Properties

Label 845.2.o.f.357.4
Level $845$
Weight $2$
Character 845.357
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(258,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.258"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,4,-2,-6,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 357.4
Root \(-1.83163i\) of defining polynomial
Character \(\chi\) \(=\) 845.357
Dual form 845.2.o.f.258.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.915816 - 1.58624i) q^{2} +(-0.512942 - 1.91432i) q^{3} +(-0.677439 - 1.17336i) q^{4} +(-1.45480 - 1.69810i) q^{5} +(-3.50634 - 0.939520i) q^{6} +(-3.06478 + 1.76945i) q^{7} +1.18163 q^{8} +(-0.803451 + 0.463873i) q^{9} +(-4.02593 + 0.752519i) q^{10} +(-3.74209 + 1.00269i) q^{11} +(-1.89870 + 1.89870i) q^{12} +6.48197i q^{14} +(-2.50449 + 3.65599i) q^{15} +(2.43703 - 4.22106i) q^{16} +(-1.95684 - 0.524334i) q^{17} +1.69929i q^{18} +(-0.139057 + 0.518968i) q^{19} +(-1.00694 + 2.85736i) q^{20} +(4.95936 + 4.95936i) q^{21} +(-1.83656 + 6.85414i) q^{22} +(-0.294095 + 0.0788026i) q^{23} +(-0.606106 - 2.26202i) q^{24} +(-0.767094 + 4.94081i) q^{25} +(-2.90402 - 2.90402i) q^{27} +(4.15240 + 2.39739i) q^{28} +(-1.71273 - 0.988843i) q^{29} +(3.50563 + 7.32093i) q^{30} +(-4.13563 + 4.13563i) q^{31} +(-3.28212 - 5.68479i) q^{32} +(3.83895 + 6.64926i) q^{33} +(-2.62382 + 2.62382i) q^{34} +(7.46336 + 2.63010i) q^{35} +(1.08858 + 0.628491i) q^{36} +(4.69189 + 2.70887i) q^{37} +(0.695857 + 0.695857i) q^{38} +(-1.71904 - 2.00652i) q^{40} +(0.174136 + 0.649884i) q^{41} +(12.4086 - 3.32487i) q^{42} +(2.28069 - 8.51164i) q^{43} +(3.71155 + 3.71155i) q^{44} +(1.95657 + 0.689498i) q^{45} +(-0.144337 + 0.538675i) q^{46} -9.75201i q^{47} +(-9.33053 - 2.50011i) q^{48} +(2.76192 - 4.78379i) q^{49} +(7.13479 + 5.74167i) q^{50} +4.01498i q^{51} +(3.16254 - 3.16254i) q^{53} +(-7.26602 + 1.94693i) q^{54} +(7.14668 + 4.89574i) q^{55} +(-3.62143 + 2.09083i) q^{56} +1.06480 q^{57} +(-3.13709 + 1.81120i) q^{58} +(-11.7449 - 3.14703i) q^{59} +(5.98642 + 0.461950i) q^{60} +(1.44316 + 2.49963i) q^{61} +(2.77263 + 10.3476i) q^{62} +(1.64160 - 2.84334i) q^{63} -2.27514 q^{64} +14.0631 q^{66} +(1.14494 - 1.98310i) q^{67} +(0.710408 + 2.65128i) q^{68} +(0.301707 + 0.522573i) q^{69} +(11.0070 - 9.43000i) q^{70} +(-4.46378 - 1.19607i) q^{71} +(-0.949380 + 0.548125i) q^{72} -14.7546 q^{73} +(8.59382 - 4.96165i) q^{74} +(9.85178 - 1.06588i) q^{75} +(0.703137 - 0.188405i) q^{76} +(9.69449 - 9.69449i) q^{77} +1.59718i q^{79} +(-10.7132 + 2.00249i) q^{80} +(-5.46126 + 9.45918i) q^{81} +(1.19035 + 0.318953i) q^{82} -7.57341i q^{83} +(2.45944 - 9.17877i) q^{84} +(1.95645 + 4.08571i) q^{85} +(-11.4128 - 11.4128i) q^{86} +(-1.01444 + 3.78593i) q^{87} +(-4.42176 + 1.18481i) q^{88} +(-1.21762 - 4.54423i) q^{89} +(2.88556 - 2.47213i) q^{90} +(0.291695 + 0.291695i) q^{92} +(10.0383 + 5.79560i) q^{93} +(-15.4690 - 8.93105i) q^{94} +(1.08356 - 0.518863i) q^{95} +(-9.19900 + 9.19900i) q^{96} +(8.91268 + 15.4372i) q^{97} +(-5.05883 - 8.76215i) q^{98} +(2.54147 - 2.54147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 2 q^{3} - 6 q^{4} + 6 q^{5} - 4 q^{6} - 6 q^{7} - 12 q^{8} + 12 q^{9} + 2 q^{10} - 8 q^{11} + 24 q^{12} - 12 q^{15} - 2 q^{16} - 4 q^{17} + 16 q^{19} - 8 q^{20} - 4 q^{21} + 16 q^{22} + 10 q^{23}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.915816 1.58624i 0.647580 1.12164i −0.336119 0.941819i \(-0.609115\pi\)
0.983699 0.179822i \(-0.0575521\pi\)
\(3\) −0.512942 1.91432i −0.296147 1.10524i −0.940302 0.340341i \(-0.889458\pi\)
0.644155 0.764895i \(-0.277209\pi\)
\(4\) −0.677439 1.17336i −0.338719 0.586679i
\(5\) −1.45480 1.69810i −0.650608 0.759414i
\(6\) −3.50634 0.939520i −1.43146 0.383558i
\(7\) −3.06478 + 1.76945i −1.15838 + 0.668790i −0.950915 0.309453i \(-0.899854\pi\)
−0.207464 + 0.978243i \(0.566521\pi\)
\(8\) 1.18163 0.417769
\(9\) −0.803451 + 0.463873i −0.267817 + 0.154624i
\(10\) −4.02593 + 0.752519i −1.27311 + 0.237967i
\(11\) −3.74209 + 1.00269i −1.12828 + 0.302323i −0.774231 0.632903i \(-0.781863\pi\)
−0.354053 + 0.935226i \(0.615197\pi\)
\(12\) −1.89870 + 1.89870i −0.548108 + 0.548108i
\(13\) 0 0
\(14\) 6.48197i 1.73238i
\(15\) −2.50449 + 3.65599i −0.646656 + 0.943973i
\(16\) 2.43703 4.22106i 0.609258 1.05527i
\(17\) −1.95684 0.524334i −0.474603 0.127170i 0.0135853 0.999908i \(-0.495676\pi\)
−0.488189 + 0.872738i \(0.662342\pi\)
\(18\) 1.69929i 0.400526i
\(19\) −0.139057 + 0.518968i −0.0319019 + 0.119059i −0.980041 0.198797i \(-0.936296\pi\)
0.948139 + 0.317857i \(0.102963\pi\)
\(20\) −1.00694 + 2.85736i −0.225159 + 0.638926i
\(21\) 4.95936 + 4.95936i 1.08222 + 1.08222i
\(22\) −1.83656 + 6.85414i −0.391556 + 1.46131i
\(23\) −0.294095 + 0.0788026i −0.0613231 + 0.0164315i −0.289350 0.957223i \(-0.593439\pi\)
0.228027 + 0.973655i \(0.426773\pi\)
\(24\) −0.606106 2.26202i −0.123721 0.461733i
\(25\) −0.767094 + 4.94081i −0.153419 + 0.988161i
\(26\) 0 0
\(27\) −2.90402 2.90402i −0.558879 0.558879i
\(28\) 4.15240 + 2.39739i 0.784730 + 0.453064i
\(29\) −1.71273 0.988843i −0.318045 0.183624i 0.332476 0.943112i \(-0.392116\pi\)
−0.650521 + 0.759488i \(0.725449\pi\)
\(30\) 3.50563 + 7.32093i 0.640038 + 1.33661i
\(31\) −4.13563 + 4.13563i −0.742781 + 0.742781i −0.973112 0.230331i \(-0.926019\pi\)
0.230331 + 0.973112i \(0.426019\pi\)
\(32\) −3.28212 5.68479i −0.580202 1.00494i
\(33\) 3.83895 + 6.64926i 0.668276 + 1.15749i
\(34\) −2.62382 + 2.62382i −0.449982 + 0.449982i
\(35\) 7.46336 + 2.63010i 1.26154 + 0.444569i
\(36\) 1.08858 + 0.628491i 0.181430 + 0.104748i
\(37\) 4.69189 + 2.70887i 0.771342 + 0.445335i 0.833353 0.552741i \(-0.186418\pi\)
−0.0620109 + 0.998075i \(0.519751\pi\)
\(38\) 0.695857 + 0.695857i 0.112883 + 0.112883i
\(39\) 0 0
\(40\) −1.71904 2.00652i −0.271803 0.317259i
\(41\) 0.174136 + 0.649884i 0.0271955 + 0.101495i 0.978190 0.207714i \(-0.0666024\pi\)
−0.950994 + 0.309209i \(0.899936\pi\)
\(42\) 12.4086 3.32487i 1.91469 0.513039i
\(43\) 2.28069 8.51164i 0.347802 1.29801i −0.541504 0.840698i \(-0.682145\pi\)
0.889305 0.457314i \(-0.151189\pi\)
\(44\) 3.71155 + 3.71155i 0.559538 + 0.559538i
\(45\) 1.95657 + 0.689498i 0.291668 + 0.102784i
\(46\) −0.144337 + 0.538675i −0.0212814 + 0.0794232i
\(47\) 9.75201i 1.42248i −0.702951 0.711238i \(-0.748135\pi\)
0.702951 0.711238i \(-0.251865\pi\)
\(48\) −9.33053 2.50011i −1.34675 0.360860i
\(49\) 2.76192 4.78379i 0.394561 0.683399i
\(50\) 7.13479 + 5.74167i 1.00901 + 0.811994i
\(51\) 4.01498i 0.562209i
\(52\) 0 0
\(53\) 3.16254 3.16254i 0.434409 0.434409i −0.455716 0.890125i \(-0.650617\pi\)
0.890125 + 0.455716i \(0.150617\pi\)
\(54\) −7.26602 + 1.94693i −0.988781 + 0.264943i
\(55\) 7.14668 + 4.89574i 0.963658 + 0.660141i
\(56\) −3.62143 + 2.09083i −0.483934 + 0.279399i
\(57\) 1.06480 0.141036
\(58\) −3.13709 + 1.81120i −0.411919 + 0.237822i
\(59\) −11.7449 3.14703i −1.52905 0.409708i −0.606343 0.795203i \(-0.707364\pi\)
−0.922710 + 0.385495i \(0.874031\pi\)
\(60\) 5.98642 + 0.461950i 0.772844 + 0.0596374i
\(61\) 1.44316 + 2.49963i 0.184778 + 0.320044i 0.943502 0.331368i \(-0.107510\pi\)
−0.758724 + 0.651412i \(0.774177\pi\)
\(62\) 2.77263 + 10.3476i 0.352124 + 1.31414i
\(63\) 1.64160 2.84334i 0.206822 0.358227i
\(64\) −2.27514 −0.284392
\(65\) 0 0
\(66\) 14.0631 1.73105
\(67\) 1.14494 1.98310i 0.139877 0.242274i −0.787573 0.616222i \(-0.788663\pi\)
0.927450 + 0.373947i \(0.121996\pi\)
\(68\) 0.710408 + 2.65128i 0.0861496 + 0.321515i
\(69\) 0.301707 + 0.522573i 0.0363213 + 0.0629104i
\(70\) 11.0070 9.43000i 1.31559 1.12710i
\(71\) −4.46378 1.19607i −0.529753 0.141947i −0.0159789 0.999872i \(-0.505086\pi\)
−0.513774 + 0.857925i \(0.671753\pi\)
\(72\) −0.949380 + 0.548125i −0.111886 + 0.0645972i
\(73\) −14.7546 −1.72690 −0.863449 0.504436i \(-0.831701\pi\)
−0.863449 + 0.504436i \(0.831701\pi\)
\(74\) 8.59382 4.96165i 0.999011 0.576780i
\(75\) 9.85178 1.06588i 1.13759 0.123077i
\(76\) 0.703137 0.188405i 0.0806554 0.0216115i
\(77\) 9.69449 9.69449i 1.10479 1.10479i
\(78\) 0 0
\(79\) 1.59718i 0.179696i 0.995955 + 0.0898482i \(0.0286382\pi\)
−0.995955 + 0.0898482i \(0.971362\pi\)
\(80\) −10.7132 + 2.00249i −1.19777 + 0.223885i
\(81\) −5.46126 + 9.45918i −0.606807 + 1.05102i
\(82\) 1.19035 + 0.318953i 0.131452 + 0.0352225i
\(83\) 7.57341i 0.831290i −0.909527 0.415645i \(-0.863556\pi\)
0.909527 0.415645i \(-0.136444\pi\)
\(84\) 2.45944 9.17877i 0.268347 1.00149i
\(85\) 1.95645 + 4.08571i 0.212206 + 0.443158i
\(86\) −11.4128 11.4128i −1.23068 1.23068i
\(87\) −1.01444 + 3.78593i −0.108759 + 0.405895i
\(88\) −4.42176 + 1.18481i −0.471361 + 0.126301i
\(89\) −1.21762 4.54423i −0.129068 0.481687i 0.870884 0.491488i \(-0.163547\pi\)
−0.999952 + 0.00980081i \(0.996880\pi\)
\(90\) 2.88556 2.47213i 0.304165 0.260586i
\(91\) 0 0
\(92\) 0.291695 + 0.291695i 0.0304113 + 0.0304113i
\(93\) 10.0383 + 5.79560i 1.04092 + 0.600976i
\(94\) −15.4690 8.93105i −1.59551 0.921167i
\(95\) 1.08356 0.518863i 0.111171 0.0532342i
\(96\) −9.19900 + 9.19900i −0.938869 + 0.938869i
\(97\) 8.91268 + 15.4372i 0.904945 + 1.56741i 0.820991 + 0.570942i \(0.193422\pi\)
0.0839547 + 0.996470i \(0.473245\pi\)
\(98\) −5.05883 8.76215i −0.511019 0.885111i
\(99\) 2.54147 2.54147i 0.255427 0.255427i
\(100\) 6.31699 2.44702i 0.631699 0.244702i
\(101\) 3.94379 + 2.27695i 0.392421 + 0.226565i 0.683209 0.730223i \(-0.260584\pi\)
−0.290787 + 0.956788i \(0.593917\pi\)
\(102\) 6.36872 + 3.67698i 0.630597 + 0.364075i
\(103\) −9.79285 9.79285i −0.964918 0.964918i 0.0344872 0.999405i \(-0.489020\pi\)
−0.999405 + 0.0344872i \(0.989020\pi\)
\(104\) 0 0
\(105\) 1.20660 15.6364i 0.117752 1.52596i
\(106\) −2.12024 7.91286i −0.205936 0.768565i
\(107\) 6.82933 1.82991i 0.660216 0.176904i 0.0868725 0.996219i \(-0.472313\pi\)
0.573344 + 0.819315i \(0.305646\pi\)
\(108\) −1.44016 + 5.37475i −0.138580 + 0.517186i
\(109\) −9.89281 9.89281i −0.947560 0.947560i 0.0511324 0.998692i \(-0.483717\pi\)
−0.998692 + 0.0511324i \(0.983717\pi\)
\(110\) 14.3109 6.85276i 1.36449 0.653385i
\(111\) 2.77898 10.3713i 0.263769 0.984399i
\(112\) 17.2488i 1.62986i
\(113\) −2.21438 0.593341i −0.208311 0.0558168i 0.153154 0.988202i \(-0.451057\pi\)
−0.361466 + 0.932385i \(0.617723\pi\)
\(114\) 0.975161 1.68903i 0.0913322 0.158192i
\(115\) 0.561666 + 0.384761i 0.0523756 + 0.0358792i
\(116\) 2.67952i 0.248787i
\(117\) 0 0
\(118\) −15.7481 + 15.7481i −1.44973 + 1.44973i
\(119\) 6.92507 1.85557i 0.634820 0.170099i
\(120\) −2.95937 + 4.32002i −0.270152 + 0.394362i
\(121\) 3.47160 2.00433i 0.315600 0.182212i
\(122\) 5.28668 0.478633
\(123\) 1.15477 0.666705i 0.104122 0.0601148i
\(124\) 7.65421 + 2.05094i 0.687368 + 0.184180i
\(125\) 9.50596 5.88530i 0.850239 0.526397i
\(126\) −3.00681 5.20795i −0.267868 0.463961i
\(127\) 0.332860 + 1.24225i 0.0295366 + 0.110232i 0.979120 0.203281i \(-0.0651606\pi\)
−0.949584 + 0.313513i \(0.898494\pi\)
\(128\) 4.48062 7.76067i 0.396035 0.685953i
\(129\) −17.4639 −1.53761
\(130\) 0 0
\(131\) −5.59439 −0.488785 −0.244392 0.969676i \(-0.578588\pi\)
−0.244392 + 0.969676i \(0.578588\pi\)
\(132\) 5.20131 9.00893i 0.452716 0.784127i
\(133\) −0.492109 1.83658i −0.0426713 0.159251i
\(134\) −2.09712 3.63231i −0.181163 0.313784i
\(135\) −0.706541 + 9.15610i −0.0608094 + 0.788032i
\(136\) −2.31226 0.619567i −0.198274 0.0531274i
\(137\) 12.3757 7.14509i 1.05732 0.610446i 0.132633 0.991165i \(-0.457657\pi\)
0.924691 + 0.380719i \(0.124324\pi\)
\(138\) 1.10523 0.0940838
\(139\) −15.0832 + 8.70830i −1.27934 + 0.738629i −0.976727 0.214484i \(-0.931193\pi\)
−0.302615 + 0.953113i \(0.597860\pi\)
\(140\) −1.96992 10.5389i −0.166488 0.890702i
\(141\) −18.6685 + 5.00221i −1.57217 + 0.421262i
\(142\) −5.98525 + 5.98525i −0.502271 + 0.502271i
\(143\) 0 0
\(144\) 4.52189i 0.376824i
\(145\) 0.812525 + 4.34696i 0.0674765 + 0.360995i
\(146\) −13.5125 + 23.4044i −1.11830 + 1.93696i
\(147\) −10.5744 2.83341i −0.872165 0.233696i
\(148\) 7.34036i 0.603374i
\(149\) −3.39833 + 12.6828i −0.278402 + 1.03901i 0.675124 + 0.737704i \(0.264090\pi\)
−0.953527 + 0.301308i \(0.902577\pi\)
\(150\) 7.33168 16.6034i 0.598629 1.35566i
\(151\) −0.765191 0.765191i −0.0622704 0.0622704i 0.675286 0.737556i \(-0.264020\pi\)
−0.737556 + 0.675286i \(0.764020\pi\)
\(152\) −0.164314 + 0.613227i −0.0133276 + 0.0497392i
\(153\) 1.81545 0.486448i 0.146770 0.0393270i
\(154\) −6.49942 24.2562i −0.523738 1.95462i
\(155\) 13.0392 + 1.00619i 1.04734 + 0.0808190i
\(156\) 0 0
\(157\) 3.03481 + 3.03481i 0.242204 + 0.242204i 0.817762 0.575557i \(-0.195215\pi\)
−0.575557 + 0.817762i \(0.695215\pi\)
\(158\) 2.53350 + 1.46272i 0.201555 + 0.116368i
\(159\) −7.67633 4.43193i −0.608773 0.351475i
\(160\) −4.87852 + 13.8436i −0.385681 + 1.09443i
\(161\) 0.761901 0.761901i 0.0600462 0.0600462i
\(162\) 10.0030 + 17.3257i 0.785912 + 1.36124i
\(163\) 1.13179 + 1.96032i 0.0886486 + 0.153544i 0.906940 0.421260i \(-0.138412\pi\)
−0.818292 + 0.574803i \(0.805079\pi\)
\(164\) 0.644580 0.644580i 0.0503333 0.0503333i
\(165\) 5.70619 16.1923i 0.444227 1.26057i
\(166\) −12.0133 6.93585i −0.932409 0.538327i
\(167\) −0.536563 0.309785i −0.0415205 0.0239719i 0.479096 0.877762i \(-0.340965\pi\)
−0.520617 + 0.853791i \(0.674298\pi\)
\(168\) 5.86012 + 5.86012i 0.452118 + 0.452118i
\(169\) 0 0
\(170\) 8.27267 + 0.638370i 0.634485 + 0.0489608i
\(171\) −0.129009 0.481470i −0.00986560 0.0368189i
\(172\) −11.5322 + 3.09005i −0.879324 + 0.235614i
\(173\) 1.71382 6.39606i 0.130299 0.486283i −0.869674 0.493627i \(-0.835671\pi\)
0.999973 + 0.00734343i \(0.00233751\pi\)
\(174\) 5.07636 + 5.07636i 0.384838 + 0.384838i
\(175\) −6.39155 16.4998i −0.483155 1.24727i
\(176\) −4.88718 + 18.2392i −0.368385 + 1.37483i
\(177\) 24.0977i 1.81130i
\(178\) −8.32336 2.23024i −0.623862 0.167163i
\(179\) 1.09512 1.89680i 0.0818528 0.141773i −0.822193 0.569209i \(-0.807250\pi\)
0.904046 + 0.427436i \(0.140583\pi\)
\(180\) −0.516426 2.76285i −0.0384921 0.205930i
\(181\) 9.59255i 0.713009i −0.934294 0.356504i \(-0.883969\pi\)
0.934294 0.356504i \(-0.116031\pi\)
\(182\) 0 0
\(183\) 4.04484 4.04484i 0.299003 0.299003i
\(184\) −0.347511 + 0.0931154i −0.0256189 + 0.00686456i
\(185\) −2.22585 11.9082i −0.163648 0.875506i
\(186\) 18.3864 10.6154i 1.34816 0.778359i
\(187\) 7.84842 0.573933
\(188\) −11.4426 + 6.60639i −0.834537 + 0.481820i
\(189\) 14.0387 + 3.76166i 1.02117 + 0.273621i
\(190\) 0.169300 2.19397i 0.0122823 0.159167i
\(191\) −1.86557 3.23126i −0.134988 0.233806i 0.790605 0.612326i \(-0.209766\pi\)
−0.925593 + 0.378521i \(0.876433\pi\)
\(192\) 1.16701 + 4.35536i 0.0842220 + 0.314321i
\(193\) 0.142043 0.246025i 0.0102245 0.0177093i −0.860868 0.508829i \(-0.830079\pi\)
0.871092 + 0.491119i \(0.163412\pi\)
\(194\) 32.6495 2.34410
\(195\) 0 0
\(196\) −7.48414 −0.534581
\(197\) 12.9246 22.3860i 0.920838 1.59494i 0.122716 0.992442i \(-0.460840\pi\)
0.798122 0.602496i \(-0.205827\pi\)
\(198\) −1.70386 6.35890i −0.121088 0.451907i
\(199\) 2.87625 + 4.98181i 0.203892 + 0.353151i 0.949779 0.312921i \(-0.101308\pi\)
−0.745887 + 0.666072i \(0.767974\pi\)
\(200\) −0.906420 + 5.83819i −0.0640936 + 0.412823i
\(201\) −4.38359 1.17458i −0.309194 0.0828484i
\(202\) 7.22357 4.17053i 0.508248 0.293437i
\(203\) 6.99884 0.491223
\(204\) 4.71101 2.71990i 0.329836 0.190431i
\(205\) 0.850235 1.24115i 0.0593830 0.0866859i
\(206\) −24.5023 + 6.56536i −1.70715 + 0.457430i
\(207\) 0.199737 0.199737i 0.0138827 0.0138827i
\(208\) 0 0
\(209\) 2.08146i 0.143977i
\(210\) −23.6980 16.2340i −1.63532 1.12025i
\(211\) 1.61372 2.79504i 0.111093 0.192418i −0.805118 0.593114i \(-0.797898\pi\)
0.916211 + 0.400696i \(0.131232\pi\)
\(212\) −5.85322 1.56837i −0.402001 0.107716i
\(213\) 9.15863i 0.627539i
\(214\) 3.35173 12.5088i 0.229119 0.855085i
\(215\) −17.7716 + 8.50993i −1.21201 + 0.580372i
\(216\) −3.43147 3.43147i −0.233482 0.233482i
\(217\) 5.35700 19.9926i 0.363657 1.35719i
\(218\) −24.7524 + 6.63238i −1.67644 + 0.449201i
\(219\) 7.56826 + 28.2451i 0.511416 + 1.90863i
\(220\) 0.903013 11.7022i 0.0608811 0.788961i
\(221\) 0 0
\(222\) −13.9063 13.9063i −0.933331 0.933331i
\(223\) 6.42178 + 3.70762i 0.430034 + 0.248280i 0.699361 0.714768i \(-0.253468\pi\)
−0.269327 + 0.963049i \(0.586801\pi\)
\(224\) 20.1179 + 11.6151i 1.34419 + 0.776067i
\(225\) −1.67558 4.32553i −0.111706 0.288369i
\(226\) −2.96914 + 2.96914i −0.197504 + 0.197504i
\(227\) −1.95115 3.37949i −0.129502 0.224305i 0.793981 0.607942i \(-0.208005\pi\)
−0.923484 + 0.383637i \(0.874671\pi\)
\(228\) −0.721337 1.24939i −0.0477717 0.0827430i
\(229\) 12.3946 12.3946i 0.819060 0.819060i −0.166912 0.985972i \(-0.553379\pi\)
0.985972 + 0.166912i \(0.0533795\pi\)
\(230\) 1.12471 0.538566i 0.0741609 0.0355120i
\(231\) −23.5311 13.5857i −1.54823 0.893872i
\(232\) −2.02381 1.16844i −0.132869 0.0767121i
\(233\) −2.88962 2.88962i −0.189305 0.189305i 0.606090 0.795396i \(-0.292737\pi\)
−0.795396 + 0.606090i \(0.792737\pi\)
\(234\) 0 0
\(235\) −16.5599 + 14.1873i −1.08025 + 0.925474i
\(236\) 4.26384 + 15.9129i 0.277552 + 1.03584i
\(237\) 3.05751 0.819258i 0.198607 0.0532165i
\(238\) 3.39872 12.6842i 0.220306 0.822193i
\(239\) −8.97299 8.97299i −0.580415 0.580415i 0.354602 0.935017i \(-0.384616\pi\)
−0.935017 + 0.354602i \(0.884616\pi\)
\(240\) 9.32866 + 19.4814i 0.602162 + 1.25752i
\(241\) 4.54165 16.9497i 0.292554 1.09183i −0.650587 0.759432i \(-0.725477\pi\)
0.943141 0.332394i \(-0.107856\pi\)
\(242\) 7.34239i 0.471986i
\(243\) 9.00835 + 2.41378i 0.577886 + 0.154844i
\(244\) 1.95530 3.38669i 0.125176 0.216810i
\(245\) −12.1414 + 2.26945i −0.775687 + 0.144990i
\(246\) 2.44232i 0.155716i
\(247\) 0 0
\(248\) −4.88677 + 4.88677i −0.310311 + 0.310311i
\(249\) −14.4980 + 3.88472i −0.918771 + 0.246184i
\(250\) −0.629785 20.4686i −0.0398311 1.29455i
\(251\) −18.8524 + 10.8845i −1.18996 + 0.687021i −0.958296 0.285776i \(-0.907749\pi\)
−0.231659 + 0.972797i \(0.574415\pi\)
\(252\) −4.44834 −0.280219
\(253\) 1.02152 0.589774i 0.0642223 0.0370787i
\(254\) 2.27535 + 0.609678i 0.142768 + 0.0382546i
\(255\) 6.81784 5.84100i 0.426950 0.365778i
\(256\) −10.4820 18.1554i −0.655125 1.13471i
\(257\) −3.31629 12.3766i −0.206864 0.772029i −0.988873 0.148761i \(-0.952471\pi\)
0.782009 0.623268i \(-0.214195\pi\)
\(258\) −15.9937 + 27.7019i −0.995725 + 1.72465i
\(259\) −19.1728 −1.19134
\(260\) 0 0
\(261\) 1.83479 0.113571
\(262\) −5.12344 + 8.87405i −0.316527 + 0.548241i
\(263\) 4.27179 + 15.9426i 0.263410 + 0.983060i 0.963216 + 0.268727i \(0.0866030\pi\)
−0.699806 + 0.714333i \(0.746730\pi\)
\(264\) 4.53621 + 7.85695i 0.279185 + 0.483562i
\(265\) −9.97120 0.769439i −0.612526 0.0472663i
\(266\) −3.36393 0.901363i −0.206256 0.0552661i
\(267\) −8.07456 + 4.66185i −0.494155 + 0.285301i
\(268\) −3.10252 −0.189516
\(269\) 27.9787 16.1535i 1.70589 0.984895i 0.766370 0.642400i \(-0.222061\pi\)
0.939519 0.342495i \(-0.111272\pi\)
\(270\) 13.8767 + 9.50605i 0.844510 + 0.578520i
\(271\) 16.8770 4.52218i 1.02521 0.274703i 0.293236 0.956040i \(-0.405268\pi\)
0.731970 + 0.681337i \(0.238601\pi\)
\(272\) −6.98212 + 6.98212i −0.423353 + 0.423353i
\(273\) 0 0
\(274\) 26.1743i 1.58125i
\(275\) −2.08356 19.2581i −0.125644 1.16131i
\(276\) 0.408777 0.708022i 0.0246055 0.0426179i
\(277\) 2.96961 + 0.795705i 0.178427 + 0.0478093i 0.346926 0.937892i \(-0.387225\pi\)
−0.168499 + 0.985702i \(0.553892\pi\)
\(278\) 31.9008i 1.91328i
\(279\) 1.40437 5.24118i 0.0840775 0.313781i
\(280\) 8.81892 + 3.10780i 0.527031 + 0.185727i
\(281\) 18.6757 + 18.6757i 1.11410 + 1.11410i 0.992590 + 0.121508i \(0.0387731\pi\)
0.121508 + 0.992590i \(0.461227\pi\)
\(282\) −9.16221 + 34.1938i −0.545602 + 2.03621i
\(283\) 14.8164 3.97005i 0.880745 0.235995i 0.210016 0.977698i \(-0.432648\pi\)
0.670728 + 0.741703i \(0.265982\pi\)
\(284\) 1.62052 + 6.04787i 0.0961603 + 0.358875i
\(285\) −1.54907 1.80814i −0.0917593 0.107105i
\(286\) 0 0
\(287\) −1.68363 1.68363i −0.0993814 0.0993814i
\(288\) 5.27404 + 3.04497i 0.310776 + 0.179427i
\(289\) −11.1681 6.44793i −0.656949 0.379290i
\(290\) 7.63944 + 2.69215i 0.448603 + 0.158089i
\(291\) 24.9801 24.9801i 1.46436 1.46436i
\(292\) 9.99535 + 17.3125i 0.584934 + 1.01314i
\(293\) −5.18835 8.98649i −0.303107 0.524996i 0.673731 0.738976i \(-0.264691\pi\)
−0.976838 + 0.213980i \(0.931357\pi\)
\(294\) −14.1787 + 14.1787i −0.826919 + 0.826919i
\(295\) 11.7425 + 24.5223i 0.683675 + 1.42774i
\(296\) 5.54407 + 3.20087i 0.322243 + 0.186047i
\(297\) 13.7790 + 7.95528i 0.799536 + 0.461612i
\(298\) 17.0057 + 17.0057i 0.985111 + 0.985111i
\(299\) 0 0
\(300\) −7.92463 10.8376i −0.457529 0.625709i
\(301\) 8.07113 + 30.1219i 0.465212 + 1.73620i
\(302\) −1.91455 + 0.513002i −0.110170 + 0.0295200i
\(303\) 2.33588 8.71763i 0.134193 0.500814i
\(304\) 1.85171 + 1.85171i 0.106203 + 0.106203i
\(305\) 2.14510 6.08710i 0.122828 0.348546i
\(306\) 0.890994 3.32524i 0.0509347 0.190091i
\(307\) 2.13935i 0.122099i −0.998135 0.0610496i \(-0.980555\pi\)
0.998135 0.0610496i \(-0.0194448\pi\)
\(308\) −17.9425 4.80768i −1.02237 0.273943i
\(309\) −13.7235 + 23.7698i −0.780704 + 1.35222i
\(310\) 13.5376 19.7619i 0.768884 1.12240i
\(311\) 3.82084i 0.216660i 0.994115 + 0.108330i \(0.0345503\pi\)
−0.994115 + 0.108330i \(0.965450\pi\)
\(312\) 0 0
\(313\) 3.04531 3.04531i 0.172131 0.172131i −0.615784 0.787915i \(-0.711161\pi\)
0.787915 + 0.615784i \(0.211161\pi\)
\(314\) 7.59327 2.03461i 0.428513 0.114820i
\(315\) −7.21648 + 1.34889i −0.406603 + 0.0760014i
\(316\) 1.87406 1.08199i 0.105424 0.0608666i
\(317\) 23.1127 1.29814 0.649068 0.760730i \(-0.275159\pi\)
0.649068 + 0.760730i \(0.275159\pi\)
\(318\) −14.0602 + 8.11767i −0.788458 + 0.455216i
\(319\) 7.40069 + 1.98301i 0.414359 + 0.111027i
\(320\) 3.30988 + 3.86342i 0.185028 + 0.215972i
\(321\) −7.00609 12.1349i −0.391042 0.677305i
\(322\) −0.510796 1.90632i −0.0284656 0.106235i
\(323\) 0.544224 0.942624i 0.0302814 0.0524490i
\(324\) 14.7987 0.822149
\(325\) 0 0
\(326\) 4.14604 0.229628
\(327\) −13.8636 + 24.0125i −0.766660 + 1.32789i
\(328\) 0.205764 + 0.767921i 0.0113614 + 0.0424013i
\(329\) 17.2557 + 29.8878i 0.951338 + 1.64777i
\(330\) −20.4590 23.8806i −1.12623 1.31458i
\(331\) 1.92894 + 0.516858i 0.106024 + 0.0284091i 0.311441 0.950265i \(-0.399188\pi\)
−0.205417 + 0.978675i \(0.565855\pi\)
\(332\) −8.88632 + 5.13052i −0.487700 + 0.281574i
\(333\) −5.02628 −0.275438
\(334\) −0.982786 + 0.567412i −0.0537756 + 0.0310474i
\(335\) −5.03317 + 0.940791i −0.274992 + 0.0514009i
\(336\) 33.0199 8.84765i 1.80138 0.482679i
\(337\) −6.12727 + 6.12727i −0.333773 + 0.333773i −0.854018 0.520244i \(-0.825841\pi\)
0.520244 + 0.854018i \(0.325841\pi\)
\(338\) 0 0
\(339\) 4.54338i 0.246763i
\(340\) 3.46863 5.06343i 0.188113 0.274603i
\(341\) 11.3292 19.6227i 0.613508 1.06263i
\(342\) −0.881876 0.236298i −0.0476864 0.0127775i
\(343\) 5.22396i 0.282067i
\(344\) 2.69492 10.0576i 0.145301 0.542269i
\(345\) 0.448456 1.27257i 0.0241441 0.0685129i
\(346\) −8.57614 8.57614i −0.461056 0.461056i
\(347\) −8.41384 + 31.4009i −0.451679 + 1.68569i 0.245994 + 0.969271i \(0.420886\pi\)
−0.697673 + 0.716417i \(0.745781\pi\)
\(348\) 5.12947 1.37444i 0.274969 0.0736776i
\(349\) −1.76129 6.57321i −0.0942795 0.351856i 0.902630 0.430418i \(-0.141634\pi\)
−0.996909 + 0.0785620i \(0.974967\pi\)
\(350\) −32.0262 4.97228i −1.71187 0.265780i
\(351\) 0 0
\(352\) 17.9821 + 17.9821i 0.958448 + 0.958448i
\(353\) −23.6652 13.6631i −1.25957 0.727213i −0.286579 0.958057i \(-0.592518\pi\)
−0.972991 + 0.230843i \(0.925852\pi\)
\(354\) 38.2248 + 22.0691i 2.03163 + 1.17296i
\(355\) 4.46288 + 9.31999i 0.236865 + 0.494654i
\(356\) −4.50714 + 4.50714i −0.238878 + 0.238878i
\(357\) −7.10431 12.3050i −0.376000 0.651251i
\(358\) −2.00585 3.47423i −0.106012 0.183619i
\(359\) 3.89871 3.89871i 0.205766 0.205766i −0.596699 0.802465i \(-0.703521\pi\)
0.802465 + 0.596699i \(0.203521\pi\)
\(360\) 2.31193 + 0.814730i 0.121850 + 0.0429400i
\(361\) 16.2045 + 9.35567i 0.852868 + 0.492404i
\(362\) −15.2161 8.78501i −0.799740 0.461730i
\(363\) −5.61766 5.61766i −0.294851 0.294851i
\(364\) 0 0
\(365\) 21.4651 + 25.0548i 1.12353 + 1.31143i
\(366\) −2.71176 10.1204i −0.141746 0.529003i
\(367\) −17.4595 + 4.67826i −0.911378 + 0.244203i −0.683896 0.729579i \(-0.739716\pi\)
−0.227482 + 0.973782i \(0.573049\pi\)
\(368\) −0.384089 + 1.43344i −0.0200220 + 0.0747232i
\(369\) −0.441373 0.441373i −0.0229770 0.0229770i
\(370\) −20.9277 7.37496i −1.08798 0.383406i
\(371\) −4.09653 + 15.2885i −0.212681 + 0.793738i
\(372\) 15.7046i 0.814248i
\(373\) −14.9855 4.01536i −0.775921 0.207907i −0.150936 0.988544i \(-0.548229\pi\)
−0.624986 + 0.780636i \(0.714895\pi\)
\(374\) 7.18771 12.4495i 0.371668 0.643747i
\(375\) −16.1424 15.1787i −0.833588 0.783823i
\(376\) 11.5232i 0.594266i
\(377\) 0 0
\(378\) 18.8238 18.8238i 0.968191 0.968191i
\(379\) 20.6393 5.53029i 1.06017 0.284072i 0.313722 0.949515i \(-0.398424\pi\)
0.746449 + 0.665443i \(0.231757\pi\)
\(380\) −1.34286 0.919906i −0.0688871 0.0471902i
\(381\) 2.20733 1.27440i 0.113085 0.0652897i
\(382\) −6.83407 −0.349661
\(383\) 16.8072 9.70362i 0.858806 0.495832i −0.00480620 0.999988i \(-0.501530\pi\)
0.863612 + 0.504157i \(0.168197\pi\)
\(384\) −17.1547 4.59660i −0.875424 0.234569i
\(385\) −30.5658 2.35865i −1.55778 0.120208i
\(386\) −0.260170 0.450628i −0.0132423 0.0229364i
\(387\) 2.11590 + 7.89664i 0.107557 + 0.401409i
\(388\) 12.0756 20.9155i 0.613045 1.06182i
\(389\) 14.8591 0.753387 0.376693 0.926338i \(-0.377061\pi\)
0.376693 + 0.926338i \(0.377061\pi\)
\(390\) 0 0
\(391\) 0.616816 0.0311937
\(392\) 3.26357 5.65266i 0.164835 0.285503i
\(393\) 2.86960 + 10.7095i 0.144752 + 0.540222i
\(394\) −23.6731 41.0030i −1.19263 2.06570i
\(395\) 2.71217 2.32358i 0.136464 0.116912i
\(396\) −4.70374 1.26036i −0.236372 0.0633357i
\(397\) −4.57070 + 2.63889i −0.229397 + 0.132442i −0.610294 0.792175i \(-0.708949\pi\)
0.380897 + 0.924617i \(0.375615\pi\)
\(398\) 10.5365 0.528145
\(399\) −3.26338 + 1.88411i −0.163373 + 0.0943236i
\(400\) 18.9860 + 15.2789i 0.949301 + 0.763943i
\(401\) 26.9289 7.21557i 1.34476 0.360328i 0.486564 0.873645i \(-0.338250\pi\)
0.858199 + 0.513317i \(0.171583\pi\)
\(402\) −5.87772 + 5.87772i −0.293154 + 0.293154i
\(403\) 0 0
\(404\) 6.16996i 0.306967i
\(405\) 24.0077 4.48748i 1.19295 0.222985i
\(406\) 6.40965 11.1018i 0.318106 0.550975i
\(407\) −20.2737 5.43231i −1.00493 0.269270i
\(408\) 4.74421i 0.234873i
\(409\) −0.682016 + 2.54532i −0.0337235 + 0.125858i −0.980736 0.195340i \(-0.937419\pi\)
0.947012 + 0.321198i \(0.104086\pi\)
\(410\) −1.19011 2.48535i −0.0587753 0.122742i
\(411\) −20.0260 20.0260i −0.987810 0.987810i
\(412\) −4.85646 + 18.1246i −0.239261 + 0.892933i
\(413\) 41.5640 11.1370i 2.04523 0.548018i
\(414\) −0.133908 0.499753i −0.00658124 0.0245615i
\(415\) −12.8604 + 11.0178i −0.631293 + 0.540844i
\(416\) 0 0
\(417\) 24.4073 + 24.4073i 1.19523 + 1.19523i
\(418\) −3.30169 1.90623i −0.161491 0.0932368i
\(419\) 17.0348 + 9.83506i 0.832205 + 0.480474i 0.854607 0.519275i \(-0.173798\pi\)
−0.0224018 + 0.999749i \(0.507131\pi\)
\(420\) −19.1645 + 9.17692i −0.935131 + 0.447788i
\(421\) −10.4427 + 10.4427i −0.508948 + 0.508948i −0.914203 0.405256i \(-0.867183\pi\)
0.405256 + 0.914203i \(0.367183\pi\)
\(422\) −2.95573 5.11948i −0.143883 0.249212i
\(423\) 4.52369 + 7.83526i 0.219949 + 0.380964i
\(424\) 3.73695 3.73695i 0.181482 0.181482i
\(425\) 4.09171 9.26615i 0.198477 0.449474i
\(426\) 14.5278 + 8.38762i 0.703874 + 0.406382i
\(427\) −8.84594 5.10721i −0.428085 0.247155i
\(428\) −6.77359 6.77359i −0.327414 0.327414i
\(429\) 0 0
\(430\) −2.77671 + 35.9835i −0.133905 + 1.73528i
\(431\) 4.43419 + 16.5486i 0.213587 + 0.797119i 0.986659 + 0.162800i \(0.0520526\pi\)
−0.773072 + 0.634319i \(0.781281\pi\)
\(432\) −19.3352 + 5.18086i −0.930267 + 0.249264i
\(433\) −2.90826 + 10.8538i −0.139762 + 0.521599i 0.860171 + 0.510006i \(0.170357\pi\)
−0.999933 + 0.0115927i \(0.996310\pi\)
\(434\) −26.8070 26.8070i −1.28678 1.28678i
\(435\) 7.90470 3.78517i 0.379002 0.181485i
\(436\) −4.90604 + 18.3096i −0.234957 + 0.876870i
\(437\) 0.163584i 0.00782528i
\(438\) 51.7347 + 13.8623i 2.47198 + 0.662365i
\(439\) −2.12218 + 3.67572i −0.101286 + 0.175432i −0.912215 0.409712i \(-0.865629\pi\)
0.810929 + 0.585145i \(0.198962\pi\)
\(440\) 8.44472 + 5.78494i 0.402586 + 0.275786i
\(441\) 5.12473i 0.244035i
\(442\) 0 0
\(443\) 15.1569 15.1569i 0.720126 0.720126i −0.248505 0.968631i \(-0.579939\pi\)
0.968631 + 0.248505i \(0.0799392\pi\)
\(444\) −14.0518 + 3.76518i −0.666870 + 0.178687i
\(445\) −5.94516 + 8.67861i −0.281828 + 0.411405i
\(446\) 11.7623 6.79099i 0.556963 0.321563i
\(447\) 26.0221 1.23080
\(448\) 6.97281 4.02575i 0.329434 0.190199i
\(449\) 14.0521 + 3.76524i 0.663158 + 0.177693i 0.574671 0.818385i \(-0.305130\pi\)
0.0884873 + 0.996077i \(0.471797\pi\)
\(450\) −8.39586 1.30351i −0.395785 0.0614483i
\(451\) −1.30327 2.25732i −0.0613684 0.106293i
\(452\) 0.803904 + 3.00021i 0.0378124 + 0.141118i
\(453\) −1.07233 + 1.85732i −0.0503822 + 0.0872646i
\(454\) −7.14758 −0.335453
\(455\) 0 0
\(456\) 1.25820 0.0589205
\(457\) 15.1476 26.2365i 0.708576 1.22729i −0.256809 0.966462i \(-0.582671\pi\)
0.965385 0.260828i \(-0.0839956\pi\)
\(458\) −8.30966 31.0121i −0.388285 1.44910i
\(459\) 4.16003 + 7.20538i 0.194173 + 0.336318i
\(460\) 0.0709688 0.919687i 0.00330894 0.0428806i
\(461\) 6.70146 + 1.79565i 0.312118 + 0.0836318i 0.411478 0.911420i \(-0.365013\pi\)
−0.0993596 + 0.995052i \(0.531679\pi\)
\(462\) −43.1003 + 24.8840i −2.00521 + 1.15771i
\(463\) −31.4463 −1.46143 −0.730717 0.682680i \(-0.760814\pi\)
−0.730717 + 0.682680i \(0.760814\pi\)
\(464\) −8.34794 + 4.81968i −0.387543 + 0.223748i
\(465\) −4.76220 25.4775i −0.220842 1.18149i
\(466\) −7.22999 + 1.93727i −0.334923 + 0.0897423i
\(467\) 3.69622 3.69622i 0.171041 0.171041i −0.616396 0.787436i \(-0.711408\pi\)
0.787436 + 0.616396i \(0.211408\pi\)
\(468\) 0 0
\(469\) 8.10369i 0.374194i
\(470\) 7.33857 + 39.2609i 0.338503 + 1.81097i
\(471\) 4.25293 7.36630i 0.195965 0.339421i
\(472\) −13.8781 3.71862i −0.638790 0.171163i
\(473\) 34.1382i 1.56968i
\(474\) 1.50058 5.60024i 0.0689239 0.257227i
\(475\) −2.45745 1.08515i −0.112755 0.0497901i
\(476\) −6.86855 6.86855i −0.314820 0.314820i
\(477\) −1.07393 + 4.00797i −0.0491720 + 0.183512i
\(478\) −22.4509 + 6.01571i −1.02688 + 0.275152i
\(479\) 5.00904 + 18.6940i 0.228869 + 0.854150i 0.980818 + 0.194928i \(0.0624474\pi\)
−0.751949 + 0.659222i \(0.770886\pi\)
\(480\) 29.0036 + 2.23810i 1.32383 + 0.102155i
\(481\) 0 0
\(482\) −22.7270 22.7270i −1.03518 1.03518i
\(483\) −1.84934 1.06771i −0.0841477 0.0485827i
\(484\) −4.70359 2.71562i −0.213800 0.123437i
\(485\) 13.2477 37.5927i 0.601549 1.70700i
\(486\) 12.0788 12.0788i 0.547907 0.547907i
\(487\) −11.6813 20.2327i −0.529332 0.916830i −0.999415 0.0342077i \(-0.989109\pi\)
0.470083 0.882622i \(-0.344224\pi\)
\(488\) 1.70528 + 2.95363i 0.0771943 + 0.133704i
\(489\) 3.17214 3.17214i 0.143449 0.143449i
\(490\) −7.51941 + 21.3376i −0.339692 + 0.963935i
\(491\) −18.4624 10.6593i −0.833198 0.481047i 0.0217482 0.999763i \(-0.493077\pi\)
−0.854946 + 0.518716i \(0.826410\pi\)
\(492\) −1.56457 0.903303i −0.0705362 0.0407241i
\(493\) 2.83305 + 2.83305i 0.127594 + 0.127594i
\(494\) 0 0
\(495\) −8.01301 0.618334i −0.360158 0.0277920i
\(496\) 7.37809 + 27.5354i 0.331286 + 1.23638i
\(497\) 15.7969 4.23276i 0.708587 0.189865i
\(498\) −7.11538 + 26.5549i −0.318848 + 1.18996i
\(499\) 23.0389 + 23.0389i 1.03136 + 1.03136i 0.999492 + 0.0318687i \(0.0101459\pi\)
0.0318687 + 0.999492i \(0.489854\pi\)
\(500\) −13.3453 7.16697i −0.596818 0.320516i
\(501\) −0.317803 + 1.18606i −0.0141984 + 0.0529891i
\(502\) 39.8727i 1.77960i
\(503\) −0.634433 0.169996i −0.0282879 0.00757973i 0.244647 0.969612i \(-0.421328\pi\)
−0.272935 + 0.962032i \(0.587994\pi\)
\(504\) 1.93976 3.35977i 0.0864039 0.149656i
\(505\) −1.87095 10.0095i −0.0832561 0.445415i
\(506\) 2.16050i 0.0960458i
\(507\) 0 0
\(508\) 1.23211 1.23211i 0.0546662 0.0546662i
\(509\) −30.9400 + 8.29035i −1.37139 + 0.367463i −0.867987 0.496587i \(-0.834586\pi\)
−0.503405 + 0.864050i \(0.667920\pi\)
\(510\) −3.02135 16.1640i −0.133787 0.715754i
\(511\) 45.2197 26.1076i 2.00040 1.15493i
\(512\) −20.4758 −0.904912
\(513\) 1.91092 1.10327i 0.0843690 0.0487105i
\(514\) −22.6693 6.07422i −0.999901 0.267923i
\(515\) −2.38258 + 30.8759i −0.104989 + 1.36056i
\(516\) 11.8307 + 20.4914i 0.520818 + 0.902084i
\(517\) 9.77825 + 36.4929i 0.430047 + 1.60496i
\(518\) −17.5588 + 30.4127i −0.771489 + 1.33626i
\(519\) −13.1232 −0.576046
\(520\) 0 0
\(521\) −23.4746 −1.02844 −0.514220 0.857658i \(-0.671919\pi\)
−0.514220 + 0.857658i \(0.671919\pi\)
\(522\) 1.68033 2.91042i 0.0735461 0.127386i
\(523\) 6.40400 + 23.9001i 0.280027 + 1.04508i 0.952397 + 0.304861i \(0.0986099\pi\)
−0.672370 + 0.740216i \(0.734723\pi\)
\(524\) 3.78986 + 6.56423i 0.165561 + 0.286760i
\(525\) −28.3075 + 20.6989i −1.23544 + 0.903376i
\(526\) 29.2009 + 7.82436i 1.27322 + 0.341158i
\(527\) 10.2612 5.92431i 0.446985 0.258067i
\(528\) 37.4226 1.62861
\(529\) −19.8383 + 11.4536i −0.862535 + 0.497985i
\(530\) −10.3523 + 15.1120i −0.449675 + 0.656425i
\(531\) 10.8963 2.91964i 0.472857 0.126702i
\(532\) −1.82159 + 1.82159i −0.0789759 + 0.0789759i
\(533\) 0 0
\(534\) 17.0776i 0.739019i
\(535\) −13.0427 8.93473i −0.563885 0.386282i
\(536\) 1.35290 2.34329i 0.0584363 0.101215i
\(537\) −4.19281 1.12346i −0.180933 0.0484809i
\(538\) 59.1745i 2.55119i
\(539\) −5.53871 + 20.6708i −0.238569 + 0.890353i
\(540\) 11.2220 5.37367i 0.482919 0.231246i
\(541\) 27.6908 + 27.6908i 1.19052 + 1.19052i 0.976922 + 0.213597i \(0.0685180\pi\)
0.213597 + 0.976922i \(0.431482\pi\)
\(542\) 8.28297 30.9125i 0.355784 1.32780i
\(543\) −18.3632 + 4.92042i −0.788042 + 0.211155i
\(544\) 3.44185 + 12.8452i 0.147568 + 0.550731i
\(545\) −2.40690 + 31.1911i −0.103100 + 1.33608i
\(546\) 0 0
\(547\) 6.53914 + 6.53914i 0.279593 + 0.279593i 0.832947 0.553353i \(-0.186652\pi\)
−0.553353 + 0.832947i \(0.686652\pi\)
\(548\) −16.7675 9.68071i −0.716272 0.413540i
\(549\) −2.31902 1.33889i −0.0989733 0.0571422i
\(550\) −32.4562 14.3319i −1.38394 0.611113i
\(551\) 0.751344 0.751344i 0.0320083 0.0320083i
\(552\) 0.356506 + 0.617486i 0.0151739 + 0.0262820i
\(553\) −2.82613 4.89500i −0.120179 0.208156i
\(554\) 3.98180 3.98180i 0.169170 0.169170i
\(555\) −21.6544 + 10.3692i −0.919177 + 0.440148i
\(556\) 20.4359 + 11.7987i 0.866676 + 0.500375i
\(557\) 14.0717 + 8.12429i 0.596237 + 0.344237i 0.767560 0.640978i \(-0.221471\pi\)
−0.171323 + 0.985215i \(0.554804\pi\)
\(558\) −7.02763 7.02763i −0.297503 0.297503i
\(559\) 0 0
\(560\) 29.2903 25.0937i 1.23774 1.06040i
\(561\) −4.02578 15.0244i −0.169969 0.634332i
\(562\) 46.7277 12.5206i 1.97109 0.528151i
\(563\) −8.41827 + 31.4174i −0.354788 + 1.32409i 0.525964 + 0.850507i \(0.323705\pi\)
−0.880751 + 0.473579i \(0.842962\pi\)
\(564\) 18.5161 + 18.5161i 0.779670 + 0.779670i
\(565\) 2.21393 + 4.62343i 0.0931408 + 0.194509i
\(566\) 7.27167 27.1382i 0.305651 1.14071i
\(567\) 38.6538i 1.62331i
\(568\) −5.27453 1.41331i −0.221314 0.0593010i
\(569\) −16.4164 + 28.4341i −0.688212 + 1.19202i 0.284203 + 0.958764i \(0.408271\pi\)
−0.972416 + 0.233255i \(0.925062\pi\)
\(570\) −4.28681 + 0.801283i −0.179555 + 0.0335620i
\(571\) 31.7967i 1.33065i 0.746554 + 0.665325i \(0.231707\pi\)
−0.746554 + 0.665325i \(0.768293\pi\)
\(572\) 0 0
\(573\) −5.22875 + 5.22875i −0.218434 + 0.218434i
\(574\) −4.21253 + 1.12874i −0.175828 + 0.0471129i
\(575\) −0.163750 1.51352i −0.00682883 0.0631180i
\(576\) 1.82796 1.05538i 0.0761652 0.0439740i
\(577\) −39.9389 −1.66268 −0.831338 0.555767i \(-0.812425\pi\)
−0.831338 + 0.555767i \(0.812425\pi\)
\(578\) −20.4559 + 11.8102i −0.850854 + 0.491241i
\(579\) −0.543832 0.145719i −0.0226009 0.00605589i
\(580\) 4.55010 3.89818i 0.188933 0.161863i
\(581\) 13.4008 + 23.2109i 0.555959 + 0.962949i
\(582\) −16.7473 62.5017i −0.694197 2.59078i
\(583\) −8.66348 + 15.0056i −0.358805 + 0.621468i
\(584\) −17.4345 −0.721444
\(585\) 0 0
\(586\) −19.0063 −0.785143
\(587\) −9.32773 + 16.1561i −0.384997 + 0.666834i −0.991769 0.128042i \(-0.959131\pi\)
0.606772 + 0.794876i \(0.292464\pi\)
\(588\) 3.83892 + 14.3271i 0.158315 + 0.590838i
\(589\) −1.57117 2.72135i −0.0647389 0.112131i
\(590\) 49.6522 + 3.83147i 2.04415 + 0.157739i
\(591\) −49.4837 13.2591i −2.03549 0.545407i
\(592\) 22.8686 13.2032i 0.939893 0.542647i
\(593\) −8.65172 −0.355284 −0.177642 0.984095i \(-0.556847\pi\)
−0.177642 + 0.984095i \(0.556847\pi\)
\(594\) 25.2380 14.5712i 1.03553 0.597862i
\(595\) −13.2256 9.05998i −0.542195 0.371423i
\(596\) 17.1836 4.60433i 0.703867 0.188601i
\(597\) 8.06145 8.06145i 0.329933 0.329933i
\(598\) 0 0
\(599\) 35.1779i 1.43733i −0.695356 0.718666i \(-0.744753\pi\)
0.695356 0.718666i \(-0.255247\pi\)
\(600\) 11.6411 1.25947i 0.475247 0.0514177i
\(601\) 20.0384 34.7076i 0.817385 1.41575i −0.0902170 0.995922i \(-0.528756\pi\)
0.907602 0.419831i \(-0.137911\pi\)
\(602\) 55.1722 + 14.7834i 2.24865 + 0.602524i
\(603\) 2.12443i 0.0865136i
\(604\) −0.379473 + 1.41621i −0.0154405 + 0.0576249i
\(605\) −8.45405 2.97922i −0.343706 0.121123i
\(606\) −11.6890 11.6890i −0.474834 0.474834i
\(607\) 11.1449 41.5934i 0.452358 1.68822i −0.243384 0.969930i \(-0.578258\pi\)
0.695742 0.718292i \(-0.255076\pi\)
\(608\) 3.40662 0.912802i 0.138157 0.0370190i
\(609\) −3.59000 13.3981i −0.145474 0.542917i
\(610\) −7.69108 8.97731i −0.311403 0.363481i
\(611\) 0 0
\(612\) −1.80063 1.80063i −0.0727863 0.0727863i
\(613\) 17.5625 + 10.1397i 0.709344 + 0.409540i 0.810818 0.585298i \(-0.199022\pi\)
−0.101474 + 0.994838i \(0.532356\pi\)
\(614\) −3.39352 1.95925i −0.136952 0.0790690i
\(615\) −2.81209 0.990986i −0.113394 0.0399604i
\(616\) 11.4553 11.4553i 0.461546 0.461546i
\(617\) 4.33527 + 7.50891i 0.174531 + 0.302297i 0.939999 0.341177i \(-0.110826\pi\)
−0.765468 + 0.643474i \(0.777492\pi\)
\(618\) 25.1365 + 43.5376i 1.01114 + 1.75134i
\(619\) 21.3034 21.3034i 0.856257 0.856257i −0.134638 0.990895i \(-0.542987\pi\)
0.990895 + 0.134638i \(0.0429871\pi\)
\(620\) −7.65267 15.9813i −0.307339 0.641826i
\(621\) 1.08290 + 0.625215i 0.0434554 + 0.0250890i
\(622\) 6.06077 + 3.49919i 0.243015 + 0.140305i
\(623\) 11.7725 + 11.7725i 0.471657 + 0.471657i
\(624\) 0 0
\(625\) −23.8231 7.58013i −0.952925 0.303205i
\(626\) −2.04165 7.61954i −0.0816007 0.304538i
\(627\) −3.98458 + 1.06767i −0.159129 + 0.0426385i
\(628\) 1.50502 5.61682i 0.0600569 0.224136i
\(629\) −7.76093 7.76093i −0.309449 0.309449i
\(630\) −4.46931 + 12.6824i −0.178061 + 0.505279i
\(631\) −7.35050 + 27.4324i −0.292619 + 1.09207i 0.650472 + 0.759531i \(0.274571\pi\)
−0.943090 + 0.332537i \(0.892095\pi\)
\(632\) 1.88727i 0.0750715i
\(633\) −6.17835 1.65548i −0.245567 0.0657996i
\(634\) 21.1670 36.6622i 0.840647 1.45604i
\(635\) 1.62522 2.37246i 0.0644950 0.0941483i
\(636\) 12.0094i 0.476206i
\(637\) 0 0
\(638\) 9.92320 9.92320i 0.392863 0.392863i
\(639\) 4.14125 1.10965i 0.163825 0.0438969i
\(640\) −19.6968 + 3.68169i −0.778585 + 0.145532i
\(641\) −14.1756 + 8.18429i −0.559903 + 0.323260i −0.753107 0.657899i \(-0.771446\pi\)
0.193204 + 0.981159i \(0.438112\pi\)
\(642\) −25.6652 −1.01292
\(643\) −35.5518 + 20.5258i −1.40203 + 0.809460i −0.994600 0.103779i \(-0.966907\pi\)
−0.407425 + 0.913239i \(0.633573\pi\)
\(644\) −1.41012 0.377841i −0.0555666 0.0148890i
\(645\) 25.4065 + 29.6555i 1.00038 + 1.16768i
\(646\) −0.996819 1.72654i −0.0392193 0.0679298i
\(647\) −0.733807 2.73861i −0.0288489 0.107666i 0.950000 0.312250i \(-0.101083\pi\)
−0.978849 + 0.204584i \(0.934416\pi\)
\(648\) −6.45318 + 11.1772i −0.253505 + 0.439083i
\(649\) 47.1059 1.84907
\(650\) 0 0
\(651\) −41.0201 −1.60771
\(652\) 1.53344 2.65599i 0.0600540 0.104017i
\(653\) 0.324978 + 1.21283i 0.0127174 + 0.0474619i 0.971993 0.235010i \(-0.0755123\pi\)
−0.959276 + 0.282472i \(0.908846\pi\)
\(654\) 25.3930 + 43.9820i 0.992947 + 1.71983i
\(655\) 8.13874 + 9.49985i 0.318007 + 0.371190i
\(656\) 3.16758 + 0.848749i 0.123673 + 0.0331381i
\(657\) 11.8546 6.84427i 0.462493 0.267020i
\(658\) 63.2122 2.46427
\(659\) −8.09916 + 4.67605i −0.315498 + 0.182153i −0.649384 0.760460i \(-0.724973\pi\)
0.333886 + 0.942613i \(0.391640\pi\)
\(660\) −22.8650 + 4.27387i −0.890017 + 0.166360i
\(661\) −24.7963 + 6.64415i −0.964464 + 0.258427i −0.706489 0.707724i \(-0.749722\pi\)
−0.257975 + 0.966152i \(0.583055\pi\)
\(662\) 2.58641 2.58641i 0.100524 0.100524i
\(663\) 0 0
\(664\) 8.94896i 0.347287i
\(665\) −2.40277 + 3.50751i −0.0931755 + 0.136015i
\(666\) −4.60315 + 7.97288i −0.178368 + 0.308943i
\(667\) 0.581628 + 0.155847i 0.0225207 + 0.00603441i
\(668\) 0.839440i 0.0324789i
\(669\) 3.80358 14.1952i 0.147055 0.548817i
\(670\) −3.11714 + 8.84541i −0.120426 + 0.341728i
\(671\) −7.90679 7.90679i −0.305238 0.305238i
\(672\) 11.9157 44.4701i 0.459660 1.71547i
\(673\) −39.9267 + 10.6983i −1.53906 + 0.412390i −0.925962 0.377617i \(-0.876744\pi\)
−0.613098 + 0.790007i \(0.710077\pi\)
\(674\) 4.10787 + 15.3308i 0.158229 + 0.590519i
\(675\) 16.5759 12.1205i 0.638005 0.466520i
\(676\) 0 0
\(677\) 15.5322 + 15.5322i 0.596950 + 0.596950i 0.939500 0.342549i \(-0.111290\pi\)
−0.342549 + 0.939500i \(0.611290\pi\)
\(678\) 7.20690 + 4.16090i 0.276779 + 0.159799i
\(679\) −54.6308 31.5411i −2.09654 1.21044i
\(680\) 2.31179 + 4.82779i 0.0886531 + 0.185137i
\(681\) −5.46862 + 5.46862i −0.209558 + 0.209558i
\(682\) −20.7508 35.9415i −0.794591 1.37627i
\(683\) −3.32652 5.76170i −0.127286 0.220465i 0.795338 0.606166i \(-0.207293\pi\)
−0.922624 + 0.385700i \(0.873960\pi\)
\(684\) −0.477541 + 0.477541i −0.0182592 + 0.0182592i
\(685\) −30.1372 10.6204i −1.15148 0.405785i
\(686\) −8.28646 4.78419i −0.316378 0.182661i
\(687\) −30.0851 17.3696i −1.14782 0.662692i
\(688\) −30.3701 30.3701i −1.15785 1.15785i
\(689\) 0 0
\(690\) −1.60790 1.87680i −0.0612117 0.0714485i
\(691\) −9.73848 36.3445i −0.370469 1.38261i −0.859853 0.510542i \(-0.829445\pi\)
0.489384 0.872069i \(-0.337222\pi\)
\(692\) −8.66588 + 2.32201i −0.329427 + 0.0882698i
\(693\) −3.29204 + 12.2861i −0.125054 + 0.466709i
\(694\) 42.1038 + 42.1038i 1.59824 + 1.59824i
\(695\) 36.7307 + 12.9440i 1.39327 + 0.490993i
\(696\) −1.19869 + 4.47356i −0.0454361 + 0.169570i
\(697\) 1.36302i 0.0516282i
\(698\) −12.0397 3.22603i −0.455710 0.122107i
\(699\) −4.04946 + 7.01387i −0.153165 + 0.265289i
\(700\) −15.0303 + 18.6772i −0.568093 + 0.705931i
\(701\) 40.3398i 1.52361i −0.647804 0.761807i \(-0.724312\pi\)
0.647804 0.761807i \(-0.275688\pi\)
\(702\) 0 0
\(703\) −2.05825 + 2.05825i −0.0776285 + 0.0776285i
\(704\) 8.51379 2.28126i 0.320875 0.0859783i
\(705\) 35.6533 + 24.4238i 1.34278 + 0.919852i
\(706\) −43.3459 + 25.0258i −1.63134 + 0.941857i
\(707\) −16.1158 −0.606097
\(708\) 28.2753 16.3247i 1.06265 0.613521i
\(709\) −43.0733 11.5415i −1.61765 0.433449i −0.667341 0.744752i \(-0.732568\pi\)
−0.950311 + 0.311304i \(0.899234\pi\)
\(710\) 18.8709 + 1.45620i 0.708213 + 0.0546501i
\(711\) −0.740887 1.28325i −0.0277854 0.0481258i
\(712\) −1.43878 5.36959i −0.0539204 0.201234i
\(713\) 0.890371 1.54217i 0.0333447 0.0577546i
\(714\) −26.0250 −0.973960
\(715\) 0 0
\(716\) −2.96749 −0.110900
\(717\) −12.5746 + 21.7798i −0.469607 + 0.813383i
\(718\) −2.61379 9.75479i −0.0975457 0.364045i
\(719\) −13.7825 23.8720i −0.514001 0.890276i −0.999868 0.0162430i \(-0.994829\pi\)
0.485867 0.874033i \(-0.338504\pi\)
\(720\) 7.67863 6.57846i 0.286166 0.245165i
\(721\) 47.3409 + 12.6850i 1.76307 + 0.472413i
\(722\) 29.6807 17.1361i 1.10460 0.637741i
\(723\) −34.7768 −1.29336
\(724\) −11.2555 + 6.49836i −0.418307 + 0.241510i
\(725\) 6.19951 7.70371i 0.230244 0.286109i
\(726\) −14.0557 + 3.76622i −0.521656 + 0.139777i
\(727\) 29.4624 29.4624i 1.09270 1.09270i 0.0974593 0.995240i \(-0.468928\pi\)
0.995240 0.0974593i \(-0.0310716\pi\)
\(728\) 0 0
\(729\) 14.2845i 0.529057i
\(730\) 59.4011 11.1031i 2.19853 0.410946i
\(731\) −8.92588 + 15.4601i −0.330135 + 0.571811i
\(732\) −7.48617 2.00591i −0.276697 0.0741407i
\(733\) 23.3958i 0.864144i −0.901839 0.432072i \(-0.857783\pi\)
0.901839 0.432072i \(-0.142217\pi\)
\(734\) −8.56885 + 31.9794i −0.316282 + 1.18038i
\(735\) 10.5723 + 22.0785i 0.389965 + 0.814378i
\(736\) 1.41323 + 1.41323i 0.0520924 + 0.0520924i
\(737\) −2.29605 + 8.56897i −0.0845761 + 0.315642i
\(738\) −1.10434 + 0.295907i −0.0406513 + 0.0108925i
\(739\) −4.15644 15.5120i −0.152897 0.570620i −0.999276 0.0380389i \(-0.987889\pi\)
0.846379 0.532581i \(-0.178778\pi\)
\(740\) −12.4647 + 10.6788i −0.458210 + 0.392560i
\(741\) 0 0
\(742\) 20.4995 + 20.4995i 0.752561 + 0.752561i
\(743\) −45.2759 26.1400i −1.66101 0.958985i −0.972234 0.234011i \(-0.924815\pi\)
−0.688777 0.724973i \(-0.741852\pi\)
\(744\) 11.8615 + 6.84824i 0.434864 + 0.251069i
\(745\) 26.4805 12.6802i 0.970171 0.464567i
\(746\) −20.0933 + 20.0933i −0.735669 + 0.735669i
\(747\) 3.51310 + 6.08487i 0.128538 + 0.222634i
\(748\) −5.31682 9.20901i −0.194402 0.336715i
\(749\) −17.6925 + 17.6925i −0.646468 + 0.646468i
\(750\) −38.8605 + 11.7048i −1.41898 + 0.427399i
\(751\) −23.7599 13.7178i −0.867010 0.500569i −0.000656703 1.00000i \(-0.500209\pi\)
−0.866354 + 0.499431i \(0.833542\pi\)
\(752\) −41.1638 23.7659i −1.50109 0.866655i
\(753\) 30.5066 + 30.5066i 1.11172 + 1.11172i
\(754\) 0 0
\(755\) −0.186169 + 2.41257i −0.00677539 + 0.0878026i
\(756\) −5.09659 19.0207i −0.185361 0.691777i
\(757\) −2.32441 + 0.622824i −0.0844821 + 0.0226369i −0.300813 0.953683i \(-0.597258\pi\)
0.216330 + 0.976320i \(0.430591\pi\)
\(758\) 10.1295 37.8037i 0.367919 1.37309i
\(759\) −1.65300 1.65300i −0.0600000 0.0600000i
\(760\) 1.28036 0.613103i 0.0464437 0.0222396i
\(761\) 0.632352 2.35997i 0.0229227 0.0855488i −0.953517 0.301340i \(-0.902566\pi\)
0.976440 + 0.215791i \(0.0692329\pi\)
\(762\) 4.66848i 0.169121i
\(763\) 47.8242 + 12.8144i 1.73135 + 0.463914i
\(764\) −2.52761 + 4.37796i −0.0914459 + 0.158389i
\(765\) −3.46716 2.37513i −0.125355 0.0858730i
\(766\) 35.5469i 1.28436i
\(767\) 0 0
\(768\) −29.3786 + 29.3786i −1.06011 + 1.06011i
\(769\) −13.0944 + 3.50862i −0.472195 + 0.126524i −0.487066 0.873365i \(-0.661933\pi\)
0.0148712 + 0.999889i \(0.495266\pi\)
\(770\) −31.7340 + 46.3246i −1.14361 + 1.66942i
\(771\) −21.9917 + 12.6969i −0.792011 + 0.457268i
\(772\) −0.384901 −0.0138529
\(773\) 19.4375 11.2222i 0.699118 0.403636i −0.107901 0.994162i \(-0.534413\pi\)
0.807019 + 0.590525i \(0.201079\pi\)
\(774\) 14.4637 + 3.87555i 0.519888 + 0.139304i
\(775\) −17.2609 23.6058i −0.620031 0.847944i
\(776\) 10.5315 + 18.2410i 0.378058 + 0.654815i
\(777\) 9.83454 + 36.7030i 0.352812 + 1.31671i
\(778\) 13.6082 23.5701i 0.487878 0.845030i
\(779\) −0.361484 −0.0129515
\(780\) 0 0
\(781\) 17.9032 0.640626
\(782\) 0.564890 0.978419i 0.0202004 0.0349882i
\(783\) 2.10217 + 7.84541i 0.0751255 + 0.280372i
\(784\) −13.4618 23.3165i −0.480778 0.832732i
\(785\) 0.738363 9.56847i 0.0263533 0.341513i
\(786\) 19.6158 + 5.25605i 0.699674 + 0.187477i
\(787\) 11.6877 6.74791i 0.416622 0.240537i −0.277009 0.960867i \(-0.589343\pi\)
0.693631 + 0.720330i \(0.256010\pi\)
\(788\) −35.0224 −1.24762
\(789\) 28.3280 16.3552i 1.00850 0.582260i
\(790\) −1.20191 6.43012i −0.0427619 0.228773i
\(791\) 7.83647 2.09978i 0.278633 0.0746594i
\(792\) 3.00307 3.00307i 0.106709 0.106709i
\(793\) 0 0
\(794\) 9.66696i 0.343068i
\(795\) 3.64168 + 19.4828i 0.129157 + 0.690983i
\(796\) 3.89696 6.74974i 0.138124 0.239238i
\(797\) 6.06076 + 1.62398i 0.214683 + 0.0575242i 0.364558 0.931181i \(-0.381220\pi\)
−0.149874 + 0.988705i \(0.547887\pi\)
\(798\) 6.90201i 0.244328i
\(799\) −5.11330 + 19.0831i −0.180896 + 0.675112i
\(800\) 30.6052 11.8555i 1.08206 0.419156i
\(801\) 3.08625 + 3.08625i 0.109047 + 0.109047i
\(802\) 13.2163 49.3238i 0.466683 1.74168i
\(803\) 55.2132 14.7943i 1.94843 0.522081i
\(804\) 1.59141 + 5.93922i 0.0561247 + 0.209460i
\(805\) −2.40220 0.185369i −0.0846664 0.00653339i
\(806\) 0 0
\(807\) −45.2744 45.2744i −1.59374 1.59374i
\(808\) 4.66009 + 2.69050i 0.163941 + 0.0946516i
\(809\) −18.6872 10.7890i −0.657006 0.379322i 0.134130 0.990964i \(-0.457176\pi\)
−0.791135 + 0.611641i \(0.790510\pi\)
\(810\) 14.8684 42.1917i 0.522424 1.48247i
\(811\) −22.5473 + 22.5473i −0.791743 + 0.791743i −0.981777 0.190035i \(-0.939140\pi\)
0.190035 + 0.981777i \(0.439140\pi\)
\(812\) −4.74129 8.21215i −0.166387 0.288190i
\(813\) −17.3138 29.9885i −0.607223 1.05174i
\(814\) −27.1839 + 27.1839i −0.952795 + 0.952795i
\(815\) 1.68229 4.77377i 0.0589279 0.167218i
\(816\) 16.9475 + 9.78462i 0.593280 + 0.342530i
\(817\) 4.10012 + 2.36721i 0.143445 + 0.0828180i
\(818\) 3.41289 + 3.41289i 0.119329 + 0.119329i
\(819\) 0 0
\(820\) −2.03230 0.156825i −0.0709710 0.00547656i
\(821\) −4.64130 17.3216i −0.161982 0.604526i −0.998406 0.0564427i \(-0.982024\pi\)
0.836423 0.548084i \(-0.184642\pi\)
\(822\) −50.1062 + 13.4259i −1.74765 + 0.468282i
\(823\) −0.298185 + 1.11284i −0.0103941 + 0.0387913i −0.970928 0.239371i \(-0.923059\pi\)
0.960534 + 0.278162i \(0.0897254\pi\)
\(824\) −11.5715 11.5715i −0.403112 0.403112i
\(825\) −35.7975 + 13.8669i −1.24631 + 0.482784i
\(826\) 20.3990 76.1300i 0.709771 2.64890i
\(827\) 4.45029i 0.154752i 0.997002 + 0.0773759i \(0.0246542\pi\)
−0.997002 + 0.0773759i \(0.975346\pi\)
\(828\) −0.369672 0.0990534i −0.0128470 0.00344234i
\(829\) 14.5637 25.2251i 0.505819 0.876103i −0.494159 0.869372i \(-0.664524\pi\)
0.999977 0.00673181i \(-0.00214282\pi\)
\(830\) 5.69914 + 30.4900i 0.197820 + 1.05832i
\(831\) 6.09295i 0.211362i
\(832\) 0 0
\(833\) −7.91294 + 7.91294i −0.274167 + 0.274167i
\(834\) 61.0685 16.3633i 2.11463 0.566613i
\(835\) 0.254548 + 1.36181i 0.00880899 + 0.0471275i
\(836\) −2.44229 + 1.41006i −0.0844685 + 0.0487679i
\(837\) 24.0199 0.830249
\(838\) 31.2015 18.0142i 1.07784 0.622291i
\(839\) 31.2268 + 8.36719i 1.07807 + 0.288867i 0.753804 0.657099i \(-0.228217\pi\)
0.324264 + 0.945967i \(0.394883\pi\)
\(840\) 1.42575 18.4764i 0.0491931 0.637496i
\(841\) −12.5444 21.7275i −0.432565 0.749224i
\(842\) 7.00106 + 26.1283i 0.241273 + 0.900441i
\(843\) 26.1718 45.3309i 0.901405 1.56128i
\(844\) −4.37277 −0.150517
\(845\) 0 0
\(846\) 16.5715 0.569739
\(847\) −7.09313 + 12.2857i −0.243723 + 0.422140i
\(848\) −5.64207 21.0565i −0.193750 0.723083i
\(849\) −15.1999 26.3270i −0.521660 0.903541i
\(850\) −10.9511 14.9765i −0.375619 0.513691i
\(851\) −1.59333 0.426931i −0.0546186 0.0146350i
\(852\) 10.7464 6.20441i 0.368164 0.212560i
\(853\) −9.24230 −0.316450 −0.158225 0.987403i \(-0.550577\pi\)
−0.158225 + 0.987403i \(0.550577\pi\)
\(854\) −16.2025 + 9.35453i −0.554439 + 0.320105i
\(855\) −0.629901 + 0.919515i −0.0215422 + 0.0314468i
\(856\) 8.06972 2.16228i 0.275817 0.0739051i
\(857\) −37.7913 + 37.7913i −1.29093 + 1.29093i −0.356713 + 0.934214i \(0.616103\pi\)
−0.934214 + 0.356713i \(0.883897\pi\)
\(858\) 0 0
\(859\) 6.16263i 0.210266i 0.994458 + 0.105133i \(0.0335269\pi\)
−0.994458 + 0.105133i \(0.966473\pi\)
\(860\) 22.0243 + 15.0875i 0.751024 + 0.514478i
\(861\) −2.35941 + 4.08661i −0.0804083 + 0.139271i
\(862\) 30.3110 + 8.12181i 1.03240 + 0.276630i
\(863\) 33.7740i 1.14968i −0.818266 0.574840i \(-0.805064\pi\)
0.818266 0.574840i \(-0.194936\pi\)
\(864\) −6.97742 + 26.0401i −0.237377 + 0.885902i
\(865\) −13.3544 + 6.39477i −0.454064 + 0.217429i
\(866\) 14.5532 + 14.5532i 0.494539 + 0.494539i
\(867\) −6.61482 + 24.6868i −0.224651 + 0.838409i
\(868\) −27.0875 + 7.25808i −0.919410 + 0.246355i
\(869\) −1.60147 5.97678i −0.0543263 0.202748i
\(870\) 1.23507 16.0053i 0.0418727 0.542630i
\(871\) 0 0
\(872\) −11.6896 11.6896i −0.395861 0.395861i
\(873\) −14.3218 8.26870i −0.484720 0.279853i
\(874\) −0.259484 0.149813i −0.00877716 0.00506750i
\(875\) −18.7199 + 34.8575i −0.632849 + 1.17840i
\(876\) 28.0146 28.0146i 0.946527 0.946527i
\(877\) 11.3486 + 19.6563i 0.383214 + 0.663747i 0.991520 0.129956i \(-0.0414837\pi\)
−0.608305 + 0.793703i \(0.708150\pi\)
\(878\) 3.88705 + 6.73256i 0.131181 + 0.227213i
\(879\) −14.5417 + 14.5417i −0.490480 + 0.490480i
\(880\) 38.0819 18.2355i 1.28374 0.614719i
\(881\) 6.78312 + 3.91623i 0.228529 + 0.131941i 0.609893 0.792484i \(-0.291212\pi\)
−0.381364 + 0.924425i \(0.624546\pi\)
\(882\) 8.12905 + 4.69331i 0.273719 + 0.158032i
\(883\) 18.9296 + 18.9296i 0.637032 + 0.637032i 0.949822 0.312790i \(-0.101264\pi\)
−0.312790 + 0.949822i \(0.601264\pi\)
\(884\) 0 0
\(885\) 40.9204 35.0575i 1.37552 1.17844i
\(886\) −10.1615 37.9234i −0.341384 1.27406i
\(887\) −34.3248 + 9.19729i −1.15251 + 0.308815i −0.783972 0.620797i \(-0.786809\pi\)
−0.368541 + 0.929612i \(0.620143\pi\)
\(888\) 3.28372 12.2550i 0.110194 0.411251i
\(889\) −3.21825 3.21825i −0.107937 0.107937i
\(890\) 8.32168 + 17.3785i 0.278943 + 0.582527i
\(891\) 10.9519 40.8731i 0.366903 1.36930i
\(892\) 10.0467i 0.336389i
\(893\) 5.06098 + 1.35608i 0.169359 + 0.0453796i
\(894\) 23.8314 41.2772i 0.797042 1.38052i
\(895\) −4.81413 + 0.899848i −0.160919 + 0.0300786i
\(896\) 31.7130i 1.05946i
\(897\) 0 0
\(898\) 18.8417 18.8417i 0.628755 0.628755i
\(899\) 11.1727 2.99371i 0.372630 0.0998459i
\(900\) −3.94029 + 4.89634i −0.131343 + 0.163211i
\(901\) −7.84682 + 4.53036i −0.261415 + 0.150928i
\(902\) −4.77421 −0.158964
\(903\) 53.5230 30.9015i 1.78113 1.02834i
\(904\) −2.61657 0.701108i −0.0870258 0.0233185i
\(905\) −16.2891 + 13.9553i −0.541469 + 0.463889i
\(906\) 1.96411 + 3.40193i 0.0652530 + 0.113022i
\(907\) −12.0355 44.9172i −0.399633 1.49145i −0.813743 0.581225i \(-0.802574\pi\)
0.414109 0.910227i \(-0.364093\pi\)
\(908\) −2.64357 + 4.57880i −0.0877300 + 0.151953i
\(909\) −4.22485 −0.140130
\(910\) 0 0
\(911\) 17.7325 0.587504 0.293752 0.955882i \(-0.405096\pi\)
0.293752 + 0.955882i \(0.405096\pi\)
\(912\) 2.59495 4.49459i 0.0859274 0.148831i
\(913\) 7.59379 + 28.3404i 0.251318 + 0.937931i
\(914\) −27.7449 48.0556i −0.917720 1.58954i
\(915\) −12.7530 0.984100i −0.421601 0.0325333i
\(916\) −22.9399 6.14674i −0.757957 0.203094i
\(917\) 17.1456 9.89902i 0.566198 0.326894i
\(918\) 15.2393 0.502971
\(919\) −42.2580 + 24.3977i −1.39396 + 0.804806i −0.993751 0.111617i \(-0.964397\pi\)
−0.400213 + 0.916422i \(0.631064\pi\)
\(920\) 0.663680 + 0.454645i 0.0218809 + 0.0149892i
\(921\) −4.09541 + 1.09736i −0.134948 + 0.0361593i
\(922\) 8.98564 8.98564i 0.295926 0.295926i
\(923\) 0 0
\(924\) 36.8139i 1.21109i
\(925\) −16.9831 + 21.1038i −0.558401 + 0.693888i
\(926\) −28.7990 + 49.8814i −0.946395 + 1.63920i
\(927\) 12.4107 + 3.32544i 0.407621 + 0.109222i
\(928\) 12.9820i 0.426155i
\(929\) 2.68833 10.0330i 0.0882012 0.329171i −0.907700 0.419620i \(-0.862163\pi\)
0.995901 + 0.0904485i \(0.0288300\pi\)
\(930\) −44.7747 15.7787i −1.46822 0.517403i
\(931\) 2.09857 + 2.09857i 0.0687778 + 0.0687778i
\(932\) −1.43302 + 5.34810i −0.0469401 + 0.175183i
\(933\) 7.31433 1.95987i 0.239460 0.0641632i
\(934\) −2.47803 9.24814i −0.0810837 0.302608i
\(935\) −11.4179 13.3274i −0.373406 0.435853i
\(936\) 0 0
\(937\) 5.31856 + 5.31856i 0.173750 + 0.173750i 0.788625 0.614875i \(-0.210794\pi\)
−0.614875 + 0.788625i \(0.710794\pi\)
\(938\) 12.8544 + 7.42149i 0.419711 + 0.242320i
\(939\) −7.39178 4.26764i −0.241221 0.139269i
\(940\) 27.8650 + 9.81969i 0.908857 + 0.320283i
\(941\) 38.9093 38.9093i 1.26841 1.26841i 0.321497 0.946911i \(-0.395814\pi\)
0.946911 0.321497i \(-0.104186\pi\)
\(942\) −7.78981 13.4923i −0.253806 0.439604i
\(943\) −0.102425 0.177406i −0.00333542 0.00577712i
\(944\) −41.9064 + 41.9064i −1.36394 + 1.36394i
\(945\) −14.0359 29.3116i −0.456587 0.953508i
\(946\) 54.1514 + 31.2643i 1.76061 + 1.01649i
\(947\) 29.2298 + 16.8759i 0.949842 + 0.548392i 0.893032 0.449993i \(-0.148574\pi\)
0.0568101 + 0.998385i \(0.481907\pi\)
\(948\) −3.03256 3.03256i −0.0984930 0.0984930i
\(949\) 0 0
\(950\) −3.97188 + 2.90431i −0.128865 + 0.0942281i
\(951\) −11.8554 44.2451i −0.384439 1.43475i
\(952\) 8.18285 2.19259i 0.265208 0.0710622i
\(953\) −1.14302 + 4.26581i −0.0370260 + 0.138183i −0.981965 0.189065i \(-0.939454\pi\)
0.944939 + 0.327248i \(0.106121\pi\)
\(954\) 5.37407 + 5.37407i 0.173992 + 0.173992i
\(955\) −2.77297 + 7.86877i −0.0897311 + 0.254627i
\(956\) −4.44988 + 16.6072i −0.143919 + 0.537115i
\(957\) 15.1845i 0.490845i
\(958\) 34.2405 + 9.17471i 1.10626 + 0.296422i
\(959\) −25.2858 + 43.7963i −0.816520 + 1.41425i
\(960\) 5.69806 8.31789i 0.183904 0.268459i
\(961\) 3.20686i 0.103447i
\(962\) 0 0
\(963\) −4.63819 + 4.63819i −0.149463 + 0.149463i
\(964\) −22.9647 + 6.15338i −0.739645 + 0.198187i
\(965\) −0.624420 + 0.116715i −0.0201008 + 0.00375720i
\(966\) −3.38730 + 1.95566i −0.108985 + 0.0629223i
\(967\) −16.2803 −0.523540 −0.261770 0.965130i \(-0.584306\pi\)
−0.261770 + 0.965130i \(0.584306\pi\)
\(968\) 4.10214 2.36837i 0.131848 0.0761223i
\(969\) −2.08364 0.558310i −0.0669363 0.0179355i
\(970\) −47.4986 55.4421i −1.52509 1.78014i
\(971\) −6.40146 11.0877i −0.205433 0.355820i 0.744838 0.667245i \(-0.232527\pi\)
−0.950270 + 0.311426i \(0.899193\pi\)
\(972\) −3.27038 12.2052i −0.104897 0.391482i
\(973\) 30.8179 53.3781i 0.987975 1.71122i
\(974\) −42.7918 −1.37114
\(975\) 0 0
\(976\) 14.0681 0.450309
\(977\) −8.02436 + 13.8986i −0.256722 + 0.444655i −0.965362 0.260915i \(-0.915976\pi\)
0.708640 + 0.705570i \(0.249309\pi\)
\(978\) −2.12668 7.93687i −0.0680037 0.253793i
\(979\) 9.11292 + 15.7840i 0.291250 + 0.504460i
\(980\) 10.8879 + 12.7088i 0.347803 + 0.405968i
\(981\) 12.5374 + 3.35939i 0.400288 + 0.107257i
\(982\) −33.8164 + 19.5239i −1.07912 + 0.623033i
\(983\) 34.3036 1.09411 0.547057 0.837096i \(-0.315748\pi\)
0.547057 + 0.837096i \(0.315748\pi\)
\(984\) 1.36450 0.787797i 0.0434988 0.0251141i
\(985\) −56.8164 + 10.6200i −1.81032 + 0.338382i
\(986\) 7.08844 1.89934i 0.225742 0.0604874i
\(987\) 48.3637 48.3637i 1.53943 1.53943i
\(988\) 0 0
\(989\) 2.68296i 0.0853131i
\(990\) −8.31927 + 12.1443i −0.264404 + 0.385971i
\(991\) −11.1772 + 19.3596i −0.355057 + 0.614977i −0.987128 0.159934i \(-0.948872\pi\)
0.632071 + 0.774911i \(0.282205\pi\)
\(992\) 37.0838 + 9.93658i 1.17741 + 0.315487i
\(993\) 3.95773i 0.125595i
\(994\) 7.75287 28.9341i 0.245906 0.917734i
\(995\) 4.27524 12.1317i 0.135534 0.384601i
\(996\) 14.3796 + 14.3796i 0.455637 + 0.455637i
\(997\) 3.08118 11.4991i 0.0975820 0.364181i −0.899816 0.436269i \(-0.856300\pi\)
0.997398 + 0.0720881i \(0.0229663\pi\)
\(998\) 57.6445 15.4458i 1.82471 0.488928i
\(999\) −5.75875 21.4920i −0.182199 0.679975i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.f.357.4 20
5.3 odd 4 845.2.t.e.188.2 20
13.2 odd 12 845.2.t.f.427.4 20
13.3 even 3 845.2.o.g.587.4 20
13.4 even 6 845.2.k.e.577.8 20
13.5 odd 4 65.2.t.a.7.2 yes 20
13.6 odd 12 845.2.f.e.437.8 20
13.7 odd 12 845.2.f.d.437.3 20
13.8 odd 4 845.2.t.g.657.4 20
13.9 even 3 845.2.k.d.577.3 20
13.10 even 6 65.2.o.a.2.2 20
13.11 odd 12 845.2.t.e.427.2 20
13.12 even 2 845.2.o.e.357.2 20
39.5 even 4 585.2.dp.a.397.4 20
39.23 odd 6 585.2.cf.a.262.4 20
65.3 odd 12 845.2.t.g.418.4 20
65.8 even 4 845.2.o.g.488.4 20
65.18 even 4 65.2.o.a.33.2 yes 20
65.23 odd 12 65.2.t.a.28.2 yes 20
65.28 even 12 845.2.o.e.258.2 20
65.33 even 12 845.2.k.d.268.3 20
65.38 odd 4 845.2.t.f.188.4 20
65.43 odd 12 845.2.f.e.408.3 20
65.44 odd 4 325.2.x.b.7.4 20
65.48 odd 12 845.2.f.d.408.8 20
65.49 even 6 325.2.s.b.132.4 20
65.57 even 4 325.2.s.b.293.4 20
65.58 even 12 845.2.k.e.268.8 20
65.62 odd 12 325.2.x.b.93.4 20
65.63 even 12 inner 845.2.o.f.258.4 20
195.23 even 12 585.2.dp.a.28.4 20
195.83 odd 4 585.2.cf.a.163.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.2 20 13.10 even 6
65.2.o.a.33.2 yes 20 65.18 even 4
65.2.t.a.7.2 yes 20 13.5 odd 4
65.2.t.a.28.2 yes 20 65.23 odd 12
325.2.s.b.132.4 20 65.49 even 6
325.2.s.b.293.4 20 65.57 even 4
325.2.x.b.7.4 20 65.44 odd 4
325.2.x.b.93.4 20 65.62 odd 12
585.2.cf.a.163.4 20 195.83 odd 4
585.2.cf.a.262.4 20 39.23 odd 6
585.2.dp.a.28.4 20 195.23 even 12
585.2.dp.a.397.4 20 39.5 even 4
845.2.f.d.408.8 20 65.48 odd 12
845.2.f.d.437.3 20 13.7 odd 12
845.2.f.e.408.3 20 65.43 odd 12
845.2.f.e.437.8 20 13.6 odd 12
845.2.k.d.268.3 20 65.33 even 12
845.2.k.d.577.3 20 13.9 even 3
845.2.k.e.268.8 20 65.58 even 12
845.2.k.e.577.8 20 13.4 even 6
845.2.o.e.258.2 20 65.28 even 12
845.2.o.e.357.2 20 13.12 even 2
845.2.o.f.258.4 20 65.63 even 12 inner
845.2.o.f.357.4 20 1.1 even 1 trivial
845.2.o.g.488.4 20 65.8 even 4
845.2.o.g.587.4 20 13.3 even 3
845.2.t.e.188.2 20 5.3 odd 4
845.2.t.e.427.2 20 13.11 odd 12
845.2.t.f.188.4 20 65.38 odd 4
845.2.t.f.427.4 20 13.2 odd 12
845.2.t.g.418.4 20 65.3 odd 12
845.2.t.g.657.4 20 13.8 odd 4