| L(s) = 1 | + (0.915 − 1.58i)2-s + (−0.512 − 1.91i)3-s + (−0.677 − 1.17i)4-s + (−1.45 − 1.69i)5-s + (−3.50 − 0.939i)6-s + (−3.06 + 1.76i)7-s + 1.18·8-s + (−0.803 + 0.463i)9-s + (−4.02 + 0.752i)10-s + (−3.74 + 1.00i)11-s + (−1.89 + 1.89i)12-s + 6.48i·14-s + (−2.50 + 3.65i)15-s + (2.43 − 4.22i)16-s + (−1.95 − 0.524i)17-s + 1.69i·18-s + ⋯ |
| L(s) = 1 | + (0.647 − 1.12i)2-s + (−0.296 − 1.10i)3-s + (−0.338 − 0.586i)4-s + (−0.650 − 0.759i)5-s + (−1.43 − 0.383i)6-s + (−1.15 + 0.668i)7-s + 0.417·8-s + (−0.267 + 0.154i)9-s + (−1.27 + 0.237i)10-s + (−1.12 + 0.302i)11-s + (−0.548 + 0.548i)12-s + 1.73i·14-s + (−0.646 + 0.943i)15-s + (0.609 − 1.05i)16-s + (−0.474 − 0.127i)17-s + 0.400i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0663 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0663 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.462031 + 0.432320i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.462031 + 0.432320i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (1.45 + 1.69i)T \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.915 + 1.58i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.512 + 1.91i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (3.06 - 1.76i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.74 - 1.00i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (1.95 + 0.524i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.139 - 0.518i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.294 - 0.0788i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (1.71 + 0.988i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.13 - 4.13i)T - 31iT^{2} \) |
| 37 | \( 1 + (-4.69 - 2.70i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.174 - 0.649i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-2.28 + 8.51i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 9.75iT - 47T^{2} \) |
| 53 | \( 1 + (-3.16 + 3.16i)T - 53iT^{2} \) |
| 59 | \( 1 + (11.7 + 3.14i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.44 - 2.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.14 + 1.98i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.46 + 1.19i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 14.7T + 73T^{2} \) |
| 79 | \( 1 - 1.59iT - 79T^{2} \) |
| 83 | \( 1 + 7.57iT - 83T^{2} \) |
| 89 | \( 1 + (1.21 + 4.54i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-8.91 - 15.4i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.748592955307136884650929264593, −8.751980329439169596901423601252, −7.69735632012901605543510235927, −7.04461759710973368477403581856, −5.85671988096278435355945209524, −4.96868995911344192658396128086, −3.84422087202070512652490094679, −2.79593888563227527962995915612, −1.78213643688052248627814746204, −0.24591915397920695675431008948,
2.94870869159293006665707041836, 3.96631640765282247763558362768, 4.53762224242722962560017592762, 5.68875385839658355553194728574, 6.37478907779142291623911537846, 7.35731694974122093355858272758, 7.82179214061559175070534162395, 9.251079917322848794144731504122, 10.18547053611750609196626944123, 10.70679330992369766768969501467