Properties

Label 845.2.f.d.408.8
Level $845$
Weight $2$
Character 845.408
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(408,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.408"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,4,-12,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 408.8
Root \(1.83163i\) of defining polynomial
Character \(\chi\) \(=\) 845.408
Dual form 845.2.f.d.437.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83163i q^{2} +(-1.40138 - 1.40138i) q^{3} -1.35488 q^{4} +(1.69810 + 1.45480i) q^{5} +(2.56682 - 2.56682i) q^{6} -3.53890 q^{7} +1.18163i q^{8} +0.927746i q^{9} +(-2.66466 + 3.11030i) q^{10} +(2.73940 + 2.73940i) q^{11} +(1.89870 + 1.89870i) q^{12} -6.48197i q^{14} +(-0.340953 - 4.41843i) q^{15} -4.87406 q^{16} +(-1.43251 - 1.43251i) q^{17} -1.69929 q^{18} +(0.379911 + 0.379911i) q^{19} +(-2.30072 - 1.97108i) q^{20} +(4.95936 + 4.95936i) q^{21} +(-5.01758 + 5.01758i) q^{22} +(-0.215293 + 0.215293i) q^{23} +(1.65591 - 1.65591i) q^{24} +(0.767094 + 4.94081i) q^{25} +(-2.90402 + 2.90402i) q^{27} +4.79478 q^{28} -1.97769i q^{29} +(8.09293 - 0.624501i) q^{30} +(-4.13563 + 4.13563i) q^{31} -6.56423i q^{32} -7.67790i q^{33} +(2.62382 - 2.62382i) q^{34} +(-6.00942 - 5.14841i) q^{35} -1.25698i q^{36} -5.41773 q^{37} +(-0.695857 + 0.695857i) q^{38} +(-1.71904 + 2.00652i) q^{40} +(0.475748 - 0.475748i) q^{41} +(-9.08372 + 9.08372i) q^{42} +(-6.23095 + 6.23095i) q^{43} +(-3.71155 - 3.71155i) q^{44} +(-1.34969 + 1.57541i) q^{45} +(-0.394337 - 0.394337i) q^{46} -9.75201 q^{47} +(6.83043 + 6.83043i) q^{48} +5.52385 q^{49} +(-9.04974 + 1.40503i) q^{50} +4.01498i q^{51} +(3.16254 + 3.16254i) q^{53} +(-5.31910 - 5.31910i) q^{54} +(0.666490 + 8.63708i) q^{55} -4.18167i q^{56} -1.06480i q^{57} +3.62239 q^{58} +(-8.59785 + 8.59785i) q^{59} +(0.461950 + 5.98642i) q^{60} -2.88632 q^{61} +(-7.57495 - 7.57495i) q^{62} -3.28320i q^{63} +2.27514 q^{64} +14.0631 q^{66} +2.28989i q^{67} +(1.94087 + 1.94087i) q^{68} +0.603415 q^{69} +(9.43000 - 11.0070i) q^{70} +(3.26771 - 3.26771i) q^{71} -1.09625 q^{72} -14.7546i q^{73} -9.92329i q^{74} +(5.84897 - 7.99895i) q^{75} +(-0.514732 - 0.514732i) q^{76} +(-9.69449 - 9.69449i) q^{77} -1.59718i q^{79} +(-8.27665 - 7.09080i) q^{80} +10.9225 q^{81} +(0.871396 + 0.871396i) q^{82} +7.57341 q^{83} +(-6.71932 - 6.71932i) q^{84} +(-0.348525 - 4.51655i) q^{85} +(-11.4128 - 11.4128i) q^{86} +(-2.77149 + 2.77149i) q^{87} +(-3.23695 + 3.23695i) q^{88} +(3.32661 - 3.32661i) q^{89} +(-2.88556 - 2.47213i) q^{90} +(0.291695 - 0.291695i) q^{92} +11.5912 q^{93} -17.8621i q^{94} +(0.0924314 + 1.19782i) q^{95} +(-9.19900 + 9.19900i) q^{96} +17.8254i q^{97} +10.1177i q^{98} +(-2.54147 + 2.54147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} - 12 q^{4} - 4 q^{6} - 4 q^{7} - 8 q^{10} - 8 q^{11} - 24 q^{12} - 28 q^{15} + 4 q^{16} - 14 q^{17} - 4 q^{19} + 12 q^{20} - 4 q^{21} - 32 q^{22} + 8 q^{23} + 4 q^{24} + 18 q^{25} + 4 q^{27}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.83163i 1.29516i 0.761998 + 0.647580i \(0.224219\pi\)
−0.761998 + 0.647580i \(0.775781\pi\)
\(3\) −1.40138 1.40138i −0.809089 0.809089i 0.175407 0.984496i \(-0.443876\pi\)
−0.984496 + 0.175407i \(0.943876\pi\)
\(4\) −1.35488 −0.677439
\(5\) 1.69810 + 1.45480i 0.759414 + 0.650608i
\(6\) 2.56682 2.56682i 1.04790 1.04790i
\(7\) −3.53890 −1.33758 −0.668790 0.743451i \(-0.733188\pi\)
−0.668790 + 0.743451i \(0.733188\pi\)
\(8\) 1.18163i 0.417769i
\(9\) 0.927746i 0.309249i
\(10\) −2.66466 + 3.11030i −0.842641 + 0.983562i
\(11\) 2.73940 + 2.73940i 0.825961 + 0.825961i 0.986955 0.160994i \(-0.0514701\pi\)
−0.160994 + 0.986955i \(0.551470\pi\)
\(12\) 1.89870 + 1.89870i 0.548108 + 0.548108i
\(13\) 0 0
\(14\) 6.48197i 1.73238i
\(15\) −0.340953 4.41843i −0.0880337 1.14083i
\(16\) −4.87406 −1.21852
\(17\) −1.43251 1.43251i −0.347434 0.347434i 0.511719 0.859153i \(-0.329009\pi\)
−0.859153 + 0.511719i \(0.829009\pi\)
\(18\) −1.69929 −0.400526
\(19\) 0.379911 + 0.379911i 0.0871575 + 0.0871575i 0.749341 0.662184i \(-0.230370\pi\)
−0.662184 + 0.749341i \(0.730370\pi\)
\(20\) −2.30072 1.97108i −0.514456 0.440747i
\(21\) 4.95936 + 4.95936i 1.08222 + 1.08222i
\(22\) −5.01758 + 5.01758i −1.06975 + 1.06975i
\(23\) −0.215293 + 0.215293i −0.0448916 + 0.0448916i −0.729196 0.684305i \(-0.760106\pi\)
0.684305 + 0.729196i \(0.260106\pi\)
\(24\) 1.65591 1.65591i 0.338012 0.338012i
\(25\) 0.767094 + 4.94081i 0.153419 + 0.988161i
\(26\) 0 0
\(27\) −2.90402 + 2.90402i −0.558879 + 0.558879i
\(28\) 4.79478 0.906129
\(29\) 1.97769i 0.367247i −0.982997 0.183624i \(-0.941217\pi\)
0.982997 0.183624i \(-0.0587827\pi\)
\(30\) 8.09293 0.624501i 1.47756 0.114018i
\(31\) −4.13563 + 4.13563i −0.742781 + 0.742781i −0.973112 0.230331i \(-0.926019\pi\)
0.230331 + 0.973112i \(0.426019\pi\)
\(32\) 6.56423i 1.16040i
\(33\) 7.67790i 1.33655i
\(34\) 2.62382 2.62382i 0.449982 0.449982i
\(35\) −6.00942 5.14841i −1.01578 0.870240i
\(36\) 1.25698i 0.209497i
\(37\) −5.41773 −0.890669 −0.445335 0.895364i \(-0.646915\pi\)
−0.445335 + 0.895364i \(0.646915\pi\)
\(38\) −0.695857 + 0.695857i −0.112883 + 0.112883i
\(39\) 0 0
\(40\) −1.71904 + 2.00652i −0.271803 + 0.317259i
\(41\) 0.475748 0.475748i 0.0742994 0.0742994i −0.668981 0.743280i \(-0.733269\pi\)
0.743280 + 0.668981i \(0.233269\pi\)
\(42\) −9.08372 + 9.08372i −1.40165 + 1.40165i
\(43\) −6.23095 + 6.23095i −0.950211 + 0.950211i −0.998818 0.0486066i \(-0.984522\pi\)
0.0486066 + 0.998818i \(0.484522\pi\)
\(44\) −3.71155 3.71155i −0.559538 0.559538i
\(45\) −1.34969 + 1.57541i −0.201200 + 0.234848i
\(46\) −0.394337 0.394337i −0.0581418 0.0581418i
\(47\) −9.75201 −1.42248 −0.711238 0.702951i \(-0.751865\pi\)
−0.711238 + 0.702951i \(0.751865\pi\)
\(48\) 6.83043 + 6.83043i 0.985887 + 0.985887i
\(49\) 5.52385 0.789121
\(50\) −9.04974 + 1.40503i −1.27983 + 0.198702i
\(51\) 4.01498i 0.562209i
\(52\) 0 0
\(53\) 3.16254 + 3.16254i 0.434409 + 0.434409i 0.890125 0.455716i \(-0.150617\pi\)
−0.455716 + 0.890125i \(0.650617\pi\)
\(54\) −5.31910 5.31910i −0.723838 0.723838i
\(55\) 0.666490 + 8.63708i 0.0898695 + 1.16462i
\(56\) 4.18167i 0.558799i
\(57\) 1.06480i 0.141036i
\(58\) 3.62239 0.475644
\(59\) −8.59785 + 8.59785i −1.11934 + 1.11934i −0.127506 + 0.991838i \(0.540697\pi\)
−0.991838 + 0.127506i \(0.959303\pi\)
\(60\) 0.461950 + 5.98642i 0.0596374 + 0.772844i
\(61\) −2.88632 −0.369555 −0.184778 0.982780i \(-0.559157\pi\)
−0.184778 + 0.982780i \(0.559157\pi\)
\(62\) −7.57495 7.57495i −0.962020 0.962020i
\(63\) 3.28320i 0.413645i
\(64\) 2.27514 0.284392
\(65\) 0 0
\(66\) 14.0631 1.73105
\(67\) 2.28989i 0.279754i 0.990169 + 0.139877i \(0.0446708\pi\)
−0.990169 + 0.139877i \(0.955329\pi\)
\(68\) 1.94087 + 1.94087i 0.235365 + 0.235365i
\(69\) 0.603415 0.0726426
\(70\) 9.43000 11.0070i 1.12710 1.31559i
\(71\) 3.26771 3.26771i 0.387806 0.387806i −0.486098 0.873904i \(-0.661580\pi\)
0.873904 + 0.486098i \(0.161580\pi\)
\(72\) −1.09625 −0.129194
\(73\) 14.7546i 1.72690i −0.504436 0.863449i \(-0.668299\pi\)
0.504436 0.863449i \(-0.331701\pi\)
\(74\) 9.92329i 1.15356i
\(75\) 5.84897 7.99895i 0.675381 0.923639i
\(76\) −0.514732 0.514732i −0.0590438 0.0590438i
\(77\) −9.69449 9.69449i −1.10479 1.10479i
\(78\) 0 0
\(79\) 1.59718i 0.179696i −0.995955 0.0898482i \(-0.971362\pi\)
0.995955 0.0898482i \(-0.0286382\pi\)
\(80\) −8.27665 7.09080i −0.925358 0.792776i
\(81\) 10.9225 1.21361
\(82\) 0.871396 + 0.871396i 0.0962296 + 0.0962296i
\(83\) 7.57341 0.831290 0.415645 0.909527i \(-0.363556\pi\)
0.415645 + 0.909527i \(0.363556\pi\)
\(84\) −6.71932 6.71932i −0.733138 0.733138i
\(85\) −0.348525 4.51655i −0.0378029 0.489889i
\(86\) −11.4128 11.4128i −1.23068 1.23068i
\(87\) −2.77149 + 2.77149i −0.297135 + 0.297135i
\(88\) −3.23695 + 3.23695i −0.345061 + 0.345061i
\(89\) 3.32661 3.32661i 0.352620 0.352620i −0.508464 0.861083i \(-0.669786\pi\)
0.861083 + 0.508464i \(0.169786\pi\)
\(90\) −2.88556 2.47213i −0.304165 0.260586i
\(91\) 0 0
\(92\) 0.291695 0.291695i 0.0304113 0.0304113i
\(93\) 11.5912 1.20195
\(94\) 17.8621i 1.84233i
\(95\) 0.0924314 + 1.19782i 0.00948326 + 0.122894i
\(96\) −9.19900 + 9.19900i −0.938869 + 0.938869i
\(97\) 17.8254i 1.80989i 0.425528 + 0.904945i \(0.360088\pi\)
−0.425528 + 0.904945i \(0.639912\pi\)
\(98\) 10.1177i 1.02204i
\(99\) −2.54147 + 2.54147i −0.255427 + 0.255427i
\(100\) −1.03932 6.69419i −0.103932 0.669419i
\(101\) 4.55389i 0.453129i −0.973996 0.226565i \(-0.927251\pi\)
0.973996 0.226565i \(-0.0727494\pi\)
\(102\) −7.35396 −0.728151
\(103\) 9.79285 9.79285i 0.964918 0.964918i −0.0344872 0.999405i \(-0.510980\pi\)
0.999405 + 0.0344872i \(0.0109798\pi\)
\(104\) 0 0
\(105\) 1.20660 + 15.6364i 0.117752 + 1.52596i
\(106\) −5.79262 + 5.79262i −0.562629 + 0.562629i
\(107\) −4.99942 + 4.99942i −0.483312 + 0.483312i −0.906188 0.422876i \(-0.861021\pi\)
0.422876 + 0.906188i \(0.361021\pi\)
\(108\) 3.93459 3.93459i 0.378606 0.378606i
\(109\) 9.89281 + 9.89281i 0.947560 + 0.947560i 0.998692 0.0511324i \(-0.0162830\pi\)
−0.0511324 + 0.998692i \(0.516283\pi\)
\(110\) −15.8199 + 1.22077i −1.50837 + 0.116395i
\(111\) 7.59231 + 7.59231i 0.720630 + 0.720630i
\(112\) 17.2488 1.62986
\(113\) 1.62104 + 1.62104i 0.152494 + 0.152494i 0.779231 0.626737i \(-0.215610\pi\)
−0.626737 + 0.779231i \(0.715610\pi\)
\(114\) 1.95032 0.182664
\(115\) −0.678797 + 0.0523802i −0.0632982 + 0.00488448i
\(116\) 2.67952i 0.248787i
\(117\) 0 0
\(118\) −15.7481 15.7481i −1.44973 1.44973i
\(119\) 5.06950 + 5.06950i 0.464720 + 0.464720i
\(120\) 5.22093 0.402880i 0.476604 0.0367777i
\(121\) 4.00866i 0.364423i
\(122\) 5.28668i 0.478633i
\(123\) −1.33341 −0.120230
\(124\) 5.60327 5.60327i 0.503188 0.503188i
\(125\) −5.88530 + 9.50596i −0.526397 + 0.850239i
\(126\) 6.01362 0.535736
\(127\) −0.909391 0.909391i −0.0806954 0.0806954i 0.665607 0.746302i \(-0.268173\pi\)
−0.746302 + 0.665607i \(0.768173\pi\)
\(128\) 8.96125i 0.792070i
\(129\) 17.4639 1.53761
\(130\) 0 0
\(131\) −5.59439 −0.488785 −0.244392 0.969676i \(-0.578588\pi\)
−0.244392 + 0.969676i \(0.578588\pi\)
\(132\) 10.4026i 0.905431i
\(133\) −1.34447 1.34447i −0.116580 0.116580i
\(134\) −4.19423 −0.362326
\(135\) −9.15610 + 0.706541i −0.788032 + 0.0608094i
\(136\) 1.69269 1.69269i 0.145147 0.145147i
\(137\) 14.2902 1.22089 0.610446 0.792058i \(-0.290990\pi\)
0.610446 + 0.792058i \(0.290990\pi\)
\(138\) 1.10523i 0.0940838i
\(139\) 17.4166i 1.47726i 0.674113 + 0.738629i \(0.264526\pi\)
−0.674113 + 0.738629i \(0.735474\pi\)
\(140\) 8.14202 + 6.97546i 0.688127 + 0.589534i
\(141\) 13.6663 + 13.6663i 1.15091 + 1.15091i
\(142\) 5.98525 + 5.98525i 0.502271 + 0.502271i
\(143\) 0 0
\(144\) 4.52189i 0.376824i
\(145\) 2.87714 3.35831i 0.238934 0.278893i
\(146\) 27.0251 2.23661
\(147\) −7.74102 7.74102i −0.638469 0.638469i
\(148\) 7.34036 0.603374
\(149\) 9.28442 + 9.28442i 0.760610 + 0.760610i 0.976433 0.215823i \(-0.0692434\pi\)
−0.215823 + 0.976433i \(0.569243\pi\)
\(150\) 14.6511 + 10.7132i 1.19626 + 0.874726i
\(151\) −0.765191 0.765191i −0.0622704 0.0622704i 0.675286 0.737556i \(-0.264020\pi\)
−0.737556 + 0.675286i \(0.764020\pi\)
\(152\) −0.448913 + 0.448913i −0.0364117 + 0.0364117i
\(153\) 1.32900 1.32900i 0.107443 0.107443i
\(154\) 17.7567 17.7567i 1.43088 1.43088i
\(155\) −13.0392 + 1.00619i −1.04734 + 0.0808190i
\(156\) 0 0
\(157\) 3.03481 3.03481i 0.242204 0.242204i −0.575557 0.817762i \(-0.695215\pi\)
0.817762 + 0.575557i \(0.195215\pi\)
\(158\) 2.92544 0.232735
\(159\) 8.86386i 0.702950i
\(160\) 9.54967 11.1467i 0.754968 0.881227i
\(161\) 0.761901 0.761901i 0.0600462 0.0600462i
\(162\) 20.0061i 1.57182i
\(163\) 2.26358i 0.177297i −0.996063 0.0886486i \(-0.971745\pi\)
0.996063 0.0886486i \(-0.0282548\pi\)
\(164\) −0.644580 + 0.644580i −0.0503333 + 0.0503333i
\(165\) 11.1698 13.0379i 0.869571 1.01500i
\(166\) 13.8717i 1.07665i
\(167\) 0.619569 0.0479437 0.0239719 0.999713i \(-0.492369\pi\)
0.0239719 + 0.999713i \(0.492369\pi\)
\(168\) −5.86012 + 5.86012i −0.452118 + 0.452118i
\(169\) 0 0
\(170\) 8.27267 0.638370i 0.634485 0.0489608i
\(171\) −0.352460 + 0.352460i −0.0269533 + 0.0269533i
\(172\) 8.44218 8.44218i 0.643710 0.643710i
\(173\) −4.68224 + 4.68224i −0.355984 + 0.355984i −0.862330 0.506346i \(-0.830996\pi\)
0.506346 + 0.862330i \(0.330996\pi\)
\(174\) −5.07636 5.07636i −0.384838 0.384838i
\(175\) −2.71467 17.4850i −0.205210 1.32175i
\(176\) −13.3520 13.3520i −1.00645 1.00645i
\(177\) 24.0977 1.81130
\(178\) 6.09312 + 6.09312i 0.456699 + 0.456699i
\(179\) 2.19023 0.163706 0.0818528 0.996644i \(-0.473916\pi\)
0.0818528 + 0.996644i \(0.473916\pi\)
\(180\) 1.82866 2.13448i 0.136300 0.159095i
\(181\) 9.59255i 0.713009i −0.934294 0.356504i \(-0.883969\pi\)
0.934294 0.356504i \(-0.116031\pi\)
\(182\) 0 0
\(183\) 4.04484 + 4.04484i 0.299003 + 0.299003i
\(184\) −0.254396 0.254396i −0.0187543 0.0187543i
\(185\) −9.19985 7.88173i −0.676387 0.579477i
\(186\) 21.2308i 1.55672i
\(187\) 7.84842i 0.573933i
\(188\) 13.2128 0.963640
\(189\) 10.2771 10.2771i 0.747546 0.747546i
\(190\) −2.19397 + 0.169300i −0.159167 + 0.0122823i
\(191\) 3.73113 0.269975 0.134988 0.990847i \(-0.456901\pi\)
0.134988 + 0.990847i \(0.456901\pi\)
\(192\) −3.18834 3.18834i −0.230099 0.230099i
\(193\) 0.284086i 0.0204489i −0.999948 0.0102245i \(-0.996745\pi\)
0.999948 0.0102245i \(-0.00325461\pi\)
\(194\) −32.6495 −2.34410
\(195\) 0 0
\(196\) −7.48414 −0.534581
\(197\) 25.8492i 1.84168i 0.389946 + 0.920838i \(0.372494\pi\)
−0.389946 + 0.920838i \(0.627506\pi\)
\(198\) −4.65504 4.65504i −0.330819 0.330819i
\(199\) 5.75250 0.407784 0.203892 0.978993i \(-0.434641\pi\)
0.203892 + 0.978993i \(0.434641\pi\)
\(200\) −5.83819 + 0.906420i −0.412823 + 0.0640936i
\(201\) 3.20901 3.20901i 0.226346 0.226346i
\(202\) 8.34106 0.586875
\(203\) 6.99884i 0.491223i
\(204\) 5.43980i 0.380862i
\(205\) 1.49999 0.115748i 0.104764 0.00808422i
\(206\) 17.9369 + 17.9369i 1.24972 + 1.24972i
\(207\) −0.199737 0.199737i −0.0138827 0.0138827i
\(208\) 0 0
\(209\) 2.08146i 0.143977i
\(210\) −28.6401 + 2.21005i −1.97636 + 0.152508i
\(211\) −3.22743 −0.222185 −0.111093 0.993810i \(-0.535435\pi\)
−0.111093 + 0.993810i \(0.535435\pi\)
\(212\) −4.28486 4.28486i −0.294285 0.294285i
\(213\) −9.15863 −0.627539
\(214\) −9.15709 9.15709i −0.625966 0.625966i
\(215\) −19.6456 + 1.51598i −1.33982 + 0.103389i
\(216\) −3.43147 3.43147i −0.233482 0.233482i
\(217\) 14.6356 14.6356i 0.993529 0.993529i
\(218\) −18.1200 + 18.1200i −1.22724 + 1.22724i
\(219\) −20.6769 + 20.6769i −1.39721 + 1.39721i
\(220\) −0.903013 11.7022i −0.0608811 0.788961i
\(221\) 0 0
\(222\) −13.9063 + 13.9063i −0.933331 + 0.933331i
\(223\) 7.41523 0.496561 0.248280 0.968688i \(-0.420135\pi\)
0.248280 + 0.968688i \(0.420135\pi\)
\(224\) 23.2302i 1.55213i
\(225\) −4.58381 + 0.711668i −0.305587 + 0.0474446i
\(226\) −2.96914 + 2.96914i −0.197504 + 0.197504i
\(227\) 3.90230i 0.259005i −0.991579 0.129502i \(-0.958662\pi\)
0.991579 0.129502i \(-0.0413380\pi\)
\(228\) 1.44267i 0.0955434i
\(229\) −12.3946 + 12.3946i −0.819060 + 0.819060i −0.985972 0.166912i \(-0.946621\pi\)
0.166912 + 0.985972i \(0.446621\pi\)
\(230\) −0.0959413 1.24331i −0.00632618 0.0819813i
\(231\) 27.1714i 1.78774i
\(232\) 2.33689 0.153424
\(233\) 2.88962 2.88962i 0.189305 0.189305i −0.606090 0.795396i \(-0.707263\pi\)
0.795396 + 0.606090i \(0.207263\pi\)
\(234\) 0 0
\(235\) −16.5599 14.1873i −1.08025 0.925474i
\(236\) 11.6490 11.6490i 0.758287 0.758287i
\(237\) −2.23825 + 2.23825i −0.145390 + 0.145390i
\(238\) −9.28546 + 9.28546i −0.601887 + 0.601887i
\(239\) 8.97299 + 8.97299i 0.580415 + 0.580415i 0.935017 0.354602i \(-0.115384\pi\)
−0.354602 + 0.935017i \(0.615384\pi\)
\(240\) 1.66183 + 21.5357i 0.107270 + 1.39012i
\(241\) 12.4080 + 12.4080i 0.799272 + 0.799272i 0.982981 0.183709i \(-0.0588104\pi\)
−0.183709 + 0.982981i \(0.558810\pi\)
\(242\) −7.34239 −0.471986
\(243\) −6.59457 6.59457i −0.423042 0.423042i
\(244\) 3.91061 0.250351
\(245\) 9.38005 + 8.03611i 0.599270 + 0.513408i
\(246\) 2.44232i 0.155716i
\(247\) 0 0
\(248\) −4.88677 4.88677i −0.310311 0.310311i
\(249\) −10.6132 10.6132i −0.672587 0.672587i
\(250\) −17.4114 10.7797i −1.10120 0.681768i
\(251\) 21.7689i 1.37404i −0.726638 0.687021i \(-0.758918\pi\)
0.726638 0.687021i \(-0.241082\pi\)
\(252\) 4.44834i 0.280219i
\(253\) −1.17955 −0.0741575
\(254\) 1.66567 1.66567i 0.104513 0.104513i
\(255\) −5.84100 + 6.81784i −0.365778 + 0.426950i
\(256\) 20.9640 1.31025
\(257\) 9.06027 + 9.06027i 0.565164 + 0.565164i 0.930770 0.365606i \(-0.119138\pi\)
−0.365606 + 0.930770i \(0.619138\pi\)
\(258\) 31.9874i 1.99145i
\(259\) 19.1728 1.19134
\(260\) 0 0
\(261\) 1.83479 0.113571
\(262\) 10.2469i 0.633054i
\(263\) 11.6708 + 11.6708i 0.719650 + 0.719650i 0.968533 0.248884i \(-0.0800637\pi\)
−0.248884 + 0.968533i \(0.580064\pi\)
\(264\) 9.07242 0.558369
\(265\) 0.769439 + 9.97120i 0.0472663 + 0.612526i
\(266\) 2.46257 2.46257i 0.150990 0.150990i
\(267\) −9.32370 −0.570601
\(268\) 3.10252i 0.189516i
\(269\) 32.3070i 1.96979i −0.173150 0.984895i \(-0.555395\pi\)
0.173150 0.984895i \(-0.444605\pi\)
\(270\) −1.29412 16.7706i −0.0787579 1.02063i
\(271\) −12.3548 12.3548i −0.750503 0.750503i 0.224070 0.974573i \(-0.428065\pi\)
−0.974573 + 0.224070i \(0.928065\pi\)
\(272\) 6.98212 + 6.98212i 0.423353 + 0.423353i
\(273\) 0 0
\(274\) 26.1743i 1.58125i
\(275\) −11.4335 + 15.6362i −0.689465 + 0.942901i
\(276\) −0.817553 −0.0492109
\(277\) 2.17391 + 2.17391i 0.130617 + 0.130617i 0.769393 0.638776i \(-0.220559\pi\)
−0.638776 + 0.769393i \(0.720559\pi\)
\(278\) −31.9008 −1.91328
\(279\) −3.83681 3.83681i −0.229704 0.229704i
\(280\) 6.08351 7.10090i 0.363559 0.424360i
\(281\) 18.6757 + 18.6757i 1.11410 + 1.11410i 0.992590 + 0.121508i \(0.0387731\pi\)
0.121508 + 0.992590i \(0.461227\pi\)
\(282\) −25.0316 + 25.0316i −1.49061 + 1.49061i
\(283\) 10.8464 10.8464i 0.644750 0.644750i −0.306969 0.951719i \(-0.599315\pi\)
0.951719 + 0.306969i \(0.0993149\pi\)
\(284\) −4.42735 + 4.42735i −0.262715 + 0.262715i
\(285\) 1.54907 1.80814i 0.0917593 0.107105i
\(286\) 0 0
\(287\) −1.68363 + 1.68363i −0.0993814 + 0.0993814i
\(288\) 6.08994 0.358853
\(289\) 12.8959i 0.758580i
\(290\) 6.15119 + 5.26987i 0.361210 + 0.309458i
\(291\) 24.9801 24.9801i 1.46436 1.46436i
\(292\) 19.9907i 1.16987i
\(293\) 10.3767i 0.606213i 0.952957 + 0.303107i \(0.0980238\pi\)
−0.952957 + 0.303107i \(0.901976\pi\)
\(294\) 14.1787 14.1787i 0.826919 0.826919i
\(295\) −27.1082 + 2.09184i −1.57830 + 0.121791i
\(296\) 6.40174i 0.372094i
\(297\) −15.9106 −0.923225
\(298\) −17.0057 + 17.0057i −0.985111 + 0.985111i
\(299\) 0 0
\(300\) −7.92463 + 10.8376i −0.457529 + 0.625709i
\(301\) 22.0507 22.0507i 1.27098 1.27098i
\(302\) 1.40155 1.40155i 0.0806501 0.0806501i
\(303\) −6.38174 + 6.38174i −0.366622 + 0.366622i
\(304\) −1.85171 1.85171i −0.106203 0.106203i
\(305\) −4.90126 4.19903i −0.280646 0.240436i
\(306\) 2.43424 + 2.43424i 0.139156 + 0.139156i
\(307\) −2.13935 −0.122099 −0.0610496 0.998135i \(-0.519445\pi\)
−0.0610496 + 0.998135i \(0.519445\pi\)
\(308\) 13.1348 + 13.1348i 0.748427 + 0.748427i
\(309\) −27.4470 −1.56141
\(310\) −1.84297 23.8831i −0.104674 1.35647i
\(311\) 3.82084i 0.216660i 0.994115 + 0.108330i \(0.0345503\pi\)
−0.994115 + 0.108330i \(0.965450\pi\)
\(312\) 0 0
\(313\) 3.04531 + 3.04531i 0.172131 + 0.172131i 0.787915 0.615784i \(-0.211161\pi\)
−0.615784 + 0.787915i \(0.711161\pi\)
\(314\) 5.55866 + 5.55866i 0.313693 + 0.313693i
\(315\) 4.77642 5.57521i 0.269121 0.314128i
\(316\) 2.16398i 0.121733i
\(317\) 23.1127i 1.29814i −0.760730 0.649068i \(-0.775159\pi\)
0.760730 0.649068i \(-0.224841\pi\)
\(318\) 16.2353 0.910433
\(319\) 5.41768 5.41768i 0.303332 0.303332i
\(320\) 3.86342 + 3.30988i 0.215972 + 0.185028i
\(321\) 14.0122 0.782084
\(322\) 1.39552 + 1.39552i 0.0777694 + 0.0777694i
\(323\) 1.08845i 0.0605629i
\(324\) −14.7987 −0.822149
\(325\) 0 0
\(326\) 4.14604 0.229628
\(327\) 27.7272i 1.53332i
\(328\) 0.562157 + 0.562157i 0.0310399 + 0.0310399i
\(329\) 34.5114 1.90268
\(330\) 23.8806 + 20.4590i 1.31458 + 1.12623i
\(331\) −1.41208 + 1.41208i −0.0776150 + 0.0776150i −0.744849 0.667234i \(-0.767478\pi\)
0.667234 + 0.744849i \(0.267478\pi\)
\(332\) −10.2610 −0.563148
\(333\) 5.02628i 0.275438i
\(334\) 1.13482i 0.0620948i
\(335\) −3.33134 + 3.88846i −0.182010 + 0.212449i
\(336\) −24.1722 24.1722i −1.31870 1.31870i
\(337\) 6.12727 + 6.12727i 0.333773 + 0.333773i 0.854018 0.520244i \(-0.174159\pi\)
−0.520244 + 0.854018i \(0.674159\pi\)
\(338\) 0 0
\(339\) 4.54338i 0.246763i
\(340\) 0.472209 + 6.11938i 0.0256091 + 0.331870i
\(341\) −22.6583 −1.22702
\(342\) −0.645578 0.645578i −0.0349089 0.0349089i
\(343\) 5.22396 0.282067
\(344\) −7.36267 7.36267i −0.396968 0.396968i
\(345\) 1.02466 + 0.877850i 0.0551658 + 0.0472619i
\(346\) −8.57614 8.57614i −0.461056 0.461056i
\(347\) −22.9870 + 22.9870i −1.23401 + 1.23401i −0.271599 + 0.962411i \(0.587552\pi\)
−0.962411 + 0.271599i \(0.912448\pi\)
\(348\) 3.75504 3.75504i 0.201291 0.201291i
\(349\) 4.81192 4.81192i 0.257576 0.257576i −0.566491 0.824068i \(-0.691700\pi\)
0.824068 + 0.566491i \(0.191700\pi\)
\(350\) 32.0262 4.97228i 1.71187 0.265780i
\(351\) 0 0
\(352\) 17.9821 17.9821i 0.958448 0.958448i
\(353\) −27.3262 −1.45443 −0.727213 0.686412i \(-0.759185\pi\)
−0.727213 + 0.686412i \(0.759185\pi\)
\(354\) 44.1382i 2.34592i
\(355\) 10.3028 0.795027i 0.546815 0.0421957i
\(356\) −4.50714 + 4.50714i −0.238878 + 0.238878i
\(357\) 14.2086i 0.752000i
\(358\) 4.01170i 0.212025i
\(359\) −3.89871 + 3.89871i −0.205766 + 0.205766i −0.802465 0.596699i \(-0.796479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(360\) −1.86154 1.59483i −0.0981120 0.0840548i
\(361\) 18.7113i 0.984807i
\(362\) 17.5700 0.923460
\(363\) 5.61766 5.61766i 0.294851 0.294851i
\(364\) 0 0
\(365\) 21.4651 25.0548i 1.12353 1.31143i
\(366\) −7.40866 + 7.40866i −0.387257 + 0.387257i
\(367\) 12.7812 12.7812i 0.667175 0.667175i −0.289886 0.957061i \(-0.593617\pi\)
0.957061 + 0.289886i \(0.0936174\pi\)
\(368\) 1.04935 1.04935i 0.0547012 0.0547012i
\(369\) 0.441373 + 0.441373i 0.0229770 + 0.0229770i
\(370\) 14.4364 16.8508i 0.750515 0.876029i
\(371\) −11.1919 11.1919i −0.581057 0.581057i
\(372\) −15.7046 −0.814248
\(373\) 10.9702 + 10.9702i 0.568014 + 0.568014i 0.931572 0.363558i \(-0.118438\pi\)
−0.363558 + 0.931572i \(0.618438\pi\)
\(374\) 14.3754 0.743335
\(375\) 21.5690 5.07393i 1.11382 0.262017i
\(376\) 11.5232i 0.594266i
\(377\) 0 0
\(378\) 18.8238 + 18.8238i 0.968191 + 0.968191i
\(379\) 15.1090 + 15.1090i 0.776099 + 0.776099i 0.979165 0.203066i \(-0.0650905\pi\)
−0.203066 + 0.979165i \(0.565091\pi\)
\(380\) −0.125233 1.62290i −0.00642433 0.0832531i
\(381\) 2.54881i 0.130579i
\(382\) 6.83407i 0.349661i
\(383\) −19.4072 −0.991664 −0.495832 0.868419i \(-0.665137\pi\)
−0.495832 + 0.868419i \(0.665137\pi\)
\(384\) −12.5581 + 12.5581i −0.640855 + 0.640855i
\(385\) −2.35865 30.5658i −0.120208 1.55778i
\(386\) 0.520340 0.0264846
\(387\) −5.78074 5.78074i −0.293852 0.293852i
\(388\) 24.1512i 1.22609i
\(389\) −14.8591 −0.753387 −0.376693 0.926338i \(-0.622939\pi\)
−0.376693 + 0.926338i \(0.622939\pi\)
\(390\) 0 0
\(391\) 0.616816 0.0311937
\(392\) 6.52713i 0.329670i
\(393\) 7.83989 + 7.83989i 0.395470 + 0.395470i
\(394\) −47.3461 −2.38526
\(395\) 2.32358 2.71217i 0.116912 0.136464i
\(396\) 3.44338 3.44338i 0.173036 0.173036i
\(397\) −5.27779 −0.264884 −0.132442 0.991191i \(-0.542282\pi\)
−0.132442 + 0.991191i \(0.542282\pi\)
\(398\) 10.5365i 0.528145i
\(399\) 3.76823i 0.188647i
\(400\) −3.73887 24.0818i −0.186943 1.20409i
\(401\) −19.7133 19.7133i −0.984435 0.984435i 0.0154455 0.999881i \(-0.495083\pi\)
−0.999881 + 0.0154455i \(0.995083\pi\)
\(402\) 5.87772 + 5.87772i 0.293154 + 0.293154i
\(403\) 0 0
\(404\) 6.16996i 0.306967i
\(405\) 18.5476 + 15.8901i 0.921635 + 0.789587i
\(406\) −12.8193 −0.636212
\(407\) −14.8413 14.8413i −0.735658 0.735658i
\(408\) −4.74421 −0.234873
\(409\) 1.86330 + 1.86330i 0.0921344 + 0.0921344i 0.751672 0.659537i \(-0.229248\pi\)
−0.659537 + 0.751672i \(0.729248\pi\)
\(410\) 0.212009 + 2.74743i 0.0104704 + 0.135686i
\(411\) −20.0260 20.0260i −0.987810 0.987810i
\(412\) −13.2681 + 13.2681i −0.653673 + 0.653673i
\(413\) 30.4270 30.4270i 1.49721 1.49721i
\(414\) 0.365845 0.365845i 0.0179803 0.0179803i
\(415\) 12.8604 + 11.0178i 0.631293 + 0.540844i
\(416\) 0 0
\(417\) 24.4073 24.4073i 1.19523 1.19523i
\(418\) −3.81246 −0.186474
\(419\) 19.6701i 0.960948i 0.877009 + 0.480474i \(0.159535\pi\)
−0.877009 + 0.480474i \(0.840465\pi\)
\(420\) −1.63480 21.1854i −0.0797699 1.03374i
\(421\) −10.4427 + 10.4427i −0.508948 + 0.508948i −0.914203 0.405256i \(-0.867183\pi\)
0.405256 + 0.914203i \(0.367183\pi\)
\(422\) 5.91147i 0.287766i
\(423\) 9.04738i 0.439899i
\(424\) −3.73695 + 3.73695i −0.181482 + 0.181482i
\(425\) 5.97887 8.17660i 0.290018 0.396623i
\(426\) 16.7752i 0.812763i
\(427\) 10.2144 0.494310
\(428\) 6.77359 6.77359i 0.327414 0.327414i
\(429\) 0 0
\(430\) −2.77671 35.9835i −0.133905 1.73528i
\(431\) 12.1144 12.1144i 0.583532 0.583532i −0.352340 0.935872i \(-0.614614\pi\)
0.935872 + 0.352340i \(0.114614\pi\)
\(432\) 14.1544 14.1544i 0.681003 0.681003i
\(433\) 7.94551 7.94551i 0.381837 0.381837i −0.489927 0.871764i \(-0.662977\pi\)
0.871764 + 0.489927i \(0.162977\pi\)
\(434\) 26.8070 + 26.8070i 1.28678 + 1.28678i
\(435\) −8.73826 + 0.674298i −0.418967 + 0.0323301i
\(436\) −13.4035 13.4035i −0.641913 0.641913i
\(437\) −0.163584 −0.00782528
\(438\) −37.8724 37.8724i −1.80962 1.80962i
\(439\) −4.24435 −0.202572 −0.101286 0.994857i \(-0.532296\pi\)
−0.101286 + 0.994857i \(0.532296\pi\)
\(440\) −10.2058 + 0.787544i −0.486543 + 0.0375447i
\(441\) 5.12473i 0.244035i
\(442\) 0 0
\(443\) 15.1569 + 15.1569i 0.720126 + 0.720126i 0.968631 0.248505i \(-0.0799392\pi\)
−0.248505 + 0.968631i \(0.579939\pi\)
\(444\) −10.2867 10.2867i −0.488183 0.488183i
\(445\) 10.4885 0.809356i 0.497201 0.0383671i
\(446\) 13.5820i 0.643126i
\(447\) 26.0221i 1.23080i
\(448\) −8.05150 −0.380398
\(449\) 10.2868 10.2868i 0.485466 0.485466i −0.421406 0.906872i \(-0.638463\pi\)
0.906872 + 0.421406i \(0.138463\pi\)
\(450\) −1.30351 8.39586i −0.0614483 0.395785i
\(451\) 2.60653 0.122737
\(452\) −2.19631 2.19631i −0.103306 0.103306i
\(453\) 2.14465i 0.100764i
\(454\) 7.14758 0.335453
\(455\) 0 0
\(456\) 1.25820 0.0589205
\(457\) 30.2953i 1.41715i 0.705634 + 0.708576i \(0.250662\pi\)
−0.705634 + 0.708576i \(0.749338\pi\)
\(458\) −22.7024 22.7024i −1.06081 1.06081i
\(459\) 8.32005 0.388347
\(460\) 0.919687 0.0709688i 0.0428806 0.00330894i
\(461\) −4.90581 + 4.90581i −0.228486 + 0.228486i −0.812060 0.583574i \(-0.801654\pi\)
0.583574 + 0.812060i \(0.301654\pi\)
\(462\) −49.7680 −2.31541
\(463\) 31.4463i 1.46143i −0.682680 0.730717i \(-0.739186\pi\)
0.682680 0.730717i \(-0.260814\pi\)
\(464\) 9.63937i 0.447496i
\(465\) 19.6830 + 16.8629i 0.912778 + 0.781999i
\(466\) 5.29272 + 5.29272i 0.245180 + 0.245180i
\(467\) −3.69622 3.69622i −0.171041 0.171041i 0.616396 0.787436i \(-0.288592\pi\)
−0.787436 + 0.616396i \(0.788592\pi\)
\(468\) 0 0
\(469\) 8.10369i 0.374194i
\(470\) 25.9858 30.3316i 1.19864 1.39909i
\(471\) −8.50587 −0.391930
\(472\) −10.1595 10.1595i −0.467627 0.467627i
\(473\) −34.1382 −1.56968
\(474\) −4.09966 4.09966i −0.188304 0.188304i
\(475\) −1.58564 + 2.16849i −0.0727540 + 0.0994972i
\(476\) −6.86855 6.86855i −0.314820 0.314820i
\(477\) −2.93404 + 2.93404i −0.134340 + 0.134340i
\(478\) −16.4352 + 16.4352i −0.751730 + 0.751730i
\(479\) −13.6849 + 13.6849i −0.625281 + 0.625281i −0.946877 0.321596i \(-0.895781\pi\)
0.321596 + 0.946877i \(0.395781\pi\)
\(480\) −29.0036 + 2.23810i −1.32383 + 0.102155i
\(481\) 0 0
\(482\) −22.7270 + 22.7270i −1.03518 + 1.03518i
\(483\) −2.13543 −0.0971654
\(484\) 5.43124i 0.246874i
\(485\) −25.9324 + 30.2693i −1.17753 + 1.37446i
\(486\) 12.0788 12.0788i 0.547907 0.547907i
\(487\) 23.3627i 1.05866i −0.848415 0.529332i \(-0.822443\pi\)
0.848415 0.529332i \(-0.177557\pi\)
\(488\) 3.41056i 0.154389i
\(489\) −3.17214 + 3.17214i −0.143449 + 0.143449i
\(490\) −14.7192 + 17.1808i −0.664946 + 0.776150i
\(491\) 21.3186i 0.962094i 0.876695 + 0.481047i \(0.159743\pi\)
−0.876695 + 0.481047i \(0.840257\pi\)
\(492\) 1.80661 0.0814481
\(493\) −2.83305 + 2.83305i −0.127594 + 0.127594i
\(494\) 0 0
\(495\) −8.01301 + 0.618334i −0.360158 + 0.0277920i
\(496\) 20.1573 20.1573i 0.905090 0.905090i
\(497\) −11.5641 + 11.5641i −0.518722 + 0.518722i
\(498\) 19.4396 19.4396i 0.871108 0.871108i
\(499\) −23.0389 23.0389i −1.03136 1.03136i −0.999492 0.0318687i \(-0.989854\pi\)
−0.0318687 0.999492i \(-0.510146\pi\)
\(500\) 7.97386 12.8794i 0.356602 0.575985i
\(501\) −0.868254 0.868254i −0.0387907 0.0387907i
\(502\) 39.8727 1.77960
\(503\) 0.464437 + 0.464437i 0.0207082 + 0.0207082i 0.717385 0.696677i \(-0.245339\pi\)
−0.696677 + 0.717385i \(0.745339\pi\)
\(504\) 3.87953 0.172808
\(505\) 6.62502 7.73297i 0.294809 0.344113i
\(506\) 2.16050i 0.0960458i
\(507\) 0 0
\(508\) 1.23211 + 1.23211i 0.0546662 + 0.0546662i
\(509\) −22.6497 22.6497i −1.00393 1.00393i −0.999992 0.00393669i \(-0.998747\pi\)
−0.00393669 0.999992i \(-0.501253\pi\)
\(510\) −12.4878 10.6986i −0.552968 0.473741i
\(511\) 52.2152i 2.30987i
\(512\) 20.4758i 0.904912i
\(513\) −2.20654 −0.0974210
\(514\) −16.5951 + 16.5951i −0.731978 + 0.731978i
\(515\) 30.8759 2.38258i 1.36056 0.104989i
\(516\) −23.6614 −1.04164
\(517\) −26.7147 26.7147i −1.17491 1.17491i
\(518\) 35.1176i 1.54298i
\(519\) 13.1232 0.576046
\(520\) 0 0
\(521\) −23.4746 −1.02844 −0.514220 0.857658i \(-0.671919\pi\)
−0.514220 + 0.857658i \(0.671919\pi\)
\(522\) 3.36066i 0.147092i
\(523\) 17.4961 + 17.4961i 0.765049 + 0.765049i 0.977230 0.212181i \(-0.0680568\pi\)
−0.212181 + 0.977230i \(0.568057\pi\)
\(524\) 7.57972 0.331121
\(525\) −20.6989 + 28.3075i −0.903376 + 1.23544i
\(526\) −21.3765 + 21.3765i −0.932061 + 0.932061i
\(527\) 11.8486 0.516134
\(528\) 37.4226i 1.62861i
\(529\) 22.9073i 0.995969i
\(530\) −18.2636 + 1.40933i −0.793319 + 0.0612174i
\(531\) −7.97661 7.97661i −0.346156 0.346156i
\(532\) 1.82159 + 1.82159i 0.0789759 + 0.0789759i
\(533\) 0 0
\(534\) 17.0776i 0.739019i
\(535\) −15.7627 + 1.21635i −0.681480 + 0.0525872i
\(536\) −2.70579 −0.116873
\(537\) −3.06935 3.06935i −0.132452 0.132452i
\(538\) 59.1745 2.55119
\(539\) 15.1320 + 15.1320i 0.651783 + 0.651783i
\(540\) 12.4054 0.957277i 0.533843 0.0411946i
\(541\) 27.6908 + 27.6908i 1.19052 + 1.19052i 0.976922 + 0.213597i \(0.0685180\pi\)
0.213597 + 0.976922i \(0.431482\pi\)
\(542\) 22.6295 22.6295i 0.972021 0.972021i
\(543\) −13.4428 + 13.4428i −0.576887 + 0.576887i
\(544\) −9.40330 + 9.40330i −0.403163 + 0.403163i
\(545\) 2.40690 + 31.1911i 0.103100 + 1.33608i
\(546\) 0 0
\(547\) 6.53914 6.53914i 0.279593 0.279593i −0.553353 0.832947i \(-0.686652\pi\)
0.832947 + 0.553353i \(0.186652\pi\)
\(548\) −19.3614 −0.827079
\(549\) 2.67777i 0.114284i
\(550\) −28.6398 20.9419i −1.22121 0.892967i
\(551\) 0.751344 0.751344i 0.0320083 0.0320083i
\(552\) 0.713012i 0.0303478i
\(553\) 5.65225i 0.240358i
\(554\) −3.98180 + 3.98180i −0.169170 + 0.169170i
\(555\) 1.84719 + 23.9378i 0.0784089 + 1.01610i
\(556\) 23.5974i 1.00075i
\(557\) −16.2486 −0.688475 −0.344237 0.938883i \(-0.611862\pi\)
−0.344237 + 0.938883i \(0.611862\pi\)
\(558\) 7.02763 7.02763i 0.297503 0.297503i
\(559\) 0 0
\(560\) 29.2903 + 25.0937i 1.23774 + 1.06040i
\(561\) −10.9986 + 10.9986i −0.464363 + 0.464363i
\(562\) −34.2070 + 34.2070i −1.44294 + 1.44294i
\(563\) 22.9991 22.9991i 0.969298 0.969298i −0.0302442 0.999543i \(-0.509628\pi\)
0.999543 + 0.0302442i \(0.00962850\pi\)
\(564\) −18.5161 18.5161i −0.779670 0.779670i
\(565\) 0.394394 + 5.11097i 0.0165923 + 0.215020i
\(566\) 19.8666 + 19.8666i 0.835054 + 0.835054i
\(567\) −38.6538 −1.62331
\(568\) 3.86122 + 3.86122i 0.162013 + 0.162013i
\(569\) −32.8329 −1.37642 −0.688212 0.725509i \(-0.741604\pi\)
−0.688212 + 0.725509i \(0.741604\pi\)
\(570\) 3.31184 + 2.83734i 0.138718 + 0.118843i
\(571\) 31.7967i 1.33065i 0.746554 + 0.665325i \(0.231707\pi\)
−0.746554 + 0.665325i \(0.768293\pi\)
\(572\) 0 0
\(573\) −5.22875 5.22875i −0.218434 0.218434i
\(574\) −3.08379 3.08379i −0.128715 0.128715i
\(575\) −1.22887 0.898570i −0.0512474 0.0374730i
\(576\) 2.11075i 0.0879480i
\(577\) 39.9389i 1.66268i 0.555767 + 0.831338i \(0.312425\pi\)
−0.555767 + 0.831338i \(0.687575\pi\)
\(578\) 23.6205 0.982482
\(579\) −0.398113 + 0.398113i −0.0165450 + 0.0165450i
\(580\) −3.89818 + 4.55010i −0.161863 + 0.188933i
\(581\) −26.8016 −1.11192
\(582\) 45.7544 + 45.7544i 1.89658 + 1.89658i
\(583\) 17.3270i 0.717609i
\(584\) 17.4345 0.721444
\(585\) 0 0
\(586\) −19.0063 −0.785143
\(587\) 18.6555i 0.769993i −0.922918 0.384997i \(-0.874203\pi\)
0.922918 0.384997i \(-0.125797\pi\)
\(588\) 10.4881 + 10.4881i 0.432523 + 0.432523i
\(589\) −3.14234 −0.129478
\(590\) −3.83147 49.6522i −0.157739 2.04415i
\(591\) 36.2245 36.2245i 1.49008 1.49008i
\(592\) 26.4064 1.08529
\(593\) 8.65172i 0.355284i −0.984095 0.177642i \(-0.943153\pi\)
0.984095 0.177642i \(-0.0568468\pi\)
\(594\) 29.1423i 1.19572i
\(595\) 1.23340 + 15.9837i 0.0505644 + 0.655266i
\(596\) −12.5793 12.5793i −0.515266 0.515266i
\(597\) −8.06145 8.06145i −0.329933 0.329933i
\(598\) 0 0
\(599\) 35.1779i 1.43733i 0.695356 + 0.718666i \(0.255247\pi\)
−0.695356 + 0.718666i \(0.744753\pi\)
\(600\) 9.45178 + 6.91130i 0.385867 + 0.282153i
\(601\) −40.0769 −1.63477 −0.817385 0.576091i \(-0.804577\pi\)
−0.817385 + 0.576091i \(0.804577\pi\)
\(602\) 40.3889 + 40.3889i 1.64613 + 1.64613i
\(603\) −2.12443 −0.0865136
\(604\) 1.03674 + 1.03674i 0.0421843 + 0.0421843i
\(605\) −5.83181 + 6.80711i −0.237097 + 0.276748i
\(606\) −11.6890 11.6890i −0.474834 0.474834i
\(607\) 30.4484 30.4484i 1.23586 1.23586i 0.274188 0.961676i \(-0.411591\pi\)
0.961676 0.274188i \(-0.0884092\pi\)
\(608\) 2.49382 2.49382i 0.101138 0.101138i
\(609\) 9.80806 9.80806i 0.397443 0.397443i
\(610\) 7.69108 8.97731i 0.311403 0.363481i
\(611\) 0 0
\(612\) −1.80063 + 1.80063i −0.0727863 + 0.0727863i
\(613\) 20.2795 0.819080 0.409540 0.912292i \(-0.365689\pi\)
0.409540 + 0.912292i \(0.365689\pi\)
\(614\) 3.91850i 0.158138i
\(615\) −2.26427 1.93985i −0.0913040 0.0782223i
\(616\) 11.4553 11.4553i 0.461546 0.461546i
\(617\) 8.67054i 0.349063i 0.984652 + 0.174531i \(0.0558410\pi\)
−0.984652 + 0.174531i \(0.944159\pi\)
\(618\) 50.2729i 2.02227i
\(619\) −21.3034 + 21.3034i −0.856257 + 0.856257i −0.990895 0.134638i \(-0.957013\pi\)
0.134638 + 0.990895i \(0.457013\pi\)
\(620\) 17.6666 1.36326i 0.709507 0.0547499i
\(621\) 1.25043i 0.0501780i
\(622\) −6.99837 −0.280609
\(623\) −11.7725 + 11.7725i −0.471657 + 0.471657i
\(624\) 0 0
\(625\) −23.8231 + 7.58013i −0.952925 + 0.303205i
\(626\) −5.57789 + 5.57789i −0.222937 + 0.222937i
\(627\) 2.91692 2.91692i 0.116490 0.116490i
\(628\) −4.11180 + 4.11180i −0.164079 + 0.164079i
\(629\) 7.76093 + 7.76093i 0.309449 + 0.309449i
\(630\) 10.2117 + 8.74864i 0.406845 + 0.348554i
\(631\) −20.0819 20.0819i −0.799449 0.799449i 0.183560 0.983009i \(-0.441238\pi\)
−0.983009 + 0.183560i \(0.941238\pi\)
\(632\) 1.88727 0.0750715
\(633\) 4.52286 + 4.52286i 0.179768 + 0.179768i
\(634\) 42.3339 1.68129
\(635\) −0.221253 2.86722i −0.00878015 0.113782i
\(636\) 12.0094i 0.476206i
\(637\) 0 0
\(638\) 9.92320 + 9.92320i 0.392863 + 0.392863i
\(639\) 3.03161 + 3.03161i 0.119929 + 0.119929i
\(640\) 13.0369 15.2171i 0.515327 0.601509i
\(641\) 16.3686i 0.646520i −0.946310 0.323260i \(-0.895221\pi\)
0.946310 0.323260i \(-0.104779\pi\)
\(642\) 25.6652i 1.01292i
\(643\) 41.0517 1.61892 0.809460 0.587175i \(-0.199760\pi\)
0.809460 + 0.587175i \(0.199760\pi\)
\(644\) −1.03228 + 1.03228i −0.0406776 + 0.0406776i
\(645\) 29.6555 + 25.4065i 1.16768 + 1.00038i
\(646\) 1.99364 0.0784386
\(647\) 2.00480 + 2.00480i 0.0788168 + 0.0788168i 0.745416 0.666599i \(-0.232251\pi\)
−0.666599 + 0.745416i \(0.732251\pi\)
\(648\) 12.9064i 0.507010i
\(649\) −47.1059 −1.84907
\(650\) 0 0
\(651\) −41.0201 −1.60771
\(652\) 3.06687i 0.120108i
\(653\) 0.887856 + 0.887856i 0.0347445 + 0.0347445i 0.724266 0.689521i \(-0.242179\pi\)
−0.689521 + 0.724266i \(0.742179\pi\)
\(654\) 50.7861 1.98589
\(655\) −9.49985 8.13874i −0.371190 0.318007i
\(656\) −2.31883 + 2.31883i −0.0905349 + 0.0905349i
\(657\) 13.6885 0.534041
\(658\) 63.2122i 2.46427i
\(659\) 9.35210i 0.364306i 0.983270 + 0.182153i \(0.0583066\pi\)
−0.983270 + 0.182153i \(0.941693\pi\)
\(660\) −15.1338 + 17.6647i −0.589081 + 0.687597i
\(661\) 18.1521 + 18.1521i 0.706037 + 0.706037i 0.965699 0.259663i \(-0.0836114\pi\)
−0.259663 + 0.965699i \(0.583611\pi\)
\(662\) −2.58641 2.58641i −0.100524 0.100524i
\(663\) 0 0
\(664\) 8.94896i 0.347287i
\(665\) −0.327106 4.23898i −0.0126846 0.164381i
\(666\) 9.20629 0.356736
\(667\) 0.425782 + 0.425782i 0.0164863 + 0.0164863i
\(668\) −0.839440 −0.0324789
\(669\) −10.3916 10.3916i −0.401762 0.401762i
\(670\) −7.12223 6.10178i −0.275156 0.235732i
\(671\) −7.90679 7.90679i −0.305238 0.305238i
\(672\) 32.5544 32.5544i 1.25581 1.25581i
\(673\) −29.2283 + 29.2283i −1.12667 + 1.12667i −0.135955 + 0.990715i \(0.543410\pi\)
−0.990715 + 0.135955i \(0.956590\pi\)
\(674\) −11.2229 + 11.2229i −0.432290 + 0.432290i
\(675\) −16.5759 12.1205i −0.638005 0.466520i
\(676\) 0 0
\(677\) 15.5322 15.5322i 0.596950 0.596950i −0.342549 0.939500i \(-0.611290\pi\)
0.939500 + 0.342549i \(0.111290\pi\)
\(678\) 8.32181 0.319597
\(679\) 63.0822i 2.42087i
\(680\) 5.33689 0.411827i 0.204660 0.0157929i
\(681\) −5.46862 + 5.46862i −0.209558 + 0.209558i
\(682\) 41.5017i 1.58918i
\(683\) 6.65304i 0.254571i 0.991866 + 0.127286i \(0.0406265\pi\)
−0.991866 + 0.127286i \(0.959373\pi\)
\(684\) 0.477541 0.477541i 0.0182592 0.0182592i
\(685\) 24.2662 + 20.7894i 0.927162 + 0.794322i
\(686\) 9.56838i 0.365322i
\(687\) 34.7392 1.32538
\(688\) 30.3701 30.3701i 1.15785 1.15785i
\(689\) 0 0
\(690\) −1.60790 + 1.87680i −0.0612117 + 0.0714485i
\(691\) −26.6060 + 26.6060i −1.01214 + 1.01214i −0.0122158 + 0.999925i \(0.503889\pi\)
−0.999925 + 0.0122158i \(0.996111\pi\)
\(692\) 6.34386 6.34386i 0.241157 0.241157i
\(693\) 8.99402 8.99402i 0.341655 0.341655i
\(694\) −42.1038 42.1038i −1.59824 1.59824i
\(695\) −25.3377 + 29.5752i −0.961115 + 1.12185i
\(696\) −3.27488 3.27488i −0.124134 0.124134i
\(697\) −1.36302 −0.0516282
\(698\) 8.81368 + 8.81368i 0.333603 + 0.333603i
\(699\) −8.09892 −0.306329
\(700\) 3.67805 + 23.6901i 0.139017 + 0.895401i
\(701\) 40.3398i 1.52361i −0.647804 0.761807i \(-0.724312\pi\)
0.647804 0.761807i \(-0.275688\pi\)
\(702\) 0 0
\(703\) −2.05825 2.05825i −0.0776285 0.0776285i
\(704\) 6.23252 + 6.23252i 0.234897 + 0.234897i
\(705\) 3.32498 + 43.0885i 0.125226 + 1.62281i
\(706\) 50.0515i 1.88371i
\(707\) 16.1158i 0.606097i
\(708\) −32.6495 −1.22704
\(709\) −31.5318 + 31.5318i −1.18420 + 1.18420i −0.205559 + 0.978645i \(0.565901\pi\)
−0.978645 + 0.205559i \(0.934099\pi\)
\(710\) 1.45620 + 18.8709i 0.0546501 + 0.708213i
\(711\) 1.48177 0.0555708
\(712\) 3.93081 + 3.93081i 0.147313 + 0.147313i
\(713\) 1.78074i 0.0666893i
\(714\) 26.0250 0.973960
\(715\) 0 0
\(716\) −2.96749 −0.110900
\(717\) 25.1492i 0.939214i
\(718\) −7.14100 7.14100i −0.266500 0.266500i
\(719\) −27.5650 −1.02800 −0.514001 0.857790i \(-0.671837\pi\)
−0.514001 + 0.857790i \(0.671837\pi\)
\(720\) 6.57846 7.67863i 0.245165 0.286166i
\(721\) −34.6560 + 34.6560i −1.29066 + 1.29066i
\(722\) 34.2723 1.27548
\(723\) 34.7768i 1.29336i
\(724\) 12.9967i 0.483020i
\(725\) 9.77136 1.51707i 0.362899 0.0563426i
\(726\) 10.2895 + 10.2895i 0.381879 + 0.381879i
\(727\) −29.4624 29.4624i −1.09270 1.09270i −0.995240 0.0974593i \(-0.968928\pi\)
−0.0974593 0.995240i \(-0.531072\pi\)
\(728\) 0 0
\(729\) 14.2845i 0.529057i
\(730\) 45.8913 + 39.3161i 1.69851 + 1.45516i
\(731\) 17.8518 0.660271
\(732\) −5.48026 5.48026i −0.202556 0.202556i
\(733\) 23.3958 0.864144 0.432072 0.901839i \(-0.357783\pi\)
0.432072 + 0.901839i \(0.357783\pi\)
\(734\) 23.4105 + 23.4105i 0.864098 + 0.864098i
\(735\) −1.88337 24.4067i −0.0694693 0.900255i
\(736\) 1.41323 + 1.41323i 0.0520924 + 0.0520924i
\(737\) −6.27292 + 6.27292i −0.231066 + 0.231066i
\(738\) −0.808434 + 0.808434i −0.0297589 + 0.0297589i
\(739\) 11.3556 11.3556i 0.417723 0.417723i −0.466695 0.884418i \(-0.654556\pi\)
0.884418 + 0.466695i \(0.154556\pi\)
\(740\) 12.4647 + 10.6788i 0.458210 + 0.392560i
\(741\) 0 0
\(742\) 20.4995 20.4995i 0.752561 0.752561i
\(743\) −52.2801 −1.91797 −0.958985 0.283457i \(-0.908519\pi\)
−0.958985 + 0.283457i \(0.908519\pi\)
\(744\) 13.6965i 0.502137i
\(745\) 2.25888 + 29.2729i 0.0827589 + 1.07248i
\(746\) −20.0933 + 20.0933i −0.735669 + 0.735669i
\(747\) 7.02620i 0.257075i
\(748\) 10.6336i 0.388805i
\(749\) 17.6925 17.6925i 0.646468 0.646468i
\(750\) 9.29358 + 39.5065i 0.339353 + 1.44258i
\(751\) 27.4355i 1.00114i 0.865697 + 0.500569i \(0.166876\pi\)
−0.865697 + 0.500569i \(0.833124\pi\)
\(752\) 47.5319 1.73331
\(753\) −30.5066 + 30.5066i −1.11172 + 1.11172i
\(754\) 0 0
\(755\) −0.186169 2.41257i −0.00677539 0.0878026i
\(756\) −13.9241 + 13.9241i −0.506416 + 0.506416i
\(757\) 1.70159 1.70159i 0.0618452 0.0618452i −0.675508 0.737353i \(-0.736075\pi\)
0.737353 + 0.675508i \(0.236075\pi\)
\(758\) −27.6742 + 27.6742i −1.00517 + 1.00517i
\(759\) 1.65300 + 1.65300i 0.0600000 + 0.0600000i
\(760\) −1.41538 + 0.109219i −0.0513412 + 0.00396181i
\(761\) 1.72762 + 1.72762i 0.0626260 + 0.0626260i 0.737726 0.675100i \(-0.235900\pi\)
−0.675100 + 0.737726i \(0.735900\pi\)
\(762\) −4.66848 −0.169121
\(763\) −35.0097 35.0097i −1.26744 1.26744i
\(764\) −5.05523 −0.182892
\(765\) 4.19021 0.323343i 0.151497 0.0116905i
\(766\) 35.5469i 1.28436i
\(767\) 0 0
\(768\) −29.3786 29.3786i −1.06011 1.06011i
\(769\) −9.58574 9.58574i −0.345670 0.345670i 0.512824 0.858494i \(-0.328600\pi\)
−0.858494 + 0.512824i \(0.828600\pi\)
\(770\) 55.9853 4.32017i 2.01757 0.155688i
\(771\) 25.3938i 0.914536i
\(772\) 0.384901i 0.0138529i
\(773\) −22.4445 −0.807272 −0.403636 0.914920i \(-0.632254\pi\)
−0.403636 + 0.914920i \(0.632254\pi\)
\(774\) 10.5882 10.5882i 0.380585 0.380585i
\(775\) −23.6058 17.2609i −0.847944 0.620031i
\(776\) −21.0629 −0.756115
\(777\) −26.8685 26.8685i −0.963901 0.963901i
\(778\) 27.2164i 0.975756i
\(779\) 0.361484 0.0129515
\(780\) 0 0
\(781\) 17.9032 0.640626
\(782\) 1.12978i 0.0404009i
\(783\) 5.74324 + 5.74324i 0.205247 + 0.205247i
\(784\) −26.9236 −0.961556
\(785\) 9.56847 0.738363i 0.341513 0.0263533i
\(786\) −14.3598 + 14.3598i −0.512197 + 0.512197i
\(787\) 13.4958 0.481074 0.240537 0.970640i \(-0.422676\pi\)
0.240537 + 0.970640i \(0.422676\pi\)
\(788\) 35.0224i 1.24762i
\(789\) 32.7104i 1.16452i
\(790\) 4.96769 + 4.25594i 0.176743 + 0.151420i
\(791\) −5.73669 5.73669i −0.203973 0.203973i
\(792\) −3.00307 3.00307i −0.106709 0.106709i
\(793\) 0 0
\(794\) 9.66696i 0.343068i
\(795\) 12.8952 15.0517i 0.457345 0.533830i
\(796\) −7.79393 −0.276248
\(797\) 4.43678 + 4.43678i 0.157159 + 0.157159i 0.781307 0.624148i \(-0.214554\pi\)
−0.624148 + 0.781307i \(0.714554\pi\)
\(798\) −6.90201 −0.244328
\(799\) 13.9698 + 13.9698i 0.494216 + 0.494216i
\(800\) 32.4326 5.03539i 1.14667 0.178028i
\(801\) 3.08625 + 3.08625i 0.109047 + 0.109047i
\(802\) 36.1075 36.1075i 1.27500 1.27500i
\(803\) 40.4189 40.4189i 1.42635 1.42635i
\(804\) −4.34781 + 4.34781i −0.153335 + 0.153335i
\(805\) 2.40220 0.185369i 0.0846664 0.00653339i
\(806\) 0 0
\(807\) −45.2744 + 45.2744i −1.59374 + 1.59374i
\(808\) 5.38101 0.189303
\(809\) 21.5781i 0.758645i −0.925265 0.379322i \(-0.876157\pi\)
0.925265 0.379322i \(-0.123843\pi\)
\(810\) −29.1049 + 33.9723i −1.02264 + 1.19366i
\(811\) −22.5473 + 22.5473i −0.791743 + 0.791743i −0.981777 0.190035i \(-0.939140\pi\)
0.190035 + 0.981777i \(0.439140\pi\)
\(812\) 9.48257i 0.332773i
\(813\) 34.6277i 1.21445i
\(814\) 27.1839 27.1839i 0.952795 0.952795i
\(815\) 3.29306 3.84379i 0.115351 0.134642i
\(816\) 19.5692i 0.685061i
\(817\) −4.73441 −0.165636
\(818\) −3.41289 + 3.41289i −0.119329 + 0.119329i
\(819\) 0 0
\(820\) −2.03230 + 0.156825i −0.0709710 + 0.00547656i
\(821\) −12.6803 + 12.6803i −0.442544 + 0.442544i −0.892866 0.450322i \(-0.851309\pi\)
0.450322 + 0.892866i \(0.351309\pi\)
\(822\) 36.6803 36.6803i 1.27937 1.27937i
\(823\) 0.814658 0.814658i 0.0283972 0.0283972i −0.692766 0.721163i \(-0.743608\pi\)
0.721163 + 0.692766i \(0.243608\pi\)
\(824\) 11.5715 + 11.5715i 0.403112 + 0.403112i
\(825\) 37.9350 5.88968i 1.32073 0.205052i
\(826\) 55.7310 + 55.7310i 1.93913 + 1.93913i
\(827\) 4.45029 0.154752 0.0773759 0.997002i \(-0.475346\pi\)
0.0773759 + 0.997002i \(0.475346\pi\)
\(828\) 0.270619 + 0.270619i 0.00940466 + 0.00940466i
\(829\) 29.1274 1.01164 0.505819 0.862640i \(-0.331191\pi\)
0.505819 + 0.862640i \(0.331191\pi\)
\(830\) −20.1806 + 23.5556i −0.700479 + 0.817625i
\(831\) 6.09295i 0.211362i
\(832\) 0 0
\(833\) −7.91294 7.91294i −0.274167 0.274167i
\(834\) 44.7052 + 44.7052i 1.54802 + 1.54802i
\(835\) 1.05209 + 0.901352i 0.0364091 + 0.0311926i
\(836\) 2.82012i 0.0975358i
\(837\) 24.0199i 0.830249i
\(838\) −36.0284 −1.24458
\(839\) 22.8596 22.8596i 0.789200 0.789200i −0.192163 0.981363i \(-0.561550\pi\)
0.981363 + 0.192163i \(0.0615502\pi\)
\(840\) −18.4764 + 1.42575i −0.637496 + 0.0491931i
\(841\) 25.0888 0.865130
\(842\) −19.1273 19.1273i −0.659169 0.659169i
\(843\) 52.3436i 1.80281i
\(844\) 4.37277 0.150517
\(845\) 0 0
\(846\) 16.5715 0.569739
\(847\) 14.1863i 0.487446i
\(848\) −15.4144 15.4144i −0.529334 0.529334i
\(849\) −30.3998 −1.04332
\(850\) 14.9765 + 10.9511i 0.513691 + 0.375619i
\(851\) 1.16640 1.16640i 0.0399836 0.0399836i
\(852\) 12.4088 0.425119
\(853\) 9.24230i 0.316450i −0.987403 0.158225i \(-0.949423\pi\)
0.987403 0.158225i \(-0.0505772\pi\)
\(854\) 18.7091i 0.640211i
\(855\) −1.11127 + 0.0857528i −0.0380048 + 0.00293268i
\(856\) −5.90745 5.90745i −0.201912 0.201912i
\(857\) 37.7913 + 37.7913i 1.29093 + 1.29093i 0.934214 + 0.356713i \(0.116103\pi\)
0.356713 + 0.934214i \(0.383897\pi\)
\(858\) 0 0
\(859\) 6.16263i 0.210266i −0.994458 0.105133i \(-0.966473\pi\)
0.994458 0.105133i \(-0.0335269\pi\)
\(860\) 26.6174 2.05396i 0.907645 0.0700395i
\(861\) 4.71881 0.160817
\(862\) 22.1892 + 22.1892i 0.755767 + 0.755767i
\(863\) 33.7740 1.14968 0.574840 0.818266i \(-0.305064\pi\)
0.574840 + 0.818266i \(0.305064\pi\)
\(864\) 19.0627 + 19.0627i 0.648525 + 0.648525i
\(865\) −14.7627 + 1.13918i −0.501945 + 0.0387332i
\(866\) 14.5532 + 14.5532i 0.494539 + 0.494539i
\(867\) −18.0720 + 18.0720i −0.613758 + 0.613758i
\(868\) −19.8294 + 19.8294i −0.673055 + 0.673055i
\(869\) 4.37531 4.37531i 0.148422 0.148422i
\(870\) −1.23507 16.0053i −0.0418727 0.542630i
\(871\) 0 0
\(872\) −11.6896 + 11.6896i −0.395861 + 0.395861i
\(873\) −16.5374 −0.559706
\(874\) 0.299626i 0.0101350i
\(875\) 20.8275 33.6407i 0.704098 1.13726i
\(876\) 28.0146 28.0146i 0.946527 0.946527i
\(877\) 22.6972i 0.766429i 0.923659 + 0.383214i \(0.125183\pi\)
−0.923659 + 0.383214i \(0.874817\pi\)
\(878\) 7.77409i 0.262363i
\(879\) 14.5417 14.5417i 0.490480 0.490480i
\(880\) −3.24852 42.0976i −0.109507 1.41911i
\(881\) 7.83247i 0.263883i −0.991258 0.131941i \(-0.957879\pi\)
0.991258 0.131941i \(-0.0421210\pi\)
\(882\) −9.38661 −0.316064
\(883\) −18.9296 + 18.9296i −0.637032 + 0.637032i −0.949822 0.312790i \(-0.898736\pi\)
0.312790 + 0.949822i \(0.398736\pi\)
\(884\) 0 0
\(885\) 40.9204 + 35.0575i 1.37552 + 1.17844i
\(886\) −27.7619 + 27.7619i −0.932678 + 0.932678i
\(887\) 25.1275 25.1275i 0.843698 0.843698i −0.145640 0.989338i \(-0.546524\pi\)
0.989338 + 0.145640i \(0.0465241\pi\)
\(888\) −8.97129 + 8.97129i −0.301057 + 0.301057i
\(889\) 3.21825 + 3.21825i 0.107937 + 0.107937i
\(890\) 1.48244 + 19.2110i 0.0496916 + 0.643955i
\(891\) 29.9212 + 29.9212i 1.00240 + 1.00240i
\(892\) −10.0467 −0.336389
\(893\) −3.70489 3.70489i −0.123979 0.123979i
\(894\) 47.6628 1.59408
\(895\) 3.71923 + 3.18636i 0.124320 + 0.106508i
\(896\) 31.7130i 1.05946i
\(897\) 0 0
\(898\) 18.8417 + 18.8417i 0.628755 + 0.628755i
\(899\) 8.17898 + 8.17898i 0.272784 + 0.272784i
\(900\) 6.21050 0.964223i 0.207017 0.0321408i
\(901\) 9.06072i 0.301856i
\(902\) 4.77421i 0.158964i
\(903\) −61.8031 −2.05668
\(904\) −1.91546 + 1.91546i −0.0637073 + 0.0637073i
\(905\) 13.9553 16.2891i 0.463889 0.541469i
\(906\) −3.92821 −0.130506
\(907\) 32.8817 + 32.8817i 1.09182 + 1.09182i 0.995334 + 0.0964844i \(0.0307598\pi\)
0.0964844 + 0.995334i \(0.469240\pi\)
\(908\) 5.28714i 0.175460i
\(909\) 4.22485 0.140130
\(910\) 0 0
\(911\) 17.7325 0.587504 0.293752 0.955882i \(-0.405096\pi\)
0.293752 + 0.955882i \(0.405096\pi\)
\(912\) 5.18990i 0.171855i
\(913\) 20.7466 + 20.7466i 0.686613 + 0.686613i
\(914\) −55.4898 −1.83544
\(915\) 0.984100 + 12.7530i 0.0325333 + 0.421601i
\(916\) 16.7932 16.7932i 0.554863 0.554863i
\(917\) 19.7980 0.653789
\(918\) 15.2393i 0.502971i
\(919\) 48.7954i 1.60961i 0.593538 + 0.804806i \(0.297730\pi\)
−0.593538 + 0.804806i \(0.702270\pi\)
\(920\) −0.0618939 0.802086i −0.00204058 0.0264440i
\(921\) 2.99805 + 2.99805i 0.0987891 + 0.0987891i
\(922\) −8.98564 8.98564i −0.295926 0.295926i
\(923\) 0 0
\(924\) 36.8139i 1.21109i
\(925\) −4.15591 26.7680i −0.136645 0.880125i
\(926\) 57.5981 1.89279
\(927\) 9.08527 + 9.08527i 0.298399 + 0.298399i
\(928\) −12.9820 −0.426155
\(929\) −7.34465 7.34465i −0.240970 0.240970i 0.576281 0.817251i \(-0.304503\pi\)
−0.817251 + 0.576281i \(0.804503\pi\)
\(930\) −30.8867 + 36.0521i −1.01281 + 1.18219i
\(931\) 2.09857 + 2.09857i 0.0687778 + 0.0687778i
\(932\) −3.91508 + 3.91508i −0.128243 + 0.128243i
\(933\) 5.35446 5.35446i 0.175297 0.175297i
\(934\) 6.77011 6.77011i 0.221525 0.221525i
\(935\) 11.4179 13.3274i 0.373406 0.435853i
\(936\) 0 0
\(937\) 5.31856 5.31856i 0.173750 0.173750i −0.614875 0.788625i \(-0.710794\pi\)
0.788625 + 0.614875i \(0.210794\pi\)
\(938\) 14.8430 0.484641
\(939\) 8.53529i 0.278539i
\(940\) 22.4366 + 19.2220i 0.731802 + 0.626952i
\(941\) 38.9093 38.9093i 1.26841 1.26841i 0.321497 0.946911i \(-0.395814\pi\)
0.946911 0.321497i \(-0.104186\pi\)
\(942\) 15.5796i 0.507611i
\(943\) 0.204850i 0.00667084i
\(944\) 41.9064 41.9064i 1.36394 1.36394i
\(945\) 32.4026 2.50038i 1.05406 0.0813375i
\(946\) 62.5286i 2.03298i
\(947\) −33.7517 −1.09678 −0.548392 0.836222i \(-0.684760\pi\)
−0.548392 + 0.836222i \(0.684760\pi\)
\(948\) 3.03256 3.03256i 0.0984930 0.0984930i
\(949\) 0 0
\(950\) −3.97188 2.90431i −0.128865 0.0942281i
\(951\) −32.3897 + 32.3897i −1.05031 + 1.05031i
\(952\) −5.99026 + 5.99026i −0.194146 + 0.194146i
\(953\) 3.12279 3.12279i 0.101157 0.101157i −0.654717 0.755874i \(-0.727212\pi\)
0.755874 + 0.654717i \(0.227212\pi\)
\(954\) −5.37407 5.37407i −0.173992 0.173992i
\(955\) 6.33584 + 5.42807i 0.205023 + 0.175648i
\(956\) −12.1573 12.1573i −0.393195 0.393195i
\(957\) −15.1845 −0.490845
\(958\) −25.0658 25.0658i −0.809839 0.809839i
\(959\) −50.5716 −1.63304
\(960\) −0.775716 10.0525i −0.0250361 0.324444i
\(961\) 3.20686i 0.103447i
\(962\) 0 0
\(963\) −4.63819 4.63819i −0.149463 0.149463i
\(964\) −16.8114 16.8114i −0.541457 0.541457i
\(965\) 0.413289 0.482406i 0.0133042 0.0155292i
\(966\) 3.91132i 0.125845i
\(967\) 16.2803i 0.523540i 0.965130 + 0.261770i \(0.0843061\pi\)
−0.965130 + 0.261770i \(0.915694\pi\)
\(968\) −4.73674 −0.152245
\(969\) −1.52533 + 1.52533i −0.0490007 + 0.0490007i
\(970\) −55.4421 47.4986i −1.78014 1.52509i
\(971\) 12.8029 0.410865 0.205433 0.978671i \(-0.434140\pi\)
0.205433 + 0.978671i \(0.434140\pi\)
\(972\) 8.93484 + 8.93484i 0.286585 + 0.286585i
\(973\) 61.6357i 1.97595i
\(974\) 42.7918 1.37114
\(975\) 0 0
\(976\) 14.0681 0.450309
\(977\) 16.0487i 0.513444i −0.966485 0.256722i \(-0.917358\pi\)
0.966485 0.256722i \(-0.0826425\pi\)
\(978\) −5.81019 5.81019i −0.185790 0.185790i
\(979\) 18.2258 0.582500
\(980\) −12.7088 10.8879i −0.405968 0.347803i
\(981\) −9.17801 + 9.17801i −0.293031 + 0.293031i
\(982\) −39.0478 −1.24607
\(983\) 34.3036i 1.09411i 0.837096 + 0.547057i \(0.184252\pi\)
−0.837096 + 0.547057i \(0.815748\pi\)
\(984\) 1.57559i 0.0502281i
\(985\) −37.6054 + 43.8945i −1.19821 + 1.39859i
\(986\) −5.18910 5.18910i −0.165255 0.165255i
\(987\) −48.3637 48.3637i −1.53943 1.53943i
\(988\) 0 0
\(989\) 2.68296i 0.0853131i
\(990\) −1.13256 14.6769i −0.0359951 0.466462i
\(991\) 22.3545 0.710114 0.355057 0.934845i \(-0.384461\pi\)
0.355057 + 0.934845i \(0.384461\pi\)
\(992\) 27.1472 + 27.1472i 0.861926 + 0.861926i
\(993\) 3.95773 0.125595
\(994\) −21.1812 21.1812i −0.671828 0.671828i
\(995\) 9.76832 + 8.36875i 0.309677 + 0.265307i
\(996\) 14.3796 + 14.3796i 0.455637 + 0.455637i
\(997\) 8.41794 8.41794i 0.266599 0.266599i −0.561129 0.827728i \(-0.689633\pi\)
0.827728 + 0.561129i \(0.189633\pi\)
\(998\) 42.1987 42.1987i 1.33578 1.33578i
\(999\) 15.7332 15.7332i 0.497776 0.497776i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.f.d.408.8 20
5.2 odd 4 845.2.k.d.577.3 20
13.2 odd 12 65.2.o.a.33.2 yes 20
13.3 even 3 845.2.t.e.188.2 20
13.4 even 6 65.2.t.a.28.2 yes 20
13.5 odd 4 845.2.k.e.268.8 20
13.6 odd 12 845.2.o.e.258.2 20
13.7 odd 12 845.2.o.f.258.4 20
13.8 odd 4 845.2.k.d.268.3 20
13.9 even 3 845.2.t.g.418.4 20
13.10 even 6 845.2.t.f.188.4 20
13.11 odd 12 845.2.o.g.488.4 20
13.12 even 2 845.2.f.e.408.3 20
39.2 even 12 585.2.cf.a.163.4 20
39.17 odd 6 585.2.dp.a.28.4 20
65.2 even 12 65.2.t.a.7.2 yes 20
65.4 even 6 325.2.x.b.93.4 20
65.7 even 12 845.2.t.e.427.2 20
65.12 odd 4 845.2.k.e.577.8 20
65.17 odd 12 65.2.o.a.2.2 20
65.22 odd 12 845.2.o.g.587.4 20
65.28 even 12 325.2.x.b.7.4 20
65.32 even 12 845.2.t.f.427.4 20
65.37 even 12 845.2.t.g.657.4 20
65.42 odd 12 845.2.o.f.357.4 20
65.43 odd 12 325.2.s.b.132.4 20
65.47 even 4 inner 845.2.f.d.437.3 20
65.54 odd 12 325.2.s.b.293.4 20
65.57 even 4 845.2.f.e.437.8 20
65.62 odd 12 845.2.o.e.357.2 20
195.2 odd 12 585.2.dp.a.397.4 20
195.17 even 12 585.2.cf.a.262.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.2 20 65.17 odd 12
65.2.o.a.33.2 yes 20 13.2 odd 12
65.2.t.a.7.2 yes 20 65.2 even 12
65.2.t.a.28.2 yes 20 13.4 even 6
325.2.s.b.132.4 20 65.43 odd 12
325.2.s.b.293.4 20 65.54 odd 12
325.2.x.b.7.4 20 65.28 even 12
325.2.x.b.93.4 20 65.4 even 6
585.2.cf.a.163.4 20 39.2 even 12
585.2.cf.a.262.4 20 195.17 even 12
585.2.dp.a.28.4 20 39.17 odd 6
585.2.dp.a.397.4 20 195.2 odd 12
845.2.f.d.408.8 20 1.1 even 1 trivial
845.2.f.d.437.3 20 65.47 even 4 inner
845.2.f.e.408.3 20 13.12 even 2
845.2.f.e.437.8 20 65.57 even 4
845.2.k.d.268.3 20 13.8 odd 4
845.2.k.d.577.3 20 5.2 odd 4
845.2.k.e.268.8 20 13.5 odd 4
845.2.k.e.577.8 20 65.12 odd 4
845.2.o.e.258.2 20 13.6 odd 12
845.2.o.e.357.2 20 65.62 odd 12
845.2.o.f.258.4 20 13.7 odd 12
845.2.o.f.357.4 20 65.42 odd 12
845.2.o.g.488.4 20 13.11 odd 12
845.2.o.g.587.4 20 65.22 odd 12
845.2.t.e.188.2 20 13.3 even 3
845.2.t.e.427.2 20 65.7 even 12
845.2.t.f.188.4 20 13.10 even 6
845.2.t.f.427.4 20 65.32 even 12
845.2.t.g.418.4 20 13.9 even 3
845.2.t.g.657.4 20 65.37 even 12