Properties

Label 325.2.s.b.293.4
Level $325$
Weight $2$
Character 325.293
Analytic conductor $2.595$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,2,Mod(32,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.s (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 293.4
Root \(-1.83163i\) of defining polynomial
Character \(\chi\) \(=\) 325.293
Dual form 325.2.s.b.132.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.915816 - 1.58624i) q^{2} +(-1.91432 + 0.512942i) q^{3} +(-0.677439 - 1.17336i) q^{4} +(-0.939520 + 3.50634i) q^{6} +(3.06478 - 1.76945i) q^{7} +1.18163 q^{8} +(0.803451 - 0.463873i) q^{9} +(-1.00269 - 3.74209i) q^{11} +(1.89870 + 1.89870i) q^{12} +(-0.573112 - 3.55971i) q^{13} -6.48197i q^{14} +(2.43703 - 4.22106i) q^{16} +(-0.524334 + 1.95684i) q^{17} -1.69929i q^{18} +(-0.518968 - 0.139057i) q^{19} +(-4.95936 + 4.95936i) q^{21} +(-6.85414 - 1.83656i) q^{22} +(-0.0788026 - 0.294095i) q^{23} +(-2.26202 + 0.606106i) q^{24} +(-6.17142 - 2.35095i) q^{26} +(2.90402 - 2.90402i) q^{27} +(-4.15240 - 2.39739i) q^{28} +(1.71273 + 0.988843i) q^{29} +(4.13563 + 4.13563i) q^{31} +(-3.28212 - 5.68479i) q^{32} +(3.83895 + 6.64926i) q^{33} +(2.62382 + 2.62382i) q^{34} +(-1.08858 - 0.628491i) q^{36} +(-4.69189 - 2.70887i) q^{37} +(-0.695857 + 0.695857i) q^{38} +(2.92305 + 6.52047i) q^{39} +(0.649884 - 0.174136i) q^{41} +(3.32487 + 12.4086i) q^{42} +(8.51164 + 2.28069i) q^{43} +(-3.71155 + 3.71155i) q^{44} +(-0.538675 - 0.144337i) q^{46} +9.75201i q^{47} +(-2.50011 + 9.33053i) q^{48} +(2.76192 - 4.78379i) q^{49} -4.01498i q^{51} +(-3.78857 + 3.08395i) q^{52} +(-3.16254 - 3.16254i) q^{53} +(-1.94693 - 7.26602i) q^{54} +(3.62143 - 2.09083i) q^{56} +1.06480 q^{57} +(3.13709 - 1.81120i) q^{58} +(-3.14703 + 11.7449i) q^{59} +(1.44316 + 2.49963i) q^{61} +(10.3476 - 2.77263i) q^{62} +(1.64160 - 2.84334i) q^{63} -2.27514 q^{64} +14.0631 q^{66} +(1.14494 - 1.98310i) q^{67} +(2.65128 - 0.710408i) q^{68} +(0.301707 + 0.522573i) q^{69} +(-1.19607 + 4.46378i) q^{71} +(0.949380 - 0.548125i) q^{72} -14.7546 q^{73} +(-8.59382 + 4.96165i) q^{74} +(0.188405 + 0.703137i) q^{76} +(-9.69449 - 9.69449i) q^{77} +(13.0200 + 1.33490i) q^{78} -1.59718i q^{79} +(-5.46126 + 9.45918i) q^{81} +(0.318953 - 1.19035i) q^{82} +7.57341i q^{83} +(9.17877 + 2.45944i) q^{84} +(11.4128 - 11.4128i) q^{86} +(-3.78593 - 1.01444i) q^{87} +(-1.18481 - 4.42176i) q^{88} +(-4.54423 + 1.21762i) q^{89} +(-8.05520 - 9.89564i) q^{91} +(-0.291695 + 0.291695i) q^{92} +(-10.0383 - 5.79560i) q^{93} +(15.4690 + 8.93105i) q^{94} +(9.19900 + 9.19900i) q^{96} +(8.91268 + 15.4372i) q^{97} +(-5.05883 - 8.76215i) q^{98} +(-2.54147 - 2.54147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} + 2 q^{3} - 6 q^{4} - 8 q^{6} + 6 q^{7} - 12 q^{8} - 12 q^{9} - 16 q^{11} - 24 q^{12} - 2 q^{13} - 2 q^{16} + 10 q^{17} + 20 q^{19} + 4 q^{21} - 16 q^{22} + 2 q^{23} - 32 q^{24} - 24 q^{26}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.915816 1.58624i 0.647580 1.12164i −0.336119 0.941819i \(-0.609115\pi\)
0.983699 0.179822i \(-0.0575521\pi\)
\(3\) −1.91432 + 0.512942i −1.10524 + 0.296147i −0.764895 0.644155i \(-0.777209\pi\)
−0.340341 + 0.940302i \(0.610542\pi\)
\(4\) −0.677439 1.17336i −0.338719 0.586679i
\(5\) 0 0
\(6\) −0.939520 + 3.50634i −0.383558 + 1.43146i
\(7\) 3.06478 1.76945i 1.15838 0.668790i 0.207464 0.978243i \(-0.433479\pi\)
0.950915 + 0.309453i \(0.100146\pi\)
\(8\) 1.18163 0.417769
\(9\) 0.803451 0.463873i 0.267817 0.154624i
\(10\) 0 0
\(11\) −1.00269 3.74209i −0.302323 1.12828i −0.935226 0.354053i \(-0.884803\pi\)
0.632903 0.774231i \(-0.281863\pi\)
\(12\) 1.89870 + 1.89870i 0.548108 + 0.548108i
\(13\) −0.573112 3.55971i −0.158953 0.987286i
\(14\) 6.48197i 1.73238i
\(15\) 0 0
\(16\) 2.43703 4.22106i 0.609258 1.05527i
\(17\) −0.524334 + 1.95684i −0.127170 + 0.474603i −0.999908 0.0135853i \(-0.995676\pi\)
0.872738 + 0.488189i \(0.162342\pi\)
\(18\) 1.69929i 0.400526i
\(19\) −0.518968 0.139057i −0.119059 0.0319019i 0.198797 0.980041i \(-0.436296\pi\)
−0.317857 + 0.948139i \(0.602963\pi\)
\(20\) 0 0
\(21\) −4.95936 + 4.95936i −1.08222 + 1.08222i
\(22\) −6.85414 1.83656i −1.46131 0.391556i
\(23\) −0.0788026 0.294095i −0.0164315 0.0613231i 0.957223 0.289350i \(-0.0934392\pi\)
−0.973655 + 0.228027i \(0.926773\pi\)
\(24\) −2.26202 + 0.606106i −0.461733 + 0.123721i
\(25\) 0 0
\(26\) −6.17142 2.35095i −1.21032 0.461059i
\(27\) 2.90402 2.90402i 0.558879 0.558879i
\(28\) −4.15240 2.39739i −0.784730 0.453064i
\(29\) 1.71273 + 0.988843i 0.318045 + 0.183624i 0.650521 0.759488i \(-0.274551\pi\)
−0.332476 + 0.943112i \(0.607884\pi\)
\(30\) 0 0
\(31\) 4.13563 + 4.13563i 0.742781 + 0.742781i 0.973112 0.230331i \(-0.0739810\pi\)
−0.230331 + 0.973112i \(0.573981\pi\)
\(32\) −3.28212 5.68479i −0.580202 1.00494i
\(33\) 3.83895 + 6.64926i 0.668276 + 1.15749i
\(34\) 2.62382 + 2.62382i 0.449982 + 0.449982i
\(35\) 0 0
\(36\) −1.08858 0.628491i −0.181430 0.104748i
\(37\) −4.69189 2.70887i −0.771342 0.445335i 0.0620109 0.998075i \(-0.480249\pi\)
−0.833353 + 0.552741i \(0.813582\pi\)
\(38\) −0.695857 + 0.695857i −0.112883 + 0.112883i
\(39\) 2.92305 + 6.52047i 0.468062 + 1.04411i
\(40\) 0 0
\(41\) 0.649884 0.174136i 0.101495 0.0271955i −0.207714 0.978190i \(-0.566602\pi\)
0.309209 + 0.950994i \(0.399936\pi\)
\(42\) 3.32487 + 12.4086i 0.513039 + 1.91469i
\(43\) 8.51164 + 2.28069i 1.29801 + 0.347802i 0.840698 0.541504i \(-0.182145\pi\)
0.457314 + 0.889305i \(0.348811\pi\)
\(44\) −3.71155 + 3.71155i −0.559538 + 0.559538i
\(45\) 0 0
\(46\) −0.538675 0.144337i −0.0794232 0.0212814i
\(47\) 9.75201i 1.42248i 0.702951 + 0.711238i \(0.251865\pi\)
−0.702951 + 0.711238i \(0.748135\pi\)
\(48\) −2.50011 + 9.33053i −0.360860 + 1.34675i
\(49\) 2.76192 4.78379i 0.394561 0.683399i
\(50\) 0 0
\(51\) 4.01498i 0.562209i
\(52\) −3.78857 + 3.08395i −0.525380 + 0.427667i
\(53\) −3.16254 3.16254i −0.434409 0.434409i 0.455716 0.890125i \(-0.349383\pi\)
−0.890125 + 0.455716i \(0.849383\pi\)
\(54\) −1.94693 7.26602i −0.264943 0.988781i
\(55\) 0 0
\(56\) 3.62143 2.09083i 0.483934 0.279399i
\(57\) 1.06480 0.141036
\(58\) 3.13709 1.81120i 0.411919 0.237822i
\(59\) −3.14703 + 11.7449i −0.409708 + 1.52905i 0.385495 + 0.922710i \(0.374031\pi\)
−0.795203 + 0.606343i \(0.792636\pi\)
\(60\) 0 0
\(61\) 1.44316 + 2.49963i 0.184778 + 0.320044i 0.943502 0.331368i \(-0.107510\pi\)
−0.758724 + 0.651412i \(0.774177\pi\)
\(62\) 10.3476 2.77263i 1.31414 0.352124i
\(63\) 1.64160 2.84334i 0.206822 0.358227i
\(64\) −2.27514 −0.284392
\(65\) 0 0
\(66\) 14.0631 1.73105
\(67\) 1.14494 1.98310i 0.139877 0.242274i −0.787573 0.616222i \(-0.788663\pi\)
0.927450 + 0.373947i \(0.121996\pi\)
\(68\) 2.65128 0.710408i 0.321515 0.0861496i
\(69\) 0.301707 + 0.522573i 0.0363213 + 0.0629104i
\(70\) 0 0
\(71\) −1.19607 + 4.46378i −0.141947 + 0.529753i 0.857925 + 0.513774i \(0.171753\pi\)
−0.999872 + 0.0159789i \(0.994914\pi\)
\(72\) 0.949380 0.548125i 0.111886 0.0645972i
\(73\) −14.7546 −1.72690 −0.863449 0.504436i \(-0.831701\pi\)
−0.863449 + 0.504436i \(0.831701\pi\)
\(74\) −8.59382 + 4.96165i −0.999011 + 0.576780i
\(75\) 0 0
\(76\) 0.188405 + 0.703137i 0.0216115 + 0.0806554i
\(77\) −9.69449 9.69449i −1.10479 1.10479i
\(78\) 13.0200 + 1.33490i 1.47422 + 0.151147i
\(79\) 1.59718i 0.179696i −0.995955 0.0898482i \(-0.971362\pi\)
0.995955 0.0898482i \(-0.0286382\pi\)
\(80\) 0 0
\(81\) −5.46126 + 9.45918i −0.606807 + 1.05102i
\(82\) 0.318953 1.19035i 0.0352225 0.131452i
\(83\) 7.57341i 0.831290i 0.909527 + 0.415645i \(0.136444\pi\)
−0.909527 + 0.415645i \(0.863556\pi\)
\(84\) 9.17877 + 2.45944i 1.00149 + 0.268347i
\(85\) 0 0
\(86\) 11.4128 11.4128i 1.23068 1.23068i
\(87\) −3.78593 1.01444i −0.405895 0.108759i
\(88\) −1.18481 4.42176i −0.126301 0.471361i
\(89\) −4.54423 + 1.21762i −0.481687 + 0.129068i −0.491488 0.870884i \(-0.663547\pi\)
0.00980081 + 0.999952i \(0.496880\pi\)
\(90\) 0 0
\(91\) −8.05520 9.89564i −0.844415 1.03735i
\(92\) −0.291695 + 0.291695i −0.0304113 + 0.0304113i
\(93\) −10.0383 5.79560i −1.04092 0.600976i
\(94\) 15.4690 + 8.93105i 1.59551 + 0.921167i
\(95\) 0 0
\(96\) 9.19900 + 9.19900i 0.938869 + 0.938869i
\(97\) 8.91268 + 15.4372i 0.904945 + 1.56741i 0.820991 + 0.570942i \(0.193422\pi\)
0.0839547 + 0.996470i \(0.473245\pi\)
\(98\) −5.05883 8.76215i −0.511019 0.885111i
\(99\) −2.54147 2.54147i −0.255427 0.255427i
\(100\) 0 0
\(101\) −3.94379 2.27695i −0.392421 0.226565i 0.290787 0.956788i \(-0.406083\pi\)
−0.683209 + 0.730223i \(0.739416\pi\)
\(102\) −6.36872 3.67698i −0.630597 0.364075i
\(103\) 9.79285 9.79285i 0.964918 0.964918i −0.0344872 0.999405i \(-0.510980\pi\)
0.999405 + 0.0344872i \(0.0109798\pi\)
\(104\) −0.677205 4.20625i −0.0664055 0.412457i
\(105\) 0 0
\(106\) −7.91286 + 2.12024i −0.768565 + 0.205936i
\(107\) 1.82991 + 6.82933i 0.176904 + 0.660216i 0.996219 + 0.0868725i \(0.0276873\pi\)
−0.819315 + 0.573344i \(0.805646\pi\)
\(108\) −5.37475 1.44016i −0.517186 0.138580i
\(109\) 9.89281 9.89281i 0.947560 0.947560i −0.0511324 0.998692i \(-0.516283\pi\)
0.998692 + 0.0511324i \(0.0162830\pi\)
\(110\) 0 0
\(111\) 10.3713 + 2.77898i 0.984399 + 0.263769i
\(112\) 17.2488i 1.62986i
\(113\) −0.593341 + 2.21438i −0.0558168 + 0.208311i −0.988202 0.153154i \(-0.951057\pi\)
0.932385 + 0.361466i \(0.117723\pi\)
\(114\) 0.975161 1.68903i 0.0913322 0.158192i
\(115\) 0 0
\(116\) 2.67952i 0.248787i
\(117\) −2.11172 2.59420i −0.195229 0.239834i
\(118\) 15.7481 + 15.7481i 1.44973 + 1.44973i
\(119\) 1.85557 + 6.92507i 0.170099 + 0.634820i
\(120\) 0 0
\(121\) −3.47160 + 2.00433i −0.315600 + 0.182212i
\(122\) 5.28668 0.478633
\(123\) −1.15477 + 0.666705i −0.104122 + 0.0601148i
\(124\) 2.05094 7.65421i 0.184180 0.687368i
\(125\) 0 0
\(126\) −3.00681 5.20795i −0.267868 0.463961i
\(127\) 1.24225 0.332860i 0.110232 0.0295366i −0.203281 0.979120i \(-0.565161\pi\)
0.313513 + 0.949584i \(0.398494\pi\)
\(128\) 4.48062 7.76067i 0.396035 0.685953i
\(129\) −17.4639 −1.53761
\(130\) 0 0
\(131\) −5.59439 −0.488785 −0.244392 0.969676i \(-0.578588\pi\)
−0.244392 + 0.969676i \(0.578588\pi\)
\(132\) 5.20131 9.00893i 0.452716 0.784127i
\(133\) −1.83658 + 0.492109i −0.159251 + 0.0426713i
\(134\) −2.09712 3.63231i −0.181163 0.313784i
\(135\) 0 0
\(136\) −0.619567 + 2.31226i −0.0531274 + 0.198274i
\(137\) −12.3757 + 7.14509i −1.05732 + 0.610446i −0.924691 0.380719i \(-0.875676\pi\)
−0.132633 + 0.991165i \(0.542343\pi\)
\(138\) 1.10523 0.0940838
\(139\) 15.0832 8.70830i 1.27934 0.738629i 0.302615 0.953113i \(-0.402140\pi\)
0.976727 + 0.214484i \(0.0688071\pi\)
\(140\) 0 0
\(141\) −5.00221 18.6685i −0.421262 1.57217i
\(142\) 5.98525 + 5.98525i 0.502271 + 0.502271i
\(143\) −12.7461 + 5.71393i −1.06588 + 0.477823i
\(144\) 4.52189i 0.376824i
\(145\) 0 0
\(146\) −13.5125 + 23.4044i −1.11830 + 1.93696i
\(147\) −2.83341 + 10.5744i −0.233696 + 0.872165i
\(148\) 7.34036i 0.603374i
\(149\) −12.6828 3.39833i −1.03901 0.278402i −0.301308 0.953527i \(-0.597423\pi\)
−0.737704 + 0.675124i \(0.764090\pi\)
\(150\) 0 0
\(151\) 0.765191 0.765191i 0.0622704 0.0622704i −0.675286 0.737556i \(-0.735980\pi\)
0.737556 + 0.675286i \(0.235980\pi\)
\(152\) −0.613227 0.164314i −0.0497392 0.0133276i
\(153\) 0.486448 + 1.81545i 0.0393270 + 0.146770i
\(154\) −24.2562 + 6.49942i −1.95462 + 0.523738i
\(155\) 0 0
\(156\) 5.67066 7.84700i 0.454016 0.628263i
\(157\) −3.03481 + 3.03481i −0.242204 + 0.242204i −0.817762 0.575557i \(-0.804785\pi\)
0.575557 + 0.817762i \(0.304785\pi\)
\(158\) −2.53350 1.46272i −0.201555 0.116368i
\(159\) 7.67633 + 4.43193i 0.608773 + 0.351475i
\(160\) 0 0
\(161\) −0.761901 0.761901i −0.0600462 0.0600462i
\(162\) 10.0030 + 17.3257i 0.785912 + 1.36124i
\(163\) 1.13179 + 1.96032i 0.0886486 + 0.153544i 0.906940 0.421260i \(-0.138412\pi\)
−0.818292 + 0.574803i \(0.805079\pi\)
\(164\) −0.644580 0.644580i −0.0503333 0.0503333i
\(165\) 0 0
\(166\) 12.0133 + 6.93585i 0.932409 + 0.538327i
\(167\) 0.536563 + 0.309785i 0.0415205 + 0.0239719i 0.520617 0.853791i \(-0.325702\pi\)
−0.479096 + 0.877762i \(0.659035\pi\)
\(168\) −5.86012 + 5.86012i −0.452118 + 0.452118i
\(169\) −12.3431 + 4.08023i −0.949468 + 0.313864i
\(170\) 0 0
\(171\) −0.481470 + 0.129009i −0.0368189 + 0.00986560i
\(172\) −3.09005 11.5322i −0.235614 0.879324i
\(173\) 6.39606 + 1.71382i 0.486283 + 0.130299i 0.493627 0.869674i \(-0.335671\pi\)
−0.00734343 + 0.999973i \(0.502338\pi\)
\(174\) −5.07636 + 5.07636i −0.384838 + 0.384838i
\(175\) 0 0
\(176\) −18.2392 4.88718i −1.37483 0.368385i
\(177\) 24.0977i 1.81130i
\(178\) −2.23024 + 8.32336i −0.167163 + 0.623862i
\(179\) 1.09512 1.89680i 0.0818528 0.141773i −0.822193 0.569209i \(-0.807250\pi\)
0.904046 + 0.427436i \(0.140583\pi\)
\(180\) 0 0
\(181\) 9.59255i 0.713009i 0.934294 + 0.356504i \(0.116031\pi\)
−0.934294 + 0.356504i \(0.883969\pi\)
\(182\) −23.0739 + 3.71490i −1.71035 + 0.275367i
\(183\) −4.04484 4.04484i −0.299003 0.299003i
\(184\) −0.0931154 0.347511i −0.00686456 0.0256189i
\(185\) 0 0
\(186\) −18.3864 + 10.6154i −1.34816 + 0.778359i
\(187\) 7.84842 0.573933
\(188\) 11.4426 6.60639i 0.834537 0.481820i
\(189\) 3.76166 14.0387i 0.273621 1.02117i
\(190\) 0 0
\(191\) −1.86557 3.23126i −0.134988 0.233806i 0.790605 0.612326i \(-0.209766\pi\)
−0.925593 + 0.378521i \(0.876433\pi\)
\(192\) 4.35536 1.16701i 0.314321 0.0842220i
\(193\) 0.142043 0.246025i 0.0102245 0.0177093i −0.860868 0.508829i \(-0.830079\pi\)
0.871092 + 0.491119i \(0.163412\pi\)
\(194\) 32.6495 2.34410
\(195\) 0 0
\(196\) −7.48414 −0.534581
\(197\) 12.9246 22.3860i 0.920838 1.59494i 0.122716 0.992442i \(-0.460840\pi\)
0.798122 0.602496i \(-0.205827\pi\)
\(198\) −6.35890 + 1.70386i −0.451907 + 0.121088i
\(199\) 2.87625 + 4.98181i 0.203892 + 0.353151i 0.949779 0.312921i \(-0.101308\pi\)
−0.745887 + 0.666072i \(0.767974\pi\)
\(200\) 0 0
\(201\) −1.17458 + 4.38359i −0.0828484 + 0.309194i
\(202\) −7.22357 + 4.17053i −0.508248 + 0.293437i
\(203\) 6.99884 0.491223
\(204\) −4.71101 + 2.71990i −0.329836 + 0.190431i
\(205\) 0 0
\(206\) −6.56536 24.5023i −0.457430 1.70715i
\(207\) −0.199737 0.199737i −0.0138827 0.0138827i
\(208\) −16.4225 6.25598i −1.13869 0.433774i
\(209\) 2.08146i 0.143977i
\(210\) 0 0
\(211\) 1.61372 2.79504i 0.111093 0.192418i −0.805118 0.593114i \(-0.797898\pi\)
0.916211 + 0.400696i \(0.131232\pi\)
\(212\) −1.56837 + 5.85322i −0.107716 + 0.402001i
\(213\) 9.15863i 0.627539i
\(214\) 12.5088 + 3.35173i 0.855085 + 0.229119i
\(215\) 0 0
\(216\) 3.43147 3.43147i 0.233482 0.233482i
\(217\) 19.9926 + 5.35700i 1.35719 + 0.363657i
\(218\) −6.63238 24.7524i −0.449201 1.67644i
\(219\) 28.2451 7.56826i 1.90863 0.511416i
\(220\) 0 0
\(221\) 7.26628 + 0.744987i 0.488783 + 0.0501133i
\(222\) 13.9063 13.9063i 0.933331 0.933331i
\(223\) −6.42178 3.70762i −0.430034 0.248280i 0.269327 0.963049i \(-0.413199\pi\)
−0.699361 + 0.714768i \(0.746532\pi\)
\(224\) −20.1179 11.6151i −1.34419 0.776067i
\(225\) 0 0
\(226\) 2.96914 + 2.96914i 0.197504 + 0.197504i
\(227\) −1.95115 3.37949i −0.129502 0.224305i 0.793981 0.607942i \(-0.208005\pi\)
−0.923484 + 0.383637i \(0.874671\pi\)
\(228\) −0.721337 1.24939i −0.0477717 0.0827430i
\(229\) −12.3946 12.3946i −0.819060 0.819060i 0.166912 0.985972i \(-0.446621\pi\)
−0.985972 + 0.166912i \(0.946621\pi\)
\(230\) 0 0
\(231\) 23.5311 + 13.5857i 1.54823 + 0.893872i
\(232\) 2.02381 + 1.16844i 0.132869 + 0.0767121i
\(233\) 2.88962 2.88962i 0.189305 0.189305i −0.606090 0.795396i \(-0.707263\pi\)
0.795396 + 0.606090i \(0.207263\pi\)
\(234\) −6.04898 + 0.973883i −0.395434 + 0.0636647i
\(235\) 0 0
\(236\) 15.9129 4.26384i 1.03584 0.277552i
\(237\) 0.819258 + 3.05751i 0.0532165 + 0.198607i
\(238\) 12.6842 + 3.39872i 0.822193 + 0.220306i
\(239\) 8.97299 8.97299i 0.580415 0.580415i −0.354602 0.935017i \(-0.615384\pi\)
0.935017 + 0.354602i \(0.115384\pi\)
\(240\) 0 0
\(241\) 16.9497 + 4.54165i 1.09183 + 0.292554i 0.759432 0.650587i \(-0.225477\pi\)
0.332394 + 0.943141i \(0.392144\pi\)
\(242\) 7.34239i 0.471986i
\(243\) 2.41378 9.00835i 0.154844 0.577886i
\(244\) 1.95530 3.38669i 0.125176 0.216810i
\(245\) 0 0
\(246\) 2.44232i 0.155716i
\(247\) −0.197576 + 1.92707i −0.0125715 + 0.122617i
\(248\) 4.88677 + 4.88677i 0.310311 + 0.310311i
\(249\) −3.88472 14.4980i −0.246184 0.918771i
\(250\) 0 0
\(251\) 18.8524 10.8845i 1.18996 0.687021i 0.231659 0.972797i \(-0.425585\pi\)
0.958296 + 0.285776i \(0.0922513\pi\)
\(252\) −4.44834 −0.280219
\(253\) −1.02152 + 0.589774i −0.0642223 + 0.0370787i
\(254\) 0.609678 2.27535i 0.0382546 0.142768i
\(255\) 0 0
\(256\) −10.4820 18.1554i −0.655125 1.13471i
\(257\) −12.3766 + 3.31629i −0.772029 + 0.206864i −0.623268 0.782009i \(-0.714195\pi\)
−0.148761 + 0.988873i \(0.547529\pi\)
\(258\) −15.9937 + 27.7019i −0.995725 + 1.72465i
\(259\) −19.1728 −1.19134
\(260\) 0 0
\(261\) 1.83479 0.113571
\(262\) −5.12344 + 8.87405i −0.316527 + 0.548241i
\(263\) 15.9426 4.27179i 0.983060 0.263410i 0.268727 0.963216i \(-0.413397\pi\)
0.714333 + 0.699806i \(0.246730\pi\)
\(264\) 4.53621 + 7.85695i 0.279185 + 0.483562i
\(265\) 0 0
\(266\) −0.901363 + 3.36393i −0.0552661 + 0.206256i
\(267\) 8.07456 4.66185i 0.494155 0.285301i
\(268\) −3.10252 −0.189516
\(269\) −27.9787 + 16.1535i −1.70589 + 0.984895i −0.766370 + 0.642400i \(0.777939\pi\)
−0.939519 + 0.342495i \(0.888728\pi\)
\(270\) 0 0
\(271\) 4.52218 + 16.8770i 0.274703 + 1.02521i 0.956040 + 0.293236i \(0.0947321\pi\)
−0.681337 + 0.731970i \(0.738601\pi\)
\(272\) 6.98212 + 6.98212i 0.423353 + 0.423353i
\(273\) 20.4962 + 14.8116i 1.24048 + 0.896440i
\(274\) 26.1743i 1.58125i
\(275\) 0 0
\(276\) 0.408777 0.708022i 0.0246055 0.0426179i
\(277\) 0.795705 2.96961i 0.0478093 0.178427i −0.937892 0.346926i \(-0.887225\pi\)
0.985702 + 0.168499i \(0.0538921\pi\)
\(278\) 31.9008i 1.91328i
\(279\) 5.24118 + 1.40437i 0.313781 + 0.0840775i
\(280\) 0 0
\(281\) −18.6757 + 18.6757i −1.11410 + 1.11410i −0.121508 + 0.992590i \(0.538773\pi\)
−0.992590 + 0.121508i \(0.961227\pi\)
\(282\) −34.1938 9.16221i −2.03621 0.545602i
\(283\) 3.97005 + 14.8164i 0.235995 + 0.880745i 0.977698 + 0.210016i \(0.0673517\pi\)
−0.741703 + 0.670728i \(0.765982\pi\)
\(284\) 6.04787 1.62052i 0.358875 0.0961603i
\(285\) 0 0
\(286\) −2.60944 + 25.4513i −0.154299 + 1.50497i
\(287\) 1.68363 1.68363i 0.0993814 0.0993814i
\(288\) −5.27404 3.04497i −0.310776 0.179427i
\(289\) 11.1681 + 6.44793i 0.656949 + 0.379290i
\(290\) 0 0
\(291\) −24.9801 24.9801i −1.46436 1.46436i
\(292\) 9.99535 + 17.3125i 0.584934 + 1.01314i
\(293\) −5.18835 8.98649i −0.303107 0.524996i 0.673731 0.738976i \(-0.264691\pi\)
−0.976838 + 0.213980i \(0.931357\pi\)
\(294\) 14.1787 + 14.1787i 0.826919 + 0.826919i
\(295\) 0 0
\(296\) −5.54407 3.20087i −0.322243 0.186047i
\(297\) −13.7790 7.95528i −0.799536 0.461612i
\(298\) −17.0057 + 17.0057i −0.985111 + 0.985111i
\(299\) −1.00173 + 0.449064i −0.0579316 + 0.0259701i
\(300\) 0 0
\(301\) 30.1219 8.07113i 1.73620 0.465212i
\(302\) −0.513002 1.91455i −0.0295200 0.110170i
\(303\) 8.71763 + 2.33588i 0.500814 + 0.134193i
\(304\) −1.85171 + 1.85171i −0.106203 + 0.106203i
\(305\) 0 0
\(306\) 3.32524 + 0.890994i 0.190091 + 0.0509347i
\(307\) 2.13935i 0.122099i 0.998135 + 0.0610496i \(0.0194448\pi\)
−0.998135 + 0.0610496i \(0.980555\pi\)
\(308\) −4.80768 + 17.9425i −0.273943 + 1.02237i
\(309\) −13.7235 + 23.7698i −0.780704 + 1.35222i
\(310\) 0 0
\(311\) 3.82084i 0.216660i −0.994115 0.108330i \(-0.965450\pi\)
0.994115 0.108330i \(-0.0345503\pi\)
\(312\) 3.45395 + 7.70477i 0.195542 + 0.436196i
\(313\) −3.04531 3.04531i −0.172131 0.172131i 0.615784 0.787915i \(-0.288839\pi\)
−0.787915 + 0.615784i \(0.788839\pi\)
\(314\) 2.03461 + 7.59327i 0.114820 + 0.428513i
\(315\) 0 0
\(316\) −1.87406 + 1.08199i −0.105424 + 0.0608666i
\(317\) 23.1127 1.29814 0.649068 0.760730i \(-0.275159\pi\)
0.649068 + 0.760730i \(0.275159\pi\)
\(318\) 14.0602 8.11767i 0.788458 0.455216i
\(319\) 1.98301 7.40069i 0.111027 0.414359i
\(320\) 0 0
\(321\) −7.00609 12.1349i −0.391042 0.677305i
\(322\) −1.90632 + 0.510796i −0.106235 + 0.0284656i
\(323\) 0.544224 0.942624i 0.0302814 0.0524490i
\(324\) 14.7987 0.822149
\(325\) 0 0
\(326\) 4.14604 0.229628
\(327\) −13.8636 + 24.0125i −0.766660 + 1.32789i
\(328\) 0.767921 0.205764i 0.0424013 0.0113614i
\(329\) 17.2557 + 29.8878i 0.951338 + 1.64777i
\(330\) 0 0
\(331\) 0.516858 1.92894i 0.0284091 0.106024i −0.950265 0.311441i \(-0.899188\pi\)
0.978675 + 0.205417i \(0.0658550\pi\)
\(332\) 8.88632 5.13052i 0.487700 0.281574i
\(333\) −5.02628 −0.275438
\(334\) 0.982786 0.567412i 0.0537756 0.0310474i
\(335\) 0 0
\(336\) 8.84765 + 33.0199i 0.482679 + 1.80138i
\(337\) 6.12727 + 6.12727i 0.333773 + 0.333773i 0.854018 0.520244i \(-0.174159\pi\)
−0.520244 + 0.854018i \(0.674159\pi\)
\(338\) −4.83178 + 23.3158i −0.262814 + 1.26821i
\(339\) 4.54338i 0.246763i
\(340\) 0 0
\(341\) 11.3292 19.6227i 0.613508 1.06263i
\(342\) −0.236298 + 0.881876i −0.0127775 + 0.0476864i
\(343\) 5.22396i 0.282067i
\(344\) 10.0576 + 2.69492i 0.542269 + 0.145301i
\(345\) 0 0
\(346\) 8.57614 8.57614i 0.461056 0.461056i
\(347\) −31.4009 8.41384i −1.68569 0.451679i −0.716417 0.697673i \(-0.754219\pi\)
−0.969271 + 0.245994i \(0.920886\pi\)
\(348\) 1.37444 + 5.12947i 0.0736776 + 0.274969i
\(349\) −6.57321 + 1.76129i −0.351856 + 0.0942795i −0.430418 0.902630i \(-0.641634\pi\)
0.0785620 + 0.996909i \(0.474967\pi\)
\(350\) 0 0
\(351\) −12.0018 8.67315i −0.640609 0.462938i
\(352\) −17.9821 + 17.9821i −0.958448 + 0.958448i
\(353\) 23.6652 + 13.6631i 1.25957 + 0.727213i 0.972991 0.230843i \(-0.0741485\pi\)
0.286579 + 0.958057i \(0.407482\pi\)
\(354\) −38.2248 22.0691i −2.03163 1.17296i
\(355\) 0 0
\(356\) 4.50714 + 4.50714i 0.238878 + 0.238878i
\(357\) −7.10431 12.3050i −0.376000 0.651251i
\(358\) −2.00585 3.47423i −0.106012 0.183619i
\(359\) −3.89871 3.89871i −0.205766 0.205766i 0.596699 0.802465i \(-0.296479\pi\)
−0.802465 + 0.596699i \(0.796479\pi\)
\(360\) 0 0
\(361\) −16.2045 9.35567i −0.852868 0.492404i
\(362\) 15.2161 + 8.78501i 0.799740 + 0.461730i
\(363\) 5.61766 5.61766i 0.294851 0.294851i
\(364\) −6.15423 + 16.1553i −0.322569 + 0.846769i
\(365\) 0 0
\(366\) −10.1204 + 2.71176i −0.529003 + 0.141746i
\(367\) −4.67826 17.4595i −0.244203 0.911378i −0.973782 0.227482i \(-0.926951\pi\)
0.729579 0.683896i \(-0.239716\pi\)
\(368\) −1.43344 0.384089i −0.0747232 0.0200220i
\(369\) 0.441373 0.441373i 0.0229770 0.0229770i
\(370\) 0 0
\(371\) −15.2885 4.09653i −0.793738 0.212681i
\(372\) 15.7046i 0.814248i
\(373\) −4.01536 + 14.9855i −0.207907 + 0.775921i 0.780636 + 0.624986i \(0.214895\pi\)
−0.988544 + 0.150936i \(0.951771\pi\)
\(374\) 7.18771 12.4495i 0.371668 0.643747i
\(375\) 0 0
\(376\) 11.5232i 0.594266i
\(377\) 2.53841 6.66353i 0.130735 0.343189i
\(378\) −18.8238 18.8238i −0.968191 0.968191i
\(379\) 5.53029 + 20.6393i 0.284072 + 1.06017i 0.949515 + 0.313722i \(0.101576\pi\)
−0.665443 + 0.746449i \(0.731757\pi\)
\(380\) 0 0
\(381\) −2.20733 + 1.27440i −0.113085 + 0.0652897i
\(382\) −6.83407 −0.349661
\(383\) −16.8072 + 9.70362i −0.858806 + 0.495832i −0.863612 0.504157i \(-0.831803\pi\)
0.00480620 + 0.999988i \(0.498470\pi\)
\(384\) −4.59660 + 17.1547i −0.234569 + 0.875424i
\(385\) 0 0
\(386\) −0.260170 0.450628i −0.0132423 0.0229364i
\(387\) 7.89664 2.11590i 0.401409 0.107557i
\(388\) 12.0756 20.9155i 0.613045 1.06182i
\(389\) 14.8591 0.753387 0.376693 0.926338i \(-0.377061\pi\)
0.376693 + 0.926338i \(0.377061\pi\)
\(390\) 0 0
\(391\) 0.616816 0.0311937
\(392\) 3.26357 5.65266i 0.164835 0.285503i
\(393\) 10.7095 2.86960i 0.540222 0.144752i
\(394\) −23.6731 41.0030i −1.19263 2.06570i
\(395\) 0 0
\(396\) −1.26036 + 4.70374i −0.0633357 + 0.236372i
\(397\) 4.57070 2.63889i 0.229397 0.132442i −0.380897 0.924617i \(-0.624385\pi\)
0.610294 + 0.792175i \(0.291051\pi\)
\(398\) 10.5365 0.528145
\(399\) 3.26338 1.88411i 0.163373 0.0943236i
\(400\) 0 0
\(401\) 7.21557 + 26.9289i 0.360328 + 1.34476i 0.873645 + 0.486564i \(0.161750\pi\)
−0.513317 + 0.858199i \(0.671583\pi\)
\(402\) 5.87772 + 5.87772i 0.293154 + 0.293154i
\(403\) 12.3515 17.0918i 0.615270 0.851404i
\(404\) 6.16996i 0.306967i
\(405\) 0 0
\(406\) 6.40965 11.1018i 0.318106 0.550975i
\(407\) −5.43231 + 20.2737i −0.269270 + 1.00493i
\(408\) 4.74421i 0.234873i
\(409\) −2.54532 0.682016i −0.125858 0.0337235i 0.195340 0.980736i \(-0.437419\pi\)
−0.321198 + 0.947012i \(0.604086\pi\)
\(410\) 0 0
\(411\) 20.0260 20.0260i 0.987810 0.987810i
\(412\) −18.1246 4.85646i −0.892933 0.239261i
\(413\) 11.1370 + 41.5640i 0.548018 + 2.04523i
\(414\) −0.499753 + 0.133908i −0.0245615 + 0.00658124i
\(415\) 0 0
\(416\) −18.3552 + 14.9414i −0.899938 + 0.732563i
\(417\) −24.4073 + 24.4073i −1.19523 + 1.19523i
\(418\) 3.30169 + 1.90623i 0.161491 + 0.0932368i
\(419\) −17.0348 9.83506i −0.832205 0.480474i 0.0224018 0.999749i \(-0.492869\pi\)
−0.854607 + 0.519275i \(0.826202\pi\)
\(420\) 0 0
\(421\) 10.4427 + 10.4427i 0.508948 + 0.508948i 0.914203 0.405256i \(-0.132817\pi\)
−0.405256 + 0.914203i \(0.632817\pi\)
\(422\) −2.95573 5.11948i −0.143883 0.249212i
\(423\) 4.52369 + 7.83526i 0.219949 + 0.380964i
\(424\) −3.73695 3.73695i −0.181482 0.181482i
\(425\) 0 0
\(426\) −14.5278 8.38762i −0.703874 0.406382i
\(427\) 8.84594 + 5.10721i 0.428085 + 0.247155i
\(428\) 6.77359 6.77359i 0.327414 0.327414i
\(429\) 21.4693 17.4763i 1.03655 0.843765i
\(430\) 0 0
\(431\) 16.5486 4.43419i 0.797119 0.213587i 0.162800 0.986659i \(-0.447947\pi\)
0.634319 + 0.773072i \(0.281281\pi\)
\(432\) −5.18086 19.3352i −0.249264 0.930267i
\(433\) −10.8538 2.90826i −0.521599 0.139762i −0.0115927 0.999933i \(-0.503690\pi\)
−0.510006 + 0.860171i \(0.670357\pi\)
\(434\) 26.8070 26.8070i 1.28678 1.28678i
\(435\) 0 0
\(436\) −18.3096 4.90604i −0.876870 0.234957i
\(437\) 0.163584i 0.00782528i
\(438\) 13.8623 51.7347i 0.662365 2.47198i
\(439\) −2.12218 + 3.67572i −0.101286 + 0.175432i −0.912215 0.409712i \(-0.865629\pi\)
0.810929 + 0.585145i \(0.198962\pi\)
\(440\) 0 0
\(441\) 5.12473i 0.244035i
\(442\) 7.83631 10.8438i 0.372735 0.515787i
\(443\) −15.1569 15.1569i −0.720126 0.720126i 0.248505 0.968631i \(-0.420061\pi\)
−0.968631 + 0.248505i \(0.920061\pi\)
\(444\) −3.76518 14.0518i −0.178687 0.666870i
\(445\) 0 0
\(446\) −11.7623 + 6.79099i −0.556963 + 0.321563i
\(447\) 26.0221 1.23080
\(448\) −6.97281 + 4.02575i −0.329434 + 0.190199i
\(449\) 3.76524 14.0521i 0.177693 0.663158i −0.818385 0.574671i \(-0.805130\pi\)
0.996077 0.0884873i \(-0.0282033\pi\)
\(450\) 0 0
\(451\) −1.30327 2.25732i −0.0613684 0.106293i
\(452\) 3.00021 0.803904i 0.141118 0.0378124i
\(453\) −1.07233 + 1.85732i −0.0503822 + 0.0872646i
\(454\) −7.14758 −0.335453
\(455\) 0 0
\(456\) 1.25820 0.0589205
\(457\) 15.1476 26.2365i 0.708576 1.22729i −0.256809 0.966462i \(-0.582671\pi\)
0.965385 0.260828i \(-0.0839956\pi\)
\(458\) −31.0121 + 8.30966i −1.44910 + 0.388285i
\(459\) 4.16003 + 7.20538i 0.194173 + 0.336318i
\(460\) 0 0
\(461\) 1.79565 6.70146i 0.0836318 0.312118i −0.911420 0.411478i \(-0.865013\pi\)
0.995052 + 0.0993596i \(0.0316794\pi\)
\(462\) 43.1003 24.8840i 2.00521 1.15771i
\(463\) −31.4463 −1.46143 −0.730717 0.682680i \(-0.760814\pi\)
−0.730717 + 0.682680i \(0.760814\pi\)
\(464\) 8.34794 4.81968i 0.387543 0.223748i
\(465\) 0 0
\(466\) −1.93727 7.22999i −0.0897423 0.334923i
\(467\) −3.69622 3.69622i −0.171041 0.171041i 0.616396 0.787436i \(-0.288592\pi\)
−0.787436 + 0.616396i \(0.788592\pi\)
\(468\) −1.61337 + 4.23522i −0.0745780 + 0.195773i
\(469\) 8.10369i 0.374194i
\(470\) 0 0
\(471\) 4.25293 7.36630i 0.195965 0.339421i
\(472\) −3.71862 + 13.8781i −0.171163 + 0.638790i
\(473\) 34.1382i 1.56968i
\(474\) 5.60024 + 1.50058i 0.257227 + 0.0689239i
\(475\) 0 0
\(476\) 6.86855 6.86855i 0.314820 0.314820i
\(477\) −4.00797 1.07393i −0.183512 0.0491720i
\(478\) −6.01571 22.4509i −0.275152 1.02688i
\(479\) 18.6940 5.00904i 0.854150 0.228869i 0.194928 0.980818i \(-0.437553\pi\)
0.659222 + 0.751949i \(0.270886\pi\)
\(480\) 0 0
\(481\) −6.95380 + 18.2543i −0.317066 + 0.832323i
\(482\) 22.7270 22.7270i 1.03518 1.03518i
\(483\) 1.84934 + 1.06771i 0.0841477 + 0.0485827i
\(484\) 4.70359 + 2.71562i 0.213800 + 0.123437i
\(485\) 0 0
\(486\) −12.0788 12.0788i −0.547907 0.547907i
\(487\) −11.6813 20.2327i −0.529332 0.916830i −0.999415 0.0342077i \(-0.989109\pi\)
0.470083 0.882622i \(-0.344224\pi\)
\(488\) 1.70528 + 2.95363i 0.0771943 + 0.133704i
\(489\) −3.17214 3.17214i −0.143449 0.143449i
\(490\) 0 0
\(491\) 18.4624 + 10.6593i 0.833198 + 0.481047i 0.854946 0.518716i \(-0.173590\pi\)
−0.0217482 + 0.999763i \(0.506923\pi\)
\(492\) 1.56457 + 0.903303i 0.0705362 + 0.0407241i
\(493\) −2.83305 + 2.83305i −0.127594 + 0.127594i
\(494\) 2.87585 + 2.07824i 0.129391 + 0.0935046i
\(495\) 0 0
\(496\) 27.5354 7.37809i 1.23638 0.331286i
\(497\) 4.23276 + 15.7969i 0.189865 + 0.708587i
\(498\) −26.5549 7.11538i −1.18996 0.318848i
\(499\) −23.0389 + 23.0389i −1.03136 + 1.03136i −0.0318687 + 0.999492i \(0.510146\pi\)
−0.999492 + 0.0318687i \(0.989854\pi\)
\(500\) 0 0
\(501\) −1.18606 0.317803i −0.0529891 0.0141984i
\(502\) 39.8727i 1.77960i
\(503\) −0.169996 + 0.634433i −0.00757973 + 0.0282879i −0.969612 0.244647i \(-0.921328\pi\)
0.962032 + 0.272935i \(0.0879945\pi\)
\(504\) 1.93976 3.35977i 0.0864039 0.149656i
\(505\) 0 0
\(506\) 2.16050i 0.0960458i
\(507\) 21.5357 14.1422i 0.956436 0.628075i
\(508\) −1.23211 1.23211i −0.0546662 0.0546662i
\(509\) −8.29035 30.9400i −0.367463 1.37139i −0.864050 0.503405i \(-0.832080\pi\)
0.496587 0.867987i \(-0.334586\pi\)
\(510\) 0 0
\(511\) −45.2197 + 26.1076i −2.00040 + 1.15493i
\(512\) −20.4758 −0.904912
\(513\) −1.91092 + 1.10327i −0.0843690 + 0.0487105i
\(514\) −6.07422 + 22.6693i −0.267923 + 0.999901i
\(515\) 0 0
\(516\) 11.8307 + 20.4914i 0.520818 + 0.902084i
\(517\) 36.4929 9.77825i 1.60496 0.430047i
\(518\) −17.5588 + 30.4127i −0.771489 + 1.33626i
\(519\) −13.1232 −0.576046
\(520\) 0 0
\(521\) −23.4746 −1.02844 −0.514220 0.857658i \(-0.671919\pi\)
−0.514220 + 0.857658i \(0.671919\pi\)
\(522\) 1.68033 2.91042i 0.0735461 0.127386i
\(523\) 23.9001 6.40400i 1.04508 0.280027i 0.304861 0.952397i \(-0.401390\pi\)
0.740216 + 0.672370i \(0.234723\pi\)
\(524\) 3.78986 + 6.56423i 0.165561 + 0.286760i
\(525\) 0 0
\(526\) 7.82436 29.2009i 0.341158 1.27322i
\(527\) −10.2612 + 5.92431i −0.446985 + 0.258067i
\(528\) 37.4226 1.62861
\(529\) 19.8383 11.4536i 0.862535 0.497985i
\(530\) 0 0
\(531\) 2.91964 + 10.8963i 0.126702 + 0.472857i
\(532\) 1.82159 + 1.82159i 0.0789759 + 0.0789759i
\(533\) −0.992330 2.21360i −0.0429826 0.0958817i
\(534\) 17.0776i 0.739019i
\(535\) 0 0
\(536\) 1.35290 2.34329i 0.0584363 0.101215i
\(537\) −1.12346 + 4.19281i −0.0484809 + 0.180933i
\(538\) 59.1745i 2.55119i
\(539\) −20.6708 5.53871i −0.890353 0.238569i
\(540\) 0 0
\(541\) −27.6908 + 27.6908i −1.19052 + 1.19052i −0.213597 + 0.976922i \(0.568518\pi\)
−0.976922 + 0.213597i \(0.931482\pi\)
\(542\) 30.9125 + 8.28297i 1.32780 + 0.355784i
\(543\) −4.92042 18.3632i −0.211155 0.788042i
\(544\) 12.8452 3.44185i 0.550731 0.147568i
\(545\) 0 0
\(546\) 42.2655 18.9471i 1.80880 0.810861i
\(547\) −6.53914 + 6.53914i −0.279593 + 0.279593i −0.832947 0.553353i \(-0.813348\pi\)
0.553353 + 0.832947i \(0.313348\pi\)
\(548\) 16.7675 + 9.68071i 0.716272 + 0.413540i
\(549\) 2.31902 + 1.33889i 0.0989733 + 0.0571422i
\(550\) 0 0
\(551\) −0.751344 0.751344i −0.0320083 0.0320083i
\(552\) 0.356506 + 0.617486i 0.0151739 + 0.0262820i
\(553\) −2.82613 4.89500i −0.120179 0.208156i
\(554\) −3.98180 3.98180i −0.169170 0.169170i
\(555\) 0 0
\(556\) −20.4359 11.7987i −0.866676 0.500375i
\(557\) −14.0717 8.12429i −0.596237 0.344237i 0.171323 0.985215i \(-0.445196\pi\)
−0.767560 + 0.640978i \(0.778529\pi\)
\(558\) 7.02763 7.02763i 0.297503 0.297503i
\(559\) 3.24046 31.6061i 0.137057 1.33679i
\(560\) 0 0
\(561\) −15.0244 + 4.02578i −0.634332 + 0.169969i
\(562\) 12.5206 + 46.7277i 0.528151 + 1.97109i
\(563\) −31.4174 8.41827i −1.32409 0.354788i −0.473579 0.880751i \(-0.657038\pi\)
−0.850507 + 0.525964i \(0.823705\pi\)
\(564\) −18.5161 + 18.5161i −0.779670 + 0.779670i
\(565\) 0 0
\(566\) 27.1382 + 7.27167i 1.14071 + 0.305651i
\(567\) 38.6538i 1.62331i
\(568\) −1.41331 + 5.27453i −0.0593010 + 0.221314i
\(569\) −16.4164 + 28.4341i −0.688212 + 1.19202i 0.284203 + 0.958764i \(0.408271\pi\)
−0.972416 + 0.233255i \(0.925062\pi\)
\(570\) 0 0
\(571\) 31.7967i 1.33065i −0.746554 0.665325i \(-0.768293\pi\)
0.746554 0.665325i \(-0.231707\pi\)
\(572\) 15.3392 + 11.0849i 0.641364 + 0.463484i
\(573\) 5.22875 + 5.22875i 0.218434 + 0.218434i
\(574\) −1.12874 4.21253i −0.0471129 0.175828i
\(575\) 0 0
\(576\) −1.82796 + 1.05538i −0.0761652 + 0.0439740i
\(577\) −39.9389 −1.66268 −0.831338 0.555767i \(-0.812425\pi\)
−0.831338 + 0.555767i \(0.812425\pi\)
\(578\) 20.4559 11.8102i 0.850854 0.491241i
\(579\) −0.145719 + 0.543832i −0.00605589 + 0.0226009i
\(580\) 0 0
\(581\) 13.4008 + 23.2109i 0.555959 + 0.962949i
\(582\) −62.5017 + 16.7473i −2.59078 + 0.694197i
\(583\) −8.66348 + 15.0056i −0.358805 + 0.621468i
\(584\) −17.4345 −0.721444
\(585\) 0 0
\(586\) −19.0063 −0.785143
\(587\) −9.32773 + 16.1561i −0.384997 + 0.666834i −0.991769 0.128042i \(-0.959131\pi\)
0.606772 + 0.794876i \(0.292464\pi\)
\(588\) 14.3271 3.83892i 0.590838 0.158315i
\(589\) −1.57117 2.72135i −0.0647389 0.112131i
\(590\) 0 0
\(591\) −13.2591 + 49.4837i −0.545407 + 2.03549i
\(592\) −22.8686 + 13.2032i −0.939893 + 0.542647i
\(593\) −8.65172 −0.355284 −0.177642 0.984095i \(-0.556847\pi\)
−0.177642 + 0.984095i \(0.556847\pi\)
\(594\) −25.2380 + 14.5712i −1.03553 + 0.597862i
\(595\) 0 0
\(596\) 4.60433 + 17.1836i 0.188601 + 0.703867i
\(597\) −8.06145 8.06145i −0.329933 0.329933i
\(598\) −0.205079 + 2.00025i −0.00838628 + 0.0817962i
\(599\) 35.1779i 1.43733i 0.695356 + 0.718666i \(0.255247\pi\)
−0.695356 + 0.718666i \(0.744753\pi\)
\(600\) 0 0
\(601\) 20.0384 34.7076i 0.817385 1.41575i −0.0902170 0.995922i \(-0.528756\pi\)
0.907602 0.419831i \(-0.137911\pi\)
\(602\) 14.7834 55.1722i 0.602524 2.24865i
\(603\) 2.12443i 0.0865136i
\(604\) −1.41621 0.379473i −0.0576249 0.0154405i
\(605\) 0 0
\(606\) 11.6890 11.6890i 0.474834 0.474834i
\(607\) 41.5934 + 11.1449i 1.68822 + 0.452358i 0.969930 0.243384i \(-0.0782575\pi\)
0.718292 + 0.695742i \(0.244924\pi\)
\(608\) 0.912802 + 3.40662i 0.0370190 + 0.138157i
\(609\) −13.3981 + 3.59000i −0.542917 + 0.145474i
\(610\) 0 0
\(611\) 34.7143 5.58899i 1.40439 0.226106i
\(612\) 1.80063 1.80063i 0.0727863 0.0727863i
\(613\) −17.5625 10.1397i −0.709344 0.409540i 0.101474 0.994838i \(-0.467644\pi\)
−0.810818 + 0.585298i \(0.800978\pi\)
\(614\) 3.39352 + 1.95925i 0.136952 + 0.0790690i
\(615\) 0 0
\(616\) −11.4553 11.4553i −0.461546 0.461546i
\(617\) 4.33527 + 7.50891i 0.174531 + 0.302297i 0.939999 0.341177i \(-0.110826\pi\)
−0.765468 + 0.643474i \(0.777492\pi\)
\(618\) 25.1365 + 43.5376i 1.01114 + 1.75134i
\(619\) −21.3034 21.3034i −0.856257 0.856257i 0.134638 0.990895i \(-0.457013\pi\)
−0.990895 + 0.134638i \(0.957013\pi\)
\(620\) 0 0
\(621\) −1.08290 0.625215i −0.0434554 0.0250890i
\(622\) −6.06077 3.49919i −0.243015 0.140305i
\(623\) −11.7725 + 11.7725i −0.471657 + 0.471657i
\(624\) 34.6468 + 3.55222i 1.38698 + 0.142203i
\(625\) 0 0
\(626\) −7.61954 + 2.04165i −0.304538 + 0.0816007i
\(627\) −1.06767 3.98458i −0.0426385 0.159129i
\(628\) 5.61682 + 1.50502i 0.224136 + 0.0600569i
\(629\) 7.76093 7.76093i 0.309449 0.309449i
\(630\) 0 0
\(631\) −27.4324 7.35050i −1.09207 0.292619i −0.332537 0.943090i \(-0.607905\pi\)
−0.759531 + 0.650472i \(0.774571\pi\)
\(632\) 1.88727i 0.0750715i
\(633\) −1.65548 + 6.17835i −0.0657996 + 0.245567i
\(634\) 21.1670 36.6622i 0.840647 1.45604i
\(635\) 0 0
\(636\) 12.0094i 0.476206i
\(637\) −18.6118 7.09000i −0.737427 0.280916i
\(638\) −9.92320 9.92320i −0.392863 0.392863i
\(639\) 1.10965 + 4.14125i 0.0438969 + 0.163825i
\(640\) 0 0
\(641\) 14.1756 8.18429i 0.559903 0.323260i −0.193204 0.981159i \(-0.561888\pi\)
0.753107 + 0.657899i \(0.228554\pi\)
\(642\) −25.6652 −1.01292
\(643\) 35.5518 20.5258i 1.40203 0.809460i 0.407425 0.913239i \(-0.366427\pi\)
0.994600 + 0.103779i \(0.0330933\pi\)
\(644\) −0.377841 + 1.41012i −0.0148890 + 0.0555666i
\(645\) 0 0
\(646\) −0.996819 1.72654i −0.0392193 0.0679298i
\(647\) −2.73861 + 0.733807i −0.107666 + 0.0288489i −0.312250 0.950000i \(-0.601083\pi\)
0.204584 + 0.978849i \(0.434416\pi\)
\(648\) −6.45318 + 11.1772i −0.253505 + 0.439083i
\(649\) 47.1059 1.84907
\(650\) 0 0
\(651\) −41.0201 −1.60771
\(652\) 1.53344 2.65599i 0.0600540 0.104017i
\(653\) 1.21283 0.324978i 0.0474619 0.0127174i −0.235010 0.971993i \(-0.575512\pi\)
0.282472 + 0.959276i \(0.408846\pi\)
\(654\) 25.3930 + 43.9820i 0.992947 + 1.71983i
\(655\) 0 0
\(656\) 0.848749 3.16758i 0.0331381 0.123673i
\(657\) −11.8546 + 6.84427i −0.462493 + 0.267020i
\(658\) 63.2122 2.46427
\(659\) 8.09916 4.67605i 0.315498 0.182153i −0.333886 0.942613i \(-0.608360\pi\)
0.649384 + 0.760460i \(0.275027\pi\)
\(660\) 0 0
\(661\) −6.64415 24.7963i −0.258427 0.964464i −0.966152 0.257975i \(-0.916945\pi\)
0.707724 0.706489i \(-0.249722\pi\)
\(662\) −2.58641 2.58641i −0.100524 0.100524i
\(663\) −14.2922 + 2.30103i −0.555061 + 0.0893647i
\(664\) 8.94896i 0.347287i
\(665\) 0 0
\(666\) −4.60315 + 7.97288i −0.178368 + 0.308943i
\(667\) 0.155847 0.581628i 0.00603441 0.0225207i
\(668\) 0.839440i 0.0324789i
\(669\) 14.1952 + 3.80358i 0.548817 + 0.147055i
\(670\) 0 0
\(671\) 7.90679 7.90679i 0.305238 0.305238i
\(672\) 44.4701 + 11.9157i 1.71547 + 0.459660i
\(673\) −10.6983 39.9267i −0.412390 1.53906i −0.790007 0.613098i \(-0.789923\pi\)
0.377617 0.925962i \(-0.376744\pi\)
\(674\) 15.3308 4.10787i 0.590519 0.158229i
\(675\) 0 0
\(676\) 13.1493 + 11.7188i 0.505740 + 0.450721i
\(677\) −15.5322 + 15.5322i −0.596950 + 0.596950i −0.939500 0.342549i \(-0.888710\pi\)
0.342549 + 0.939500i \(0.388710\pi\)
\(678\) −7.20690 4.16090i −0.276779 0.159799i
\(679\) 54.6308 + 31.5411i 2.09654 + 1.21044i
\(680\) 0 0
\(681\) 5.46862 + 5.46862i 0.209558 + 0.209558i
\(682\) −20.7508 35.9415i −0.794591 1.37627i
\(683\) −3.32652 5.76170i −0.127286 0.220465i 0.795338 0.606166i \(-0.207293\pi\)
−0.922624 + 0.385700i \(0.873960\pi\)
\(684\) 0.477541 + 0.477541i 0.0182592 + 0.0182592i
\(685\) 0 0
\(686\) 8.28646 + 4.78419i 0.316378 + 0.182661i
\(687\) 30.0851 + 17.3696i 1.14782 + 0.662692i
\(688\) 30.3701 30.3701i 1.15785 1.15785i
\(689\) −9.44525 + 13.0702i −0.359835 + 0.497936i
\(690\) 0 0
\(691\) −36.3445 + 9.73848i −1.38261 + 0.370469i −0.872069 0.489384i \(-0.837222\pi\)
−0.510542 + 0.859853i \(0.670555\pi\)
\(692\) −2.32201 8.66588i −0.0882698 0.329427i
\(693\) −12.2861 3.29204i −0.466709 0.125054i
\(694\) −42.1038 + 42.1038i −1.59824 + 1.59824i
\(695\) 0 0
\(696\) −4.47356 1.19869i −0.169570 0.0454361i
\(697\) 1.36302i 0.0516282i
\(698\) −3.22603 + 12.0397i −0.122107 + 0.455710i
\(699\) −4.04946 + 7.01387i −0.153165 + 0.265289i
\(700\) 0 0
\(701\) 40.3398i 1.52361i 0.647804 + 0.761807i \(0.275688\pi\)
−0.647804 + 0.761807i \(0.724312\pi\)
\(702\) −24.7491 + 11.0947i −0.934096 + 0.418744i
\(703\) 2.05825 + 2.05825i 0.0776285 + 0.0776285i
\(704\) 2.28126 + 8.51379i 0.0859783 + 0.320875i
\(705\) 0 0
\(706\) 43.3459 25.0258i 1.63134 0.941857i
\(707\) −16.1158 −0.606097
\(708\) −28.2753 + 16.3247i −1.06265 + 0.613521i
\(709\) −11.5415 + 43.0733i −0.433449 + 1.61765i 0.311304 + 0.950311i \(0.399234\pi\)
−0.744752 + 0.667341i \(0.767432\pi\)
\(710\) 0 0
\(711\) −0.740887 1.28325i −0.0277854 0.0481258i
\(712\) −5.36959 + 1.43878i −0.201234 + 0.0539204i
\(713\) 0.890371 1.54217i 0.0333447 0.0577546i
\(714\) −26.0250 −0.973960
\(715\) 0 0
\(716\) −2.96749 −0.110900
\(717\) −12.5746 + 21.7798i −0.469607 + 0.813383i
\(718\) −9.75479 + 2.61379i −0.364045 + 0.0975457i
\(719\) −13.7825 23.8720i −0.514001 0.890276i −0.999868 0.0162430i \(-0.994829\pi\)
0.485867 0.874033i \(-0.338504\pi\)
\(720\) 0 0
\(721\) 12.6850 47.3409i 0.472413 1.76307i
\(722\) −29.6807 + 17.1361i −1.10460 + 0.637741i
\(723\) −34.7768 −1.29336
\(724\) 11.2555 6.49836i 0.418307 0.241510i
\(725\) 0 0
\(726\) −3.76622 14.0557i −0.139777 0.521656i
\(727\) −29.4624 29.4624i −1.09270 1.09270i −0.995240 0.0974593i \(-0.968928\pi\)
−0.0974593 0.995240i \(-0.531072\pi\)
\(728\) −9.51825 11.6930i −0.352770 0.433370i
\(729\) 14.2845i 0.529057i
\(730\) 0 0
\(731\) −8.92588 + 15.4601i −0.330135 + 0.571811i
\(732\) −2.00591 + 7.48617i −0.0741407 + 0.276697i
\(733\) 23.3958i 0.864144i 0.901839 + 0.432072i \(0.142217\pi\)
−0.901839 + 0.432072i \(0.857783\pi\)
\(734\) −31.9794 8.56885i −1.18038 0.316282i
\(735\) 0 0
\(736\) −1.41323 + 1.41323i −0.0520924 + 0.0520924i
\(737\) −8.56897 2.29605i −0.315642 0.0845761i
\(738\) −0.295907 1.10434i −0.0108925 0.0406513i
\(739\) −15.5120 + 4.15644i −0.570620 + 0.152897i −0.532581 0.846379i \(-0.678778\pi\)
−0.0380389 + 0.999276i \(0.512111\pi\)
\(740\) 0 0
\(741\) −0.610250 3.79038i −0.0224181 0.139243i
\(742\) −20.4995 + 20.4995i −0.752561 + 0.752561i
\(743\) 45.2759 + 26.1400i 1.66101 + 0.958985i 0.972234 + 0.234011i \(0.0751853\pi\)
0.688777 + 0.724973i \(0.258148\pi\)
\(744\) −11.8615 6.84824i −0.434864 0.251069i
\(745\) 0 0
\(746\) 20.0933 + 20.0933i 0.735669 + 0.735669i
\(747\) 3.51310 + 6.08487i 0.128538 + 0.222634i
\(748\) −5.31682 9.20901i −0.194402 0.336715i
\(749\) 17.6925 + 17.6925i 0.646468 + 0.646468i
\(750\) 0 0
\(751\) 23.7599 + 13.7178i 0.867010 + 0.500569i 0.866354 0.499431i \(-0.166458\pi\)
0.000656703 1.00000i \(0.499791\pi\)
\(752\) 41.1638 + 23.7659i 1.50109 + 0.866655i
\(753\) −30.5066 + 30.5066i −1.11172 + 1.11172i
\(754\) −8.24524 10.1291i −0.300274 0.368880i
\(755\) 0 0
\(756\) −19.0207 + 5.09659i −0.691777 + 0.185361i
\(757\) −0.622824 2.32441i −0.0226369 0.0844821i 0.953683 0.300813i \(-0.0972578\pi\)
−0.976320 + 0.216330i \(0.930591\pi\)
\(758\) 37.8037 + 10.1295i 1.37309 + 0.367919i
\(759\) 1.65300 1.65300i 0.0600000 0.0600000i
\(760\) 0 0
\(761\) 2.35997 + 0.632352i 0.0855488 + 0.0229227i 0.301340 0.953517i \(-0.402566\pi\)
−0.215791 + 0.976440i \(0.569233\pi\)
\(762\) 4.66848i 0.169121i
\(763\) 12.8144 47.8242i 0.463914 1.73135i
\(764\) −2.52761 + 4.37796i −0.0914459 + 0.158389i
\(765\) 0 0
\(766\) 35.5469i 1.28436i
\(767\) 43.6120 + 4.47139i 1.57474 + 0.161452i
\(768\) 29.3786 + 29.3786i 1.06011 + 1.06011i
\(769\) −3.50862 13.0944i −0.126524 0.472195i 0.873365 0.487066i \(-0.161933\pi\)
−0.999889 + 0.0148712i \(0.995266\pi\)
\(770\) 0 0
\(771\) 21.9917 12.6969i 0.792011 0.457268i
\(772\) −0.384901 −0.0138529
\(773\) −19.4375 + 11.2222i −0.699118 + 0.403636i −0.807019 0.590525i \(-0.798921\pi\)
0.107901 + 0.994162i \(0.465587\pi\)
\(774\) 3.87555 14.4637i 0.139304 0.519888i
\(775\) 0 0
\(776\) 10.5315 + 18.2410i 0.378058 + 0.654815i
\(777\) 36.7030 9.83454i 1.31671 0.352812i
\(778\) 13.6082 23.5701i 0.487878 0.845030i
\(779\) −0.361484 −0.0129515
\(780\) 0 0
\(781\) 17.9032 0.640626
\(782\) 0.564890 0.978419i 0.0202004 0.0349882i
\(783\) 7.84541 2.10217i 0.280372 0.0751255i
\(784\) −13.4618 23.3165i −0.480778 0.832732i
\(785\) 0 0
\(786\) 5.25605 19.6158i 0.187477 0.699674i
\(787\) −11.6877 + 6.74791i −0.416622 + 0.240537i −0.693631 0.720330i \(-0.743990\pi\)
0.277009 + 0.960867i \(0.410657\pi\)
\(788\) −35.0224 −1.24762
\(789\) −28.3280 + 16.3552i −1.00850 + 0.582260i
\(790\) 0 0
\(791\) 2.09978 + 7.83647i 0.0746594 + 0.278633i
\(792\) −3.00307 3.00307i −0.106709 0.106709i
\(793\) 8.07086 6.56980i 0.286605 0.233300i
\(794\) 9.66696i 0.343068i
\(795\) 0 0
\(796\) 3.89696 6.74974i 0.138124 0.239238i
\(797\) 1.62398 6.06076i 0.0575242 0.214683i −0.931181 0.364558i \(-0.881220\pi\)
0.988705 + 0.149874i \(0.0478869\pi\)
\(798\) 6.90201i 0.244328i
\(799\) −19.0831 5.11330i −0.675112 0.180896i
\(800\) 0 0
\(801\) −3.08625 + 3.08625i −0.109047 + 0.109047i
\(802\) 49.3238 + 13.2163i 1.74168 + 0.466683i
\(803\) 14.7943 + 55.2132i 0.522081 + 1.94843i
\(804\) 5.93922 1.59141i 0.209460 0.0561247i
\(805\) 0 0
\(806\) −15.8001 35.2454i −0.556534 1.24146i
\(807\) 45.2744 45.2744i 1.59374 1.59374i
\(808\) −4.66009 2.69050i −0.163941 0.0946516i
\(809\) 18.6872 + 10.7890i 0.657006 + 0.379322i 0.791135 0.611641i \(-0.209490\pi\)
−0.134130 + 0.990964i \(0.542824\pi\)
\(810\) 0 0
\(811\) 22.5473 + 22.5473i 0.791743 + 0.791743i 0.981777 0.190035i \(-0.0608601\pi\)
−0.190035 + 0.981777i \(0.560860\pi\)
\(812\) −4.74129 8.21215i −0.166387 0.288190i
\(813\) −17.3138 29.9885i −0.607223 1.05174i
\(814\) 27.1839 + 27.1839i 0.952795 + 0.952795i
\(815\) 0 0
\(816\) −16.9475 9.78462i −0.593280 0.342530i
\(817\) −4.10012 2.36721i −0.143445 0.0828180i
\(818\) −3.41289 + 3.41289i −0.119329 + 0.119329i
\(819\) −11.0623 4.21408i −0.386547 0.147252i
\(820\) 0 0
\(821\) −17.3216 + 4.64130i −0.604526 + 0.161982i −0.548084 0.836423i \(-0.684642\pi\)
−0.0564427 + 0.998406i \(0.517976\pi\)
\(822\) −13.4259 50.1062i −0.468282 1.74765i
\(823\) −1.11284 0.298185i −0.0387913 0.0103941i 0.239371 0.970928i \(-0.423059\pi\)
−0.278162 + 0.960534i \(0.589725\pi\)
\(824\) 11.5715 11.5715i 0.403112 0.403112i
\(825\) 0 0
\(826\) 76.1300 + 20.3990i 2.64890 + 0.709771i
\(827\) 4.45029i 0.154752i −0.997002 0.0773759i \(-0.975346\pi\)
0.997002 0.0773759i \(-0.0246542\pi\)
\(828\) −0.0990534 + 0.369672i −0.00344234 + 0.0128470i
\(829\) 14.5637 25.2251i 0.505819 0.876103i −0.494159 0.869372i \(-0.664524\pi\)
0.999977 0.00673181i \(-0.00214282\pi\)
\(830\) 0 0
\(831\) 6.09295i 0.211362i
\(832\) 1.30391 + 8.09884i 0.0452050 + 0.280777i
\(833\) 7.91294 + 7.91294i 0.274167 + 0.274167i
\(834\) 16.3633 + 61.0685i 0.566613 + 2.11463i
\(835\) 0 0
\(836\) 2.44229 1.41006i 0.0844685 0.0487679i
\(837\) 24.0199 0.830249
\(838\) −31.2015 + 18.0142i −1.07784 + 0.622291i
\(839\) 8.36719 31.2268i 0.288867 1.07807i −0.657099 0.753804i \(-0.728217\pi\)
0.945967 0.324264i \(-0.105117\pi\)
\(840\) 0 0
\(841\) −12.5444 21.7275i −0.432565 0.749224i
\(842\) 26.1283 7.00106i 0.900441 0.241273i
\(843\) 26.1718 45.3309i 0.901405 1.56128i
\(844\) −4.37277 −0.150517
\(845\) 0 0
\(846\) 16.5715 0.569739
\(847\) −7.09313 + 12.2857i −0.243723 + 0.422140i
\(848\) −21.0565 + 5.64207i −0.723083 + 0.193750i
\(849\) −15.1999 26.3270i −0.521660 0.903541i
\(850\) 0 0
\(851\) −0.426931 + 1.59333i −0.0146350 + 0.0546186i
\(852\) −10.7464 + 6.20441i −0.368164 + 0.212560i
\(853\) −9.24230 −0.316450 −0.158225 0.987403i \(-0.550577\pi\)
−0.158225 + 0.987403i \(0.550577\pi\)
\(854\) 16.2025 9.35453i 0.554439 0.320105i
\(855\) 0 0
\(856\) 2.16228 + 8.06972i 0.0739051 + 0.275817i
\(857\) 37.7913 + 37.7913i 1.29093 + 1.29093i 0.934214 + 0.356713i \(0.116103\pi\)
0.356713 + 0.934214i \(0.383897\pi\)
\(858\) −8.05973 50.0606i −0.275155 1.70904i
\(859\) 6.16263i 0.210266i −0.994458 0.105133i \(-0.966473\pi\)
0.994458 0.105133i \(-0.0335269\pi\)
\(860\) 0 0
\(861\) −2.35941 + 4.08661i −0.0804083 + 0.139271i
\(862\) 8.12181 30.3110i 0.276630 1.03240i
\(863\) 33.7740i 1.14968i 0.818266 + 0.574840i \(0.194936\pi\)
−0.818266 + 0.574840i \(0.805064\pi\)
\(864\) −26.0401 6.97742i −0.885902 0.237377i
\(865\) 0 0
\(866\) −14.5532 + 14.5532i −0.494539 + 0.494539i
\(867\) −24.6868 6.61482i −0.838409 0.224651i
\(868\) −7.25808 27.0875i −0.246355 0.919410i
\(869\) −5.97678 + 1.60147i −0.202748 + 0.0543263i
\(870\) 0 0
\(871\) −7.71545 2.93913i −0.261428 0.0995886i
\(872\) 11.6896 11.6896i 0.395861 0.395861i
\(873\) 14.3218 + 8.26870i 0.484720 + 0.279853i
\(874\) 0.259484 + 0.149813i 0.00877716 + 0.00506750i
\(875\) 0 0
\(876\) −28.0146 28.0146i −0.946527 0.946527i
\(877\) 11.3486 + 19.6563i 0.383214 + 0.663747i 0.991520 0.129956i \(-0.0414837\pi\)
−0.608305 + 0.793703i \(0.708150\pi\)
\(878\) 3.88705 + 6.73256i 0.131181 + 0.227213i
\(879\) 14.5417 + 14.5417i 0.490480 + 0.490480i
\(880\) 0 0
\(881\) −6.78312 3.91623i −0.228529 0.131941i 0.381364 0.924425i \(-0.375454\pi\)
−0.609893 + 0.792484i \(0.708788\pi\)
\(882\) −8.12905 4.69331i −0.273719 0.158032i
\(883\) −18.9296 + 18.9296i −0.637032 + 0.637032i −0.949822 0.312790i \(-0.898736\pi\)
0.312790 + 0.949822i \(0.398736\pi\)
\(884\) −4.04832 9.03064i −0.136160 0.303733i
\(885\) 0 0
\(886\) −37.9234 + 10.1615i −1.27406 + 0.341384i
\(887\) −9.19729 34.3248i −0.308815 1.15251i −0.929612 0.368541i \(-0.879857\pi\)
0.620797 0.783972i \(-0.286809\pi\)
\(888\) 12.2550 + 3.28372i 0.411251 + 0.110194i
\(889\) 3.21825 3.21825i 0.107937 0.107937i
\(890\) 0 0
\(891\) 40.8731 + 10.9519i 1.36930 + 0.366903i
\(892\) 10.0467i 0.336389i
\(893\) 1.35608 5.06098i 0.0453796 0.169359i
\(894\) 23.8314 41.2772i 0.797042 1.38052i
\(895\) 0 0
\(896\) 31.7130i 1.05946i
\(897\) 1.68730 1.37348i 0.0563372 0.0458593i
\(898\) −18.8417 18.8417i −0.628755 0.628755i
\(899\) 2.99371 + 11.1727i 0.0998459 + 0.372630i
\(900\) 0 0
\(901\) 7.84682 4.53036i 0.261415 0.150928i
\(902\) −4.77421 −0.158964
\(903\) −53.5230 + 30.9015i −1.78113 + 1.02834i
\(904\) −0.701108 + 2.61657i −0.0233185 + 0.0870258i
\(905\) 0 0
\(906\) 1.96411 + 3.40193i 0.0652530 + 0.113022i
\(907\) −44.9172 + 12.0355i −1.49145 + 0.399633i −0.910227 0.414109i \(-0.864093\pi\)
−0.581225 + 0.813743i \(0.697426\pi\)
\(908\) −2.64357 + 4.57880i −0.0877300 + 0.151953i
\(909\) −4.22485 −0.140130
\(910\) 0 0
\(911\) 17.7325 0.587504 0.293752 0.955882i \(-0.405096\pi\)
0.293752 + 0.955882i \(0.405096\pi\)
\(912\) 2.59495 4.49459i 0.0859274 0.148831i
\(913\) 28.3404 7.59379i 0.937931 0.251318i
\(914\) −27.7449 48.0556i −0.917720 1.58954i
\(915\) 0 0
\(916\) −6.14674 + 22.9399i −0.203094 + 0.757957i
\(917\) −17.1456 + 9.89902i −0.566198 + 0.326894i
\(918\) 15.2393 0.502971
\(919\) 42.2580 24.3977i 1.39396 0.804806i 0.400213 0.916422i \(-0.368936\pi\)
0.993751 + 0.111617i \(0.0356029\pi\)
\(920\) 0 0
\(921\) −1.09736 4.09541i −0.0361593 0.134948i
\(922\) −8.98564 8.98564i −0.295926 0.295926i
\(923\) 16.5752 + 1.69940i 0.545581 + 0.0559365i
\(924\) 36.8139i 1.21109i
\(925\) 0 0
\(926\) −28.7990 + 49.8814i −0.946395 + 1.63920i
\(927\) 3.32544 12.4107i 0.109222 0.407621i
\(928\) 12.9820i 0.426155i
\(929\) 10.0330 + 2.68833i 0.329171 + 0.0882012i 0.419620 0.907700i \(-0.362163\pi\)
−0.0904485 + 0.995901i \(0.528830\pi\)
\(930\) 0 0
\(931\) −2.09857 + 2.09857i −0.0687778 + 0.0687778i
\(932\) −5.34810 1.43302i −0.175183 0.0469401i
\(933\) 1.95987 + 7.31433i 0.0641632 + 0.239460i
\(934\) −9.24814 + 2.47803i −0.302608 + 0.0810837i
\(935\) 0 0
\(936\) −2.49527 3.06538i −0.0815604 0.100195i
\(937\) −5.31856 + 5.31856i −0.173750 + 0.173750i −0.788625 0.614875i \(-0.789206\pi\)
0.614875 + 0.788625i \(0.289206\pi\)
\(938\) −12.8544 7.42149i −0.419711 0.242320i
\(939\) 7.39178 + 4.26764i 0.241221 + 0.139269i
\(940\) 0 0
\(941\) −38.9093 38.9093i −1.26841 1.26841i −0.946911 0.321497i \(-0.895814\pi\)
−0.321497 0.946911i \(-0.604186\pi\)
\(942\) −7.78981 13.4923i −0.253806 0.439604i
\(943\) −0.102425 0.177406i −0.00333542 0.00577712i
\(944\) 41.9064 + 41.9064i 1.36394 + 1.36394i
\(945\) 0 0
\(946\) −54.1514 31.2643i −1.76061 1.01649i
\(947\) −29.2298 16.8759i −0.949842 0.548392i −0.0568101 0.998385i \(-0.518093\pi\)
−0.893032 + 0.449993i \(0.851426\pi\)
\(948\) 3.03256 3.03256i 0.0984930 0.0984930i
\(949\) 8.45606 + 52.5222i 0.274495 + 1.70494i
\(950\) 0 0
\(951\) −44.2451 + 11.8554i −1.43475 + 0.384439i
\(952\) 2.19259 + 8.18285i 0.0710622 + 0.265208i
\(953\) −4.26581 1.14302i −0.138183 0.0370260i 0.189065 0.981965i \(-0.439454\pi\)
−0.327248 + 0.944939i \(0.606121\pi\)
\(954\) −5.37407 + 5.37407i −0.173992 + 0.173992i
\(955\) 0 0
\(956\) −16.6072 4.44988i −0.537115 0.143919i
\(957\) 15.1845i 0.490845i
\(958\) 9.17471 34.2405i 0.296422 1.10626i
\(959\) −25.2858 + 43.7963i −0.816520 + 1.41425i
\(960\) 0 0
\(961\) 3.20686i 0.103447i
\(962\) 22.5872 + 27.7479i 0.728242 + 0.894630i
\(963\) 4.63819 + 4.63819i 0.149463 + 0.149463i
\(964\) −6.15338 22.9647i −0.198187 0.739645i
\(965\) 0 0
\(966\) 3.38730 1.95566i 0.108985 0.0629223i
\(967\) −16.2803 −0.523540 −0.261770 0.965130i \(-0.584306\pi\)
−0.261770 + 0.965130i \(0.584306\pi\)
\(968\) −4.10214 + 2.36837i −0.131848 + 0.0761223i
\(969\) −0.558310 + 2.08364i −0.0179355 + 0.0669363i
\(970\) 0 0
\(971\) −6.40146 11.0877i −0.205433 0.355820i 0.744838 0.667245i \(-0.232527\pi\)
−0.950270 + 0.311426i \(0.899193\pi\)
\(972\) −12.2052 + 3.27038i −0.391482 + 0.104897i
\(973\) 30.8179 53.3781i 0.987975 1.71122i
\(974\) −42.7918 −1.37114
\(975\) 0 0
\(976\) 14.0681 0.450309
\(977\) −8.02436 + 13.8986i −0.256722 + 0.444655i −0.965362 0.260915i \(-0.915976\pi\)
0.708640 + 0.705570i \(0.249309\pi\)
\(978\) −7.93687 + 2.12668i −0.253793 + 0.0680037i
\(979\) 9.11292 + 15.7840i 0.291250 + 0.504460i
\(980\) 0 0
\(981\) 3.35939 12.5374i 0.107257 0.400288i
\(982\) 33.8164 19.5239i 1.07912 0.623033i
\(983\) 34.3036 1.09411 0.547057 0.837096i \(-0.315748\pi\)
0.547057 + 0.837096i \(0.315748\pi\)
\(984\) −1.36450 + 0.787797i −0.0434988 + 0.0251141i
\(985\) 0 0
\(986\) 1.89934 + 7.08844i 0.0604874 + 0.225742i
\(987\) −48.3637 48.3637i −1.53943 1.53943i
\(988\) 2.39499 1.07364i 0.0761947 0.0341572i
\(989\) 2.68296i 0.0853131i
\(990\) 0 0
\(991\) −11.1772 + 19.3596i −0.355057 + 0.614977i −0.987128 0.159934i \(-0.948872\pi\)
0.632071 + 0.774911i \(0.282205\pi\)
\(992\) 9.93658 37.0838i 0.315487 1.17741i
\(993\) 3.95773i 0.125595i
\(994\) 28.9341 + 7.75287i 0.917734 + 0.245906i
\(995\) 0 0
\(996\) −14.3796 + 14.3796i −0.455637 + 0.455637i
\(997\) 11.4991 + 3.08118i 0.364181 + 0.0975820i 0.436269 0.899816i \(-0.356300\pi\)
−0.0720881 + 0.997398i \(0.522966\pi\)
\(998\) 15.4458 + 57.6445i 0.488928 + 1.82471i
\(999\) −21.4920 + 5.75875i −0.679975 + 0.182199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.s.b.293.4 20
5.2 odd 4 325.2.x.b.7.4 20
5.3 odd 4 65.2.t.a.7.2 yes 20
5.4 even 2 65.2.o.a.33.2 yes 20
13.2 odd 12 325.2.x.b.93.4 20
15.8 even 4 585.2.dp.a.397.4 20
15.14 odd 2 585.2.cf.a.163.4 20
65.2 even 12 inner 325.2.s.b.132.4 20
65.3 odd 12 845.2.t.f.427.4 20
65.4 even 6 845.2.k.d.268.3 20
65.8 even 4 845.2.o.f.357.4 20
65.9 even 6 845.2.k.e.268.8 20
65.18 even 4 845.2.o.e.357.2 20
65.19 odd 12 845.2.f.e.408.3 20
65.23 odd 12 845.2.t.e.427.2 20
65.24 odd 12 845.2.t.g.418.4 20
65.28 even 12 65.2.o.a.2.2 20
65.29 even 6 845.2.o.e.258.2 20
65.33 even 12 845.2.k.d.577.3 20
65.34 odd 4 845.2.t.e.188.2 20
65.38 odd 4 845.2.t.g.657.4 20
65.43 odd 12 845.2.f.d.437.3 20
65.44 odd 4 845.2.t.f.188.4 20
65.48 odd 12 845.2.f.e.437.8 20
65.49 even 6 845.2.o.f.258.4 20
65.54 odd 12 65.2.t.a.28.2 yes 20
65.58 even 12 845.2.k.e.577.8 20
65.59 odd 12 845.2.f.d.408.8 20
65.63 even 12 845.2.o.g.587.4 20
65.64 even 2 845.2.o.g.488.4 20
195.119 even 12 585.2.dp.a.28.4 20
195.158 odd 12 585.2.cf.a.262.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.2 20 65.28 even 12
65.2.o.a.33.2 yes 20 5.4 even 2
65.2.t.a.7.2 yes 20 5.3 odd 4
65.2.t.a.28.2 yes 20 65.54 odd 12
325.2.s.b.132.4 20 65.2 even 12 inner
325.2.s.b.293.4 20 1.1 even 1 trivial
325.2.x.b.7.4 20 5.2 odd 4
325.2.x.b.93.4 20 13.2 odd 12
585.2.cf.a.163.4 20 15.14 odd 2
585.2.cf.a.262.4 20 195.158 odd 12
585.2.dp.a.28.4 20 195.119 even 12
585.2.dp.a.397.4 20 15.8 even 4
845.2.f.d.408.8 20 65.59 odd 12
845.2.f.d.437.3 20 65.43 odd 12
845.2.f.e.408.3 20 65.19 odd 12
845.2.f.e.437.8 20 65.48 odd 12
845.2.k.d.268.3 20 65.4 even 6
845.2.k.d.577.3 20 65.33 even 12
845.2.k.e.268.8 20 65.9 even 6
845.2.k.e.577.8 20 65.58 even 12
845.2.o.e.258.2 20 65.29 even 6
845.2.o.e.357.2 20 65.18 even 4
845.2.o.f.258.4 20 65.49 even 6
845.2.o.f.357.4 20 65.8 even 4
845.2.o.g.488.4 20 65.64 even 2
845.2.o.g.587.4 20 65.63 even 12
845.2.t.e.188.2 20 65.34 odd 4
845.2.t.e.427.2 20 65.23 odd 12
845.2.t.f.188.4 20 65.44 odd 4
845.2.t.f.427.4 20 65.3 odd 12
845.2.t.g.418.4 20 65.24 odd 12
845.2.t.g.657.4 20 65.38 odd 4