Properties

Label 845.2.k.e.577.8
Level $845$
Weight $2$
Character 845.577
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(268,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.8
Root \(-1.83163i\) of defining polynomial
Character \(\chi\) \(=\) 845.577
Dual form 845.2.k.e.268.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83163 q^{2} +(-1.40138 + 1.40138i) q^{3} +1.35488 q^{4} +(1.45480 + 1.69810i) q^{5} +(-2.56682 + 2.56682i) q^{6} +3.53890i q^{7} -1.18163 q^{8} -0.927746i q^{9} +(2.66466 + 3.11030i) q^{10} +(-2.73940 - 2.73940i) q^{11} +(-1.89870 + 1.89870i) q^{12} +6.48197i q^{14} +(-4.41843 - 0.340953i) q^{15} -4.87406 q^{16} +(1.43251 - 1.43251i) q^{17} -1.69929i q^{18} +(0.379911 + 0.379911i) q^{19} +(1.97108 + 2.30072i) q^{20} +(-4.95936 - 4.95936i) q^{21} +(-5.01758 - 5.01758i) q^{22} +(0.215293 + 0.215293i) q^{23} +(1.65591 - 1.65591i) q^{24} +(-0.767094 + 4.94081i) q^{25} +(-2.90402 - 2.90402i) q^{27} +4.79478i q^{28} +1.97769i q^{29} +(-8.09293 - 0.624501i) q^{30} +(4.13563 - 4.13563i) q^{31} -6.56423 q^{32} +7.67790 q^{33} +(2.62382 - 2.62382i) q^{34} +(-6.00942 + 5.14841i) q^{35} -1.25698i q^{36} +5.41773i q^{37} +(0.695857 + 0.695857i) q^{38} +(-1.71904 - 2.00652i) q^{40} +(-0.475748 + 0.475748i) q^{41} +(-9.08372 - 9.08372i) q^{42} +(6.23095 + 6.23095i) q^{43} +(-3.71155 - 3.71155i) q^{44} +(1.57541 - 1.34969i) q^{45} +(0.394337 + 0.394337i) q^{46} +9.75201i q^{47} +(6.83043 - 6.83043i) q^{48} -5.52385 q^{49} +(-1.40503 + 9.04974i) q^{50} +4.01498i q^{51} +(3.16254 - 3.16254i) q^{53} +(-5.31910 - 5.31910i) q^{54} +(0.666490 - 8.63708i) q^{55} -4.18167i q^{56} -1.06480 q^{57} +3.62239i q^{58} +(-8.59785 + 8.59785i) q^{59} +(-5.98642 - 0.461950i) q^{60} -2.88632 q^{61} +(7.57495 - 7.57495i) q^{62} +3.28320 q^{63} -2.27514 q^{64} +14.0631 q^{66} +2.28989 q^{67} +(1.94087 - 1.94087i) q^{68} -0.603415 q^{69} +(-11.0070 + 9.43000i) q^{70} +(-3.26771 + 3.26771i) q^{71} +1.09625i q^{72} +14.7546 q^{73} +9.92329i q^{74} +(-5.84897 - 7.99895i) q^{75} +(0.514732 + 0.514732i) q^{76} +(9.69449 - 9.69449i) q^{77} +1.59718i q^{79} +(-7.09080 - 8.27665i) q^{80} +10.9225 q^{81} +(-0.871396 + 0.871396i) q^{82} +7.57341i q^{83} +(-6.71932 - 6.71932i) q^{84} +(4.51655 + 0.348525i) q^{85} +(11.4128 + 11.4128i) q^{86} +(-2.77149 - 2.77149i) q^{87} +(3.23695 + 3.23695i) q^{88} +(3.32661 - 3.32661i) q^{89} +(2.88556 - 2.47213i) q^{90} +(0.291695 + 0.291695i) q^{92} +11.5912i q^{93} +17.8621i q^{94} +(-0.0924314 + 1.19782i) q^{95} +(9.19900 - 9.19900i) q^{96} +17.8254 q^{97} -10.1177 q^{98} +(-2.54147 + 2.54147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{2} + 4 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} + 12 q^{8} + 8 q^{10} + 8 q^{11} + 24 q^{12} - 24 q^{15} + 4 q^{16} + 14 q^{17} - 4 q^{19} - 22 q^{20} + 4 q^{21} - 32 q^{22} - 8 q^{23} + 4 q^{24}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.83163 1.29516 0.647580 0.761998i \(-0.275781\pi\)
0.647580 + 0.761998i \(0.275781\pi\)
\(3\) −1.40138 + 1.40138i −0.809089 + 0.809089i −0.984496 0.175407i \(-0.943876\pi\)
0.175407 + 0.984496i \(0.443876\pi\)
\(4\) 1.35488 0.677439
\(5\) 1.45480 + 1.69810i 0.650608 + 0.759414i
\(6\) −2.56682 + 2.56682i −1.04790 + 1.04790i
\(7\) 3.53890i 1.33758i 0.743451 + 0.668790i \(0.233188\pi\)
−0.743451 + 0.668790i \(0.766812\pi\)
\(8\) −1.18163 −0.417769
\(9\) 0.927746i 0.309249i
\(10\) 2.66466 + 3.11030i 0.842641 + 0.983562i
\(11\) −2.73940 2.73940i −0.825961 0.825961i 0.160994 0.986955i \(-0.448530\pi\)
−0.986955 + 0.160994i \(0.948530\pi\)
\(12\) −1.89870 + 1.89870i −0.548108 + 0.548108i
\(13\) 0 0
\(14\) 6.48197i 1.73238i
\(15\) −4.41843 0.340953i −1.14083 0.0880337i
\(16\) −4.87406 −1.21852
\(17\) 1.43251 1.43251i 0.347434 0.347434i −0.511719 0.859153i \(-0.670991\pi\)
0.859153 + 0.511719i \(0.170991\pi\)
\(18\) 1.69929i 0.400526i
\(19\) 0.379911 + 0.379911i 0.0871575 + 0.0871575i 0.749341 0.662184i \(-0.230370\pi\)
−0.662184 + 0.749341i \(0.730370\pi\)
\(20\) 1.97108 + 2.30072i 0.440747 + 0.514456i
\(21\) −4.95936 4.95936i −1.08222 1.08222i
\(22\) −5.01758 5.01758i −1.06975 1.06975i
\(23\) 0.215293 + 0.215293i 0.0448916 + 0.0448916i 0.729196 0.684305i \(-0.239894\pi\)
−0.684305 + 0.729196i \(0.739894\pi\)
\(24\) 1.65591 1.65591i 0.338012 0.338012i
\(25\) −0.767094 + 4.94081i −0.153419 + 0.988161i
\(26\) 0 0
\(27\) −2.90402 2.90402i −0.558879 0.558879i
\(28\) 4.79478i 0.906129i
\(29\) 1.97769i 0.367247i 0.982997 + 0.183624i \(0.0587827\pi\)
−0.982997 + 0.183624i \(0.941217\pi\)
\(30\) −8.09293 0.624501i −1.47756 0.114018i
\(31\) 4.13563 4.13563i 0.742781 0.742781i −0.230331 0.973112i \(-0.573981\pi\)
0.973112 + 0.230331i \(0.0739810\pi\)
\(32\) −6.56423 −1.16040
\(33\) 7.67790 1.33655
\(34\) 2.62382 2.62382i 0.449982 0.449982i
\(35\) −6.00942 + 5.14841i −1.01578 + 0.870240i
\(36\) 1.25698i 0.209497i
\(37\) 5.41773i 0.890669i 0.895364 + 0.445335i \(0.146915\pi\)
−0.895364 + 0.445335i \(0.853085\pi\)
\(38\) 0.695857 + 0.695857i 0.112883 + 0.112883i
\(39\) 0 0
\(40\) −1.71904 2.00652i −0.271803 0.317259i
\(41\) −0.475748 + 0.475748i −0.0742994 + 0.0742994i −0.743280 0.668981i \(-0.766731\pi\)
0.668981 + 0.743280i \(0.266731\pi\)
\(42\) −9.08372 9.08372i −1.40165 1.40165i
\(43\) 6.23095 + 6.23095i 0.950211 + 0.950211i 0.998818 0.0486066i \(-0.0154781\pi\)
−0.0486066 + 0.998818i \(0.515478\pi\)
\(44\) −3.71155 3.71155i −0.559538 0.559538i
\(45\) 1.57541 1.34969i 0.234848 0.201200i
\(46\) 0.394337 + 0.394337i 0.0581418 + 0.0581418i
\(47\) 9.75201i 1.42248i 0.702951 + 0.711238i \(0.251865\pi\)
−0.702951 + 0.711238i \(0.748135\pi\)
\(48\) 6.83043 6.83043i 0.985887 0.985887i
\(49\) −5.52385 −0.789121
\(50\) −1.40503 + 9.04974i −0.198702 + 1.27983i
\(51\) 4.01498i 0.562209i
\(52\) 0 0
\(53\) 3.16254 3.16254i 0.434409 0.434409i −0.455716 0.890125i \(-0.650617\pi\)
0.890125 + 0.455716i \(0.150617\pi\)
\(54\) −5.31910 5.31910i −0.723838 0.723838i
\(55\) 0.666490 8.63708i 0.0898695 1.16462i
\(56\) 4.18167i 0.558799i
\(57\) −1.06480 −0.141036
\(58\) 3.62239i 0.475644i
\(59\) −8.59785 + 8.59785i −1.11934 + 1.11934i −0.127506 + 0.991838i \(0.540697\pi\)
−0.991838 + 0.127506i \(0.959303\pi\)
\(60\) −5.98642 0.461950i −0.772844 0.0596374i
\(61\) −2.88632 −0.369555 −0.184778 0.982780i \(-0.559157\pi\)
−0.184778 + 0.982780i \(0.559157\pi\)
\(62\) 7.57495 7.57495i 0.962020 0.962020i
\(63\) 3.28320 0.413645
\(64\) −2.27514 −0.284392
\(65\) 0 0
\(66\) 14.0631 1.73105
\(67\) 2.28989 0.279754 0.139877 0.990169i \(-0.455329\pi\)
0.139877 + 0.990169i \(0.455329\pi\)
\(68\) 1.94087 1.94087i 0.235365 0.235365i
\(69\) −0.603415 −0.0726426
\(70\) −11.0070 + 9.43000i −1.31559 + 1.12710i
\(71\) −3.26771 + 3.26771i −0.387806 + 0.387806i −0.873904 0.486098i \(-0.838420\pi\)
0.486098 + 0.873904i \(0.338420\pi\)
\(72\) 1.09625i 0.129194i
\(73\) 14.7546 1.72690 0.863449 0.504436i \(-0.168299\pi\)
0.863449 + 0.504436i \(0.168299\pi\)
\(74\) 9.92329i 1.15356i
\(75\) −5.84897 7.99895i −0.675381 0.923639i
\(76\) 0.514732 + 0.514732i 0.0590438 + 0.0590438i
\(77\) 9.69449 9.69449i 1.10479 1.10479i
\(78\) 0 0
\(79\) 1.59718i 0.179696i 0.995955 + 0.0898482i \(0.0286382\pi\)
−0.995955 + 0.0898482i \(0.971362\pi\)
\(80\) −7.09080 8.27665i −0.792776 0.925358i
\(81\) 10.9225 1.21361
\(82\) −0.871396 + 0.871396i −0.0962296 + 0.0962296i
\(83\) 7.57341i 0.831290i 0.909527 + 0.415645i \(0.136444\pi\)
−0.909527 + 0.415645i \(0.863556\pi\)
\(84\) −6.71932 6.71932i −0.733138 0.733138i
\(85\) 4.51655 + 0.348525i 0.489889 + 0.0378029i
\(86\) 11.4128 + 11.4128i 1.23068 + 1.23068i
\(87\) −2.77149 2.77149i −0.297135 0.297135i
\(88\) 3.23695 + 3.23695i 0.345061 + 0.345061i
\(89\) 3.32661 3.32661i 0.352620 0.352620i −0.508464 0.861083i \(-0.669786\pi\)
0.861083 + 0.508464i \(0.169786\pi\)
\(90\) 2.88556 2.47213i 0.304165 0.260586i
\(91\) 0 0
\(92\) 0.291695 + 0.291695i 0.0304113 + 0.0304113i
\(93\) 11.5912i 1.20195i
\(94\) 17.8621i 1.84233i
\(95\) −0.0924314 + 1.19782i −0.00948326 + 0.122894i
\(96\) 9.19900 9.19900i 0.938869 0.938869i
\(97\) 17.8254 1.80989 0.904945 0.425528i \(-0.139912\pi\)
0.904945 + 0.425528i \(0.139912\pi\)
\(98\) −10.1177 −1.02204
\(99\) −2.54147 + 2.54147i −0.255427 + 0.255427i
\(100\) −1.03932 + 6.69419i −0.103932 + 0.669419i
\(101\) 4.55389i 0.453129i −0.973996 0.226565i \(-0.927251\pi\)
0.973996 0.226565i \(-0.0727494\pi\)
\(102\) 7.35396i 0.728151i
\(103\) −9.79285 9.79285i −0.964918 0.964918i 0.0344872 0.999405i \(-0.489020\pi\)
−0.999405 + 0.0344872i \(0.989020\pi\)
\(104\) 0 0
\(105\) 1.20660 15.6364i 0.117752 1.52596i
\(106\) 5.79262 5.79262i 0.562629 0.562629i
\(107\) −4.99942 4.99942i −0.483312 0.483312i 0.422876 0.906188i \(-0.361021\pi\)
−0.906188 + 0.422876i \(0.861021\pi\)
\(108\) −3.93459 3.93459i −0.378606 0.378606i
\(109\) 9.89281 + 9.89281i 0.947560 + 0.947560i 0.998692 0.0511324i \(-0.0162830\pi\)
−0.0511324 + 0.998692i \(0.516283\pi\)
\(110\) 1.22077 15.8199i 0.116395 1.50837i
\(111\) −7.59231 7.59231i −0.720630 0.720630i
\(112\) 17.2488i 1.62986i
\(113\) 1.62104 1.62104i 0.152494 0.152494i −0.626737 0.779231i \(-0.715610\pi\)
0.779231 + 0.626737i \(0.215610\pi\)
\(114\) −1.95032 −0.182664
\(115\) −0.0523802 + 0.678797i −0.00488448 + 0.0632982i
\(116\) 2.67952i 0.248787i
\(117\) 0 0
\(118\) −15.7481 + 15.7481i −1.44973 + 1.44973i
\(119\) 5.06950 + 5.06950i 0.464720 + 0.464720i
\(120\) 5.22093 + 0.402880i 0.476604 + 0.0367777i
\(121\) 4.00866i 0.364423i
\(122\) −5.28668 −0.478633
\(123\) 1.33341i 0.120230i
\(124\) 5.60327 5.60327i 0.503188 0.503188i
\(125\) −9.50596 + 5.88530i −0.850239 + 0.526397i
\(126\) 6.01362 0.535736
\(127\) 0.909391 0.909391i 0.0806954 0.0806954i −0.665607 0.746302i \(-0.731827\pi\)
0.746302 + 0.665607i \(0.231827\pi\)
\(128\) 8.96125 0.792070
\(129\) −17.4639 −1.53761
\(130\) 0 0
\(131\) −5.59439 −0.488785 −0.244392 0.969676i \(-0.578588\pi\)
−0.244392 + 0.969676i \(0.578588\pi\)
\(132\) 10.4026 0.905431
\(133\) −1.34447 + 1.34447i −0.116580 + 0.116580i
\(134\) 4.19423 0.362326
\(135\) 0.706541 9.15610i 0.0608094 0.788032i
\(136\) −1.69269 + 1.69269i −0.145147 + 0.145147i
\(137\) 14.2902i 1.22089i −0.792058 0.610446i \(-0.790990\pi\)
0.792058 0.610446i \(-0.209010\pi\)
\(138\) −1.10523 −0.0940838
\(139\) 17.4166i 1.47726i −0.674113 0.738629i \(-0.735474\pi\)
0.674113 0.738629i \(-0.264526\pi\)
\(140\) −8.14202 + 6.97546i −0.688127 + 0.589534i
\(141\) −13.6663 13.6663i −1.15091 1.15091i
\(142\) −5.98525 + 5.98525i −0.502271 + 0.502271i
\(143\) 0 0
\(144\) 4.52189i 0.376824i
\(145\) −3.35831 + 2.87714i −0.278893 + 0.238934i
\(146\) 27.0251 2.23661
\(147\) 7.74102 7.74102i 0.638469 0.638469i
\(148\) 7.34036i 0.603374i
\(149\) 9.28442 + 9.28442i 0.760610 + 0.760610i 0.976433 0.215823i \(-0.0692434\pi\)
−0.215823 + 0.976433i \(0.569243\pi\)
\(150\) −10.7132 14.6511i −0.874726 1.19626i
\(151\) 0.765191 + 0.765191i 0.0622704 + 0.0622704i 0.737556 0.675286i \(-0.235980\pi\)
−0.675286 + 0.737556i \(0.735980\pi\)
\(152\) −0.448913 0.448913i −0.0364117 0.0364117i
\(153\) −1.32900 1.32900i −0.107443 0.107443i
\(154\) 17.7567 17.7567i 1.43088 1.43088i
\(155\) 13.0392 + 1.00619i 1.04734 + 0.0808190i
\(156\) 0 0
\(157\) 3.03481 + 3.03481i 0.242204 + 0.242204i 0.817762 0.575557i \(-0.195215\pi\)
−0.575557 + 0.817762i \(0.695215\pi\)
\(158\) 2.92544i 0.232735i
\(159\) 8.86386i 0.702950i
\(160\) −9.54967 11.1467i −0.754968 0.881227i
\(161\) −0.761901 + 0.761901i −0.0600462 + 0.0600462i
\(162\) 20.0061 1.57182
\(163\) 2.26358 0.177297 0.0886486 0.996063i \(-0.471745\pi\)
0.0886486 + 0.996063i \(0.471745\pi\)
\(164\) −0.644580 + 0.644580i −0.0503333 + 0.0503333i
\(165\) 11.1698 + 13.0379i 0.869571 + 1.01500i
\(166\) 13.8717i 1.07665i
\(167\) 0.619569i 0.0479437i −0.999713 0.0239719i \(-0.992369\pi\)
0.999713 0.0239719i \(-0.00763121\pi\)
\(168\) 5.86012 + 5.86012i 0.452118 + 0.452118i
\(169\) 0 0
\(170\) 8.27267 + 0.638370i 0.634485 + 0.0489608i
\(171\) 0.352460 0.352460i 0.0269533 0.0269533i
\(172\) 8.44218 + 8.44218i 0.643710 + 0.643710i
\(173\) 4.68224 + 4.68224i 0.355984 + 0.355984i 0.862330 0.506346i \(-0.169004\pi\)
−0.506346 + 0.862330i \(0.669004\pi\)
\(174\) −5.07636 5.07636i −0.384838 0.384838i
\(175\) −17.4850 2.71467i −1.32175 0.205210i
\(176\) 13.3520 + 13.3520i 1.00645 + 1.00645i
\(177\) 24.0977i 1.81130i
\(178\) 6.09312 6.09312i 0.456699 0.456699i
\(179\) −2.19023 −0.163706 −0.0818528 0.996644i \(-0.526084\pi\)
−0.0818528 + 0.996644i \(0.526084\pi\)
\(180\) 2.13448 1.82866i 0.159095 0.136300i
\(181\) 9.59255i 0.713009i −0.934294 0.356504i \(-0.883969\pi\)
0.934294 0.356504i \(-0.116031\pi\)
\(182\) 0 0
\(183\) 4.04484 4.04484i 0.299003 0.299003i
\(184\) −0.254396 0.254396i −0.0187543 0.0187543i
\(185\) −9.19985 + 7.88173i −0.676387 + 0.579477i
\(186\) 21.2308i 1.55672i
\(187\) −7.84842 −0.573933
\(188\) 13.2128i 0.963640i
\(189\) 10.2771 10.2771i 0.747546 0.747546i
\(190\) −0.169300 + 2.19397i −0.0122823 + 0.159167i
\(191\) 3.73113 0.269975 0.134988 0.990847i \(-0.456901\pi\)
0.134988 + 0.990847i \(0.456901\pi\)
\(192\) 3.18834 3.18834i 0.230099 0.230099i
\(193\) 0.284086 0.0204489 0.0102245 0.999948i \(-0.496745\pi\)
0.0102245 + 0.999948i \(0.496745\pi\)
\(194\) 32.6495 2.34410
\(195\) 0 0
\(196\) −7.48414 −0.534581
\(197\) 25.8492 1.84168 0.920838 0.389946i \(-0.127506\pi\)
0.920838 + 0.389946i \(0.127506\pi\)
\(198\) −4.65504 + 4.65504i −0.330819 + 0.330819i
\(199\) −5.75250 −0.407784 −0.203892 0.978993i \(-0.565359\pi\)
−0.203892 + 0.978993i \(0.565359\pi\)
\(200\) 0.906420 5.83819i 0.0640936 0.412823i
\(201\) −3.20901 + 3.20901i −0.226346 + 0.226346i
\(202\) 8.34106i 0.586875i
\(203\) −6.99884 −0.491223
\(204\) 5.43980i 0.380862i
\(205\) −1.49999 0.115748i −0.104764 0.00808422i
\(206\) −17.9369 17.9369i −1.24972 1.24972i
\(207\) 0.199737 0.199737i 0.0138827 0.0138827i
\(208\) 0 0
\(209\) 2.08146i 0.143977i
\(210\) 2.21005 28.6401i 0.152508 1.97636i
\(211\) −3.22743 −0.222185 −0.111093 0.993810i \(-0.535435\pi\)
−0.111093 + 0.993810i \(0.535435\pi\)
\(212\) 4.28486 4.28486i 0.294285 0.294285i
\(213\) 9.15863i 0.627539i
\(214\) −9.15709 9.15709i −0.625966 0.625966i
\(215\) −1.51598 + 19.6456i −0.103389 + 1.33982i
\(216\) 3.43147 + 3.43147i 0.233482 + 0.233482i
\(217\) 14.6356 + 14.6356i 0.993529 + 0.993529i
\(218\) 18.1200 + 18.1200i 1.22724 + 1.22724i
\(219\) −20.6769 + 20.6769i −1.39721 + 1.39721i
\(220\) 0.903013 11.7022i 0.0608811 0.788961i
\(221\) 0 0
\(222\) −13.9063 13.9063i −0.933331 0.933331i
\(223\) 7.41523i 0.496561i 0.968688 + 0.248280i \(0.0798654\pi\)
−0.968688 + 0.248280i \(0.920135\pi\)
\(224\) 23.2302i 1.55213i
\(225\) 4.58381 + 0.711668i 0.305587 + 0.0474446i
\(226\) 2.96914 2.96914i 0.197504 0.197504i
\(227\) −3.90230 −0.259005 −0.129502 0.991579i \(-0.541338\pi\)
−0.129502 + 0.991579i \(0.541338\pi\)
\(228\) −1.44267 −0.0955434
\(229\) −12.3946 + 12.3946i −0.819060 + 0.819060i −0.985972 0.166912i \(-0.946621\pi\)
0.166912 + 0.985972i \(0.446621\pi\)
\(230\) −0.0959413 + 1.24331i −0.00632618 + 0.0819813i
\(231\) 27.1714i 1.78774i
\(232\) 2.33689i 0.153424i
\(233\) −2.88962 2.88962i −0.189305 0.189305i 0.606090 0.795396i \(-0.292737\pi\)
−0.795396 + 0.606090i \(0.792737\pi\)
\(234\) 0 0
\(235\) −16.5599 + 14.1873i −1.08025 + 0.925474i
\(236\) −11.6490 + 11.6490i −0.758287 + 0.758287i
\(237\) −2.23825 2.23825i −0.145390 0.145390i
\(238\) 9.28546 + 9.28546i 0.601887 + 0.601887i
\(239\) 8.97299 + 8.97299i 0.580415 + 0.580415i 0.935017 0.354602i \(-0.115384\pi\)
−0.354602 + 0.935017i \(0.615384\pi\)
\(240\) 21.5357 + 1.66183i 1.39012 + 0.107270i
\(241\) −12.4080 12.4080i −0.799272 0.799272i 0.183709 0.982981i \(-0.441190\pi\)
−0.982981 + 0.183709i \(0.941190\pi\)
\(242\) 7.34239i 0.471986i
\(243\) −6.59457 + 6.59457i −0.423042 + 0.423042i
\(244\) −3.91061 −0.250351
\(245\) −8.03611 9.38005i −0.513408 0.599270i
\(246\) 2.44232i 0.155716i
\(247\) 0 0
\(248\) −4.88677 + 4.88677i −0.310311 + 0.310311i
\(249\) −10.6132 10.6132i −0.672587 0.672587i
\(250\) −17.4114 + 10.7797i −1.10120 + 0.681768i
\(251\) 21.7689i 1.37404i −0.726638 0.687021i \(-0.758918\pi\)
0.726638 0.687021i \(-0.241082\pi\)
\(252\) 4.44834 0.280219
\(253\) 1.17955i 0.0741575i
\(254\) 1.66567 1.66567i 0.104513 0.104513i
\(255\) −6.81784 + 5.84100i −0.426950 + 0.365778i
\(256\) 20.9640 1.31025
\(257\) −9.06027 + 9.06027i −0.565164 + 0.565164i −0.930770 0.365606i \(-0.880862\pi\)
0.365606 + 0.930770i \(0.380862\pi\)
\(258\) −31.9874 −1.99145
\(259\) −19.1728 −1.19134
\(260\) 0 0
\(261\) 1.83479 0.113571
\(262\) −10.2469 −0.633054
\(263\) 11.6708 11.6708i 0.719650 0.719650i −0.248884 0.968533i \(-0.580064\pi\)
0.968533 + 0.248884i \(0.0800637\pi\)
\(264\) −9.07242 −0.558369
\(265\) 9.97120 + 0.769439i 0.612526 + 0.0472663i
\(266\) −2.46257 + 2.46257i −0.150990 + 0.150990i
\(267\) 9.32370i 0.570601i
\(268\) 3.10252 0.189516
\(269\) 32.3070i 1.96979i 0.173150 + 0.984895i \(0.444605\pi\)
−0.173150 + 0.984895i \(0.555395\pi\)
\(270\) 1.29412 16.7706i 0.0787579 1.02063i
\(271\) 12.3548 + 12.3548i 0.750503 + 0.750503i 0.974573 0.224070i \(-0.0719346\pi\)
−0.224070 + 0.974573i \(0.571935\pi\)
\(272\) −6.98212 + 6.98212i −0.423353 + 0.423353i
\(273\) 0 0
\(274\) 26.1743i 1.58125i
\(275\) 15.6362 11.4335i 0.942901 0.689465i
\(276\) −0.817553 −0.0492109
\(277\) −2.17391 + 2.17391i −0.130617 + 0.130617i −0.769393 0.638776i \(-0.779441\pi\)
0.638776 + 0.769393i \(0.279441\pi\)
\(278\) 31.9008i 1.91328i
\(279\) −3.83681 3.83681i −0.229704 0.229704i
\(280\) 7.10090 6.08351i 0.424360 0.363559i
\(281\) −18.6757 18.6757i −1.11410 1.11410i −0.992590 0.121508i \(-0.961227\pi\)
−0.121508 0.992590i \(-0.538773\pi\)
\(282\) −25.0316 25.0316i −1.49061 1.49061i
\(283\) −10.8464 10.8464i −0.644750 0.644750i 0.306969 0.951719i \(-0.400685\pi\)
−0.951719 + 0.306969i \(0.900685\pi\)
\(284\) −4.42735 + 4.42735i −0.262715 + 0.262715i
\(285\) −1.54907 1.80814i −0.0917593 0.107105i
\(286\) 0 0
\(287\) −1.68363 1.68363i −0.0993814 0.0993814i
\(288\) 6.08994i 0.358853i
\(289\) 12.8959i 0.758580i
\(290\) −6.15119 + 5.26987i −0.361210 + 0.309458i
\(291\) −24.9801 + 24.9801i −1.46436 + 1.46436i
\(292\) 19.9907 1.16987
\(293\) −10.3767 −0.606213 −0.303107 0.952957i \(-0.598024\pi\)
−0.303107 + 0.952957i \(0.598024\pi\)
\(294\) 14.1787 14.1787i 0.826919 0.826919i
\(295\) −27.1082 2.09184i −1.57830 0.121791i
\(296\) 6.40174i 0.372094i
\(297\) 15.9106i 0.923225i
\(298\) 17.0057 + 17.0057i 0.985111 + 0.985111i
\(299\) 0 0
\(300\) −7.92463 10.8376i −0.457529 0.625709i
\(301\) −22.0507 + 22.0507i −1.27098 + 1.27098i
\(302\) 1.40155 + 1.40155i 0.0806501 + 0.0806501i
\(303\) 6.38174 + 6.38174i 0.366622 + 0.366622i
\(304\) −1.85171 1.85171i −0.106203 0.106203i
\(305\) −4.19903 4.90126i −0.240436 0.280646i
\(306\) −2.43424 2.43424i −0.139156 0.139156i
\(307\) 2.13935i 0.122099i 0.998135 + 0.0610496i \(0.0194448\pi\)
−0.998135 + 0.0610496i \(0.980555\pi\)
\(308\) 13.1348 13.1348i 0.748427 0.748427i
\(309\) 27.4470 1.56141
\(310\) 23.8831 + 1.84297i 1.35647 + 0.104674i
\(311\) 3.82084i 0.216660i 0.994115 + 0.108330i \(0.0345503\pi\)
−0.994115 + 0.108330i \(0.965450\pi\)
\(312\) 0 0
\(313\) 3.04531 3.04531i 0.172131 0.172131i −0.615784 0.787915i \(-0.711161\pi\)
0.787915 + 0.615784i \(0.211161\pi\)
\(314\) 5.55866 + 5.55866i 0.313693 + 0.313693i
\(315\) 4.77642 + 5.57521i 0.269121 + 0.314128i
\(316\) 2.16398i 0.121733i
\(317\) −23.1127 −1.29814 −0.649068 0.760730i \(-0.724841\pi\)
−0.649068 + 0.760730i \(0.724841\pi\)
\(318\) 16.2353i 0.910433i
\(319\) 5.41768 5.41768i 0.303332 0.303332i
\(320\) −3.30988 3.86342i −0.185028 0.215972i
\(321\) 14.0122 0.782084
\(322\) −1.39552 + 1.39552i −0.0777694 + 0.0777694i
\(323\) 1.08845 0.0605629
\(324\) 14.7987 0.822149
\(325\) 0 0
\(326\) 4.14604 0.229628
\(327\) −27.7272 −1.53332
\(328\) 0.562157 0.562157i 0.0310399 0.0310399i
\(329\) −34.5114 −1.90268
\(330\) 20.4590 + 23.8806i 1.12623 + 1.31458i
\(331\) 1.41208 1.41208i 0.0776150 0.0776150i −0.667234 0.744849i \(-0.732522\pi\)
0.744849 + 0.667234i \(0.232522\pi\)
\(332\) 10.2610i 0.563148i
\(333\) 5.02628 0.275438
\(334\) 1.13482i 0.0620948i
\(335\) 3.33134 + 3.88846i 0.182010 + 0.212449i
\(336\) 24.1722 + 24.1722i 1.31870 + 1.31870i
\(337\) −6.12727 + 6.12727i −0.333773 + 0.333773i −0.854018 0.520244i \(-0.825841\pi\)
0.520244 + 0.854018i \(0.325841\pi\)
\(338\) 0 0
\(339\) 4.54338i 0.246763i
\(340\) 6.11938 + 0.472209i 0.331870 + 0.0256091i
\(341\) −22.6583 −1.22702
\(342\) 0.645578 0.645578i 0.0349089 0.0349089i
\(343\) 5.22396i 0.282067i
\(344\) −7.36267 7.36267i −0.396968 0.396968i
\(345\) −0.877850 1.02466i −0.0472619 0.0551658i
\(346\) 8.57614 + 8.57614i 0.461056 + 0.461056i
\(347\) −22.9870 22.9870i −1.23401 1.23401i −0.962411 0.271599i \(-0.912448\pi\)
−0.271599 0.962411i \(-0.587552\pi\)
\(348\) −3.75504 3.75504i −0.201291 0.201291i
\(349\) 4.81192 4.81192i 0.257576 0.257576i −0.566491 0.824068i \(-0.691700\pi\)
0.824068 + 0.566491i \(0.191700\pi\)
\(350\) −32.0262 4.97228i −1.71187 0.265780i
\(351\) 0 0
\(352\) 17.9821 + 17.9821i 0.958448 + 0.958448i
\(353\) 27.3262i 1.45443i −0.686412 0.727213i \(-0.740815\pi\)
0.686412 0.727213i \(-0.259185\pi\)
\(354\) 44.1382i 2.34592i
\(355\) −10.3028 0.795027i −0.546815 0.0421957i
\(356\) 4.50714 4.50714i 0.238878 0.238878i
\(357\) −14.2086 −0.752000
\(358\) −4.01170 −0.212025
\(359\) −3.89871 + 3.89871i −0.205766 + 0.205766i −0.802465 0.596699i \(-0.796479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(360\) −1.86154 + 1.59483i −0.0981120 + 0.0840548i
\(361\) 18.7113i 0.984807i
\(362\) 17.5700i 0.923460i
\(363\) −5.61766 5.61766i −0.294851 0.294851i
\(364\) 0 0
\(365\) 21.4651 + 25.0548i 1.12353 + 1.31143i
\(366\) 7.40866 7.40866i 0.387257 0.387257i
\(367\) 12.7812 + 12.7812i 0.667175 + 0.667175i 0.957061 0.289886i \(-0.0936174\pi\)
−0.289886 + 0.957061i \(0.593617\pi\)
\(368\) −1.04935 1.04935i −0.0547012 0.0547012i
\(369\) 0.441373 + 0.441373i 0.0229770 + 0.0229770i
\(370\) −16.8508 + 14.4364i −0.876029 + 0.750515i
\(371\) 11.1919 + 11.1919i 0.581057 + 0.581057i
\(372\) 15.7046i 0.814248i
\(373\) 10.9702 10.9702i 0.568014 0.568014i −0.363558 0.931572i \(-0.618438\pi\)
0.931572 + 0.363558i \(0.118438\pi\)
\(374\) −14.3754 −0.743335
\(375\) 5.07393 21.5690i 0.262017 1.11382i
\(376\) 11.5232i 0.594266i
\(377\) 0 0
\(378\) 18.8238 18.8238i 0.968191 0.968191i
\(379\) 15.1090 + 15.1090i 0.776099 + 0.776099i 0.979165 0.203066i \(-0.0650905\pi\)
−0.203066 + 0.979165i \(0.565091\pi\)
\(380\) −0.125233 + 1.62290i −0.00642433 + 0.0832531i
\(381\) 2.54881i 0.130579i
\(382\) 6.83407 0.349661
\(383\) 19.4072i 0.991664i −0.868419 0.495832i \(-0.834863\pi\)
0.868419 0.495832i \(-0.165137\pi\)
\(384\) −12.5581 + 12.5581i −0.640855 + 0.640855i
\(385\) 30.5658 + 2.35865i 1.55778 + 0.120208i
\(386\) 0.520340 0.0264846
\(387\) 5.78074 5.78074i 0.293852 0.293852i
\(388\) 24.1512 1.22609
\(389\) 14.8591 0.753387 0.376693 0.926338i \(-0.377061\pi\)
0.376693 + 0.926338i \(0.377061\pi\)
\(390\) 0 0
\(391\) 0.616816 0.0311937
\(392\) 6.52713 0.329670
\(393\) 7.83989 7.83989i 0.395470 0.395470i
\(394\) 47.3461 2.38526
\(395\) −2.71217 + 2.32358i −0.136464 + 0.116912i
\(396\) −3.44338 + 3.44338i −0.173036 + 0.173036i
\(397\) 5.27779i 0.264884i 0.991191 + 0.132442i \(0.0422819\pi\)
−0.991191 + 0.132442i \(0.957718\pi\)
\(398\) −10.5365 −0.528145
\(399\) 3.76823i 0.188647i
\(400\) 3.73887 24.0818i 0.186943 1.20409i
\(401\) 19.7133 + 19.7133i 0.984435 + 0.984435i 0.999881 0.0154455i \(-0.00491664\pi\)
−0.0154455 + 0.999881i \(0.504917\pi\)
\(402\) −5.87772 + 5.87772i −0.293154 + 0.293154i
\(403\) 0 0
\(404\) 6.16996i 0.306967i
\(405\) 15.8901 + 18.5476i 0.789587 + 0.921635i
\(406\) −12.8193 −0.636212
\(407\) 14.8413 14.8413i 0.735658 0.735658i
\(408\) 4.74421i 0.234873i
\(409\) 1.86330 + 1.86330i 0.0921344 + 0.0921344i 0.751672 0.659537i \(-0.229248\pi\)
−0.659537 + 0.751672i \(0.729248\pi\)
\(410\) −2.74743 0.212009i −0.135686 0.0104704i
\(411\) 20.0260 + 20.0260i 0.987810 + 0.987810i
\(412\) −13.2681 13.2681i −0.653673 0.653673i
\(413\) −30.4270 30.4270i −1.49721 1.49721i
\(414\) 0.365845 0.365845i 0.0179803 0.0179803i
\(415\) −12.8604 + 11.0178i −0.631293 + 0.540844i
\(416\) 0 0
\(417\) 24.4073 + 24.4073i 1.19523 + 1.19523i
\(418\) 3.81246i 0.186474i
\(419\) 19.6701i 0.960948i −0.877009 0.480474i \(-0.840465\pi\)
0.877009 0.480474i \(-0.159535\pi\)
\(420\) 1.63480 21.1854i 0.0797699 1.03374i
\(421\) 10.4427 10.4427i 0.508948 0.508948i −0.405256 0.914203i \(-0.632817\pi\)
0.914203 + 0.405256i \(0.132817\pi\)
\(422\) −5.91147 −0.287766
\(423\) 9.04738 0.439899
\(424\) −3.73695 + 3.73695i −0.181482 + 0.181482i
\(425\) 5.97887 + 8.17660i 0.290018 + 0.396623i
\(426\) 16.7752i 0.812763i
\(427\) 10.2144i 0.494310i
\(428\) −6.77359 6.77359i −0.327414 0.327414i
\(429\) 0 0
\(430\) −2.77671 + 35.9835i −0.133905 + 1.73528i
\(431\) −12.1144 + 12.1144i −0.583532 + 0.583532i −0.935872 0.352340i \(-0.885386\pi\)
0.352340 + 0.935872i \(0.385386\pi\)
\(432\) 14.1544 + 14.1544i 0.681003 + 0.681003i
\(433\) −7.94551 7.94551i −0.381837 0.381837i 0.489927 0.871764i \(-0.337023\pi\)
−0.871764 + 0.489927i \(0.837023\pi\)
\(434\) 26.8070 + 26.8070i 1.28678 + 1.28678i
\(435\) 0.674298 8.73826i 0.0323301 0.418967i
\(436\) 13.4035 + 13.4035i 0.641913 + 0.641913i
\(437\) 0.163584i 0.00782528i
\(438\) −37.8724 + 37.8724i −1.80962 + 1.80962i
\(439\) 4.24435 0.202572 0.101286 0.994857i \(-0.467704\pi\)
0.101286 + 0.994857i \(0.467704\pi\)
\(440\) −0.787544 + 10.2058i −0.0375447 + 0.486543i
\(441\) 5.12473i 0.244035i
\(442\) 0 0
\(443\) 15.1569 15.1569i 0.720126 0.720126i −0.248505 0.968631i \(-0.579939\pi\)
0.968631 + 0.248505i \(0.0799392\pi\)
\(444\) −10.2867 10.2867i −0.488183 0.488183i
\(445\) 10.4885 + 0.809356i 0.497201 + 0.0383671i
\(446\) 13.5820i 0.643126i
\(447\) −26.0221 −1.23080
\(448\) 8.05150i 0.380398i
\(449\) 10.2868 10.2868i 0.485466 0.485466i −0.421406 0.906872i \(-0.638463\pi\)
0.906872 + 0.421406i \(0.138463\pi\)
\(450\) 8.39586 + 1.30351i 0.395785 + 0.0614483i
\(451\) 2.60653 0.122737
\(452\) 2.19631 2.19631i 0.103306 0.103306i
\(453\) −2.14465 −0.100764
\(454\) −7.14758 −0.335453
\(455\) 0 0
\(456\) 1.25820 0.0589205
\(457\) 30.2953 1.41715 0.708576 0.705634i \(-0.249338\pi\)
0.708576 + 0.705634i \(0.249338\pi\)
\(458\) −22.7024 + 22.7024i −1.06081 + 1.06081i
\(459\) −8.32005 −0.388347
\(460\) −0.0709688 + 0.919687i −0.00330894 + 0.0428806i
\(461\) 4.90581 4.90581i 0.228486 0.228486i −0.583574 0.812060i \(-0.698346\pi\)
0.812060 + 0.583574i \(0.198346\pi\)
\(462\) 49.7680i 2.31541i
\(463\) 31.4463 1.46143 0.730717 0.682680i \(-0.239186\pi\)
0.730717 + 0.682680i \(0.239186\pi\)
\(464\) 9.63937i 0.447496i
\(465\) −19.6830 + 16.8629i −0.912778 + 0.781999i
\(466\) −5.29272 5.29272i −0.245180 0.245180i
\(467\) 3.69622 3.69622i 0.171041 0.171041i −0.616396 0.787436i \(-0.711408\pi\)
0.787436 + 0.616396i \(0.211408\pi\)
\(468\) 0 0
\(469\) 8.10369i 0.374194i
\(470\) −30.3316 + 25.9858i −1.39909 + 1.19864i
\(471\) −8.50587 −0.391930
\(472\) 10.1595 10.1595i 0.467627 0.467627i
\(473\) 34.1382i 1.56968i
\(474\) −4.09966 4.09966i −0.188304 0.188304i
\(475\) −2.16849 + 1.58564i −0.0994972 + 0.0727540i
\(476\) 6.86855 + 6.86855i 0.314820 + 0.314820i
\(477\) −2.93404 2.93404i −0.134340 0.134340i
\(478\) 16.4352 + 16.4352i 0.751730 + 0.751730i
\(479\) −13.6849 + 13.6849i −0.625281 + 0.625281i −0.946877 0.321596i \(-0.895781\pi\)
0.321596 + 0.946877i \(0.395781\pi\)
\(480\) 29.0036 + 2.23810i 1.32383 + 0.102155i
\(481\) 0 0
\(482\) −22.7270 22.7270i −1.03518 1.03518i
\(483\) 2.13543i 0.0971654i
\(484\) 5.43124i 0.246874i
\(485\) 25.9324 + 30.2693i 1.17753 + 1.37446i
\(486\) −12.0788 + 12.0788i −0.547907 + 0.547907i
\(487\) −23.3627 −1.05866 −0.529332 0.848415i \(-0.677557\pi\)
−0.529332 + 0.848415i \(0.677557\pi\)
\(488\) 3.41056 0.154389
\(489\) −3.17214 + 3.17214i −0.143449 + 0.143449i
\(490\) −14.7192 17.1808i −0.664946 0.776150i
\(491\) 21.3186i 0.962094i 0.876695 + 0.481047i \(0.159743\pi\)
−0.876695 + 0.481047i \(0.840257\pi\)
\(492\) 1.80661i 0.0814481i
\(493\) 2.83305 + 2.83305i 0.127594 + 0.127594i
\(494\) 0 0
\(495\) −8.01301 0.618334i −0.360158 0.0277920i
\(496\) −20.1573 + 20.1573i −0.905090 + 0.905090i
\(497\) −11.5641 11.5641i −0.518722 0.518722i
\(498\) −19.4396 19.4396i −0.871108 0.871108i
\(499\) −23.0389 23.0389i −1.03136 1.03136i −0.999492 0.0318687i \(-0.989854\pi\)
−0.0318687 0.999492i \(-0.510146\pi\)
\(500\) −12.8794 + 7.97386i −0.575985 + 0.356602i
\(501\) 0.868254 + 0.868254i 0.0387907 + 0.0387907i
\(502\) 39.8727i 1.77960i
\(503\) 0.464437 0.464437i 0.0207082 0.0207082i −0.696677 0.717385i \(-0.745339\pi\)
0.717385 + 0.696677i \(0.245339\pi\)
\(504\) −3.87953 −0.172808
\(505\) 7.73297 6.62502i 0.344113 0.294809i
\(506\) 2.16050i 0.0960458i
\(507\) 0 0
\(508\) 1.23211 1.23211i 0.0546662 0.0546662i
\(509\) −22.6497 22.6497i −1.00393 1.00393i −0.999992 0.00393669i \(-0.998747\pi\)
−0.00393669 0.999992i \(-0.501253\pi\)
\(510\) −12.4878 + 10.6986i −0.552968 + 0.473741i
\(511\) 52.2152i 2.30987i
\(512\) 20.4758 0.904912
\(513\) 2.20654i 0.0974210i
\(514\) −16.5951 + 16.5951i −0.731978 + 0.731978i
\(515\) 2.38258 30.8759i 0.104989 1.36056i
\(516\) −23.6614 −1.04164
\(517\) 26.7147 26.7147i 1.17491 1.17491i
\(518\) −35.1176 −1.54298
\(519\) −13.1232 −0.576046
\(520\) 0 0
\(521\) −23.4746 −1.02844 −0.514220 0.857658i \(-0.671919\pi\)
−0.514220 + 0.857658i \(0.671919\pi\)
\(522\) 3.36066 0.147092
\(523\) 17.4961 17.4961i 0.765049 0.765049i −0.212181 0.977230i \(-0.568057\pi\)
0.977230 + 0.212181i \(0.0680568\pi\)
\(524\) −7.57972 −0.331121
\(525\) 28.3075 20.6989i 1.23544 0.903376i
\(526\) 21.3765 21.3765i 0.932061 0.932061i
\(527\) 11.8486i 0.516134i
\(528\) −37.4226 −1.62861
\(529\) 22.9073i 0.995969i
\(530\) 18.2636 + 1.40933i 0.793319 + 0.0612174i
\(531\) 7.97661 + 7.97661i 0.346156 + 0.346156i
\(532\) −1.82159 + 1.82159i −0.0789759 + 0.0789759i
\(533\) 0 0
\(534\) 17.0776i 0.739019i
\(535\) 1.21635 15.7627i 0.0525872 0.681480i
\(536\) −2.70579 −0.116873
\(537\) 3.06935 3.06935i 0.132452 0.132452i
\(538\) 59.1745i 2.55119i
\(539\) 15.1320 + 15.1320i 0.651783 + 0.651783i
\(540\) 0.957277 12.4054i 0.0411946 0.533843i
\(541\) −27.6908 27.6908i −1.19052 1.19052i −0.976922 0.213597i \(-0.931482\pi\)
−0.213597 0.976922i \(-0.568518\pi\)
\(542\) 22.6295 + 22.6295i 0.972021 + 0.972021i
\(543\) 13.4428 + 13.4428i 0.576887 + 0.576887i
\(544\) −9.40330 + 9.40330i −0.403163 + 0.403163i
\(545\) −2.40690 + 31.1911i −0.103100 + 1.33608i
\(546\) 0 0
\(547\) 6.53914 + 6.53914i 0.279593 + 0.279593i 0.832947 0.553353i \(-0.186652\pi\)
−0.553353 + 0.832947i \(0.686652\pi\)
\(548\) 19.3614i 0.827079i
\(549\) 2.67777i 0.114284i
\(550\) 28.6398 20.9419i 1.22121 0.892967i
\(551\) −0.751344 + 0.751344i −0.0320083 + 0.0320083i
\(552\) 0.713012 0.0303478
\(553\) −5.65225 −0.240358
\(554\) −3.98180 + 3.98180i −0.169170 + 0.169170i
\(555\) 1.84719 23.9378i 0.0784089 1.01610i
\(556\) 23.5974i 1.00075i
\(557\) 16.2486i 0.688475i 0.938883 + 0.344237i \(0.111862\pi\)
−0.938883 + 0.344237i \(0.888138\pi\)
\(558\) −7.02763 7.02763i −0.297503 0.297503i
\(559\) 0 0
\(560\) 29.2903 25.0937i 1.23774 1.06040i
\(561\) 10.9986 10.9986i 0.464363 0.464363i
\(562\) −34.2070 34.2070i −1.44294 1.44294i
\(563\) −22.9991 22.9991i −0.969298 0.969298i 0.0302442 0.999543i \(-0.490372\pi\)
−0.999543 + 0.0302442i \(0.990372\pi\)
\(564\) −18.5161 18.5161i −0.779670 0.779670i
\(565\) 5.11097 + 0.394394i 0.215020 + 0.0165923i
\(566\) −19.8666 19.8666i −0.835054 0.835054i
\(567\) 38.6538i 1.62331i
\(568\) 3.86122 3.86122i 0.162013 0.162013i
\(569\) 32.8329 1.37642 0.688212 0.725509i \(-0.258396\pi\)
0.688212 + 0.725509i \(0.258396\pi\)
\(570\) −2.83734 3.31184i −0.118843 0.138718i
\(571\) 31.7967i 1.33065i 0.746554 + 0.665325i \(0.231707\pi\)
−0.746554 + 0.665325i \(0.768293\pi\)
\(572\) 0 0
\(573\) −5.22875 + 5.22875i −0.218434 + 0.218434i
\(574\) −3.08379 3.08379i −0.128715 0.128715i
\(575\) −1.22887 + 0.898570i −0.0512474 + 0.0374730i
\(576\) 2.11075i 0.0879480i
\(577\) 39.9389 1.66268 0.831338 0.555767i \(-0.187575\pi\)
0.831338 + 0.555767i \(0.187575\pi\)
\(578\) 23.6205i 0.982482i
\(579\) −0.398113 + 0.398113i −0.0165450 + 0.0165450i
\(580\) −4.55010 + 3.89818i −0.188933 + 0.161863i
\(581\) −26.8016 −1.11192
\(582\) −45.7544 + 45.7544i −1.89658 + 1.89658i
\(583\) −17.3270 −0.717609
\(584\) −17.4345 −0.721444
\(585\) 0 0
\(586\) −19.0063 −0.785143
\(587\) −18.6555 −0.769993 −0.384997 0.922918i \(-0.625797\pi\)
−0.384997 + 0.922918i \(0.625797\pi\)
\(588\) 10.4881 10.4881i 0.432523 0.432523i
\(589\) 3.14234 0.129478
\(590\) −49.6522 3.83147i −2.04415 0.157739i
\(591\) −36.2245 + 36.2245i −1.49008 + 1.49008i
\(592\) 26.4064i 1.08529i
\(593\) 8.65172 0.355284 0.177642 0.984095i \(-0.443153\pi\)
0.177642 + 0.984095i \(0.443153\pi\)
\(594\) 29.1423i 1.19572i
\(595\) −1.23340 + 15.9837i −0.0505644 + 0.655266i
\(596\) 12.5793 + 12.5793i 0.515266 + 0.515266i
\(597\) 8.06145 8.06145i 0.329933 0.329933i
\(598\) 0 0
\(599\) 35.1779i 1.43733i −0.695356 0.718666i \(-0.744753\pi\)
0.695356 0.718666i \(-0.255247\pi\)
\(600\) 6.91130 + 9.45178i 0.282153 + 0.385867i
\(601\) −40.0769 −1.63477 −0.817385 0.576091i \(-0.804577\pi\)
−0.817385 + 0.576091i \(0.804577\pi\)
\(602\) −40.3889 + 40.3889i −1.64613 + 1.64613i
\(603\) 2.12443i 0.0865136i
\(604\) 1.03674 + 1.03674i 0.0421843 + 0.0421843i
\(605\) −6.80711 + 5.83181i −0.276748 + 0.237097i
\(606\) 11.6890 + 11.6890i 0.474834 + 0.474834i
\(607\) 30.4484 + 30.4484i 1.23586 + 1.23586i 0.961676 + 0.274188i \(0.0884092\pi\)
0.274188 + 0.961676i \(0.411591\pi\)
\(608\) −2.49382 2.49382i −0.101138 0.101138i
\(609\) 9.80806 9.80806i 0.397443 0.397443i
\(610\) −7.69108 8.97731i −0.311403 0.363481i
\(611\) 0 0
\(612\) −1.80063 1.80063i −0.0727863 0.0727863i
\(613\) 20.2795i 0.819080i 0.912292 + 0.409540i \(0.134311\pi\)
−0.912292 + 0.409540i \(0.865689\pi\)
\(614\) 3.91850i 0.158138i
\(615\) 2.26427 1.93985i 0.0913040 0.0782223i
\(616\) −11.4553 + 11.4553i −0.461546 + 0.461546i
\(617\) 8.67054 0.349063 0.174531 0.984652i \(-0.444159\pi\)
0.174531 + 0.984652i \(0.444159\pi\)
\(618\) 50.2729 2.02227
\(619\) −21.3034 + 21.3034i −0.856257 + 0.856257i −0.990895 0.134638i \(-0.957013\pi\)
0.134638 + 0.990895i \(0.457013\pi\)
\(620\) 17.6666 + 1.36326i 0.709507 + 0.0547499i
\(621\) 1.25043i 0.0501780i
\(622\) 6.99837i 0.280609i
\(623\) 11.7725 + 11.7725i 0.471657 + 0.471657i
\(624\) 0 0
\(625\) −23.8231 7.58013i −0.952925 0.303205i
\(626\) 5.57789 5.57789i 0.222937 0.222937i
\(627\) 2.91692 + 2.91692i 0.116490 + 0.116490i
\(628\) 4.11180 + 4.11180i 0.164079 + 0.164079i
\(629\) 7.76093 + 7.76093i 0.309449 + 0.309449i
\(630\) 8.74864 + 10.2117i 0.348554 + 0.406845i
\(631\) 20.0819 + 20.0819i 0.799449 + 0.799449i 0.983009 0.183560i \(-0.0587620\pi\)
−0.183560 + 0.983009i \(0.558762\pi\)
\(632\) 1.88727i 0.0750715i
\(633\) 4.52286 4.52286i 0.179768 0.179768i
\(634\) −42.3339 −1.68129
\(635\) 2.86722 + 0.221253i 0.113782 + 0.00878015i
\(636\) 12.0094i 0.476206i
\(637\) 0 0
\(638\) 9.92320 9.92320i 0.392863 0.392863i
\(639\) 3.03161 + 3.03161i 0.119929 + 0.119929i
\(640\) 13.0369 + 15.2171i 0.515327 + 0.601509i
\(641\) 16.3686i 0.646520i −0.946310 0.323260i \(-0.895221\pi\)
0.946310 0.323260i \(-0.104779\pi\)
\(642\) 25.6652 1.01292
\(643\) 41.0517i 1.61892i 0.587175 + 0.809460i \(0.300240\pi\)
−0.587175 + 0.809460i \(0.699760\pi\)
\(644\) −1.03228 + 1.03228i −0.0406776 + 0.0406776i
\(645\) −25.4065 29.6555i −1.00038 1.16768i
\(646\) 1.99364 0.0784386
\(647\) −2.00480 + 2.00480i −0.0788168 + 0.0788168i −0.745416 0.666599i \(-0.767749\pi\)
0.666599 + 0.745416i \(0.267749\pi\)
\(648\) −12.9064 −0.507010
\(649\) 47.1059 1.84907
\(650\) 0 0
\(651\) −41.0201 −1.60771
\(652\) 3.06687 0.120108
\(653\) 0.887856 0.887856i 0.0347445 0.0347445i −0.689521 0.724266i \(-0.742179\pi\)
0.724266 + 0.689521i \(0.242179\pi\)
\(654\) −50.7861 −1.98589
\(655\) −8.13874 9.49985i −0.318007 0.371190i
\(656\) 2.31883 2.31883i 0.0905349 0.0905349i
\(657\) 13.6885i 0.534041i
\(658\) −63.2122 −2.46427
\(659\) 9.35210i 0.364306i −0.983270 0.182153i \(-0.941693\pi\)
0.983270 0.182153i \(-0.0583066\pi\)
\(660\) 15.1338 + 17.6647i 0.589081 + 0.687597i
\(661\) −18.1521 18.1521i −0.706037 0.706037i 0.259663 0.965699i \(-0.416389\pi\)
−0.965699 + 0.259663i \(0.916389\pi\)
\(662\) 2.58641 2.58641i 0.100524 0.100524i
\(663\) 0 0
\(664\) 8.94896i 0.347287i
\(665\) −4.23898 0.327106i −0.164381 0.0126846i
\(666\) 9.20629 0.356736
\(667\) −0.425782 + 0.425782i −0.0164863 + 0.0164863i
\(668\) 0.839440i 0.0324789i
\(669\) −10.3916 10.3916i −0.401762 0.401762i
\(670\) 6.10178 + 7.12223i 0.235732 + 0.275156i
\(671\) 7.90679 + 7.90679i 0.305238 + 0.305238i
\(672\) 32.5544 + 32.5544i 1.25581 + 1.25581i
\(673\) 29.2283 + 29.2283i 1.12667 + 1.12667i 0.990715 + 0.135955i \(0.0434103\pi\)
0.135955 + 0.990715i \(0.456590\pi\)
\(674\) −11.2229 + 11.2229i −0.432290 + 0.432290i
\(675\) 16.5759 12.1205i 0.638005 0.466520i
\(676\) 0 0
\(677\) 15.5322 + 15.5322i 0.596950 + 0.596950i 0.939500 0.342549i \(-0.111290\pi\)
−0.342549 + 0.939500i \(0.611290\pi\)
\(678\) 8.32181i 0.319597i
\(679\) 63.0822i 2.42087i
\(680\) −5.33689 0.411827i −0.204660 0.0157929i
\(681\) 5.46862 5.46862i 0.209558 0.209558i
\(682\) −41.5017 −1.58918
\(683\) −6.65304 −0.254571 −0.127286 0.991866i \(-0.540627\pi\)
−0.127286 + 0.991866i \(0.540627\pi\)
\(684\) 0.477541 0.477541i 0.0182592 0.0182592i
\(685\) 24.2662 20.7894i 0.927162 0.794322i
\(686\) 9.56838i 0.365322i
\(687\) 34.7392i 1.32538i
\(688\) −30.3701 30.3701i −1.15785 1.15785i
\(689\) 0 0
\(690\) −1.60790 1.87680i −0.0612117 0.0714485i
\(691\) 26.6060 26.6060i 1.01214 1.01214i 0.0122158 0.999925i \(-0.496111\pi\)
0.999925 0.0122158i \(-0.00388850\pi\)
\(692\) 6.34386 + 6.34386i 0.241157 + 0.241157i
\(693\) −8.99402 8.99402i −0.341655 0.341655i
\(694\) −42.1038 42.1038i −1.59824 1.59824i
\(695\) 29.5752 25.3377i 1.12185 0.961115i
\(696\) 3.27488 + 3.27488i 0.124134 + 0.124134i
\(697\) 1.36302i 0.0516282i
\(698\) 8.81368 8.81368i 0.333603 0.333603i
\(699\) 8.09892 0.306329
\(700\) −23.6901 3.67805i −0.895401 0.139017i
\(701\) 40.3398i 1.52361i −0.647804 0.761807i \(-0.724312\pi\)
0.647804 0.761807i \(-0.275688\pi\)
\(702\) 0 0
\(703\) −2.05825 + 2.05825i −0.0776285 + 0.0776285i
\(704\) 6.23252 + 6.23252i 0.234897 + 0.234897i
\(705\) 3.32498 43.0885i 0.125226 1.62281i
\(706\) 50.0515i 1.88371i
\(707\) 16.1158 0.606097
\(708\) 32.6495i 1.22704i
\(709\) −31.5318 + 31.5318i −1.18420 + 1.18420i −0.205559 + 0.978645i \(0.565901\pi\)
−0.978645 + 0.205559i \(0.934099\pi\)
\(710\) −18.8709 1.45620i −0.708213 0.0546501i
\(711\) 1.48177 0.0555708
\(712\) −3.93081 + 3.93081i −0.147313 + 0.147313i
\(713\) 1.78074 0.0666893
\(714\) −26.0250 −0.973960
\(715\) 0 0
\(716\) −2.96749 −0.110900
\(717\) −25.1492 −0.939214
\(718\) −7.14100 + 7.14100i −0.266500 + 0.266500i
\(719\) 27.5650 1.02800 0.514001 0.857790i \(-0.328163\pi\)
0.514001 + 0.857790i \(0.328163\pi\)
\(720\) −7.67863 + 6.57846i −0.286166 + 0.245165i
\(721\) 34.6560 34.6560i 1.29066 1.29066i
\(722\) 34.2723i 1.27548i
\(723\) 34.7768 1.29336
\(724\) 12.9967i 0.483020i
\(725\) −9.77136 1.51707i −0.362899 0.0563426i
\(726\) −10.2895 10.2895i −0.381879 0.381879i
\(727\) 29.4624 29.4624i 1.09270 1.09270i 0.0974593 0.995240i \(-0.468928\pi\)
0.995240 0.0974593i \(-0.0310716\pi\)
\(728\) 0 0
\(729\) 14.2845i 0.529057i
\(730\) 39.3161 + 45.8913i 1.45516 + 1.69851i
\(731\) 17.8518 0.660271
\(732\) 5.48026 5.48026i 0.202556 0.202556i
\(733\) 23.3958i 0.864144i 0.901839 + 0.432072i \(0.142217\pi\)
−0.901839 + 0.432072i \(0.857783\pi\)
\(734\) 23.4105 + 23.4105i 0.864098 + 0.864098i
\(735\) 24.4067 + 1.88337i 0.900255 + 0.0694693i
\(736\) −1.41323 1.41323i −0.0520924 0.0520924i
\(737\) −6.27292 6.27292i −0.231066 0.231066i
\(738\) 0.808434 + 0.808434i 0.0297589 + 0.0297589i
\(739\) 11.3556 11.3556i 0.417723 0.417723i −0.466695 0.884418i \(-0.654556\pi\)
0.884418 + 0.466695i \(0.154556\pi\)
\(740\) −12.4647 + 10.6788i −0.458210 + 0.392560i
\(741\) 0 0
\(742\) 20.4995 + 20.4995i 0.752561 + 0.752561i
\(743\) 52.2801i 1.91797i −0.283457 0.958985i \(-0.591481\pi\)
0.283457 0.958985i \(-0.408519\pi\)
\(744\) 13.6965i 0.502137i
\(745\) −2.25888 + 29.2729i −0.0827589 + 1.07248i
\(746\) 20.0933 20.0933i 0.735669 0.735669i
\(747\) 7.02620 0.257075
\(748\) −10.6336 −0.388805
\(749\) 17.6925 17.6925i 0.646468 0.646468i
\(750\) 9.29358 39.5065i 0.339353 1.44258i
\(751\) 27.4355i 1.00114i 0.865697 + 0.500569i \(0.166876\pi\)
−0.865697 + 0.500569i \(0.833124\pi\)
\(752\) 47.5319i 1.73331i
\(753\) 30.5066 + 30.5066i 1.11172 + 1.11172i
\(754\) 0 0
\(755\) −0.186169 + 2.41257i −0.00677539 + 0.0878026i
\(756\) 13.9241 13.9241i 0.506416 0.506416i
\(757\) 1.70159 + 1.70159i 0.0618452 + 0.0618452i 0.737353 0.675508i \(-0.236075\pi\)
−0.675508 + 0.737353i \(0.736075\pi\)
\(758\) 27.6742 + 27.6742i 1.00517 + 1.00517i
\(759\) 1.65300 + 1.65300i 0.0600000 + 0.0600000i
\(760\) 0.109219 1.41538i 0.00396181 0.0513412i
\(761\) −1.72762 1.72762i −0.0626260 0.0626260i 0.675100 0.737726i \(-0.264100\pi\)
−0.737726 + 0.675100i \(0.764100\pi\)
\(762\) 4.66848i 0.169121i
\(763\) −35.0097 + 35.0097i −1.26744 + 1.26744i
\(764\) 5.05523 0.182892
\(765\) 0.323343 4.19021i 0.0116905 0.151497i
\(766\) 35.5469i 1.28436i
\(767\) 0 0
\(768\) −29.3786 + 29.3786i −1.06011 + 1.06011i
\(769\) −9.58574 9.58574i −0.345670 0.345670i 0.512824 0.858494i \(-0.328600\pi\)
−0.858494 + 0.512824i \(0.828600\pi\)
\(770\) 55.9853 + 4.32017i 2.01757 + 0.155688i
\(771\) 25.3938i 0.914536i
\(772\) 0.384901 0.0138529
\(773\) 22.4445i 0.807272i −0.914920 0.403636i \(-0.867746\pi\)
0.914920 0.403636i \(-0.132254\pi\)
\(774\) 10.5882 10.5882i 0.380585 0.380585i
\(775\) 17.2609 + 23.6058i 0.620031 + 0.847944i
\(776\) −21.0629 −0.756115
\(777\) 26.8685 26.8685i 0.963901 0.963901i
\(778\) 27.2164 0.975756
\(779\) −0.361484 −0.0129515
\(780\) 0 0
\(781\) 17.9032 0.640626
\(782\) 1.12978 0.0404009
\(783\) 5.74324 5.74324i 0.205247 0.205247i
\(784\) 26.9236 0.961556
\(785\) −0.738363 + 9.56847i −0.0263533 + 0.341513i
\(786\) 14.3598 14.3598i 0.512197 0.512197i
\(787\) 13.4958i 0.481074i −0.970640 0.240537i \(-0.922676\pi\)
0.970640 0.240537i \(-0.0773235\pi\)
\(788\) 35.0224 1.24762
\(789\) 32.7104i 1.16452i
\(790\) −4.96769 + 4.25594i −0.176743 + 0.151420i
\(791\) 5.73669 + 5.73669i 0.203973 + 0.203973i
\(792\) 3.00307 3.00307i 0.106709 0.106709i
\(793\) 0 0
\(794\) 9.66696i 0.343068i
\(795\) −15.0517 + 12.8952i −0.533830 + 0.457345i
\(796\) −7.79393 −0.276248
\(797\) −4.43678 + 4.43678i −0.157159 + 0.157159i −0.781307 0.624148i \(-0.785446\pi\)
0.624148 + 0.781307i \(0.285446\pi\)
\(798\) 6.90201i 0.244328i
\(799\) 13.9698 + 13.9698i 0.494216 + 0.494216i
\(800\) 5.03539 32.4326i 0.178028 1.14667i
\(801\) −3.08625 3.08625i −0.109047 0.109047i
\(802\) 36.1075 + 36.1075i 1.27500 + 1.27500i
\(803\) −40.4189 40.4189i −1.42635 1.42635i
\(804\) −4.34781 + 4.34781i −0.153335 + 0.153335i
\(805\) −2.40220 0.185369i −0.0846664 0.00653339i
\(806\) 0 0
\(807\) −45.2744 45.2744i −1.59374 1.59374i
\(808\) 5.38101i 0.189303i
\(809\) 21.5781i 0.758645i 0.925265 + 0.379322i \(0.123843\pi\)
−0.925265 + 0.379322i \(0.876157\pi\)
\(810\) 29.1049 + 33.9723i 1.02264 + 1.19366i
\(811\) 22.5473 22.5473i 0.791743 0.791743i −0.190035 0.981777i \(-0.560860\pi\)
0.981777 + 0.190035i \(0.0608601\pi\)
\(812\) −9.48257 −0.332773
\(813\) −34.6277 −1.21445
\(814\) 27.1839 27.1839i 0.952795 0.952795i
\(815\) 3.29306 + 3.84379i 0.115351 + 0.134642i
\(816\) 19.5692i 0.685061i
\(817\) 4.73441i 0.165636i
\(818\) 3.41289 + 3.41289i 0.119329 + 0.119329i
\(819\) 0 0
\(820\) −2.03230 0.156825i −0.0709710 0.00547656i
\(821\) 12.6803 12.6803i 0.442544 0.442544i −0.450322 0.892866i \(-0.648691\pi\)
0.892866 + 0.450322i \(0.148691\pi\)
\(822\) 36.6803 + 36.6803i 1.27937 + 1.27937i
\(823\) −0.814658 0.814658i −0.0283972 0.0283972i 0.692766 0.721163i \(-0.256392\pi\)
−0.721163 + 0.692766i \(0.756392\pi\)
\(824\) 11.5715 + 11.5715i 0.403112 + 0.403112i
\(825\) −5.88968 + 37.9350i −0.205052 + 1.32073i
\(826\) −55.7310 55.7310i −1.93913 1.93913i
\(827\) 4.45029i 0.154752i −0.997002 0.0773759i \(-0.975346\pi\)
0.997002 0.0773759i \(-0.0246542\pi\)
\(828\) 0.270619 0.270619i 0.00940466 0.00940466i
\(829\) −29.1274 −1.01164 −0.505819 0.862640i \(-0.668809\pi\)
−0.505819 + 0.862640i \(0.668809\pi\)
\(830\) −23.5556 + 20.1806i −0.817625 + 0.700479i
\(831\) 6.09295i 0.211362i
\(832\) 0 0
\(833\) −7.91294 + 7.91294i −0.274167 + 0.274167i
\(834\) 44.7052 + 44.7052i 1.54802 + 1.54802i
\(835\) 1.05209 0.901352i 0.0364091 0.0311926i
\(836\) 2.82012i 0.0975358i
\(837\) −24.0199 −0.830249
\(838\) 36.0284i 1.24458i
\(839\) 22.8596 22.8596i 0.789200 0.789200i −0.192163 0.981363i \(-0.561550\pi\)
0.981363 + 0.192163i \(0.0615502\pi\)
\(840\) −1.42575 + 18.4764i −0.0491931 + 0.637496i
\(841\) 25.0888 0.865130
\(842\) 19.1273 19.1273i 0.659169 0.659169i
\(843\) 52.3436 1.80281
\(844\) −4.37277 −0.150517
\(845\) 0 0
\(846\) 16.5715 0.569739
\(847\) −14.1863 −0.487446
\(848\) −15.4144 + 15.4144i −0.529334 + 0.529334i
\(849\) 30.3998 1.04332
\(850\) 10.9511 + 14.9765i 0.375619 + 0.513691i
\(851\) −1.16640 + 1.16640i −0.0399836 + 0.0399836i
\(852\) 12.4088i 0.425119i
\(853\) 9.24230 0.316450 0.158225 0.987403i \(-0.449423\pi\)
0.158225 + 0.987403i \(0.449423\pi\)
\(854\) 18.7091i 0.640211i
\(855\) 1.11127 + 0.0857528i 0.0380048 + 0.00293268i
\(856\) 5.90745 + 5.90745i 0.201912 + 0.201912i
\(857\) −37.7913 + 37.7913i −1.29093 + 1.29093i −0.356713 + 0.934214i \(0.616103\pi\)
−0.934214 + 0.356713i \(0.883897\pi\)
\(858\) 0 0
\(859\) 6.16263i 0.210266i 0.994458 + 0.105133i \(0.0335269\pi\)
−0.994458 + 0.105133i \(0.966473\pi\)
\(860\) −2.05396 + 26.6174i −0.0700395 + 0.907645i
\(861\) 4.71881 0.160817
\(862\) −22.1892 + 22.1892i −0.755767 + 0.755767i
\(863\) 33.7740i 1.14968i 0.818266 + 0.574840i \(0.194936\pi\)
−0.818266 + 0.574840i \(0.805064\pi\)
\(864\) 19.0627 + 19.0627i 0.648525 + 0.648525i
\(865\) −1.13918 + 14.7627i −0.0387332 + 0.501945i
\(866\) −14.5532 14.5532i −0.494539 0.494539i
\(867\) −18.0720 18.0720i −0.613758 0.613758i
\(868\) 19.8294 + 19.8294i 0.673055 + 0.673055i
\(869\) 4.37531 4.37531i 0.148422 0.148422i
\(870\) 1.23507 16.0053i 0.0418727 0.542630i
\(871\) 0 0
\(872\) −11.6896 11.6896i −0.395861 0.395861i
\(873\) 16.5374i 0.559706i
\(874\) 0.299626i 0.0101350i
\(875\) −20.8275 33.6407i −0.704098 1.13726i
\(876\) −28.0146 + 28.0146i −0.946527 + 0.946527i
\(877\) 22.6972 0.766429 0.383214 0.923659i \(-0.374817\pi\)
0.383214 + 0.923659i \(0.374817\pi\)
\(878\) 7.77409 0.262363
\(879\) 14.5417 14.5417i 0.490480 0.490480i
\(880\) −3.24852 + 42.0976i −0.109507 + 1.41911i
\(881\) 7.83247i 0.263883i −0.991258 0.131941i \(-0.957879\pi\)
0.991258 0.131941i \(-0.0421210\pi\)
\(882\) 9.38661i 0.316064i
\(883\) 18.9296 + 18.9296i 0.637032 + 0.637032i 0.949822 0.312790i \(-0.101264\pi\)
−0.312790 + 0.949822i \(0.601264\pi\)
\(884\) 0 0
\(885\) 40.9204 35.0575i 1.37552 1.17844i
\(886\) 27.7619 27.7619i 0.932678 0.932678i
\(887\) 25.1275 + 25.1275i 0.843698 + 0.843698i 0.989338 0.145640i \(-0.0465241\pi\)
−0.145640 + 0.989338i \(0.546524\pi\)
\(888\) 8.97129 + 8.97129i 0.301057 + 0.301057i
\(889\) 3.21825 + 3.21825i 0.107937 + 0.107937i
\(890\) 19.2110 + 1.48244i 0.643955 + 0.0496916i
\(891\) −29.9212 29.9212i −1.00240 1.00240i
\(892\) 10.0467i 0.336389i
\(893\) −3.70489 + 3.70489i −0.123979 + 0.123979i
\(894\) −47.6628 −1.59408
\(895\) −3.18636 3.71923i −0.106508 0.124320i
\(896\) 31.7130i 1.05946i
\(897\) 0 0
\(898\) 18.8417 18.8417i 0.628755 0.628755i
\(899\) 8.17898 + 8.17898i 0.272784 + 0.272784i
\(900\) 6.21050 + 0.964223i 0.207017 + 0.0321408i
\(901\) 9.06072i 0.301856i
\(902\) 4.77421 0.158964
\(903\) 61.8031i 2.05668i
\(904\) −1.91546 + 1.91546i −0.0637073 + 0.0637073i
\(905\) 16.2891 13.9553i 0.541469 0.463889i
\(906\) −3.92821 −0.130506
\(907\) −32.8817 + 32.8817i −1.09182 + 1.09182i −0.0964844 + 0.995334i \(0.530760\pi\)
−0.995334 + 0.0964844i \(0.969240\pi\)
\(908\) −5.28714 −0.175460
\(909\) −4.22485 −0.140130
\(910\) 0 0
\(911\) 17.7325 0.587504 0.293752 0.955882i \(-0.405096\pi\)
0.293752 + 0.955882i \(0.405096\pi\)
\(912\) 5.18990 0.171855
\(913\) 20.7466 20.7466i 0.686613 0.686613i
\(914\) 55.4898 1.83544
\(915\) 12.7530 + 0.984100i 0.421601 + 0.0325333i
\(916\) −16.7932 + 16.7932i −0.554863 + 0.554863i
\(917\) 19.7980i 0.653789i
\(918\) −15.2393 −0.502971
\(919\) 48.7954i 1.60961i −0.593538 0.804806i \(-0.702270\pi\)
0.593538 0.804806i \(-0.297730\pi\)
\(920\) 0.0618939 0.802086i 0.00204058 0.0264440i
\(921\) −2.99805 2.99805i −0.0987891 0.0987891i
\(922\) 8.98564 8.98564i 0.295926 0.295926i
\(923\) 0 0
\(924\) 36.8139i 1.21109i
\(925\) −26.7680 4.15591i −0.880125 0.136645i
\(926\) 57.5981 1.89279
\(927\) −9.08527 + 9.08527i −0.298399 + 0.298399i
\(928\) 12.9820i 0.426155i
\(929\) −7.34465 7.34465i −0.240970 0.240970i 0.576281 0.817251i \(-0.304503\pi\)
−0.817251 + 0.576281i \(0.804503\pi\)
\(930\) −36.0521 + 30.8867i −1.18219 + 1.01281i
\(931\) −2.09857 2.09857i −0.0687778 0.0687778i
\(932\) −3.91508 3.91508i −0.128243 0.128243i
\(933\) −5.35446 5.35446i −0.175297 0.175297i
\(934\) 6.77011 6.77011i 0.221525 0.221525i
\(935\) −11.4179 13.3274i −0.373406 0.435853i
\(936\) 0 0
\(937\) 5.31856 + 5.31856i 0.173750 + 0.173750i 0.788625 0.614875i \(-0.210794\pi\)
−0.614875 + 0.788625i \(0.710794\pi\)
\(938\) 14.8430i 0.484641i
\(939\) 8.53529i 0.278539i
\(940\) −22.4366 + 19.2220i −0.731802 + 0.626952i
\(941\) −38.9093 + 38.9093i −1.26841 + 1.26841i −0.321497 + 0.946911i \(0.604186\pi\)
−0.946911 + 0.321497i \(0.895814\pi\)
\(942\) −15.5796 −0.507611
\(943\) −0.204850 −0.00667084
\(944\) 41.9064 41.9064i 1.36394 1.36394i
\(945\) 32.4026 + 2.50038i 1.05406 + 0.0813375i
\(946\) 62.5286i 2.03298i
\(947\) 33.7517i 1.09678i 0.836222 + 0.548392i \(0.184760\pi\)
−0.836222 + 0.548392i \(0.815240\pi\)
\(948\) −3.03256 3.03256i −0.0984930 0.0984930i
\(949\) 0 0
\(950\) −3.97188 + 2.90431i −0.128865 + 0.0942281i
\(951\) 32.3897 32.3897i 1.05031 1.05031i
\(952\) −5.99026 5.99026i −0.194146 0.194146i
\(953\) −3.12279 3.12279i −0.101157 0.101157i 0.654717 0.755874i \(-0.272788\pi\)
−0.755874 + 0.654717i \(0.772788\pi\)
\(954\) −5.37407 5.37407i −0.173992 0.173992i
\(955\) 5.42807 + 6.33584i 0.175648 + 0.205023i
\(956\) 12.1573 + 12.1573i 0.393195 + 0.393195i
\(957\) 15.1845i 0.490845i
\(958\) −25.0658 + 25.0658i −0.809839 + 0.809839i
\(959\) 50.5716 1.63304
\(960\) 10.0525 + 0.775716i 0.324444 + 0.0250361i
\(961\) 3.20686i 0.103447i
\(962\) 0 0
\(963\) −4.63819 + 4.63819i −0.149463 + 0.149463i
\(964\) −16.8114 16.8114i −0.541457 0.541457i
\(965\) 0.413289 + 0.482406i 0.0133042 + 0.0155292i
\(966\) 3.91132i 0.125845i
\(967\) 16.2803 0.523540 0.261770 0.965130i \(-0.415694\pi\)
0.261770 + 0.965130i \(0.415694\pi\)
\(968\) 4.73674i 0.152245i
\(969\) −1.52533 + 1.52533i −0.0490007 + 0.0490007i
\(970\) 47.4986 + 55.4421i 1.52509 + 1.78014i
\(971\) 12.8029 0.410865 0.205433 0.978671i \(-0.434140\pi\)
0.205433 + 0.978671i \(0.434140\pi\)
\(972\) −8.93484 + 8.93484i −0.286585 + 0.286585i
\(973\) 61.6357 1.97595
\(974\) −42.7918 −1.37114
\(975\) 0 0
\(976\) 14.0681 0.450309
\(977\) −16.0487 −0.513444 −0.256722 0.966485i \(-0.582642\pi\)
−0.256722 + 0.966485i \(0.582642\pi\)
\(978\) −5.81019 + 5.81019i −0.185790 + 0.185790i
\(979\) −18.2258 −0.582500
\(980\) −10.8879 12.7088i −0.347803 0.405968i
\(981\) 9.17801 9.17801i 0.293031 0.293031i
\(982\) 39.0478i 1.24607i
\(983\) −34.3036 −1.09411 −0.547057 0.837096i \(-0.684252\pi\)
−0.547057 + 0.837096i \(0.684252\pi\)
\(984\) 1.57559i 0.0502281i
\(985\) 37.6054 + 43.8945i 1.19821 + 1.39859i
\(986\) 5.18910 + 5.18910i 0.165255 + 0.165255i
\(987\) 48.3637 48.3637i 1.53943 1.53943i
\(988\) 0 0
\(989\) 2.68296i 0.0853131i
\(990\) −14.6769 1.13256i −0.466462 0.0359951i
\(991\) 22.3545 0.710114 0.355057 0.934845i \(-0.384461\pi\)
0.355057 + 0.934845i \(0.384461\pi\)
\(992\) −27.1472 + 27.1472i −0.861926 + 0.861926i
\(993\) 3.95773i 0.125595i
\(994\) −21.1812 21.1812i −0.671828 0.671828i
\(995\) −8.36875 9.76832i −0.265307 0.309677i
\(996\) −14.3796 14.3796i −0.455637 0.455637i
\(997\) 8.41794 + 8.41794i 0.266599 + 0.266599i 0.827728 0.561129i \(-0.189633\pi\)
−0.561129 + 0.827728i \(0.689633\pi\)
\(998\) −42.1987 42.1987i −1.33578 1.33578i
\(999\) 15.7332 15.7332i 0.497776 0.497776i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.e.577.8 20
5.3 odd 4 845.2.f.e.408.3 20
13.2 odd 12 845.2.t.g.657.4 20
13.3 even 3 845.2.o.e.357.2 20
13.4 even 6 845.2.o.g.587.4 20
13.5 odd 4 845.2.f.d.437.3 20
13.6 odd 12 845.2.t.e.427.2 20
13.7 odd 12 845.2.t.f.427.4 20
13.8 odd 4 845.2.f.e.437.8 20
13.9 even 3 65.2.o.a.2.2 20
13.10 even 6 845.2.o.f.357.4 20
13.11 odd 12 65.2.t.a.7.2 yes 20
13.12 even 2 845.2.k.d.577.3 20
39.11 even 12 585.2.dp.a.397.4 20
39.35 odd 6 585.2.cf.a.262.4 20
65.3 odd 12 845.2.t.f.188.4 20
65.8 even 4 inner 845.2.k.e.268.8 20
65.9 even 6 325.2.s.b.132.4 20
65.18 even 4 845.2.k.d.268.3 20
65.22 odd 12 325.2.x.b.93.4 20
65.23 odd 12 845.2.t.e.188.2 20
65.24 odd 12 325.2.x.b.7.4 20
65.28 even 12 845.2.o.g.488.4 20
65.33 even 12 845.2.o.e.258.2 20
65.37 even 12 325.2.s.b.293.4 20
65.38 odd 4 845.2.f.d.408.8 20
65.43 odd 12 845.2.t.g.418.4 20
65.48 odd 12 65.2.t.a.28.2 yes 20
65.58 even 12 845.2.o.f.258.4 20
65.63 even 12 65.2.o.a.33.2 yes 20
195.113 even 12 585.2.dp.a.28.4 20
195.128 odd 12 585.2.cf.a.163.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.2 20 13.9 even 3
65.2.o.a.33.2 yes 20 65.63 even 12
65.2.t.a.7.2 yes 20 13.11 odd 12
65.2.t.a.28.2 yes 20 65.48 odd 12
325.2.s.b.132.4 20 65.9 even 6
325.2.s.b.293.4 20 65.37 even 12
325.2.x.b.7.4 20 65.24 odd 12
325.2.x.b.93.4 20 65.22 odd 12
585.2.cf.a.163.4 20 195.128 odd 12
585.2.cf.a.262.4 20 39.35 odd 6
585.2.dp.a.28.4 20 195.113 even 12
585.2.dp.a.397.4 20 39.11 even 12
845.2.f.d.408.8 20 65.38 odd 4
845.2.f.d.437.3 20 13.5 odd 4
845.2.f.e.408.3 20 5.3 odd 4
845.2.f.e.437.8 20 13.8 odd 4
845.2.k.d.268.3 20 65.18 even 4
845.2.k.d.577.3 20 13.12 even 2
845.2.k.e.268.8 20 65.8 even 4 inner
845.2.k.e.577.8 20 1.1 even 1 trivial
845.2.o.e.258.2 20 65.33 even 12
845.2.o.e.357.2 20 13.3 even 3
845.2.o.f.258.4 20 65.58 even 12
845.2.o.f.357.4 20 13.10 even 6
845.2.o.g.488.4 20 65.28 even 12
845.2.o.g.587.4 20 13.4 even 6
845.2.t.e.188.2 20 65.23 odd 12
845.2.t.e.427.2 20 13.6 odd 12
845.2.t.f.188.4 20 65.3 odd 12
845.2.t.f.427.4 20 13.7 odd 12
845.2.t.g.418.4 20 65.43 odd 12
845.2.t.g.657.4 20 13.2 odd 12