + 0.511019i
\(99\) −2.54147 2.54147i −0.255427 0.255427i
\(100\) 6.31699 2.44702i 0.631699 0.244702i
\(101\) −3.94379 2.27695i −0.392421 0.226565i 0.290787 0.956788i \(-0.406083\pi\)
−0.683209 + 0.730223i \(0.739416\pi\)
\(102\) 3.67698 6.36872i 0.364075 0.630597i
\(103\) 9.79285 + 9.79285i 0.964918 + 0.964918i 0.999405 0.0344872i \(-0.0109798\pi\)
−0.0344872 + 0.999405i \(0.510980\pi\)
\(104\) 0 0
\(105\) 1.20660 15.6364i 0.117752 1.52596i
\(106\) 7.91286 2.12024i 0.768565 0.205936i
\(107\) 6.82933 1.82991i 0.660216 0.176904i 0.0868725 0.996219i \(-0.472313\pi\)
0.573344 + 0.819315i \(0.305646\pi\)
\(108\) 1.44016 5.37475i 0.138580 0.517186i
\(109\) 9.89281 9.89281i 0.947560 0.947560i −0.0511324 0.998692i \(-0.516283\pi\)
0.998692 + 0.0511324i \(0.0162830\pi\)
\(110\) 6.85276 + 14.3109i 0.653385 + 1.36449i
\(111\) −10.3713 2.77898i −0.984399 0.263769i
\(112\) 17.2488 1.62986
\(113\) −2.21438 0.593341i −0.208311 0.0558168i 0.153154 0.988202i \(-0.451057\pi\)
−0.361466 + 0.932385i \(0.617723\pi\)
\(114\) −0.975161 + 1.68903i −0.0913322 + 0.158192i
\(115\) 0.384761 0.561666i 0.0358792 0.0523756i
\(116\) 2.67952i 0.248787i
\(117\) 0 0
\(118\) −15.7481 + 15.7481i −1.44973 + 1.44973i
\(119\) 1.85557 + 6.92507i 0.170099 + 0.634820i
\(120\) −2.95937 + 4.32002i −0.270152 + 0.394362i
\(121\) −3.47160 + 2.00433i −0.315600 + 0.182212i
\(122\) 5.28668i 0.478633i
\(123\) 0.666705 + 1.15477i 0.0601148 + 0.104122i
\(124\) 2.05094 7.65421i 0.184180 0.687368i
\(125\) −5.88530 9.50596i −0.526397 0.850239i
\(126\) −3.00681 5.20795i −0.267868 0.463961i
\(127\) −0.332860 1.24225i −0.0295366 0.110232i 0.949584 0.313513i \(-0.101506\pi\)
−0.979120 + 0.203281i \(0.934839\pi\)
\(128\) −7.76067 4.48062i −0.685953 0.396035i
\(129\) 17.4639 1.53761
\(130\) 0 0
\(131\) −5.59439 −0.488785 −0.244392 0.969676i \(-0.578588\pi\)
−0.244392 + 0.969676i \(0.578588\pi\)
\(132\) 9.00893 + 5.20131i 0.784127 + 0.452716i
\(133\) −0.492109 1.83658i −0.0426713 0.159251i
\(134\) 2.09712 + 3.63231i 0.181163 + 0.313784i
\(135\) −9.15610 0.706541i −0.788032 0.0608094i
\(136\) 0.619567 2.31226i 0.0531274 0.198274i
\(137\) −7.14509 12.3757i −0.610446 1.05732i −0.991165 0.132633i \(-0.957657\pi\)
0.380719 0.924691i \(-0.375676\pi\)
\(138\) 1.10523i 0.0940838i
\(139\) −15.0832 + 8.70830i −1.27934 + 0.738629i −0.976727 0.214484i \(-0.931193\pi\)
−0.302615 + 0.953113i \(0.597860\pi\)
\(140\) 1.96992 + 10.5389i 0.166488 + 0.890702i
\(141\) 5.00221 + 18.6685i 0.421262 + 1.57217i
\(142\) 5.98525 5.98525i 0.502271 0.502271i
\(143\) 0 0
\(144\) 4.52189i 0.376824i
\(145\) −4.34696 + 0.812525i −0.360995 + 0.0674765i
\(146\) −13.5125 + 23.4044i −1.11830 + 1.93696i
\(147\) 10.5744 + 2.83341i 0.872165 + 0.233696i
\(148\) 7.34036 0.603374
\(149\) −12.6828 3.39833i −1.03901 0.278402i −0.301308 0.953527i \(-0.597423\pi\)
−0.737704 + 0.675124i \(0.764090\pi\)
\(150\) −16.6034 7.33168i −1.35566 0.598629i
\(151\) −0.765191 + 0.765191i −0.0622704 + 0.0622704i −0.737556 0.675286i \(-0.764020\pi\)
0.675286 + 0.737556i \(0.264020\pi\)
\(152\) −0.164314 + 0.613227i −0.0133276 + 0.0497392i
\(153\) −1.81545 + 0.486448i −0.146770 + 0.0393270i
\(154\) −24.2562 + 6.49942i −1.95462 + 0.523738i
\(155\) −13.0392 1.00619i −1.04734 0.0808190i
\(156\) 0 0
\(157\) 3.03481 + 3.03481i 0.242204 + 0.242204i 0.817762 0.575557i \(-0.195215\pi\)
−0.575557 + 0.817762i \(0.695215\pi\)
\(158\) −1.46272 + 2.53350i −0.116368 + 0.201555i
\(159\) −7.67633 4.43193i −0.608773 0.351475i
\(160\) 4.87852 13.8436i 0.385681 1.09443i
\(161\) 0.761901 + 0.761901i 0.0600462 + 0.0600462i
\(162\) −17.3257 + 10.0030i −1.36124 + 0.785912i
\(163\) 1.96032 1.13179i 0.153544 0.0886486i −0.421260 0.906940i \(-0.638412\pi\)
0.574803 + 0.818292i \(0.305079\pi\)
\(164\) −0.644580 0.644580i −0.0503333 0.0503333i
\(165\) 5.70619 16.1923i 0.444227 1.26057i
\(166\) 12.0133 + 6.93585i 0.932409 + 0.538327i
\(167\) −0.309785 + 0.536563i −0.0239719 + 0.0415205i −0.877762 0.479096i \(-0.840965\pi\)
0.853791 + 0.520617i \(0.174298\pi\)
\(168\) −5.86012 5.86012i −0.452118 0.452118i
\(169\) 0 0
\(170\) 8.27267 + 0.638370i 0.634485 + 0.0489608i
\(171\) 0.481470 0.129009i 0.0368189 0.00986560i
\(172\) −11.5322 + 3.09005i −0.879324 + 0.235614i
\(173\) −1.71382 + 6.39606i −0.130299 + 0.486283i −0.999973 0.00734343i \(-0.997662\pi\)
0.869674 + 0.493627i \(0.164329\pi\)
\(174\) −5.07636 + 5.07636i −0.384838 + 0.384838i
\(175\) 16.4998 6.39155i 1.24727 0.483155i
\(176\) 18.2392 + 4.88718i 1.37483 + 0.368385i
\(177\) 24.0977 1.81130
\(178\) −8.32336 2.23024i −0.623862 0.167163i
\(179\) −1.09512 + 1.89680i −0.0818528 + 0.141773i −0.904046 0.427436i \(-0.859417\pi\)
0.822193 + 0.569209i \(0.192750\pi\)
\(180\) −2.76285 + 0.516426i −0.205930 + 0.0384921i
\(181\) 9.59255i 0.713009i 0.934294 + 0.356504i \(0.116031\pi\)
−0.934294 + 0.356504i \(0.883969\pi\)
\(182\) 0 0
\(183\) 4.04484 4.04484i 0.299003 0.299003i
\(184\) −0.0931154 0.347511i −0.00686456 0.0256189i
\(185\) −2.22585 11.9082i −0.163648 0.875506i
\(186\) −18.3864 + 10.6154i −1.34816 + 0.778359i
\(187\) 7.84842i 0.573933i
\(188\) −6.60639 11.4426i −0.481820 0.834537i
\(189\) 3.76166 14.0387i 0.273621 1.02117i
\(190\) −2.19397 0.169300i −0.159167 0.0122823i
\(191\) −1.86557 3.23126i −0.134988 0.233806i 0.790605 0.612326i \(-0.209766\pi\)
−0.925593 + 0.378521i \(0.876433\pi\)
\(192\) −1.16701 4.35536i −0.0842220 0.314321i
\(193\) −0.246025 0.142043i −0.0177093 0.0102245i 0.491119 0.871092i \(-0.336588\pi\)
−0.508829 + 0.860868i \(0.669921\pi\)
\(194\) −32.6495 −2.34410
\(195\) 0 0
\(196\) −7.48414 −0.534581
\(197\) 22.3860 + 12.9246i 1.59494 + 0.920838i 0.992442 + 0.122716i \(0.0391604\pi\)
0.602496 + 0.798122i \(0.294173\pi\)
\(198\) −1.70386 6.35890i −0.121088 0.451907i
\(199\) −2.87625 4.98181i −0.203892 0.353151i 0.745887 0.666072i \(-0.232026\pi\)
−0.949779 + 0.312921i \(0.898692\pi\)
\(200\) −5.83819 0.906420i −0.412823 0.0640936i
\(201\) 1.17458 4.38359i 0.0828484 0.309194i
\(202\) −4.17053 7.22357i −0.293437 0.508248i
\(203\) 6.99884i 0.491223i
\(204\) 4.71101 2.71990i 0.329836 0.190431i
\(205\) −0.850235 + 1.24115i −0.0593830 + 0.0866859i
\(206\) 6.56536 + 24.5023i 0.457430 + 1.70715i
\(207\) −0.199737 + 0.199737i −0.0138827 + 0.0138827i
\(208\) 0 0
\(209\) 2.08146i 0.143977i
\(210\) 16.2340 23.6980i 1.12025 1.63532i
\(211\) 1.61372 2.79504i 0.111093 0.192418i −0.805118 0.593114i \(-0.797898\pi\)
0.916211 + 0.400696i \(0.131232\pi\)
\(212\) 5.85322 + 1.56837i 0.402001 + 0.107716i
\(213\) −9.15863 −0.627539
\(214\) 12.5088 + 3.35173i 0.855085 + 0.229119i
\(215\) 8.50993 + 17.7716i 0.580372 + 1.21201i
\(216\) −3.43147 + 3.43147i −0.233482 + 0.233482i
\(217\) 5.35700 19.9926i 0.363657 1.35719i
\(218\) 24.7524 6.63238i 1.67644 0.449201i
\(219\) 28.2451 7.56826i 1.90863 0.511416i
\(220\) −0.903013 + 11.7022i −0.0608811 + 0.788961i
\(221\) 0 0
\(222\) −13.9063 13.9063i −0.933331 0.933331i
\(223\) −3.70762 + 6.42178i −0.248280 + 0.430034i −0.963049 0.269327i \(-0.913199\pi\)
0.714768 + 0.699361i \(0.246532\pi\)
\(224\) 20.1179 + 11.6151i 1.34419 + 0.776067i
\(225\) 1.67558 + 4.32553i 0.111706 + 0.288369i
\(226\) −2.96914 2.96914i −0.197504 0.197504i
\(227\) 3.37949 1.95115i 0.224305 0.129502i −0.383637 0.923484i \(-0.625329\pi\)
0.607942 + 0.793981i \(0.291995\pi\)
\(228\) −1.24939 + 0.721337i −0.0827430 + 0.0477717i
\(229\) −12.3946 12.3946i −0.819060 0.819060i 0.166912 0.985972i \(-0.446621\pi\)
−0.985972 + 0.166912i \(0.946621\pi\)
\(230\) 1.12471 0.538566i 0.0741609 0.0355120i
\(231\) 23.5311 + 13.5857i 1.54823 + 0.893872i
\(232\) −1.16844 + 2.02381i −0.0767121 + 0.132869i
\(233\) 2.88962 + 2.88962i 0.189305 + 0.189305i 0.795396 0.606090i \(-0.207263\pi\)
−0.606090 + 0.795396i \(0.707263\pi\)
\(234\) 0 0
\(235\) −16.5599 + 14.1873i −1.08025 + 0.925474i
\(236\) −15.9129 + 4.26384i −1.03584 + 0.277552i
\(237\) 3.05751 0.819258i 0.198607 0.0532165i
\(238\) −3.39872 + 12.6842i −0.220306 + 0.822193i
\(239\) 8.97299 8.97299i 0.580415 0.580415i −0.354602 0.935017i \(-0.615384\pi\)
0.935017 + 0.354602i \(0.115384\pi\)
\(240\) −19.4814 + 9.32866i −1.25752 + 0.602162i
\(241\) −16.9497 4.54165i −1.09183 0.292554i −0.332394 0.943141i \(-0.607856\pi\)
−0.759432 + 0.650587i \(0.774523\pi\)
\(242\) −7.34239 −0.471986
\(243\) 9.00835 + 2.41378i 0.577886 + 0.154844i
\(244\) −1.95530 + 3.38669i −0.125176 + 0.216810i
\(245\) 2.26945 + 12.1414i 0.144990 + 0.775687i
\(246\) 2.44232i 0.155716i
\(247\) 0 0
\(248\) −4.88677 + 4.88677i −0.310311 + 0.310311i
\(249\) −3.88472 14.4980i −0.246184 0.918771i
\(250\) −0.629785 20.4686i −0.0398311 1.29455i
\(251\) 18.8524 10.8845i 1.18996 0.687021i 0.231659 0.972797i \(-0.425585\pi\)
0.958296 + 0.285776i \(0.0922513\pi\)
\(252\) 4.44834i 0.280219i
\(253\) 0.589774 + 1.02152i 0.0370787 + 0.0642223i
\(254\) 0.609678 2.27535i 0.0382546 0.142768i
\(255\) −5.84100 6.81784i −0.365778 0.426950i
\(256\) −10.4820 18.1554i −0.655125 1.13471i
\(257\) 3.31629 + 12.3766i 0.206864 + 0.772029i 0.988873 + 0.148761i \(0.0475286\pi\)
−0.782009 + 0.623268i \(0.785805\pi\)
\(258\) 27.7019 + 15.9937i 1.72465 + 0.995725i
\(259\) 19.1728 1.19134
\(260\) 0 0
\(261\) 1.83479 0.113571
\(262\) −8.87405 5.12344i −0.548241 0.316527i
\(263\) 4.27179 + 15.9426i 0.263410 + 0.983060i 0.963216 + 0.268727i \(0.0866030\pi\)
−0.699806 + 0.714333i \(0.746730\pi\)
\(264\) −4.53621 7.85695i −0.279185 0.483562i
\(265\) 0.769439 9.97120i 0.0472663 0.612526i
\(266\) 0.901363 3.36393i 0.0552661 0.206256i
\(267\) 4.66185 + 8.07456i 0.285301 + 0.494155i
\(268\) 3.10252i 0.189516i
\(269\) 27.9787 16.1535i 1.70589 0.984895i 0.766370 0.642400i \(-0.222061\pi\)
0.939519 0.342495i \(-0.111272\pi\)
\(270\) −13.8767 9.50605i −0.844510 0.578520i
\(271\) −4.52218 16.8770i −0.274703 1.02521i −0.956040 0.293236i \(-0.905268\pi\)
0.681337 0.731970i \(-0.261399\pi\)
\(272\) 6.98212 6.98212i 0.423353 0.423353i
\(273\) 0 0
\(274\) 26.1743i 1.58125i
\(275\) 19.2581 2.08356i 1.16131 0.125644i
\(276\) 0.408777 0.708022i 0.0246055 0.0426179i
\(277\) −2.96961 0.795705i −0.178427 0.0478093i 0.168499 0.985702i \(-0.446108\pi\)
−0.346926 + 0.937892i \(0.612775\pi\)
\(278\) −31.9008 −1.91328
\(279\) 5.24118 + 1.40437i 0.313781 + 0.0840775i
\(280\) 3.10780 8.81892i 0.185727 0.527031i
\(281\) 18.6757 18.6757i 1.11410 1.11410i 0.121508 0.992590i \(-0.461227\pi\)
0.992590 0.121508i \(-0.0387731\pi\)
\(282\) −9.16221 + 34.1938i −0.545602 + 2.03621i
\(283\) −14.8164 + 3.97005i −0.880745 + 0.235995i −0.670728 0.741703i \(-0.734018\pi\)
−0.210016 + 0.977698i \(0.567352\pi\)
\(284\) 6.04787 1.62052i 0.358875 0.0961603i
\(285\) 1.54907 + 1.80814i 0.0917593 + 0.107105i
\(286\) 0 0
\(287\) −1.68363 1.68363i −0.0993814 0.0993814i
\(288\) −3.04497 + 5.27404i −0.179427 + 0.310776i
\(289\) −11.1681 6.44793i −0.656949 0.379290i
\(290\) −7.63944 2.69215i −0.448603 0.158089i
\(291\) 24.9801 + 24.9801i 1.46436 + 1.46436i
\(292\) −17.3125 + 9.99535i −1.01314 + 0.584934i
\(293\) −8.98649 + 5.18835i −0.524996 + 0.303107i −0.738976 0.673731i \(-0.764691\pi\)
0.213980 + 0.976838i \(0.431357\pi\)
\(294\) 14.1787 + 14.1787i 0.826919 + 0.826919i
\(295\) 11.7425 + 24.5223i 0.683675 + 1.42774i
\(296\) −5.54407 3.20087i −0.322243 0.186047i
\(297\) 7.95528 13.7790i 0.461612 0.799536i
\(298\) −17.0057 17.0057i −0.985111 0.985111i
\(299\) 0 0
\(300\) −7.92463 10.8376i −0.457529 0.625709i
\(301\) −30.1219 + 8.07113i −1.73620 + 0.465212i
\(302\) −1.91455 + 0.513002i −0.110170 + 0.0295200i
\(303\) −2.33588 + 8.71763i −0.134193 + 0.500814i
\(304\) −1.85171 + 1.85171i −0.106203 + 0.106203i
\(305\) 6.08710 + 2.14510i 0.348546 + 0.122828i
\(306\) −3.32524 0.890994i −0.190091 0.0509347i
\(307\) −2.13935 −0.122099 −0.0610496 0.998135i \(-0.519445\pi\)
−0.0610496 + 0.998135i \(0.519445\pi\)
\(308\) −17.9425 4.80768i −1.02237 0.273943i
\(309\) 13.7235 23.7698i 0.780704 1.35222i
\(310\) −19.7619 13.5376i −1.12240 0.768884i
\(311\) 3.82084i 0.216660i −0.994115 0.108330i \(-0.965450\pi\)
0.994115 0.108330i \(-0.0345503\pi\)
\(312\) 0 0
\(313\) 3.04531 3.04531i 0.172131 0.172131i −0.615784 0.787915i \(-0.711161\pi\)
0.787915 + 0.615784i \(0.211161\pi\)
\(314\) 2.03461 + 7.59327i 0.114820 + 0.428513i
\(315\) −7.21648 + 1.34889i −0.406603 + 0.0760014i
\(316\) −1.87406 + 1.08199i −0.105424 + 0.0608666i
\(317\) 23.1127i 1.29814i 0.760730 + 0.649068i \(0.224841\pi\)
−0.760730 + 0.649068i \(0.775159\pi\)
\(318\) −8.11767 14.0602i −0.455216 0.788458i
\(319\) 1.98301 7.40069i 0.111027 0.414359i
\(320\) 3.86342 3.30988i 0.215972 0.185028i
\(321\) −7.00609 12.1349i −0.391042 0.677305i
\(322\) 0.510796 + 1.90632i 0.0284656 + 0.106235i
\(323\) −0.942624 0.544224i −0.0524490 0.0302814i
\(324\) −14.7987 −0.822149
\(325\) 0 0
\(326\) 4.14604 0.229628
\(327\) −24.0125 13.8636i −1.32789 0.766660i
\(328\) 0.205764 + 0.767921i 0.0113614 + 0.0424013i
\(329\) −17.2557 29.8878i −0.951338 1.64777i
\(330\) 23.8806 20.4590i 1.31458 1.12623i
\(331\) −0.516858 + 1.92894i −0.0284091 + 0.106024i −0.978675 0.205417i \(-0.934145\pi\)
0.950265 + 0.311441i \(0.100812\pi\)
\(332\) 5.13052 + 8.88632i 0.281574 + 0.487700i
\(333\) 5.02628i 0.275438i
\(334\) −0.982786 + 0.567412i −0.0537756 + 0.0310474i
\(335\) 5.03317 0.940791i 0.274992 0.0514009i
\(336\) −8.84765 33.0199i −0.482679 1.80138i
\(337\) 6.12727 6.12727i 0.333773 0.333773i −0.520244 0.854018i \(-0.674159\pi\)
0.854018 + 0.520244i \(0.174159\pi\)
\(338\) 0 0
\(339\) 4.54338i 0.246763i
\(340\) 5.06343 + 3.46863i 0.274603 + 0.188113i
\(341\) 11.3292 19.6227i 0.613508 1.06263i
\(342\) 0.881876 + 0.236298i 0.0476864 + 0.0127775i
\(343\) 5.22396 0.282067
\(344\) 10.0576 + 2.69492i 0.542269 + 0.145301i
\(345\) −1.27257 0.448456i −0.0685129 0.0241441i
\(346\) −8.57614 + 8.57614i −0.461056 + 0.461056i
\(347\) −8.41384 + 31.4009i −0.451679 + 1.68569i 0.245994 + 0.969271i \(0.420886\pi\)
−0.697673 + 0.716417i \(0.745781\pi\)
\(348\) −5.12947 + 1.37444i −0.274969 + 0.0736776i
\(349\) −6.57321 + 1.76129i −0.351856 + 0.0942795i −0.430418 0.902630i \(-0.641634\pi\)
0.0785620 + 0.996909i \(0.474967\pi\)
\(350\) 32.0262 + 4.97228i 1.71187 + 0.265780i
\(351\) 0 0
\(352\) 17.9821 + 17.9821i 0.958448 + 0.958448i
\(353\) 13.6631 23.6652i 0.727213 1.25957i −0.230843 0.972991i \(-0.574148\pi\)
0.958057 0.286579i \(-0.0925182\pi\)
\(354\) 38.2248 + 22.0691i 2.03163 + 1.17296i
\(355\) −4.46288 9.31999i −0.236865 0.494654i
\(356\) −4.50714 4.50714i −0.238878 0.238878i
\(357\) 12.3050 7.10431i 0.651251 0.376000i
\(358\) −3.47423 + 2.00585i −0.183619 + 0.106012i
\(359\) −3.89871 3.89871i −0.205766 0.205766i 0.596699 0.802465i \(-0.296479\pi\)
−0.802465 + 0.596699i \(0.796479\pi\)
\(360\) 2.31193 + 0.814730i 0.121850 + 0.0429400i
\(361\) −16.2045 9.35567i −0.852868 0.492404i
\(362\) −8.78501 + 15.2161i −0.461730 + 0.799740i
\(363\) 5.61766 + 5.61766i 0.294851 + 0.294851i
\(364\) 0 0
\(365\) 21.4651 + 25.0548i 1.12353 + 1.31143i
\(366\) 10.1204 2.71176i 0.529003 0.141746i
\(367\) −17.4595 + 4.67826i −0.911378 + 0.244203i −0.683896 0.729579i \(-0.739716\pi\)
−0.227482 + 0.973782i \(0.573049\pi\)
\(368\) 0.384089 1.43344i 0.0200220 0.0747232i
\(369\) 0.441373 0.441373i 0.0229770 0.0229770i
\(370\) 7.37496 20.9277i 0.383406 1.08798i
\(371\) 15.2885 + 4.09653i 0.793738 + 0.212681i
\(372\) −15.7046 −0.814248
\(373\) −14.9855 4.01536i −0.775921 0.207907i −0.150936 0.988544i \(-0.548229\pi\)
−0.624986 + 0.780636i \(0.714895\pi\)
\(374\) −7.18771 + 12.4495i −0.371668 + 0.643747i
\(375\) −15.1787 + 16.1424i −0.783823 + 0.833588i
\(376\) 11.5232i 0.594266i
\(377\) 0 0
\(378\) 18.8238 18.8238i 0.968191 0.968191i
\(379\) 5.53029 + 20.6393i 0.284072 + 1.06017i 0.949515 + 0.313722i \(0.101576\pi\)
−0.665443 + 0.746449i \(0.731757\pi\)
\(380\) −1.34286 0.919906i −0.0688871 0.0471902i
\(381\) −2.20733 + 1.27440i −0.113085 + 0.0652897i
\(382\) 6.83407i 0.349661i
\(383\) 9.70362 + 16.8072i 0.495832 + 0.858806i 0.999988 0.00480620i \(-0.00152987\pi\)
−0.504157 + 0.863612i \(0.668197\pi\)
\(384\) −4.59660 + 17.1547i −0.234569 + 0.875424i
\(385\) −2.35865 + 30.5658i −0.120208 + 1.55778i
\(386\) −0.260170 0.450628i −0.0132423 0.0229364i
\(387\) −2.11590 7.89664i −0.107557 0.401409i
\(388\) −20.9155 12.0756i −1.06182 0.613045i
\(389\) −14.8591 −0.753387 −0.376693 0.926338i \(-0.622939\pi\)
−0.376693 + 0.926338i \(0.622939\pi\)
\(390\) 0 0
\(391\) 0.616816 0.0311937
\(392\) 5.65266 + 3.26357i 0.285503 + 0.164835i
\(393\) 2.86960 + 10.7095i 0.144752 + 0.540222i
\(394\) 23.6731 + 41.0030i 1.19263 + 2.06570i
\(395\) 2.32358 + 2.71217i 0.116912 + 0.136464i
\(396\) 1.26036 4.70374i 0.0633357 0.236372i
\(397\) 2.63889 + 4.57070i 0.132442 + 0.229397i 0.924617 0.380897i \(-0.124385\pi\)
−0.792175 + 0.610294i \(0.791051\pi\)
\(398\) 10.5365i 0.528145i
\(399\) −3.26338 + 1.88411i −0.163373 + 0.0943236i
\(400\) −18.9860 15.2789i −0.949301 0.763943i
\(401\) −7.21557 26.9289i −0.360328 1.34476i −0.873645 0.486564i \(-0.838250\pi\)
0.513317 0.858199i \(-0.328417\pi\)
\(402\) 5.87772 5.87772i 0.293154 0.293154i
\(403\) 0 0
\(404\) 6.16996i 0.306967i
\(405\) 4.48748 + 24.0077i 0.222985 + 1.19295i
\(406\) 6.40965 11.1018i 0.318106 0.550975i
\(407\) 20.2737 + 5.43231i 1.00493 + 0.269270i
\(408\) −4.74421 −0.234873
\(409\) −2.54532 0.682016i −0.125858 0.0337235i 0.195340 0.980736i \(-0.437419\pi\)
−0.321198 + 0.947012i \(0.604086\pi\)
\(410\) −2.48535 + 1.19011i −0.122742 + 0.0587753i
\(411\) −20.0260 + 20.0260i −0.987810 + 0.987810i
\(412\) −4.85646 + 18.1246i −0.239261 + 0.892933i
\(413\) −41.5640 + 11.1370i −2.04523 + 0.548018i
\(414\) −0.499753 + 0.133908i −0.0245615 + 0.00658124i
\(415\) 12.8604 11.0178i 0.631293 0.540844i
\(416\) 0 0
\(417\) 24.4073 + 24.4073i 1.19523 + 1.19523i
\(418\) 1.90623 3.30169i 0.0932368 0.161491i
\(419\) 17.0348 + 9.83506i 0.832205 + 0.480474i 0.854607 0.519275i \(-0.173798\pi\)
−0.0224018 + 0.999749i \(0.507131\pi\)
\(420\) 19.1645 9.17692i 0.935131 0.447788i
\(421\) −10.4427 10.4427i −0.508948 0.508948i 0.405256 0.914203i \(-0.367183\pi\)
−0.914203 + 0.405256i \(0.867183\pi\)
\(422\) 5.11948 2.95573i 0.249212 0.143883i
\(423\) 7.83526 4.52369i 0.380964 0.219949i
\(424\) −3.73695 3.73695i −0.181482 0.181482i
\(425\) 4.09171 9.26615i 0.198477 0.449474i
\(426\) −14.5278 8.38762i −0.703874 0.406382i
\(427\) −5.10721 + 8.84594i −0.247155 + 0.428085i
\(428\) 6.77359 + 6.77359i 0.327414 + 0.327414i
\(429\) 0 0
\(430\) −2.77671 + 35.9835i −0.133905 + 1.73528i
\(431\) −16.5486 + 4.43419i −0.797119 + 0.213587i −0.634319 0.773072i \(-0.718719\pi\)
−0.162800 + 0.986659i \(0.552053\pi\)
\(432\) −19.3352 + 5.18086i −0.930267 + 0.249264i
\(433\) 2.90826 10.8538i 0.139762 0.521599i −0.860171 0.510006i \(-0.829643\pi\)
0.999933 0.0115927i \(-0.00369014\pi\)
\(434\) 26.8070 26.8070i 1.28678 1.28678i
\(435\) 3.78517 + 7.90470i 0.181485 + 0.379002i
\(436\) 18.3096 + 4.90604i 0.876870 + 0.234957i
\(437\) −0.163584 −0.00782528
\(438\) 51.7347 + 13.8623i 2.47198 + 0.662365i
\(439\) 2.12218 3.67572i 0.101286 0.175432i −0.810929 0.585145i \(-0.801038\pi\)
0.912215 + 0.409712i \(0.134371\pi\)
\(440\) 5.78494 8.44472i 0.275786 0.402586i
\(441\) 5.12473i 0.244035i
\(442\) 0 0
\(443\) 15.1569 15.1569i 0.720126 0.720126i −0.248505 0.968631i \(-0.579939\pi\)
0.968631 + 0.248505i \(0.0799392\pi\)
\(444\) −3.76518 14.0518i −0.178687 0.666870i
\(445\) −5.94516 + 8.67861i −0.281828 + 0.411405i
\(446\) −11.7623 + 6.79099i −0.556963 + 0.321563i
\(447\) 26.0221i 1.23080i
\(448\) 4.02575 + 6.97281i 0.190199 + 0.329434i
\(449\) 3.76524 14.0521i 0.177693 0.663158i −0.818385 0.574671i \(-0.805130\pi\)
0.996077 0.0884873i \(-0.0282033\pi\)
\(450\) −1.30351 + 8.39586i −0.0614483 + 0.395785i
\(451\) −1.30327 2.25732i −0.0613684 0.106293i
\(452\) −0.803904 3.00021i −0.0378124 0.141118i
\(453\) 1.85732 + 1.07233i 0.0872646 + 0.0503822i
\(454\) 7.14758 0.335453
\(455\) 0 0
\(456\) 1.25820 0.0589205
\(457\) 26.2365 + 15.1476i 1.22729 + 0.708576i 0.966462 0.256809i \(-0.0826711\pi\)
0.260828 + 0.965385i \(0.416004\pi\)
\(458\) −8.30966 31.0121i −0.388285 1.44910i
\(459\) −4.16003 7.20538i −0.194173 0.336318i
\(460\) 0.919687 + 0.0709688i 0.0428806 + 0.00330894i
\(461\) −1.79565 + 6.70146i −0.0836318 + 0.312118i −0.995052 0.0993596i \(-0.968321\pi\)
0.911420 + 0.411478i \(0.134987\pi\)
\(462\) 24.8840 + 43.1003i 1.15771 + 2.00521i
\(463\) 31.4463i 1.46143i 0.682680 + 0.730717i \(0.260814\pi\)
−0.682680 + 0.730717i \(0.739186\pi\)
\(464\) −8.34794 + 4.81968i −0.387543 + 0.223748i
\(465\) 4.76220 + 25.4775i 0.220842 + 1.18149i
\(466\) 1.93727 + 7.22999i 0.0897423 + 0.334923i
\(467\) −3.69622 + 3.69622i −0.171041 + 0.171041i −0.787436 0.616396i \(-0.788592\pi\)
0.616396 + 0.787436i \(0.288592\pi\)
\(468\) 0 0
\(469\) 8.10369i 0.374194i
\(470\) −39.2609 + 7.33857i −1.81097 + 0.338503i
\(471\) 4.25293 7.36630i 0.195965 0.339421i
\(472\) 13.8781 + 3.71862i 0.638790 + 0.171163i
\(473\) −34.1382 −1.56968
\(474\) 5.60024 + 1.50058i 0.257227 + 0.0689239i
\(475\) −1.08515 + 2.45745i −0.0497901 + 0.112755i
\(476\) −6.86855 + 6.86855i −0.314820 + 0.314820i
\(477\) −1.07393 + 4.00797i −0.0491720 + 0.183512i
\(478\) 22.4509 6.01571i 1.02688 0.275152i
\(479\) 18.6940 5.00904i 0.854150 0.228869i 0.194928 0.980818i \(-0.437553\pi\)
0.659222 + 0.751949i \(0.270886\pi\)
\(480\) −29.0036 2.23810i −1.32383 0.102155i
\(481\) 0 0
\(482\) −22.7270 22.7270i −1.03518 1.03518i
\(483\) 1.06771 1.84934i 0.0485827 0.0841477i
\(484\) −4.70359 2.71562i −0.213800 0.123437i
\(485\) −13.2477 + 37.5927i −0.601549 + 1.70700i
\(486\) 12.0788 + 12.0788i 0.547907 + 0.547907i
\(487\) 20.2327 11.6813i 0.916830 0.529332i 0.0342077 0.999415i \(-0.489109\pi\)
0.882622 + 0.470083i \(0.155776\pi\)
\(488\) 2.95363 1.70528i 0.133704 0.0771943i
\(489\) −3.17214 3.17214i −0.143449 0.143449i
\(490\) −7.51941 + 21.3376i −0.339692 + 0.963935i
\(491\) 18.4624 + 10.6593i 0.833198 + 0.481047i 0.854946 0.518716i \(-0.173590\pi\)
−0.0217482 + 0.999763i \(0.506923\pi\)
\(492\) −0.903303 + 1.56457i −0.0407241 + 0.0705362i
\(493\) −2.83305 2.83305i −0.127594 0.127594i
\(494\) 0 0
\(495\) −8.01301 0.618334i −0.360158 0.0277920i
\(496\) −27.5354 + 7.37809i −1.23638 + 0.331286i
\(497\) 15.7969 4.23276i 0.708587 0.189865i
\(498\) 7.11538 26.5549i 0.318848 1.18996i
\(499\) −23.0389 + 23.0389i −1.03136 + 1.03136i −0.0318687 + 0.999492i \(0.510146\pi\)
−0.999492 + 0.0318687i \(0.989854\pi\)
\(500\) 7.16697 13.3453i 0.320516 0.596818i
\(501\) 1.18606 + 0.317803i 0.0529891 + 0.0141984i
\(502\) 39.8727 1.77960
\(503\) −0.634433 0.169996i −0.0282879 0.00757973i 0.244647 0.969612i \(-0.421328\pi\)
−0.272935 + 0.962032i \(0.587994\pi\)
\(504\) −1.93976 + 3.35977i −0.0864039 + 0.149656i
\(505\) −10.0095 + 1.87095i −0.445415 + 0.0832561i
\(506\) 2.16050i 0.0960458i
\(507\) 0 0
\(508\) 1.23211 1.23211i 0.0546662 0.0546662i
\(509\) −8.29035 30.9400i −0.367463 1.37139i −0.864050 0.503405i \(-0.832080\pi\)
0.496587 0.867987i \(-0.334586\pi\)
\(510\) −3.02135 16.1640i −0.133787 0.715754i
\(511\) −45.2197 + 26.1076i −2.00040 + 1.15493i
\(512\) 20.4758i 0.904912i
\(513\) 1.10327 + 1.91092i 0.0487105 + 0.0843690i
\(514\) −6.07422 + 22.6693i −0.267923 + 0.999901i
\(515\) 30.8759 + 2.38258i 1.36056 + 0.104989i
\(516\) 11.8307 + 20.4914i 0.520818 + 0.902084i
\(517\) −9.77825 36.4929i −0.430047 1.60496i
\(518\) 30.4127 + 17.5588i 1.33626 + 0.771489i
\(519\) 13.1232 0.576046
\(520\) 0 0
\(521\) −23.4746 −1.02844 −0.514220 0.857658i \(-0.671919\pi\)
−0.514220 + 0.857658i \(0.671919\pi\)
\(522\) 2.91042 + 1.68033i 0.127386 + 0.0735461i
\(523\) 6.40400 + 23.9001i 0.280027 + 1.04508i 0.952397 + 0.304861i \(0.0986099\pi\)
−0.672370 + 0.740216i \(0.734723\pi\)
\(524\) −3.78986 6.56423i −0.165561 0.286760i
\(525\) −20.6989 28.3075i −0.903376 1.23544i
\(526\) −7.82436 + 29.2009i −0.341158 + 1.27322i
\(527\) −5.92431 10.2612i −0.258067 0.446985i
\(528\) 37.4226i 1.62861i
\(529\) −19.8383 + 11.4536i −0.862535 + 0.497985i
\(530\) 10.3523 15.1120i 0.449675 0.656425i
\(531\) −2.91964 10.8963i −0.126702 0.472857i
\(532\) 1.82159 1.82159i 0.0789759 0.0789759i
\(533\) 0 0
\(534\) 17.0776i 0.739019i
\(535\) 8.93473 13.0427i 0.386282 0.563885i
\(536\) 1.35290 2.34329i 0.0584363 0.101215i
\(537\) 4.19281 + 1.12346i 0.180933 + 0.0484809i
\(538\) 59.1745 2.55119
\(539\) −20.6708 5.53871i −0.890353 0.238569i
\(540\) −5.37367 11.2220i −0.231246 0.482919i
\(541\) 27.6908 27.6908i 1.19052 1.19052i 0.213597 0.976922i \(-0.431482\pi\)
0.976922 0.213597i \(-0.0685180\pi\)
\(542\) 8.28297 30.9125i 0.355784 1.32780i
\(543\) 18.3632 4.92042i 0.788042 0.211155i
\(544\) 12.8452 3.44185i 0.550731 0.147568i
\(545\) 2.40690 31.1911i 0.103100 1.33608i
\(546\) 0 0
\(547\) 6.53914 + 6.53914i 0.279593 + 0.279593i 0.832947 0.553353i \(-0.186652\pi\)
−0.553353 + 0.832947i \(0.686652\pi\)
\(548\) 9.68071 16.7675i 0.413540 0.716272i
\(549\) −2.31902 1.33889i −0.0989733 0.0571422i
\(550\) 32.4562 + 14.3319i 1.38394 + 0.611113i
\(551\) 0.751344 + 0.751344i 0.0320083 + 0.0320083i
\(552\) −0.617486 + 0.356506i −0.0262820 + 0.0151739i
\(553\) −4.89500 + 2.82613i −0.208156 + 0.120179i
\(554\) −3.98180 3.98180i −0.169170 0.169170i
\(555\) −21.6544 + 10.3692i −0.919177 + 0.440148i
\(556\) −20.4359 11.7987i −0.866676 0.500375i
\(557\) 8.12429 14.0717i 0.344237 0.596237i −0.640978 0.767560i \(-0.721471\pi\)
0.985215 + 0.171323i \(0.0548042\pi\)
\(558\) 7.02763 + 7.02763i 0.297503 + 0.297503i
\(559\) 0 0
\(560\) 29.2903 25.0937i 1.23774 1.06040i
\(561\) 15.0244 4.02578i 0.634332 0.169969i
\(562\) 46.7277 12.5206i 1.97109 0.528151i
\(563\) 8.41827 31.4174i 0.354788 1.32409i −0.525964 0.850507i \(-0.676295\pi\)
0.880751 0.473579i \(-0.157038\pi\)
\(564\) −18.5161 + 18.5161i −0.779670 + 0.779670i
\(565\) −4.62343 + 2.21393i −0.194509 + 0.0931408i
\(566\) −27.1382 7.27167i −1.14071 0.305651i
\(567\) −38.6538 −1.62331
\(568\) −5.27453 1.41331i −0.221314 0.0593010i
\(569\) 16.4164 28.4341i 0.688212 1.19202i −0.284203 0.958764i \(-0.591729\pi\)
0.972416 0.233255i \(-0.0749376\pi\)
\(570\) 0.801283 + 4.28681i 0.0335620 + 0.179555i
\(571\) 31.7967i 1.33065i −0.746554 0.665325i \(-0.768293\pi\)
0.746554 0.665325i \(-0.231707\pi\)
\(572\) 0 0
\(573\) −5.22875 + 5.22875i −0.218434 + 0.218434i
\(574\) −1.12874 4.21253i −0.0471129 0.175828i
\(575\) −0.163750 1.51352i −0.00682883 0.0631180i
\(576\) −1.82796 + 1.05538i −0.0761652 + 0.0439740i
\(577\) 39.9389i 1.66268i −0.555767 0.831338i \(-0.687575\pi\)
0.555767 0.831338i \(-0.312425\pi\)
\(578\) −11.8102 20.4559i −0.491241 0.850854i
\(579\) −0.145719 + 0.543832i −0.00605589 + 0.0226009i
\(580\) −3.89818 4.55010i −0.161863 0.188933i
\(581\) 13.4008 + 23.2109i 0.555959 + 0.962949i
\(582\) 16.7473 + 62.5017i 0.694197 + 2.59078i
\(583\) 15.0056 + 8.66348i 0.621468 + 0.358805i
\(584\) 17.4345 0.721444
\(585\) 0 0
\(586\) −19.0063 −0.785143
\(587\) −16.1561 9.32773i −0.666834 0.384997i 0.128042 0.991769i \(-0.459131\pi\)
−0.794876 + 0.606772i \(0.792464\pi\)
\(588\) 3.83892 + 14.3271i 0.158315 + 0.590838i
\(589\) 1.57117 + 2.72135i 0.0647389 + 0.112131i
\(590\) −3.83147 + 49.6522i −0.157739 + 2.04415i
\(591\) 13.2591 49.4837i 0.545407 2.03549i
\(592\) −13.2032 22.8686i −0.542647 0.939893i
\(593\) 8.65172i 0.355284i 0.984095 + 0.177642i \(0.0568468\pi\)
−0.984095 + 0.177642i \(0.943153\pi\)
\(594\) 25.2380 14.5712i 1.03553 0.597862i
\(595\) 13.2256 + 9.05998i 0.542195 + 0.371423i
\(596\) −4.60433 17.1836i −0.188601 0.703867i
\(597\) −8.06145 + 8.06145i −0.329933 + 0.329933i
\(598\) 0 0
\(599\) 35.1779i 1.43733i −0.695356 0.718666i \(-0.744753\pi\)
0.695356 0.718666i \(-0.255247\pi\)
\(600\) 1.25947 + 11.6411i 0.0514177 + 0.475247i
\(601\) 20.0384 34.7076i 0.817385 1.41575i −0.0902170 0.995922i \(-0.528756\pi\)
0.907602 0.419831i \(-0.137911\pi\)
\(602\) −55.1722 14.7834i −2.24865 0.602524i
\(603\) −2.12443 −0.0865136
\(604\) −1.41621 0.379473i −0.0576249 0.0154405i
\(605\) −2.97922 + 8.45405i −0.121123 + 0.343706i
\(606\) −11.6890 + 11.6890i −0.474834 + 0.474834i
\(607\) 11.1449 41.5934i 0.452358 1.68822i −0.243384 0.969930i \(-0.578258\pi\)
0.695742 0.718292i \(-0.255076\pi\)
\(608\) −3.40662 + 0.912802i −0.138157 + 0.0370190i
\(609\) −13.3981 + 3.59000i −0.542917 + 0.145474i
\(610\) 7.69108 + 8.97731i 0.311403 + 0.363481i
\(611\) 0 0
\(612\) −1.80063 1.80063i −0.0727863 0.0727863i
\(613\) −10.1397 + 17.5625i −0.409540 + 0.709344i −0.994838 0.101474i \(-0.967644\pi\)
0.585298 + 0.810818i \(0.300978\pi\)
\(614\) −3.39352 1.95925i −0.136952 0.0790690i
\(615\) 2.81209 + 0.990986i 0.113394 + 0.0399604i
\(616\) 11.4553 + 11.4553i 0.461546 + 0.461546i
\(617\) −7.50891 + 4.33527i −0.302297 + 0.174531i −0.643474 0.765468i \(-0.722508\pi\)
0.341177 + 0.939999i \(0.389174\pi\)
\(618\) 43.5376 25.1365i 1.75134 1.01114i
\(619\) −21.3034 21.3034i −0.856257 0.856257i 0.134638 0.990895i \(-0.457013\pi\)
−0.990895 + 0.134638i \(0.957013\pi\)
\(620\) −7.65267 15.9813i −0.307339 0.641826i
\(621\) −1.08290 0.625215i −0.0434554 0.0250890i
\(622\) 3.49919 6.06077i 0.140305 0.243015i
\(623\) −11.7725 11.7725i −0.471657 0.471657i
\(624\) 0 0
\(625\) −23.8231 7.58013i −0.952925 0.303205i
\(626\) 7.61954 2.04165i 0.304538 0.0816007i
\(627\) −3.98458 + 1.06767i −0.159129 + 0.0426385i
\(628\) −1.50502 + 5.61682i −0.0600569 + 0.224136i
\(629\) 7.76093 7.76093i 0.309449 0.309449i
\(630\) −12.6824 4.46931i −0.505279 0.178061i
\(631\) 27.4324 + 7.35050i 1.09207 + 0.292619i 0.759531 0.650472i \(-0.225429\pi\)
0.332537 + 0.943090i \(0.392095\pi\)
\(632\) 1.88727 0.0750715
\(633\) −6.17835 1.65548i −0.245567 0.0657996i
\(634\) −21.1670 + 36.6622i −0.840647 + 1.45604i
\(635\) −2.37246 1.62522i −0.0941483 0.0644950i
\(636\) 12.0094i 0.476206i
\(637\) 0 0
\(638\) 9.92320 9.92320i 0.392863 0.392863i
\(639\) 1.10965 + 4.14125i 0.0438969 + 0.163825i
\(640\) −19.6968 + 3.68169i −0.778585 + 0.145532i
\(641\) 14.1756 8.18429i 0.559903 0.323260i −0.193204 0.981159i \(-0.561888\pi\)
0.753107 + 0.657899i \(0.228554\pi\)
\(642\) 25.6652i 1.01292i
\(643\) −20.5258 35.5518i −0.809460 1.40203i −0.913239 0.407425i \(-0.866427\pi\)
0.103779 0.994600i \(-0.466907\pi\)
\(644\) −0.377841 + 1.41012i −0.0148890 + 0.0555666i
\(645\) 29.6555 25.4065i 1.16768 1.00038i
\(646\) −0.996819 1.72654i −0.0392193 0.0679298i
\(647\) 0.733807 + 2.73861i 0.0288489 + 0.107666i 0.978849 0.204584i \(-0.0655841\pi\)
−0.950000 + 0.312250i \(0.898917\pi\)
\(648\) 11.1772 + 6.45318i 0.439083 + 0.253505i
\(649\) −47.1059 −1.84907
\(650\) 0 0
\(651\) −41.0201 −1.60771
\(652\) 2.65599 + 1.53344i 0.104017 + 0.0600540i
\(653\) 0.324978 + 1.21283i 0.0127174 + 0.0474619i 0.971993 0.235010i \(-0.0755123\pi\)
−0.959276 + 0.282472i \(0.908846\pi\)
\(654\) −25.3930 43.9820i −0.992947 1.71983i
\(655\) −9.49985 + 8.13874i −0.371190 + 0.318007i
\(656\) −0.848749 + 3.16758i −0.0331381 + 0.123673i
\(657\) −6.84427 11.8546i −0.267020 0.462493i
\(658\) 63.2122i 2.46427i
\(659\) −8.09916 + 4.67605i −0.315498 + 0.182153i −0.649384 0.760460i \(-0.724973\pi\)
0.333886 + 0.942613i \(0.391640\pi\)
\(660\) 22.8650 4.27387i 0.890017 0.166360i
\(661\) 6.64415 + 24.7963i 0.258427 + 0.964464i 0.966152 + 0.257975i \(0.0830553\pi\)
−0.707724 + 0.706489i \(0.750278\pi\)
\(662\) −2.58641 + 2.58641i −0.100524 + 0.100524i
\(663\) 0 0
\(664\) 8.94896i 0.347287i
\(665\) −3.50751 2.40277i −0.136015 0.0931755i
\(666\) −4.60315 + 7.97288i −0.178368 + 0.308943i
\(667\) −0.581628 0.155847i −0.0225207 0.00603441i
\(668\) −0.839440 −0.0324789
\(669\) 14.1952 + 3.80358i 0.548817 + 0.147055i
\(670\) 8.84541 + 3.11714i 0.341728 + 0.120426i
\(671\) −7.90679 + 7.90679i −0.305238 + 0.305238i
\(672\) 11.9157 44.4701i 0.459660 1.71547i
\(673\) 39.9267 10.6983i 1.53906 0.412390i 0.613098 0.790007i \(-0.289923\pi\)
0.925962 + 0.377617i \(0.123256\pi\)
\(674\) 15.3308 4.10787i 0.590519 0.158229i
\(675\) −16.5759 + 12.1205i −0.638005 + 0.466520i
\(676\) 0 0
\(677\) 15.5322 + 15.5322i 0.596950 + 0.596950i 0.939500 0.342549i \(-0.111290\pi\)
−0.342549 + 0.939500i \(0.611290\pi\)
\(678\) −4.16090 + 7.20690i −0.159799 + 0.276779i
\(679\) −54.6308 31.5411i −2.09654 1.21044i
\(680\) −2.31179 4.82779i −0.0886531 0.185137i
\(681\) −5.46862 5.46862i −0.209558 0.209558i
\(682\) 35.9415 20.7508i 1.37627 0.794591i
\(683\) −5.76170 + 3.32652i −0.220465 + 0.127286i −0.606166 0.795338i \(-0.707293\pi\)
0.385700 + 0.922624i \(0.373960\pi\)
\(684\) 0.477541 + 0.477541i 0.0182592 + 0.0182592i
\(685\) −30.1372 10.6204i −1.15148 0.405785i
\(686\) 8.28646 + 4.78419i 0.316378 + 0.182661i
\(687\) −17.3696 + 30.0851i −0.662692 + 1.14782i
\(688\) 30.3701 + 30.3701i 1.15785 + 1.15785i
\(689\) 0 0
\(690\) −1.60790 1.87680i −0.0612117 0.0714485i
\(691\) 36.3445 9.73848i 1.38261 0.370469i 0.510542 0.859853i \(-0.329445\pi\)
0.872069 + 0.489384i \(0.162778\pi\)
\(692\) −8.66588 + 2.32201i −0.329427 + 0.0882698i
\(693\) 3.29204 12.2861i 0.125054 0.466709i
\(694\) −42.1038 + 42.1038i −1.59824 + 1.59824i
\(695\) −12.9440 + 36.7307i −0.490993 + 1.39327i
\(696\) 4.47356 + 1.19869i 0.169570 + 0.0454361i
\(697\) −1.36302 −0.0516282
\(698\) −12.0397 3.22603i −0.455710 0.122107i
\(699\) 4.04946 7.01387i 0.153165 0.265289i
\(700\) 18.6772 + 15.0303i 0.705931 + 0.568093i
\(701\) 40.3398i 1.52361i 0.647804 + 0.761807i \(0.275688\pi\)
−0.647804 + 0.761807i \(0.724312\pi\)
\(702\) 0 0
\(703\) −2.05825 + 2.05825i −0.0776285 + 0.0776285i
\(704\) 2.28126 + 8.51379i 0.0859783 + 0.320875i
\(705\) 35.6533 + 24.4238i 1.34278 + 0.919852i
\(706\) 43.3459 25.0258i 1.63134 0.941857i
\(707\) 16.1158i 0.606097i
\(708\) 16.3247 + 28.2753i 0.613521 + 1.06265i
\(709\) −11.5415 + 43.0733i −0.433449 + 1.61765i 0.311304 + 0.950311i \(0.399234\pi\)
−0.744752 + 0.667341i \(0.767432\pi\)
\(710\) 1.45620 18.8709i 0.0546501 0.708213i
\(711\) −0.740887 1.28325i −0.0277854 0.0481258i
\(712\) 1.43878 + 5.36959i 0.0539204 + 0.201234i
\(713\) −1.54217 0.890371i −0.0577546 0.0333447i
\(714\) 26.0250 0.973960
\(715\) 0 0
\(716\) −2.96749 −0.110900
\(717\) −21.7798 12.5746i −0.813383 0.469607i
\(718\) −2.61379 9.75479i −0.0975457 0.364045i
\(719\) 13.7825 + 23.8720i 0.514001 + 0.890276i 0.999868 + 0.0162430i \(0.00517055\pi\)
−0.485867 + 0.874033i \(0.661496\pi\)
\(720\) 6.57846 + 7.67863i 0.245165 + 0.286166i
\(721\) −12.6850 + 47.3409i −0.472413 + 1.76307i
\(722\) −17.1361 29.6807i −0.637741 1.10460i
\(723\) 34.7768i 1.29336i
\(724\) −11.2555 + 6.49836i −0.418307 + 0.241510i
\(725\) −6.19951 + 7.70371i −0.230244 + 0.286109i
\(726\) 3.76622 + 14.0557i 0.139777 + 0.521656i
\(727\) −29.4624 + 29.4624i −1.09270 + 1.09270i −0.0974593 + 0.995240i \(0.531072\pi\)
−0.995240 + 0.0974593i \(0.968928\pi\)
\(728\) 0 0
\(729\) 14.2845i 0.529057i
\(730\) 11.1031 + 59.4011i 0.410946 + 2.19853i
\(731\) −8.92588 + 15.4601i −0.330135 + 0.571811i
\(732\) 7.48617 + 2.00591i 0.276697 + 0.0741407i
\(733\) 23.3958 0.864144 0.432072 0.901839i \(-0.357783\pi\)
0.432072 + 0.901839i \(0.357783\pi\)
\(734\) −31.9794 8.56885i −1.18038 0.316282i
\(735\) 22.0785 10.5723i 0.814378 0.389965i
\(736\) 1.41323 1.41323i 0.0520924 0.0520924i
\(737\) −2.29605 + 8.56897i −0.0845761 + 0.315642i
\(738\) 1.10434 0.295907i 0.0406513 0.0108925i
\(739\) −15.5120 + 4.15644i −0.570620 + 0.152897i −0.532581 0.846379i \(-0.678778\pi\)
−0.0380389 + 0.999276i \(0.512111\pi\)
\(740\) 12.4647 10.6788i 0.458210 0.392560i
\(741\) 0 0
\(742\) 20.4995 + 20.4995i 0.752561 + 0.752561i
\(743\) 26.1400 45.2759i 0.958985 1.66101i 0.234011 0.972234i \(-0.424815\pi\)
0.724973 0.688777i \(-0.241852\pi\)
\(744\) 11.8615 + 6.84824i 0.434864 + 0.251069i
\(745\) −26.4805 + 12.6802i −0.970171 + 0.464567i
\(746\) −20.0933 20.0933i −0.735669 0.735669i
\(747\) −6.08487 + 3.51310i −0.222634 + 0.128538i
\(748\) −9.20901 + 5.31682i −0.336715 + 0.194402i
\(749\) 17.6925 + 17.6925i 0.646468 + 0.646468i
\(750\) −38.8605 + 11.7048i −1.41898 + 0.427399i
\(751\) 23.7599 + 13.7178i 0.867010 + 0.500569i 0.866354 0.499431i \(-0.166458\pi\)
0.000656703 1.00000i \(0.499791\pi\)
\(752\) −23.7659 + 41.1638i −0.866655 + 1.50109i
\(753\) −30.5066 30.5066i −1.11172 1.11172i
\(754\) 0 0
\(755\) −0.186169 + 2.41257i −0.00677539 + 0.0878026i
\(756\) 19.0207 5.09659i 0.691777 0.185361i
\(757\) −2.32441 + 0.622824i −0.0844821 + 0.0226369i −0.300813 0.953683i \(-0.597258\pi\)
0.216330 + 0.976320i \(0.430591\pi\)
\(758\) −10.1295 + 37.8037i −0.367919 + 1.37309i
\(759\) 1.65300 1.65300i 0.0600000 0.0600000i
\(760\) 0.613103 + 1.28036i 0.0222396 + 0.0464437i
\(761\) −2.35997 0.632352i −0.0855488 0.0229227i 0.215791 0.976440i \(-0.430767\pi\)
−0.301340 + 0.953517i \(0.597434\pi\)
\(762\) −4.66848 −0.169121
\(763\) 47.8242 + 12.8144i 1.73135 + 0.463914i
\(764\) 2.52761 4.37796i 0.0914459 0.158389i
\(765\) −2.37513 + 3.46716i −0.0858730 + 0.125355i
\(766\) 35.5469i 1.28436i
\(767\) 0 0
\(768\) −29.3786 + 29.3786i −1.06011 + 1.06011i
\(769\) −3.50862 13.0944i −0.126524 0.472195i 0.873365 0.487066i \(-0.161933\pi\)
−0.999889 + 0.0148712i \(0.995266\pi\)
\(770\) −31.7340 + 46.3246i −1.14361 + 1.66942i
\(771\) 21.9917 12.6969i 0.792011 0.457268i
\(772\) 0.384901i 0.0138529i
\(773\) 11.2222 + 19.4375i 0.403636 + 0.699118i 0.994162 0.107901i \(-0.0344128\pi\)
−0.590525 + 0.807019i \(0.701079\pi\)
\(774\) 3.87555 14.4637i 0.139304 0.519888i
\(775\) −23.6058 + 17.2609i −0.847944 + 0.620031i
\(776\) 10.5315 + 18.2410i 0.378058 + 0.654815i
\(777\) −9.83454 36.7030i −0.352812 1.31671i
\(778\) −23.5701 13.6082i −0.845030 0.487878i
\(779\) 0.361484 0.0129515
\(780\) 0 0
\(781\) 17.9032 0.640626
\(782\) 0.978419 + 0.564890i 0.0349882 + 0.0202004i
\(783\) 2.10217 + 7.84541i 0.0751255 + 0.280372i
\(784\) 13.4618 + 23.3165i 0.480778 + 0.832732i
\(785\) 9.56847 + 0.738363i 0.341513 + 0.0263533i
\(786\) −5.25605 + 19.6158i −0.187477 + 0.699674i
\(787\) −6.74791 11.6877i −0.240537 0.416622i 0.720330 0.693631i \(-0.243990\pi\)
−0.960867 + 0.277009i \(0.910657\pi\)
\(788\) 35.0224i 1.24762i
\(789\) 28.3280 16.3552i 1.00850 0.582260i
\(790\) 1.20191 + 6.43012i 0.0427619 + 0.228773i
\(791\) −2.09978 7.83647i −0.0746594 0.278633i
\(792\) −3.00307 + 3.00307i −0.106709 + 0.106709i
\(793\) 0 0
\(794\) 9.66696i 0.343068i
\(795\) −19.4828 + 3.64168i −0.690983 + 0.129157i
\(796\) 3.89696 6.74974i 0.138124 0.239238i
\(797\) −6.06076 1.62398i −0.214683 0.0575242i 0.149874 0.988705i \(-0.452113\pi\)
−0.364558 + 0.931181i \(0.618780\pi\)
\(798\) −6.90201 −0.244328
\(799\) −19.0831 5.11330i −0.675112 0.180896i
\(800\) −11.8555 30.6052i −0.419156 1.08206i
\(801\) 3.08625 3.08625i 0.109047 0.109047i
\(802\) 13.2163 49.3238i 0.466683 1.74168i
\(803\) −55.2132 + 14.7943i −1.94843 + 0.522081i
\(804\) 5.93922 1.59141i 0.209460 0.0561247i
\(805\) 2.40220 + 0.185369i 0.0846664 + 0.00653339i
\(806\) 0 0
\(807\) −45.2744 45.2744i −1.59374 1.59374i
\(808\) −2.69050 + 4.66009i −0.0946516 + 0.163941i
\(809\) −18.6872 10.7890i −0.657006 0.379322i 0.134130 0.990964i \(-0.457176\pi\)
−0.791135 + 0.611641i \(0.790510\pi\)
\(810\) −14.8684 + 42.1917i −0.522424 + 1.48247i
\(811\) −22.5473 22.5473i −0.791743 0.791743i 0.190035 0.981777i \(-0.439140\pi\)
−0.981777 + 0.190035i \(0.939140\pi\)
\(812\) 8.21215 4.74129i 0.288190 0.166387i
\(813\) −29.9885 + 17.3138i −1.05174 + 0.607223i
\(814\) 27.1839 + 27.1839i 0.952795 + 0.952795i
\(815\) 1.68229 4.77377i 0.0589279 0.167218i
\(816\) −16.9475 9.78462i −0.593280 0.342530i
\(817\) 2.36721 4.10012i 0.0828180 0.143445i
\(818\) −3.41289 3.41289i −0.119329 0.119329i
\(819\) 0 0
\(820\) −2.03230 0.156825i −0.0709710 0.00547656i
\(821\) 17.3216 4.64130i 0.604526 0.161982i 0.0564427 0.998406i \(-0.482024\pi\)
0.548084 + 0.836423i \(0.315358\pi\)
\(822\) −50.1062 + 13.4259i −1.74765 + 0.468282i
\(823\) 0.298185 1.11284i 0.0103941 0.0387913i −0.960534 0.278162i \(-0.910275\pi\)
0.970928 + 0.239371i \(0.0769413\pi\)
\(824\) 11.5715 11.5715i 0.403112 0.403112i
\(825\) −13.8669 35.7975i −0.482784 1.24631i
\(826\) −76.1300 20.3990i −2.64890 0.709771i
\(827\) 4.45029 0.154752 0.0773759 0.997002i \(-0.475346\pi\)
0.0773759 + 0.997002i \(0.475346\pi\)
\(828\) −0.369672 0.0990534i −0.0128470 0.00344234i
\(829\) −14.5637 + 25.2251i −0.505819 + 0.876103i 0.494159 + 0.869372i \(0.335476\pi\)
−0.999977 + 0.00673181i \(0.997857\pi\)
\(830\) 30.4900 5.69914i 1.05832 0.197820i
\(831\) 6.09295i 0.211362i
\(832\) 0 0
\(833\) −7.91294 + 7.91294i −0.274167 + 0.274167i
\(834\) 16.3633 + 61.0685i 0.566613 + 2.11463i
\(835\) 0.254548 + 1.36181i 0.00880899 + 0.0471275i
\(836\) 2.44229 1.41006i 0.0844685 0.0487679i
\(837\) 24.0199i 0.830249i
\(838\) 18.0142 + 31.2015i 0.622291 + 1.07784i
\(839\) 8.36719 31.2268i 0.288867 1.07807i −0.657099 0.753804i \(-0.728217\pi\)
0.945967 0.324264i \(-0.105117\pi\)
\(840\) −18.4764 1.42575i −0.637496 0.0491931i
\(841\) −12.5444 21.7275i −0.432565 0.749224i
\(842\) −7.00106 26.1283i −0.241273 0.900441i
\(843\) −45.3309 26.1718i −1.56128 0.901405i
\(844\) 4.37277 0.150517
\(845\) 0 0
\(846\) 16.5715 0.569739
\(847\) −12.2857 7.09313i −0.422140 0.243723i
\(848\) −5.64207 21.0565i −0.193750 0.723083i
\(849\) 15.1999 + 26.3270i 0.521660 + 0.903541i
\(850\) 14.9765 10.9511i 0.513691 0.375619i
\(851\) 0.426931 1.59333i 0.0146350 0.0546186i
\(852\) −6.20441 10.7464i −0.212560 0.368164i
\(853\) 9.24230i 0.316450i 0.987403 + 0.158225i \(0.0505772\pi\)
−0.987403 + 0.158225i \(0.949423\pi\)
\(854\) −16.2025 + 9.35453i −0.554439 + 0.320105i
\(855\) 0.629901 0.919515i 0.0215422 0.0314468i
\(856\) −2.16228 8.06972i −0.0739051 0.275817i
\(857\) 37.7913 37.7913i 1.29093 1.29093i 0.356713 0.934214i \(-0.383897\pi\)
0.934214 0.356713i \(-0.116103\pi\)
\(858\) 0 0
\(859\) 6.16263i 0.210266i 0.994458 + 0.105133i \(0.0335269\pi\)
−0.994458 + 0.105133i \(0.966473\pi\)
\(860\) −15.0875 + 22.0243i −0.514478 + 0.751024i
\(861\) −2.35941 + 4.08661i −0.0804083 + 0.139271i
\(862\) −30.3110 8.12181i −1.03240 0.276630i
\(863\) 33.7740 1.14968 0.574840 0.818266i \(-0.305064\pi\)
0.574840 + 0.818266i \(0.305064\pi\)
\(864\) −26.0401 6.97742i −0.885902 0.237377i
\(865\) 6.39477 + 13.3544i 0.217429 + 0.454064i
\(866\) 14.5532 14.5532i 0.494539 0.494539i
\(867\) −6.61482 + 24.6868i −0.224651 + 0.838409i
\(868\) 27.0875 7.25808i 0.919410 0.246355i
\(869\) −5.97678 + 1.60147i −0.202748 + 0.0543263i
\(870\) −1.23507 + 16.0053i −0.0418727 + 0.542630i
\(871\) 0 0
\(872\) −11.6896 11.6896i −0.395861 0.395861i
\(873\) 8.26870 14.3218i 0.279853 0.484720i
\(874\) −0.259484 0.149813i −0.00877716 0.00506750i
\(875\) 18.7199 34.8575i 0.632849 1.17840i
\(876\) 28.0146 + 28.0146i 0.946527 + 0.946527i
\(877\) −19.6563 + 11.3486i −0.663747 + 0.383214i −0.793703 0.608305i \(-0.791850\pi\)
0.129956 + 0.991520i \(0.458516\pi\)
\(878\) 6.73256 3.88705i 0.227213 0.131181i
\(879\) 14.5417 + 14.5417i 0.490480 + 0.490480i
\(880\) 38.0819 18.2355i 1.28374 0.614719i
\(881\) −6.78312 3.91623i −0.228529 0.131941i 0.381364 0.924425i \(-0.375454\pi\)
−0.609893 + 0.792484i \(0.708788\pi\)
\(882\) 4.69331 8.12905i 0.158032 0.273719i
\(883\) −18.9296 18.9296i −0.637032 0.637032i 0.312790 0.949822i \(-0.398736\pi\)
−0.949822 + 0.312790i \(0.898736\pi\)
\(884\) 0 0
\(885\) 40.9204 35.0575i 1.37552 1.17844i
\(886\) 37.9234 10.1615i 1.27406 0.341384i
\(887\) −34.3248 + 9.19729i −1.15251 + 0.308815i −0.783972 0.620797i \(-0.786809\pi\)
−0.368541 + 0.929612i \(0.620143\pi\)
\(888\) −3.28372 + 12.2550i −0.110194 + 0.411251i
\(889\) 3.21825 3.21825i 0.107937 0.107937i
\(890\) −17.3785 + 8.32168i −0.582527 + 0.278943i
\(891\) −40.8731 10.9519i −1.36930 0.366903i
\(892\) −10.0467 −0.336389
\(893\) 5.06098 + 1.35608i 0.169359 + 0.0453796i
\(894\) −23.8314 + 41.2772i −0.797042 + 1.38052i
\(895\) 0.899848 + 4.81413i 0.0300786 + 0.160919i
\(896\) 31.7130i 1.05946i
\(897\) 0 0
\(898\) 18.8417 18.8417i 0.628755 0.628755i
\(899\) 2.99371 + 11.1727i 0.0998459 + 0.372630i
\(900\) −3.94029 + 4.89634i −0.131343 + 0.163211i
\(901\) 7.84682 4.53036i 0.261415 0.150928i
\(902\) 4.77421i 0.158964i
\(903\) 30.9015 + 53.5230i 1.02834 + 1.78113i
\(904\) −0.701108 + 2.61657i −0.0233185 + 0.0870258i
\(905\) 13.9553 + 16.2891i 0.463889 + 0.541469i
\(906\) 1.96411 + 3.40193i 0.0652530 + 0.113022i
\(907\) 12.0355 + 44.9172i 0.399633 + 1.49145i 0.813743 + 0.581225i \(0.197426\pi\)
−0.414109 + 0.910227i \(0.635907\pi\)
\(908\) 4.57880 + 2.64357i 0.151953 + 0.0877300i
\(909\) 4.22485 0.140130
\(910\) 0 0
\(911\) 17.7325 0.587504 0.293752 0.955882i \(-0.405096\pi\)
0.293752 + 0.955882i \(0.405096\pi\)
\(912\) 4.49459 + 2.59495i 0.148831 + 0.0859274i
\(913\) 7.59379 + 28.3404i 0.251318 + 0.937931i
\(914\) 27.7449 + 48.0556i 0.917720 + 1.58954i
\(915\) 0.984100 12.7530i 0.0325333 0.421601i
\(916\) 6.14674 22.9399i 0.203094 0.757957i
\(917\) −9.89902 17.1456i −0.326894 0.566198i
\(918\) 15.2393i 0.502971i
\(919\) −42.2580 + 24.3977i −1.39396 + 0.804806i −0.993751 0.111617i \(-0.964397\pi\)
−0.400213 + 0.916422i \(0.631064\pi\)
\(920\) −0.663680 0.454645i −0.0218809 0.0149892i
\(921\) 1.09736 + 4.09541i 0.0361593 + 0.134948i
\(922\) −8.98564 + 8.98564i −0.295926 + 0.295926i
\(923\) 0 0
\(924\) 36.8139i 1.21109i
\(925\) −21.1038 16.9831i −0.693888 0.558401i
\(926\) −28.7990 + 49.8814i −0.946395 + 1.63920i
\(927\) −12.4107 3.32544i −0.407621 0.109222i
\(928\) −12.9820 −0.426155
\(929\) 10.0330 + 2.68833i 0.329171 + 0.0882012i 0.419620 0.907700i \(-0.362163\pi\)
−0.0904485 + 0.995901i \(0.528830\pi\)
\(930\) −15.7787 + 44.7747i −0.517403 + 1.46822i
\(931\) 2.09857 2.09857i 0.0687778 0.0687778i
\(932\) −1.43302 + 5.34810i −0.0469401 + 0.175183i
\(933\) −7.31433 + 1.95987i −0.239460 + 0.0641632i
\(934\) −9.24814 + 2.47803i −0.302608 + 0.0810837i
\(935\) 11.4179 + 13.3274i 0.373406 + 0.435853i
\(936\) 0 0
\(937\) 5.31856 + 5.31856i 0.173750 + 0.173750i 0.788625 0.614875i \(-0.210794\pi\)
−0.614875 + 0.788625i \(0.710794\pi\)
\(938\) −7.42149 + 12.8544i −0.242320 + 0.419711i
\(939\) −7.39178 4.26764i −0.241221 0.139269i
\(940\) −27.8650 9.81969i −0.908857 0.320283i
\(941\) 38.9093 + 38.9093i 1.26841 + 1.26841i 0.946911 + 0.321497i \(0.104186\pi\)
0.321497 + 0.946911i \(0.395814\pi\)
\(942\) 13.4923 7.78981i 0.439604 0.253806i
\(943\) −0.177406 + 0.102425i −0.00577712 + 0.00333542i
\(944\) 41.9064 + 41.9064i 1.36394 + 1.36394i
\(945\) −14.0359 29.3116i −0.456587 0.953508i
\(946\) −54.1514 31.2643i −1.76061 1.01649i
\(947\) 16.8759 29.2298i 0.548392 0.949842i −0.449993 0.893032i \(-0.648574\pi\)
0.998385 0.0568101i \(-0.0180930\pi\)
\(948\) 3.03256 + 3.03256i 0.0984930 + 0.0984930i
\(949\) 0 0
\(950\) −3.97188 + 2.90431i −0.128865 + 0.0942281i
\(951\) 44.2451 11.8554i 1.43475 0.384439i
\(952\) 8.18285 2.19259i 0.265208 0.0710622i
\(953\) 1.14302 4.26581i 0.0370260 0.138183i −0.944939 0.327248i \(-0.893879\pi\)
0.981965 + 0.189065i \(0.0605455\pi\)
\(954\) −5.37407 + 5.37407i −0.173992 + 0.173992i
\(955\) −7.86877 2.77297i −0.254627 0.0897311i
\(956\) 16.6072 + 4.44988i 0.537115 + 0.143919i
\(957\) −15.1845 −0.490845
\(958\) 34.2405 + 9.17471i 1.10626 + 0.296422i
\(959\) 25.2858 43.7963i 0.816520 1.41425i
\(960\) −8.31789 5.69806i −0.268459 0.183904i
\(961\) 3.20686i 0.103447i
\(962\) 0 0
\(963\) −4.63819 + 4.63819i −0.149463 + 0.149463i
\(964\) −6.15338 22.9647i −0.198187 0.739645i
\(965\) −0.624420 + 0.116715i −0.0201008 + 0.00375720i
\(966\) 3.38730 1.95566i 0.108985 0.0629223i
\(967\) 16.2803i 0.523540i −0.965130 0.261770i \(-0.915694\pi\)
0.965130 0.261770i \(-0.0843061\pi\)
\(968\) 2.36837 + 4.10214i 0.0761223 + 0.131848i
\(969\) −0.558310 + 2.08364i −0.0179355 + 0.0669363i
\(970\) −55.4421 + 47.4986i −1.78014 + 1.52509i
\(971\) −6.40146 11.0877i −0.205433 0.355820i 0.744838 0.667245i \(-0.232527\pi\)
−0.950270 + 0.311426i \(0.899193\pi\)
\(972\) 3.27038 + 12.2052i 0.104897 + 0.391482i
\(973\) −53.3781 30.8179i −1.71122 0.987975i
\(974\) 42.7918 1.37114
\(975\) 0 0
\(976\) 14.0681 0.450309
\(977\) −13.8986 8.02436i −0.444655 0.256722i 0.260915 0.965362i \(-0.415976\pi\)
−0.705570 + 0.708640i \(0.749309\pi\)
\(978\) −2.12668 7.93687i −0.0680037 0.253793i
\(979\) −9.11292 15.7840i −0.291250 0.504460i
\(980\) −12.7088 + 10.8879i −0.405968 + 0.347803i
\(981\) −3.35939 + 12.5374i −0.107257 + 0.400288i
\(982\) 19.5239 + 33.8164i 0.623033 + 1.07912i
\(983\) 34.3036i 1.09411i −0.837096 0.547057i \(-0.815748\pi\)
0.837096 0.547057i \(-0.184252\pi\)
\(984\) 1.36450 0.787797i 0.0434988 0.0251141i
\(985\) 56.8164 10.6200i 1.81032 0.338382i
\(986\) −1.89934 7.08844i −0.0604874 0.225742i
\(987\) −48.3637 + 48.3637i −1.53943 + 1.53943i
\(988\) 0 0
\(989\) 2.68296i 0.0853131i
\(990\) −12.1443 8.31927i −0.385971 0.264404i
\(991\) −11.1772 + 19.3596i −0.355057 + 0.614977i −0.987128 0.159934i \(-0.948872\pi\)
0.632071 + 0.774911i \(0.282205\pi\)
\(992\) −37.0838 9.93658i −1.17741 0.315487i
\(993\) 3.95773 0.125595
\(994\) 28.9341 + 7.75287i 0.917734 + 0.245906i
\(995\) −12.1317 4.27524i −0.384601 0.135534i
\(996\) 14.3796 14.3796i 0.455637 0.455637i
\(997\) 3.08118 11.4991i 0.0975820 0.364181i −0.899816 0.436269i \(-0.856300\pi\)
0.997398 + 0.0720881i \(0.0229663\pi\)
\(998\) −57.6445 + 15.4458i −1.82471 + 0.488928i
\(999\) −21.4920 + 5.75875i −0.679975 + 0.182199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.g.657.4 20
5.3 odd 4 845.2.o.g.488.4 20
13.2 odd 12 845.2.o.g.587.4 20
13.3 even 3 845.2.t.e.427.2 20
13.4 even 6 845.2.f.e.437.8 20
13.5 odd 4 845.2.o.f.357.4 20
13.6 odd 12 845.2.k.d.577.3 20
13.7 odd 12 845.2.k.e.577.8 20
13.8 odd 4 845.2.o.e.357.2 20
13.9 even 3 845.2.f.d.437.3 20
13.10 even 6 845.2.t.f.427.4 20
13.11 odd 12 65.2.o.a.2.2 20
13.12 even 2 65.2.t.a.7.2 yes 20
39.11 even 12 585.2.cf.a.262.4 20
39.38 odd 2 585.2.dp.a.397.4 20
65.3 odd 12 845.2.o.f.258.4 20
65.8 even 4 845.2.t.f.188.4 20
65.12 odd 4 325.2.s.b.293.4 20
65.18 even 4 845.2.t.e.188.2 20
65.23 odd 12 845.2.o.e.258.2 20
65.24 odd 12 325.2.s.b.132.4 20
65.28 even 12 inner 845.2.t.g.418.4 20
65.33 even 12 845.2.f.e.408.3 20
65.37 even 12 325.2.x.b.93.4 20
65.38 odd 4 65.2.o.a.33.2 yes 20
65.43 odd 12 845.2.k.e.268.8 20
65.48 odd 12 845.2.k.d.268.3 20
65.58 even 12 845.2.f.d.408.8 20
65.63 even 12 65.2.t.a.28.2 yes 20
65.64 even 2 325.2.x.b.7.4 20
195.38 even 4 585.2.cf.a.163.4 20
195.128 odd 12 585.2.dp.a.28.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.2 20 13.11 odd 12
65.2.o.a.33.2 yes 20 65.38 odd 4
65.2.t.a.7.2 yes 20 13.12 even 2
65.2.t.a.28.2 yes 20 65.63 even 12
325.2.s.b.132.4 20 65.24 odd 12
325.2.s.b.293.4 20 65.12 odd 4
325.2.x.b.7.4 20 65.64 even 2
325.2.x.b.93.4 20 65.37 even 12
585.2.cf.a.163.4 20 195.38 even 4
585.2.cf.a.262.4 20 39.11 even 12
585.2.dp.a.28.4 20 195.128 odd 12
585.2.dp.a.397.4 20 39.38 odd 2
845.2.f.d.408.8 20 65.58 even 12
845.2.f.d.437.3 20 13.9 even 3
845.2.f.e.408.3 20 65.33 even 12
845.2.f.e.437.8 20 13.4 even 6
845.2.k.d.268.3 20 65.48 odd 12
845.2.k.d.577.3 20 13.6 odd 12
845.2.k.e.268.8 20 65.43 odd 12
845.2.k.e.577.8 20 13.7 odd 12
845.2.o.e.258.2 20 65.23 odd 12
845.2.o.e.357.2 20 13.8 odd 4
845.2.o.f.258.4 20 65.3 odd 12
845.2.o.f.357.4 20 13.5 odd 4
845.2.o.g.488.4 20 5.3 odd 4
845.2.o.g.587.4 20 13.2 odd 12
845.2.t.e.188.2 20 65.18 even 4
845.2.t.e.427.2 20 13.3 even 3
845.2.t.f.188.4 20 65.8 even 4
845.2.t.f.427.4 20 13.10 even 6
845.2.t.g.418.4 20 65.28 even 12 inner
845.2.t.g.657.4 20 1.1 even 1 trivial