# Properties

 Label 845.2 Level 845 Weight 2 Dimension 25107 Nonzero newspaces 24 Newform subspaces 122 Sturm bound 113568 Trace bound 3

## Defining parameters

 Level: $$N$$ = $$845 = 5 \cdot 13^{2}$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$24$$ Newform subspaces: $$122$$ Sturm bound: $$113568$$ Trace bound: $$3$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(845))$$.

Total New Old
Modular forms 29304 26333 2971
Cusp forms 27481 25107 2374
Eisenstein series 1823 1226 597

## Trace form

 $$25107q - 129q^{2} - 128q^{3} - 125q^{4} - 197q^{5} - 384q^{6} - 132q^{7} - 153q^{8} - 151q^{9} + O(q^{10})$$ $$25107q - 129q^{2} - 128q^{3} - 125q^{4} - 197q^{5} - 384q^{6} - 132q^{7} - 153q^{8} - 151q^{9} - 225q^{10} - 408q^{11} - 208q^{12} - 168q^{13} - 276q^{14} - 218q^{15} - 445q^{16} - 150q^{17} - 225q^{18} - 192q^{19} - 257q^{20} - 468q^{21} - 216q^{22} - 156q^{23} - 312q^{24} - 209q^{25} - 492q^{26} - 356q^{27} - 276q^{28} - 210q^{29} - 330q^{30} - 468q^{31} - 333q^{32} - 252q^{33} - 270q^{34} - 274q^{35} - 641q^{36} - 162q^{37} - 240q^{38} - 208q^{39} - 507q^{40} - 534q^{41} - 396q^{42} - 272q^{43} - 360q^{44} - 335q^{45} - 660q^{46} - 252q^{47} - 248q^{48} - 307q^{49} - 357q^{50} - 540q^{51} - 226q^{52} - 294q^{53} - 132q^{54} - 174q^{55} - 444q^{56} - 108q^{57} - 126q^{58} - 96q^{59} + 82q^{60} - 466q^{61} - 84q^{62} - 84q^{63} - 89q^{64} - 201q^{65} - 756q^{66} - 96q^{67} - 138q^{68} - 12q^{69} - 162q^{70} - 468q^{71} - 105q^{72} - 186q^{73} - 294q^{74} - 178q^{75} - 528q^{76} - 252q^{77} - 348q^{78} - 316q^{79} - 389q^{80} - 595q^{81} - 426q^{82} - 360q^{83} - 492q^{84} - 366q^{85} - 768q^{86} - 492q^{87} - 648q^{88} - 426q^{89} - 603q^{90} - 628q^{91} - 660q^{92} - 540q^{93} - 564q^{94} - 394q^{95} - 1128q^{96} - 354q^{97} - 537q^{98} - 576q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(845))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
845.2.a $$\chi_{845}(1, \cdot)$$ 845.2.a.a 1 1
845.2.a.b 2
845.2.a.c 2
845.2.a.d 2
845.2.a.e 2
845.2.a.f 2
845.2.a.g 2
845.2.a.h 3
845.2.a.i 3
845.2.a.j 3
845.2.a.k 3
845.2.a.l 4
845.2.a.m 4
845.2.a.n 9
845.2.a.o 9
845.2.b $$\chi_{845}(339, \cdot)$$ 845.2.b.a 2 1
845.2.b.b 2
845.2.b.c 6
845.2.b.d 6
845.2.b.e 6
845.2.b.f 8
845.2.b.g 18
845.2.b.h 18
845.2.c $$\chi_{845}(506, \cdot)$$ 845.2.c.a 2 1
845.2.c.b 4
845.2.c.c 4
845.2.c.d 4
845.2.c.e 4
845.2.c.f 6
845.2.c.g 8
845.2.c.h 18
845.2.d $$\chi_{845}(844, \cdot)$$ 845.2.d.a 6 1
845.2.d.b 6
845.2.d.c 8
845.2.d.d 12
845.2.d.e 36
845.2.e $$\chi_{845}(146, \cdot)$$ 845.2.e.a 2 2
845.2.e.b 2
845.2.e.c 4
845.2.e.d 4
845.2.e.e 4
845.2.e.f 4
845.2.e.g 4
845.2.e.h 4
845.2.e.i 6
845.2.e.j 6
845.2.e.k 6
845.2.e.l 6
845.2.e.m 8
845.2.e.n 8
845.2.e.o 18
845.2.e.p 18
845.2.f $$\chi_{845}(408, \cdot)$$ 845.2.f.a 2 2
845.2.f.b 8
845.2.f.c 12
845.2.f.d 20
845.2.f.e 20
845.2.f.f 72
845.2.k $$\chi_{845}(268, \cdot)$$ 845.2.k.a 2 2
845.2.k.b 8
845.2.k.c 12
845.2.k.d 20
845.2.k.e 20
845.2.k.f 72
845.2.l $$\chi_{845}(654, \cdot)$$ 845.2.l.a 4 2
845.2.l.b 4
845.2.l.c 8
845.2.l.d 12
845.2.l.e 12
845.2.l.f 24
845.2.l.g 72
845.2.m $$\chi_{845}(316, \cdot)$$ 845.2.m.a 4 2
845.2.m.b 4
845.2.m.c 4
845.2.m.d 8
845.2.m.e 8
845.2.m.f 8
845.2.m.g 8
845.2.m.h 12
845.2.m.i 12
845.2.m.j 36
845.2.n $$\chi_{845}(484, \cdot)$$ 845.2.n.a 4 2
845.2.n.b 4
845.2.n.c 8
845.2.n.d 8
845.2.n.e 12
845.2.n.f 12
845.2.n.g 12
845.2.n.h 36
845.2.n.i 36
845.2.o $$\chi_{845}(258, \cdot)$$ 845.2.o.a 4 4
845.2.o.b 4
845.2.o.c 16
845.2.o.d 16
845.2.o.e 20
845.2.o.f 20
845.2.o.g 20
845.2.o.h 24
845.2.o.i 144
845.2.t $$\chi_{845}(188, \cdot)$$ 845.2.t.a 4 4
845.2.t.b 4
845.2.t.c 16
845.2.t.d 16
845.2.t.e 20
845.2.t.f 20
845.2.t.g 20
845.2.t.h 24
845.2.t.i 144
845.2.u $$\chi_{845}(66, \cdot)$$ 845.2.u.a 372 12
845.2.u.b 372
845.2.v $$\chi_{845}(64, \cdot)$$ 845.2.v.a 1056 12
845.2.w $$\chi_{845}(51, \cdot)$$ 845.2.w.a 744 12
845.2.x $$\chi_{845}(14, \cdot)$$ 845.2.x.a 1080 12
845.2.y $$\chi_{845}(16, \cdot)$$ 845.2.y.a 720 24
845.2.y.b 720
845.2.z $$\chi_{845}(8, \cdot)$$ 845.2.z.a 2136 24
845.2.be $$\chi_{845}(18, \cdot)$$ 845.2.be.a 2136 24
845.2.bf $$\chi_{845}(9, \cdot)$$ 845.2.bf.a 2160 24
845.2.bg $$\chi_{845}(36, \cdot)$$ 845.2.bg.a 1440 24
845.2.bh $$\chi_{845}(4, \cdot)$$ 845.2.bh.a 2112 24
845.2.bi $$\chi_{845}(7, \cdot)$$ 845.2.bi.a 4272 48
845.2.bn $$\chi_{845}(2, \cdot)$$ 845.2.bn.a 4272 48

## Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(845))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(845)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(13))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(65))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(169))$$$$^{\oplus 2}$$