Defining parameters
Level: | \( N \) | \(=\) | \( 845 = 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 845.t (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(182\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(845, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 420 | 348 | 72 |
Cusp forms | 308 | 268 | 40 |
Eisenstein series | 112 | 80 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(845, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(845, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(845, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)