Newspace parameters
Level: | |||
Weight: | |||
Character orbit: | 845.k (of order , degree , minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 65) |
Sato-Tate group: |
-expansion
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
268.1 |
|
−2.25081 | 1.40490 | + | 1.40490i | 3.06613 | −2.22228 | + | 0.247944i | −3.16216 | − | 3.16216i | 1.27718i | −2.39966 | 0.947480i | 5.00192 | − | 0.558075i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.2 | −1.51805 | 0.478298 | + | 0.478298i | 0.304465 | 0.600231 | − | 2.15400i | −0.726078 | − | 0.726078i | − | 2.59488i | 2.57390 | − | 2.54246i | −0.911178 | + | 3.26987i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.3 | −1.02262 | −1.97063 | − | 1.97063i | −0.954253 | −1.69584 | − | 1.45744i | 2.01520 | + | 2.01520i | − | 0.963574i | 3.02107 | 4.76674i | 1.73420 | + | 1.49040i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.4 | −0.131303 | −0.243172 | − | 0.243172i | −1.98276 | 0.813169 | + | 2.08297i | 0.0319291 | + | 0.0319291i | 2.78137i | 0.522947 | − | 2.88174i | −0.106771 | − | 0.273499i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.5 | 0.274809 | 1.67095 | + | 1.67095i | −1.92448 | 1.69883 | + | 1.45395i | 0.459191 | + | 0.459191i | − | 0.386104i | −1.07848 | 2.58414i | 0.466854 | + | 0.399558i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.6 | 0.493902 | −0.664960 | − | 0.664960i | −1.75606 | −2.21791 | − | 0.284413i | −0.328425 | − | 0.328425i | 3.67549i | −1.85513 | − | 2.11566i | −1.09543 | − | 0.140472i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.7 | 1.58474 | −0.139520 | − | 0.139520i | 0.511395 | 0.0672627 | − | 2.23506i | −0.221103 | − | 0.221103i | 0.548328i | −2.35905 | − | 2.96107i | 0.106594 | − | 3.54198i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.8 | 1.83163 | −1.40138 | − | 1.40138i | 1.35488 | 1.45480 | − | 1.69810i | −2.56682 | − | 2.56682i | − | 3.53890i | −1.18163 | 0.927746i | 2.66466 | − | 3.11030i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.9 | 2.08794 | 1.94842 | + | 1.94842i | 2.35949 | −0.194361 | + | 2.22760i | 4.06818 | + | 4.06818i | − | 2.91126i | 0.750585 | 4.59268i | −0.405815 | + | 4.65110i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
268.10 | 2.64975 | 0.917096 | + | 0.917096i | 5.02120 | −1.30391 | + | 1.81654i | 2.43008 | + | 2.43008i | 0.112348i | 8.00544 | − | 1.31787i | −3.45504 | + | 4.81339i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.1 | −2.25081 | 1.40490 | − | 1.40490i | 3.06613 | −2.22228 | − | 0.247944i | −3.16216 | + | 3.16216i | − | 1.27718i | −2.39966 | − | 0.947480i | 5.00192 | + | 0.558075i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.2 | −1.51805 | 0.478298 | − | 0.478298i | 0.304465 | 0.600231 | + | 2.15400i | −0.726078 | + | 0.726078i | 2.59488i | 2.57390 | 2.54246i | −0.911178 | − | 3.26987i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.3 | −1.02262 | −1.97063 | + | 1.97063i | −0.954253 | −1.69584 | + | 1.45744i | 2.01520 | − | 2.01520i | 0.963574i | 3.02107 | − | 4.76674i | 1.73420 | − | 1.49040i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.4 | −0.131303 | −0.243172 | + | 0.243172i | −1.98276 | 0.813169 | − | 2.08297i | 0.0319291 | − | 0.0319291i | − | 2.78137i | 0.522947 | 2.88174i | −0.106771 | + | 0.273499i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.5 | 0.274809 | 1.67095 | − | 1.67095i | −1.92448 | 1.69883 | − | 1.45395i | 0.459191 | − | 0.459191i | 0.386104i | −1.07848 | − | 2.58414i | 0.466854 | − | 0.399558i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.6 | 0.493902 | −0.664960 | + | 0.664960i | −1.75606 | −2.21791 | + | 0.284413i | −0.328425 | + | 0.328425i | − | 3.67549i | −1.85513 | 2.11566i | −1.09543 | + | 0.140472i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.7 | 1.58474 | −0.139520 | + | 0.139520i | 0.511395 | 0.0672627 | + | 2.23506i | −0.221103 | + | 0.221103i | − | 0.548328i | −2.35905 | 2.96107i | 0.106594 | + | 3.54198i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.8 | 1.83163 | −1.40138 | + | 1.40138i | 1.35488 | 1.45480 | + | 1.69810i | −2.56682 | + | 2.56682i | 3.53890i | −1.18163 | − | 0.927746i | 2.66466 | + | 3.11030i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.9 | 2.08794 | 1.94842 | − | 1.94842i | 2.35949 | −0.194361 | − | 2.22760i | 4.06818 | − | 4.06818i | 2.91126i | 0.750585 | − | 4.59268i | −0.405815 | − | 4.65110i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
577.10 | 2.64975 | 0.917096 | − | 0.917096i | 5.02120 | −1.30391 | − | 1.81654i | 2.43008 | − | 2.43008i | − | 0.112348i | 8.00544 | 1.31787i | −3.45504 | − | 4.81339i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.k | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 845.2.k.e | 20 | |
5.c | odd | 4 | 1 | 845.2.f.e | 20 | ||
13.b | even | 2 | 1 | 845.2.k.d | 20 | ||
13.c | even | 3 | 1 | 65.2.o.a | ✓ | 20 | |
13.c | even | 3 | 1 | 845.2.o.e | 20 | ||
13.d | odd | 4 | 1 | 845.2.f.d | 20 | ||
13.d | odd | 4 | 1 | 845.2.f.e | 20 | ||
13.e | even | 6 | 1 | 845.2.o.f | 20 | ||
13.e | even | 6 | 1 | 845.2.o.g | 20 | ||
13.f | odd | 12 | 1 | 65.2.t.a | yes | 20 | |
13.f | odd | 12 | 1 | 845.2.t.e | 20 | ||
13.f | odd | 12 | 1 | 845.2.t.f | 20 | ||
13.f | odd | 12 | 1 | 845.2.t.g | 20 | ||
39.i | odd | 6 | 1 | 585.2.cf.a | 20 | ||
39.k | even | 12 | 1 | 585.2.dp.a | 20 | ||
65.f | even | 4 | 1 | 845.2.k.d | 20 | ||
65.h | odd | 4 | 1 | 845.2.f.d | 20 | ||
65.k | even | 4 | 1 | inner | 845.2.k.e | 20 | |
65.n | even | 6 | 1 | 325.2.s.b | 20 | ||
65.o | even | 12 | 1 | 65.2.o.a | ✓ | 20 | |
65.o | even | 12 | 1 | 845.2.o.e | 20 | ||
65.q | odd | 12 | 1 | 65.2.t.a | yes | 20 | |
65.q | odd | 12 | 1 | 325.2.x.b | 20 | ||
65.q | odd | 12 | 1 | 845.2.t.f | 20 | ||
65.r | odd | 12 | 1 | 845.2.t.e | 20 | ||
65.r | odd | 12 | 1 | 845.2.t.g | 20 | ||
65.s | odd | 12 | 1 | 325.2.x.b | 20 | ||
65.t | even | 12 | 1 | 325.2.s.b | 20 | ||
65.t | even | 12 | 1 | 845.2.o.f | 20 | ||
65.t | even | 12 | 1 | 845.2.o.g | 20 | ||
195.bl | even | 12 | 1 | 585.2.dp.a | 20 | ||
195.bn | odd | 12 | 1 | 585.2.cf.a | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.2.o.a | ✓ | 20 | 13.c | even | 3 | 1 | |
65.2.o.a | ✓ | 20 | 65.o | even | 12 | 1 | |
65.2.t.a | yes | 20 | 13.f | odd | 12 | 1 | |
65.2.t.a | yes | 20 | 65.q | odd | 12 | 1 | |
325.2.s.b | 20 | 65.n | even | 6 | 1 | ||
325.2.s.b | 20 | 65.t | even | 12 | 1 | ||
325.2.x.b | 20 | 65.q | odd | 12 | 1 | ||
325.2.x.b | 20 | 65.s | odd | 12 | 1 | ||
585.2.cf.a | 20 | 39.i | odd | 6 | 1 | ||
585.2.cf.a | 20 | 195.bn | odd | 12 | 1 | ||
585.2.dp.a | 20 | 39.k | even | 12 | 1 | ||
585.2.dp.a | 20 | 195.bl | even | 12 | 1 | ||
845.2.f.d | 20 | 13.d | odd | 4 | 1 | ||
845.2.f.d | 20 | 65.h | odd | 4 | 1 | ||
845.2.f.e | 20 | 5.c | odd | 4 | 1 | ||
845.2.f.e | 20 | 13.d | odd | 4 | 1 | ||
845.2.k.d | 20 | 13.b | even | 2 | 1 | ||
845.2.k.d | 20 | 65.f | even | 4 | 1 | ||
845.2.k.e | 20 | 1.a | even | 1 | 1 | trivial | |
845.2.k.e | 20 | 65.k | even | 4 | 1 | inner | |
845.2.o.e | 20 | 13.c | even | 3 | 1 | ||
845.2.o.e | 20 | 65.o | even | 12 | 1 | ||
845.2.o.f | 20 | 13.e | even | 6 | 1 | ||
845.2.o.f | 20 | 65.t | even | 12 | 1 | ||
845.2.o.g | 20 | 13.e | even | 6 | 1 | ||
845.2.o.g | 20 | 65.t | even | 12 | 1 | ||
845.2.t.e | 20 | 13.f | odd | 12 | 1 | ||
845.2.t.e | 20 | 65.r | odd | 12 | 1 | ||
845.2.t.f | 20 | 13.f | odd | 12 | 1 | ||
845.2.t.f | 20 | 65.q | odd | 12 | 1 | ||
845.2.t.g | 20 | 13.f | odd | 12 | 1 | ||
845.2.t.g | 20 | 65.r | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .