Properties

Label 845.2.t.f.188.4
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.4
Root \(1.83163i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.f.427.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58624 + 0.915816i) q^{2} +(1.91432 - 0.512942i) q^{3} +(0.677439 + 1.17336i) q^{4} +(-1.69810 - 1.45480i) q^{5} +(3.50634 + 0.939520i) q^{6} +(-1.76945 - 3.06478i) q^{7} -1.18163i q^{8} +(0.803451 - 0.463873i) q^{9} +(-1.36126 - 3.86282i) q^{10} +(3.74209 - 1.00269i) q^{11} +(1.89870 + 1.89870i) q^{12} -6.48197i q^{14} +(-3.99694 - 1.91394i) q^{15} +(2.43703 - 4.22106i) q^{16} +(-0.524334 + 1.95684i) q^{17} +1.69929 q^{18} +(-0.139057 + 0.518968i) q^{19} +(0.556646 - 2.97802i) q^{20} +(-4.95936 - 4.95936i) q^{21} +(6.85414 + 1.83656i) q^{22} +(-0.0788026 - 0.294095i) q^{23} +(-0.606106 - 2.26202i) q^{24} +(0.767094 + 4.94081i) q^{25} +(-2.90402 + 2.90402i) q^{27} +(2.39739 - 4.15240i) q^{28} +(1.71273 + 0.988843i) q^{29} +(-4.58730 - 6.69643i) q^{30} +(4.13563 - 4.13563i) q^{31} +(5.68479 - 3.28212i) q^{32} +(6.64926 - 3.83895i) q^{33} +(-2.62382 + 2.62382i) q^{34} +(-1.45395 + 7.77851i) q^{35} +(1.08858 + 0.628491i) q^{36} +(-2.70887 + 4.69189i) q^{37} +(-0.695857 + 0.695857i) q^{38} +(-1.71904 + 2.00652i) q^{40} +(-0.174136 - 0.649884i) q^{41} +(-3.32487 - 12.4086i) q^{42} +(8.51164 + 2.28069i) q^{43} +(3.71155 + 3.71155i) q^{44} +(-2.03919 - 0.381161i) q^{45} +(0.144337 - 0.538675i) q^{46} +9.75201 q^{47} +(2.50011 - 9.33053i) q^{48} +(-2.76192 + 4.78379i) q^{49} +(-3.30807 + 8.53982i) q^{50} +4.01498i q^{51} +(3.16254 + 3.16254i) q^{53} +(-7.26602 + 1.94693i) q^{54} +(-7.81317 - 3.74134i) q^{55} +(-3.62143 + 2.09083i) q^{56} +1.06480i q^{57} +(1.81120 + 3.13709i) q^{58} +(-11.7449 - 3.14703i) q^{59} +(-0.461950 - 5.98642i) q^{60} +(1.44316 + 2.49963i) q^{61} +(10.3476 - 2.77263i) q^{62} +(-2.84334 - 1.64160i) q^{63} +2.27514 q^{64} +14.0631 q^{66} +(1.98310 + 1.14494i) q^{67} +(-2.65128 + 0.710408i) q^{68} +(-0.301707 - 0.522573i) q^{69} +(-9.43000 + 11.0070i) q^{70} +(4.46378 + 1.19607i) q^{71} +(-0.548125 - 0.949380i) q^{72} +14.7546i q^{73} +(-8.59382 + 4.96165i) q^{74} +(4.00281 + 9.06483i) q^{75} +(-0.703137 + 0.188405i) q^{76} +(-9.69449 - 9.69449i) q^{77} -1.59718i q^{79} +(-10.2791 + 3.62239i) q^{80} +(-5.46126 + 9.45918i) q^{81} +(0.318953 - 1.19035i) q^{82} -7.57341 q^{83} +(2.45944 - 9.17877i) q^{84} +(3.73719 - 2.56011i) q^{85} +(11.4128 + 11.4128i) q^{86} +(3.78593 + 1.01444i) q^{87} +(-1.18481 - 4.42176i) q^{88} +(-1.21762 - 4.54423i) q^{89} +(-2.88556 - 2.47213i) q^{90} +(0.291695 - 0.291695i) q^{92} +(5.79560 - 10.0383i) q^{93} +(15.4690 + 8.93105i) q^{94} +(0.991129 - 0.678959i) q^{95} +(9.19900 - 9.19900i) q^{96} +(-15.4372 + 8.91268i) q^{97} +(-8.76215 + 5.05883i) q^{98} +(2.54147 - 2.54147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 4 q^{6} - 2 q^{7} - 12 q^{9} + 10 q^{10} + 8 q^{11} - 24 q^{12} - 8 q^{15} - 2 q^{16} + 10 q^{17} + 16 q^{19} + 12 q^{20} + 4 q^{21} + 16 q^{22} + 2 q^{23} - 28 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58624 + 0.915816i 1.12164 + 0.647580i 0.941819 0.336119i \(-0.109115\pi\)
0.179822 + 0.983699i \(0.442448\pi\)
\(3\) 1.91432 0.512942i 1.10524 0.296147i 0.340341 0.940302i \(-0.389458\pi\)
0.764895 + 0.644155i \(0.222791\pi\)
\(4\) 0.677439 + 1.17336i 0.338719 + 0.586679i
\(5\) −1.69810 1.45480i −0.759414 0.650608i
\(6\) 3.50634 + 0.939520i 1.43146 + 0.383558i
\(7\) −1.76945 3.06478i −0.668790 1.15838i −0.978243 0.207464i \(-0.933479\pi\)
0.309453 0.950915i \(-0.399854\pi\)
\(8\) 1.18163i 0.417769i
\(9\) 0.803451 0.463873i 0.267817 0.154624i
\(10\) −1.36126 3.86282i −0.430469 1.22153i
\(11\) 3.74209 1.00269i 1.12828 0.302323i 0.354053 0.935226i \(-0.384803\pi\)
0.774231 + 0.632903i \(0.218137\pi\)
\(12\) 1.89870 + 1.89870i 0.548108 + 0.548108i
\(13\) 0 0
\(14\) 6.48197i 1.73238i
\(15\) −3.99694 1.91394i −1.03201 0.494177i
\(16\) 2.43703 4.22106i 0.609258 1.05527i
\(17\) −0.524334 + 1.95684i −0.127170 + 0.474603i −0.999908 0.0135853i \(-0.995676\pi\)
0.872738 + 0.488189i \(0.162342\pi\)
\(18\) 1.69929 0.400526
\(19\) −0.139057 + 0.518968i −0.0319019 + 0.119059i −0.980041 0.198797i \(-0.936296\pi\)
0.948139 + 0.317857i \(0.102963\pi\)
\(20\) 0.556646 2.97802i 0.124470 0.665906i
\(21\) −4.95936 4.95936i −1.08222 1.08222i
\(22\) 6.85414 + 1.83656i 1.46131 + 0.391556i
\(23\) −0.0788026 0.294095i −0.0164315 0.0613231i 0.957223 0.289350i \(-0.0934392\pi\)
−0.973655 + 0.228027i \(0.926773\pi\)
\(24\) −0.606106 2.26202i −0.123721 0.461733i
\(25\) 0.767094 + 4.94081i 0.153419 + 0.988161i
\(26\) 0 0
\(27\) −2.90402 + 2.90402i −0.558879 + 0.558879i
\(28\) 2.39739 4.15240i 0.453064 0.784730i
\(29\) 1.71273 + 0.988843i 0.318045 + 0.183624i 0.650521 0.759488i \(-0.274551\pi\)
−0.332476 + 0.943112i \(0.607884\pi\)
\(30\) −4.58730 6.69643i −0.837522 1.22260i
\(31\) 4.13563 4.13563i 0.742781 0.742781i −0.230331 0.973112i \(-0.573981\pi\)
0.973112 + 0.230331i \(0.0739810\pi\)
\(32\) 5.68479 3.28212i 1.00494 0.580202i
\(33\) 6.64926 3.83895i 1.15749 0.668276i
\(34\) −2.62382 + 2.62382i −0.449982 + 0.449982i
\(35\) −1.45395 + 7.77851i −0.245762 + 1.31481i
\(36\) 1.08858 + 0.628491i 0.181430 + 0.104748i
\(37\) −2.70887 + 4.69189i −0.445335 + 0.771342i −0.998075 0.0620109i \(-0.980249\pi\)
0.552741 + 0.833353i \(0.313582\pi\)
\(38\) −0.695857 + 0.695857i −0.112883 + 0.112883i
\(39\) 0 0
\(40\) −1.71904 + 2.00652i −0.271803 + 0.317259i
\(41\) −0.174136 0.649884i −0.0271955 0.101495i 0.950994 0.309209i \(-0.100064\pi\)
−0.978190 + 0.207714i \(0.933398\pi\)
\(42\) −3.32487 12.4086i −0.513039 1.91469i
\(43\) 8.51164 + 2.28069i 1.29801 + 0.347802i 0.840698 0.541504i \(-0.182145\pi\)
0.457314 + 0.889305i \(0.348811\pi\)
\(44\) 3.71155 + 3.71155i 0.559538 + 0.559538i
\(45\) −2.03919 0.381161i −0.303984 0.0568201i
\(46\) 0.144337 0.538675i 0.0212814 0.0794232i
\(47\) 9.75201 1.42248 0.711238 0.702951i \(-0.248135\pi\)
0.711238 + 0.702951i \(0.248135\pi\)
\(48\) 2.50011 9.33053i 0.360860 1.34675i
\(49\) −2.76192 + 4.78379i −0.394561 + 0.683399i
\(50\) −3.30807 + 8.53982i −0.467832 + 1.20771i
\(51\) 4.01498i 0.562209i
\(52\) 0 0
\(53\) 3.16254 + 3.16254i 0.434409 + 0.434409i 0.890125 0.455716i \(-0.150617\pi\)
−0.455716 + 0.890125i \(0.650617\pi\)
\(54\) −7.26602 + 1.94693i −0.988781 + 0.264943i
\(55\) −7.81317 3.74134i −1.05353 0.504482i
\(56\) −3.62143 + 2.09083i −0.483934 + 0.279399i
\(57\) 1.06480i 0.141036i
\(58\) 1.81120 + 3.13709i 0.237822 + 0.411919i
\(59\) −11.7449 3.14703i −1.52905 0.409708i −0.606343 0.795203i \(-0.707364\pi\)
−0.922710 + 0.385495i \(0.874031\pi\)
\(60\) −0.461950 5.98642i −0.0596374 0.772844i
\(61\) 1.44316 + 2.49963i 0.184778 + 0.320044i 0.943502 0.331368i \(-0.107510\pi\)
−0.758724 + 0.651412i \(0.774177\pi\)
\(62\) 10.3476 2.77263i 1.31414 0.352124i
\(63\) −2.84334 1.64160i −0.358227 0.206822i
\(64\) 2.27514 0.284392
\(65\) 0 0
\(66\) 14.0631 1.73105
\(67\) 1.98310 + 1.14494i 0.242274 + 0.139877i 0.616222 0.787573i \(-0.288663\pi\)
−0.373947 + 0.927450i \(0.621996\pi\)
\(68\) −2.65128 + 0.710408i −0.321515 + 0.0861496i
\(69\) −0.301707 0.522573i −0.0363213 0.0629104i
\(70\) −9.43000 + 11.0070i −1.12710 + 1.31559i
\(71\) 4.46378 + 1.19607i 0.529753 + 0.141947i 0.513774 0.857925i \(-0.328247\pi\)
0.0159789 + 0.999872i \(0.494914\pi\)
\(72\) −0.548125 0.949380i −0.0645972 0.111886i
\(73\) 14.7546i 1.72690i 0.504436 + 0.863449i \(0.331701\pi\)
−0.504436 + 0.863449i \(0.668299\pi\)
\(74\) −8.59382 + 4.96165i −0.999011 + 0.576780i
\(75\) 4.00281 + 9.06483i 0.462205 + 1.04672i
\(76\) −0.703137 + 0.188405i −0.0806554 + 0.0216115i
\(77\) −9.69449 9.69449i −1.10479 1.10479i
\(78\) 0 0
\(79\) 1.59718i 0.179696i −0.995955 0.0898482i \(-0.971362\pi\)
0.995955 0.0898482i \(-0.0286382\pi\)
\(80\) −10.2791 + 3.62239i −1.14924 + 0.404995i
\(81\) −5.46126 + 9.45918i −0.606807 + 1.05102i
\(82\) 0.318953 1.19035i 0.0352225 0.131452i
\(83\) −7.57341 −0.831290 −0.415645 0.909527i \(-0.636444\pi\)
−0.415645 + 0.909527i \(0.636444\pi\)
\(84\) 2.45944 9.17877i 0.268347 1.00149i
\(85\) 3.73719 2.56011i 0.405355 0.277683i
\(86\) 11.4128 + 11.4128i 1.23068 + 1.23068i
\(87\) 3.78593 + 1.01444i 0.405895 + 0.108759i
\(88\) −1.18481 4.42176i −0.126301 0.471361i
\(89\) −1.21762 4.54423i −0.129068 0.481687i 0.870884 0.491488i \(-0.163547\pi\)
−0.999952 + 0.00980081i \(0.996880\pi\)
\(90\) −2.88556 2.47213i −0.304165 0.260586i
\(91\) 0 0
\(92\) 0.291695 0.291695i 0.0304113 0.0304113i
\(93\) 5.79560 10.0383i 0.600976 1.04092i
\(94\) 15.4690 + 8.93105i 1.59551 + 0.921167i
\(95\) 0.991129 0.678959i 0.101688 0.0696597i
\(96\) 9.19900 9.19900i 0.938869 0.938869i
\(97\) −15.4372 + 8.91268i −1.56741 + 0.904945i −0.570942 + 0.820991i \(0.693422\pi\)
−0.996470 + 0.0839547i \(0.973245\pi\)
\(98\) −8.76215 + 5.05883i −0.885111 + 0.511019i
\(99\) 2.54147 2.54147i 0.255427 0.255427i
\(100\) −5.27768 + 4.24717i −0.527768 + 0.424717i
\(101\) 3.94379 + 2.27695i 0.392421 + 0.226565i 0.683209 0.730223i \(-0.260584\pi\)
−0.290787 + 0.956788i \(0.593917\pi\)
\(102\) −3.67698 + 6.36872i −0.364075 + 0.630597i
\(103\) 9.79285 9.79285i 0.964918 0.964918i −0.0344872 0.999405i \(-0.510980\pi\)
0.999405 + 0.0344872i \(0.0109798\pi\)
\(104\) 0 0
\(105\) 1.20660 + 15.6364i 0.117752 + 1.52596i
\(106\) 2.12024 + 7.91286i 0.205936 + 0.768565i
\(107\) −1.82991 6.82933i −0.176904 0.660216i −0.996219 0.0868725i \(-0.972313\pi\)
0.819315 0.573344i \(-0.194354\pi\)
\(108\) −5.37475 1.44016i −0.517186 0.138580i
\(109\) −9.89281 9.89281i −0.947560 0.947560i 0.0511324 0.998692i \(-0.483717\pi\)
−0.998692 + 0.0511324i \(0.983717\pi\)
\(110\) −8.96719 13.0901i −0.854988 1.24809i
\(111\) −2.77898 + 10.3713i −0.263769 + 0.984399i
\(112\) −17.2488 −1.62986
\(113\) 0.593341 2.21438i 0.0558168 0.208311i −0.932385 0.361466i \(-0.882277\pi\)
0.988202 + 0.153154i \(0.0489432\pi\)
\(114\) −0.975161 + 1.68903i −0.0913322 + 0.158192i
\(115\) −0.294036 + 0.614046i −0.0274190 + 0.0572601i
\(116\) 2.67952i 0.248787i
\(117\) 0 0
\(118\) −15.7481 15.7481i −1.44973 1.44973i
\(119\) 6.92507 1.85557i 0.634820 0.170099i
\(120\) −2.26156 + 4.72290i −0.206452 + 0.431140i
\(121\) 3.47160 2.00433i 0.315600 0.182212i
\(122\) 5.28668i 0.478633i
\(123\) −0.666705 1.15477i −0.0601148 0.104122i
\(124\) 7.65421 + 2.05094i 0.687368 + 0.184180i
\(125\) 5.88530 9.50596i 0.526397 0.850239i
\(126\) −3.00681 5.20795i −0.267868 0.463961i
\(127\) 1.24225 0.332860i 0.110232 0.0295366i −0.203281 0.979120i \(-0.565161\pi\)
0.313513 + 0.949584i \(0.398494\pi\)
\(128\) −7.76067 4.48062i −0.685953 0.396035i
\(129\) 17.4639 1.53761
\(130\) 0 0
\(131\) −5.59439 −0.488785 −0.244392 0.969676i \(-0.578588\pi\)
−0.244392 + 0.969676i \(0.578588\pi\)
\(132\) 9.00893 + 5.20131i 0.784127 + 0.452716i
\(133\) 1.83658 0.492109i 0.159251 0.0426713i
\(134\) 2.09712 + 3.63231i 0.181163 + 0.313784i
\(135\) 9.15610 0.706541i 0.788032 0.0608094i
\(136\) 2.31226 + 0.619567i 0.198274 + 0.0531274i
\(137\) 7.14509 + 12.3757i 0.610446 + 1.05732i 0.991165 + 0.132633i \(0.0423431\pi\)
−0.380719 + 0.924691i \(0.624324\pi\)
\(138\) 1.10523i 0.0940838i
\(139\) 15.0832 8.70830i 1.27934 0.738629i 0.302615 0.953113i \(-0.402140\pi\)
0.976727 + 0.214484i \(0.0688071\pi\)
\(140\) −10.1119 + 3.56347i −0.854615 + 0.301168i
\(141\) 18.6685 5.00221i 1.57217 0.421262i
\(142\) 5.98525 + 5.98525i 0.502271 + 0.502271i
\(143\) 0 0
\(144\) 4.52189i 0.376824i
\(145\) −1.46981 4.17084i −0.122061 0.346369i
\(146\) −13.5125 + 23.4044i −1.11830 + 1.93696i
\(147\) −2.83341 + 10.5744i −0.233696 + 0.872165i
\(148\) −7.34036 −0.603374
\(149\) −3.39833 + 12.6828i −0.278402 + 1.03901i 0.675124 + 0.737704i \(0.264090\pi\)
−0.953527 + 0.301308i \(0.902577\pi\)
\(150\) −1.95230 + 18.0448i −0.159404 + 1.47335i
\(151\) 0.765191 + 0.765191i 0.0622704 + 0.0622704i 0.737556 0.675286i \(-0.235980\pi\)
−0.675286 + 0.737556i \(0.735980\pi\)
\(152\) 0.613227 + 0.164314i 0.0497392 + 0.0133276i
\(153\) 0.486448 + 1.81545i 0.0393270 + 0.146770i
\(154\) −6.49942 24.2562i −0.523738 1.95462i
\(155\) −13.0392 + 1.00619i −1.04734 + 0.0808190i
\(156\) 0 0
\(157\) 3.03481 3.03481i 0.242204 0.242204i −0.575557 0.817762i \(-0.695215\pi\)
0.817762 + 0.575557i \(0.195215\pi\)
\(158\) 1.46272 2.53350i 0.116368 0.201555i
\(159\) 7.67633 + 4.43193i 0.608773 + 0.351475i
\(160\) −14.4282 2.69689i −1.14065 0.213208i
\(161\) −0.761901 + 0.761901i −0.0600462 + 0.0600462i
\(162\) −17.3257 + 10.0030i −1.36124 + 0.785912i
\(163\) 1.96032 1.13179i 0.153544 0.0886486i −0.421260 0.906940i \(-0.638412\pi\)
0.574803 + 0.818292i \(0.305079\pi\)
\(164\) 0.644580 0.644580i 0.0503333 0.0503333i
\(165\) −16.8760 3.15444i −1.31380 0.245573i
\(166\) −12.0133 6.93585i −0.932409 0.538327i
\(167\) 0.309785 0.536563i 0.0239719 0.0415205i −0.853791 0.520617i \(-0.825702\pi\)
0.877762 + 0.479096i \(0.159035\pi\)
\(168\) −5.86012 + 5.86012i −0.452118 + 0.452118i
\(169\) 0 0
\(170\) 8.27267 0.638370i 0.634485 0.0489608i
\(171\) 0.129009 + 0.481470i 0.00986560 + 0.0368189i
\(172\) 3.09005 + 11.5322i 0.235614 + 0.879324i
\(173\) 6.39606 + 1.71382i 0.486283 + 0.130299i 0.493627 0.869674i \(-0.335671\pi\)
−0.00734343 + 0.999973i \(0.502338\pi\)
\(174\) 5.07636 + 5.07636i 0.384838 + 0.384838i
\(175\) 13.7852 11.0935i 1.04206 0.838590i
\(176\) 4.88718 18.2392i 0.368385 1.37483i
\(177\) −24.0977 −1.81130
\(178\) 2.23024 8.32336i 0.167163 0.623862i
\(179\) −1.09512 + 1.89680i −0.0818528 + 0.141773i −0.904046 0.427436i \(-0.859417\pi\)
0.822193 + 0.569209i \(0.192750\pi\)
\(180\) −0.934185 2.65091i −0.0696300 0.197587i
\(181\) 9.59255i 0.713009i −0.934294 0.356504i \(-0.883969\pi\)
0.934294 0.356504i \(-0.116031\pi\)
\(182\) 0 0
\(183\) 4.04484 + 4.04484i 0.299003 + 0.299003i
\(184\) −0.347511 + 0.0931154i −0.0256189 + 0.00686456i
\(185\) 11.4257 4.02644i 0.840035 0.296030i
\(186\) 18.3864 10.6154i 1.34816 0.778359i
\(187\) 7.84842i 0.573933i
\(188\) 6.60639 + 11.4426i 0.481820 + 0.834537i
\(189\) 14.0387 + 3.76166i 1.02117 + 0.273621i
\(190\) 2.19397 0.169300i 0.159167 0.0122823i
\(191\) −1.86557 3.23126i −0.134988 0.233806i 0.790605 0.612326i \(-0.209766\pi\)
−0.925593 + 0.378521i \(0.876433\pi\)
\(192\) 4.35536 1.16701i 0.314321 0.0842220i
\(193\) −0.246025 0.142043i −0.0177093 0.0102245i 0.491119 0.871092i \(-0.336588\pi\)
−0.508829 + 0.860868i \(0.669921\pi\)
\(194\) −32.6495 −2.34410
\(195\) 0 0
\(196\) −7.48414 −0.534581
\(197\) 22.3860 + 12.9246i 1.59494 + 0.920838i 0.992442 + 0.122716i \(0.0391604\pi\)
0.602496 + 0.798122i \(0.294173\pi\)
\(198\) 6.35890 1.70386i 0.451907 0.121088i
\(199\) −2.87625 4.98181i −0.203892 0.353151i 0.745887 0.666072i \(-0.232026\pi\)
−0.949779 + 0.312921i \(0.898692\pi\)
\(200\) 5.83819 0.906420i 0.412823 0.0640936i
\(201\) 4.38359 + 1.17458i 0.309194 + 0.0828484i
\(202\) 4.17053 + 7.22357i 0.293437 + 0.508248i
\(203\) 6.99884i 0.491223i
\(204\) −4.71101 + 2.71990i −0.329836 + 0.190431i
\(205\) −0.649753 + 1.35690i −0.0453807 + 0.0947702i
\(206\) 24.5023 6.56536i 1.70715 0.457430i
\(207\) −0.199737 0.199737i −0.0138827 0.0138827i
\(208\) 0 0
\(209\) 2.08146i 0.143977i
\(210\) −12.4061 + 25.9081i −0.856102 + 1.78783i
\(211\) 1.61372 2.79504i 0.111093 0.192418i −0.805118 0.593114i \(-0.797898\pi\)
0.916211 + 0.400696i \(0.131232\pi\)
\(212\) −1.56837 + 5.85322i −0.107716 + 0.402001i
\(213\) 9.15863 0.627539
\(214\) 3.35173 12.5088i 0.229119 0.855085i
\(215\) −11.1357 16.2556i −0.759447 1.10862i
\(216\) 3.43147 + 3.43147i 0.233482 + 0.233482i
\(217\) −19.9926 5.35700i −1.35719 0.363657i
\(218\) −6.63238 24.7524i −0.449201 1.67644i
\(219\) 7.56826 + 28.2451i 0.511416 + 1.90863i
\(220\) −0.903013 11.7022i −0.0608811 0.788961i
\(221\) 0 0
\(222\) −13.9063 + 13.9063i −0.933331 + 0.933331i
\(223\) 3.70762 6.42178i 0.248280 0.430034i −0.714768 0.699361i \(-0.753468\pi\)
0.963049 + 0.269327i \(0.0868012\pi\)
\(224\) −20.1179 11.6151i −1.34419 0.776067i
\(225\) 2.90823 + 3.61386i 0.193882 + 0.240924i
\(226\) 2.96914 2.96914i 0.197504 0.197504i
\(227\) 3.37949 1.95115i 0.224305 0.129502i −0.383637 0.923484i \(-0.625329\pi\)
0.607942 + 0.793981i \(0.291995\pi\)
\(228\) −1.24939 + 0.721337i −0.0827430 + 0.0477717i
\(229\) 12.3946 12.3946i 0.819060 0.819060i −0.166912 0.985972i \(-0.553379\pi\)
0.985972 + 0.166912i \(0.0533795\pi\)
\(230\) −1.02877 + 0.704741i −0.0678348 + 0.0464693i
\(231\) −23.5311 13.5857i −1.54823 0.893872i
\(232\) 1.16844 2.02381i 0.0767121 0.132869i
\(233\) 2.88962 2.88962i 0.189305 0.189305i −0.606090 0.795396i \(-0.707263\pi\)
0.795396 + 0.606090i \(0.207263\pi\)
\(234\) 0 0
\(235\) −16.5599 14.1873i −1.08025 0.925474i
\(236\) −4.26384 15.9129i −0.277552 1.03584i
\(237\) −0.819258 3.05751i −0.0532165 0.198607i
\(238\) 12.6842 + 3.39872i 0.822193 + 0.220306i
\(239\) −8.97299 8.97299i −0.580415 0.580415i 0.354602 0.935017i \(-0.384616\pi\)
−0.935017 + 0.354602i \(0.884616\pi\)
\(240\) −17.8195 + 12.2070i −1.15025 + 0.787960i
\(241\) −4.54165 + 16.9497i −0.292554 + 1.09183i 0.650587 + 0.759432i \(0.274523\pi\)
−0.943141 + 0.332394i \(0.892144\pi\)
\(242\) 7.34239 0.471986
\(243\) −2.41378 + 9.00835i −0.154844 + 0.577886i
\(244\) −1.95530 + 3.38669i −0.125176 + 0.216810i
\(245\) 11.6495 4.10531i 0.744260 0.262278i
\(246\) 2.44232i 0.155716i
\(247\) 0 0
\(248\) −4.88677 4.88677i −0.310311 0.310311i
\(249\) −14.4980 + 3.88472i −0.918771 + 0.246184i
\(250\) 18.0412 9.68888i 1.14103 0.612779i
\(251\) −18.8524 + 10.8845i −1.18996 + 0.687021i −0.958296 0.285776i \(-0.907749\pi\)
−0.231659 + 0.972797i \(0.574415\pi\)
\(252\) 4.44834i 0.280219i
\(253\) −0.589774 1.02152i −0.0370787 0.0642223i
\(254\) 2.27535 + 0.609678i 0.142768 + 0.0382546i
\(255\) 5.84100 6.81784i 0.365778 0.426950i
\(256\) −10.4820 18.1554i −0.655125 1.13471i
\(257\) −12.3766 + 3.31629i −0.772029 + 0.206864i −0.623268 0.782009i \(-0.714195\pi\)
−0.148761 + 0.988873i \(0.547529\pi\)
\(258\) 27.7019 + 15.9937i 1.72465 + 0.995725i
\(259\) 19.1728 1.19134
\(260\) 0 0
\(261\) 1.83479 0.113571
\(262\) −8.87405 5.12344i −0.548241 0.316527i
\(263\) −15.9426 + 4.27179i −0.983060 + 0.263410i −0.714333 0.699806i \(-0.753270\pi\)
−0.268727 + 0.963216i \(0.586603\pi\)
\(264\) −4.53621 7.85695i −0.279185 0.483562i
\(265\) −0.769439 9.97120i −0.0472663 0.612526i
\(266\) 3.36393 + 0.901363i 0.206256 + 0.0552661i
\(267\) −4.66185 8.07456i −0.285301 0.494155i
\(268\) 3.10252i 0.189516i
\(269\) −27.9787 + 16.1535i −1.70589 + 0.984895i −0.766370 + 0.642400i \(0.777939\pi\)
−0.939519 + 0.342495i \(0.888728\pi\)
\(270\) 15.1708 + 7.26456i 0.923268 + 0.442107i
\(271\) −16.8770 + 4.52218i −1.02521 + 0.274703i −0.731970 0.681337i \(-0.761399\pi\)
−0.293236 + 0.956040i \(0.594732\pi\)
\(272\) 6.98212 + 6.98212i 0.423353 + 0.423353i
\(273\) 0 0
\(274\) 26.1743i 1.58125i
\(275\) 7.82464 + 17.7198i 0.471844 + 1.06854i
\(276\) 0.408777 0.708022i 0.0246055 0.0426179i
\(277\) 0.795705 2.96961i 0.0478093 0.178427i −0.937892 0.346926i \(-0.887225\pi\)
0.985702 + 0.168499i \(0.0538921\pi\)
\(278\) 31.9008 1.91328
\(279\) 1.40437 5.24118i 0.0840775 0.313781i
\(280\) 9.19131 + 1.71802i 0.549286 + 0.102671i
\(281\) −18.6757 18.6757i −1.11410 1.11410i −0.992590 0.121508i \(-0.961227\pi\)
−0.121508 0.992590i \(-0.538773\pi\)
\(282\) 34.1938 + 9.16221i 2.03621 + 0.545602i
\(283\) 3.97005 + 14.8164i 0.235995 + 0.880745i 0.977698 + 0.210016i \(0.0673517\pi\)
−0.741703 + 0.670728i \(0.765982\pi\)
\(284\) 1.62052 + 6.04787i 0.0961603 + 0.358875i
\(285\) 1.54907 1.80814i 0.0917593 0.107105i
\(286\) 0 0
\(287\) −1.68363 + 1.68363i −0.0993814 + 0.0993814i
\(288\) 3.04497 5.27404i 0.179427 0.310776i
\(289\) 11.1681 + 6.44793i 0.656949 + 0.379290i
\(290\) 1.48825 7.96202i 0.0873929 0.467546i
\(291\) −24.9801 + 24.9801i −1.46436 + 1.46436i
\(292\) −17.3125 + 9.99535i −1.01314 + 0.584934i
\(293\) −8.98649 + 5.18835i −0.524996 + 0.303107i −0.738976 0.673731i \(-0.764691\pi\)
0.213980 + 0.976838i \(0.431357\pi\)
\(294\) −14.1787 + 14.1787i −0.826919 + 0.826919i
\(295\) 15.3657 + 22.4305i 0.894624 + 1.30595i
\(296\) 5.54407 + 3.20087i 0.322243 + 0.186047i
\(297\) −7.95528 + 13.7790i −0.461612 + 0.799536i
\(298\) −17.0057 + 17.0057i −0.985111 + 0.985111i
\(299\) 0 0
\(300\) −7.92463 + 10.8376i −0.457529 + 0.625709i
\(301\) −8.07113 30.1219i −0.465212 1.73620i
\(302\) 0.513002 + 1.91455i 0.0295200 + 0.110170i
\(303\) 8.71763 + 2.33588i 0.500814 + 0.134193i
\(304\) 1.85171 + 1.85171i 0.106203 + 0.106203i
\(305\) 1.18583 6.34413i 0.0679006 0.363264i
\(306\) −0.890994 + 3.32524i −0.0509347 + 0.190091i
\(307\) 2.13935 0.122099 0.0610496 0.998135i \(-0.480555\pi\)
0.0610496 + 0.998135i \(0.480555\pi\)
\(308\) 4.80768 17.9425i 0.273943 1.02237i
\(309\) 13.7235 23.7698i 0.780704 1.35222i
\(310\) −21.6049 10.3455i −1.22707 0.587585i
\(311\) 3.82084i 0.216660i 0.994115 + 0.108330i \(0.0345503\pi\)
−0.994115 + 0.108330i \(0.965450\pi\)
\(312\) 0 0
\(313\) 3.04531 + 3.04531i 0.172131 + 0.172131i 0.787915 0.615784i \(-0.211161\pi\)
−0.615784 + 0.787915i \(0.711161\pi\)
\(314\) 7.59327 2.03461i 0.428513 0.114820i
\(315\) 2.44007 + 6.92410i 0.137482 + 0.390129i
\(316\) 1.87406 1.08199i 0.105424 0.0608666i
\(317\) 23.1127i 1.29814i 0.760730 + 0.649068i \(0.224841\pi\)
−0.760730 + 0.649068i \(0.775159\pi\)
\(318\) 8.11767 + 14.0602i 0.455216 + 0.788458i
\(319\) 7.40069 + 1.98301i 0.414359 + 0.111027i
\(320\) −3.86342 3.30988i −0.215972 0.185028i
\(321\) −7.00609 12.1349i −0.391042 0.677305i
\(322\) −1.90632 + 0.510796i −0.106235 + 0.0284656i
\(323\) −0.942624 0.544224i −0.0524490 0.0302814i
\(324\) −14.7987 −0.822149
\(325\) 0 0
\(326\) 4.14604 0.229628
\(327\) −24.0125 13.8636i −1.32789 0.766660i
\(328\) −0.767921 + 0.205764i −0.0424013 + 0.0113614i
\(329\) −17.2557 29.8878i −0.951338 1.64777i
\(330\) −23.8806 20.4590i −1.31458 1.12623i
\(331\) −1.92894 0.516858i −0.106024 0.0284091i 0.205417 0.978675i \(-0.434145\pi\)
−0.311441 + 0.950265i \(0.600812\pi\)
\(332\) −5.13052 8.88632i −0.281574 0.487700i
\(333\) 5.02628i 0.275438i
\(334\) 0.982786 0.567412i 0.0537756 0.0310474i
\(335\) −1.70184 4.82925i −0.0929813 0.263850i
\(336\) −33.0199 + 8.84765i −1.80138 + 0.482679i
\(337\) 6.12727 + 6.12727i 0.333773 + 0.333773i 0.854018 0.520244i \(-0.174159\pi\)
−0.520244 + 0.854018i \(0.674159\pi\)
\(338\) 0 0
\(339\) 4.54338i 0.246763i
\(340\) 5.53564 + 2.65074i 0.300212 + 0.143757i
\(341\) 11.3292 19.6227i 0.613508 1.06263i
\(342\) −0.236298 + 0.881876i −0.0127775 + 0.0476864i
\(343\) −5.22396 −0.282067
\(344\) 2.69492 10.0576i 0.145301 0.542269i
\(345\) −0.247911 + 1.32631i −0.0133471 + 0.0714059i
\(346\) 8.57614 + 8.57614i 0.461056 + 0.461056i
\(347\) 31.4009 + 8.41384i 1.68569 + 0.451679i 0.969271 0.245994i \(-0.0791144\pi\)
0.716417 + 0.697673i \(0.245781\pi\)
\(348\) 1.37444 + 5.12947i 0.0736776 + 0.274969i
\(349\) −1.76129 6.57321i −0.0942795 0.351856i 0.902630 0.430418i \(-0.141634\pi\)
−0.996909 + 0.0785620i \(0.974967\pi\)
\(350\) 32.0262 4.97228i 1.71187 0.265780i
\(351\) 0 0
\(352\) 17.9821 17.9821i 0.958448 0.958448i
\(353\) −13.6631 + 23.6652i −0.727213 + 1.25957i 0.230843 + 0.972991i \(0.425852\pi\)
−0.958057 + 0.286579i \(0.907482\pi\)
\(354\) −38.2248 22.0691i −2.03163 1.17296i
\(355\) −5.83991 8.52496i −0.309950 0.452458i
\(356\) 4.50714 4.50714i 0.238878 0.238878i
\(357\) 12.3050 7.10431i 0.651251 0.376000i
\(358\) −3.47423 + 2.00585i −0.183619 + 0.106012i
\(359\) 3.89871 3.89871i 0.205766 0.205766i −0.596699 0.802465i \(-0.703521\pi\)
0.802465 + 0.596699i \(0.203521\pi\)
\(360\) −0.450390 + 2.40956i −0.0237376 + 0.126995i
\(361\) 16.2045 + 9.35567i 0.852868 + 0.492404i
\(362\) 8.78501 15.2161i 0.461730 0.799740i
\(363\) 5.61766 5.61766i 0.294851 0.294851i
\(364\) 0 0
\(365\) 21.4651 25.0548i 1.12353 1.31143i
\(366\) 2.71176 + 10.1204i 0.141746 + 0.529003i
\(367\) 4.67826 + 17.4595i 0.244203 + 0.911378i 0.973782 + 0.227482i \(0.0730493\pi\)
−0.729579 + 0.683896i \(0.760284\pi\)
\(368\) −1.43344 0.384089i −0.0747232 0.0200220i
\(369\) −0.441373 0.441373i −0.0229770 0.0229770i
\(370\) 21.8114 + 4.07695i 1.13392 + 0.211950i
\(371\) 4.09653 15.2885i 0.212681 0.793738i
\(372\) 15.7046 0.814248
\(373\) 4.01536 14.9855i 0.207907 0.775921i −0.780636 0.624986i \(-0.785105\pi\)
0.988544 0.150936i \(-0.0482286\pi\)
\(374\) −7.18771 + 12.4495i −0.371668 + 0.643747i
\(375\) 6.39037 21.2163i 0.329997 1.09561i
\(376\) 11.5232i 0.594266i
\(377\) 0 0
\(378\) 18.8238 + 18.8238i 0.968191 + 0.968191i
\(379\) 20.6393 5.53029i 1.06017 0.284072i 0.313722 0.949515i \(-0.398424\pi\)
0.746449 + 0.665443i \(0.231757\pi\)
\(380\) 1.46809 + 0.702996i 0.0753115 + 0.0360629i
\(381\) 2.20733 1.27440i 0.113085 0.0652897i
\(382\) 6.83407i 0.349661i
\(383\) −9.70362 16.8072i −0.495832 0.858806i 0.504157 0.863612i \(-0.331803\pi\)
−0.999988 + 0.00480620i \(0.998470\pi\)
\(384\) −17.1547 4.59660i −0.875424 0.234569i
\(385\) 2.35865 + 30.5658i 0.120208 + 1.55778i
\(386\) −0.260170 0.450628i −0.0132423 0.0229364i
\(387\) 7.89664 2.11590i 0.401409 0.107557i
\(388\) −20.9155 12.0756i −1.06182 0.613045i
\(389\) −14.8591 −0.753387 −0.376693 0.926338i \(-0.622939\pi\)
−0.376693 + 0.926338i \(0.622939\pi\)
\(390\) 0 0
\(391\) 0.616816 0.0311937
\(392\) 5.65266 + 3.26357i 0.285503 + 0.164835i
\(393\) −10.7095 + 2.86960i −0.540222 + 0.144752i
\(394\) 23.6731 + 41.0030i 1.19263 + 2.06570i
\(395\) −2.32358 + 2.71217i −0.116912 + 0.136464i
\(396\) 4.70374 + 1.26036i 0.236372 + 0.0633357i
\(397\) −2.63889 4.57070i −0.132442 0.229397i 0.792175 0.610294i \(-0.208949\pi\)
−0.924617 + 0.380897i \(0.875615\pi\)
\(398\) 10.5365i 0.528145i
\(399\) 3.26338 1.88411i 0.163373 0.0943236i
\(400\) 22.7249 + 8.80295i 1.13624 + 0.440147i
\(401\) −26.9289 + 7.21557i −1.34476 + 0.360328i −0.858199 0.513317i \(-0.828417\pi\)
−0.486564 + 0.873645i \(0.661750\pi\)
\(402\) 5.87772 + 5.87772i 0.293154 + 0.293154i
\(403\) 0 0
\(404\) 6.16996i 0.306967i
\(405\) 23.0350 8.11759i 1.14462 0.403366i
\(406\) 6.40965 11.1018i 0.318106 0.550975i
\(407\) −5.43231 + 20.2737i −0.269270 + 1.00493i
\(408\) 4.74421 0.234873
\(409\) −0.682016 + 2.54532i −0.0337235 + 0.125858i −0.980736 0.195340i \(-0.937419\pi\)
0.947012 + 0.321198i \(0.104086\pi\)
\(410\) −2.27334 + 1.55732i −0.112272 + 0.0769105i
\(411\) 20.0260 + 20.0260i 0.987810 + 0.987810i
\(412\) 18.1246 + 4.85646i 0.892933 + 0.239261i
\(413\) 11.1370 + 41.5640i 0.548018 + 2.04523i
\(414\) −0.133908 0.499753i −0.00658124 0.0245615i
\(415\) 12.8604 + 11.0178i 0.631293 + 0.540844i
\(416\) 0 0
\(417\) 24.4073 24.4073i 1.19523 1.19523i
\(418\) −1.90623 + 3.30169i −0.0932368 + 0.161491i
\(419\) −17.0348 9.83506i −0.832205 0.480474i 0.0224018 0.999749i \(-0.492869\pi\)
−0.854607 + 0.519275i \(0.826202\pi\)
\(420\) −17.5297 + 12.0085i −0.855361 + 0.585953i
\(421\) 10.4427 10.4427i 0.508948 0.508948i −0.405256 0.914203i \(-0.632817\pi\)
0.914203 + 0.405256i \(0.132817\pi\)
\(422\) 5.11948 2.95573i 0.249212 0.143883i
\(423\) 7.83526 4.52369i 0.380964 0.219949i
\(424\) 3.73695 3.73695i 0.181482 0.181482i
\(425\) −10.0706 1.08955i −0.488495 0.0528509i
\(426\) 14.5278 + 8.38762i 0.703874 + 0.406382i
\(427\) 5.10721 8.84594i 0.247155 0.428085i
\(428\) 6.77359 6.77359i 0.327414 0.327414i
\(429\) 0 0
\(430\) −2.77671 35.9835i −0.133905 1.73528i
\(431\) −4.43419 16.5486i −0.213587 0.797119i −0.986659 0.162800i \(-0.947947\pi\)
0.773072 0.634319i \(-0.218719\pi\)
\(432\) 5.18086 + 19.3352i 0.249264 + 0.930267i
\(433\) −10.8538 2.90826i −0.521599 0.139762i −0.0115927 0.999933i \(-0.503690\pi\)
−0.510006 + 0.860171i \(0.670357\pi\)
\(434\) −26.8070 26.8070i −1.28678 1.28678i
\(435\) −4.95309 7.23040i −0.237482 0.346671i
\(436\) 4.90604 18.3096i 0.234957 0.876870i
\(437\) 0.163584 0.00782528
\(438\) −13.8623 + 51.7347i −0.662365 + 2.47198i
\(439\) 2.12218 3.67572i 0.101286 0.175432i −0.810929 0.585145i \(-0.801038\pi\)
0.912215 + 0.409712i \(0.134371\pi\)
\(440\) −4.42087 + 9.23226i −0.210757 + 0.440131i
\(441\) 5.12473i 0.244035i
\(442\) 0 0
\(443\) 15.1569 + 15.1569i 0.720126 + 0.720126i 0.968631 0.248505i \(-0.0799392\pi\)
−0.248505 + 0.968631i \(0.579939\pi\)
\(444\) −14.0518 + 3.76518i −0.666870 + 0.178687i
\(445\) −4.54331 + 9.48796i −0.215374 + 0.449773i
\(446\) 11.7623 6.79099i 0.556963 0.321563i
\(447\) 26.0221i 1.23080i
\(448\) −4.02575 6.97281i −0.190199 0.329434i
\(449\) 14.0521 + 3.76524i 0.663158 + 0.177693i 0.574671 0.818385i \(-0.305130\pi\)
0.0884873 + 0.996077i \(0.471797\pi\)
\(450\) 1.30351 + 8.39586i 0.0614483 + 0.395785i
\(451\) −1.30327 2.25732i −0.0613684 0.106293i
\(452\) 3.00021 0.803904i 0.141118 0.0378124i
\(453\) 1.85732 + 1.07233i 0.0872646 + 0.0503822i
\(454\) 7.14758 0.335453
\(455\) 0 0
\(456\) 1.25820 0.0589205
\(457\) 26.2365 + 15.1476i 1.22729 + 0.708576i 0.966462 0.256809i \(-0.0826711\pi\)
0.260828 + 0.965385i \(0.416004\pi\)
\(458\) 31.0121 8.30966i 1.44910 0.388285i
\(459\) −4.16003 7.20538i −0.194173 0.336318i
\(460\) −0.919687 + 0.0709688i −0.0428806 + 0.00330894i
\(461\) −6.70146 1.79565i −0.312118 0.0836318i 0.0993596 0.995052i \(-0.468321\pi\)
−0.411478 + 0.911420i \(0.634987\pi\)
\(462\) −24.8840 43.1003i −1.15771 2.00521i
\(463\) 31.4463i 1.46143i 0.682680 + 0.730717i \(0.260814\pi\)
−0.682680 + 0.730717i \(0.739186\pi\)
\(464\) 8.34794 4.81968i 0.387543 0.223748i
\(465\) −24.4452 + 8.61454i −1.13362 + 0.399490i
\(466\) 7.22999 1.93727i 0.334923 0.0897423i
\(467\) −3.69622 3.69622i −0.171041 0.171041i 0.616396 0.787436i \(-0.288592\pi\)
−0.787436 + 0.616396i \(0.788592\pi\)
\(468\) 0 0
\(469\) 8.10369i 0.374194i
\(470\) −13.2751 37.6702i −0.612332 1.73760i
\(471\) 4.25293 7.36630i 0.195965 0.339421i
\(472\) −3.71862 + 13.8781i −0.171163 + 0.638790i
\(473\) 34.1382 1.56968
\(474\) 1.50058 5.60024i 0.0689239 0.257227i
\(475\) −2.67079 0.288956i −0.122544 0.0132582i
\(476\) 6.86855 + 6.86855i 0.314820 + 0.314820i
\(477\) 4.00797 + 1.07393i 0.183512 + 0.0491720i
\(478\) −6.01571 22.4509i −0.275152 1.02688i
\(479\) 5.00904 + 18.6940i 0.228869 + 0.854150i 0.980818 + 0.194928i \(0.0624474\pi\)
−0.751949 + 0.659222i \(0.770886\pi\)
\(480\) −29.0036 + 2.23810i −1.32383 + 0.102155i
\(481\) 0 0
\(482\) −22.7270 + 22.7270i −1.03518 + 1.03518i
\(483\) −1.06771 + 1.84934i −0.0485827 + 0.0841477i
\(484\) 4.70359 + 2.71562i 0.213800 + 0.123437i
\(485\) 39.1801 + 7.32348i 1.77908 + 0.332542i
\(486\) −12.0788 + 12.0788i −0.547907 + 0.547907i
\(487\) 20.2327 11.6813i 0.916830 0.529332i 0.0342077 0.999415i \(-0.489109\pi\)
0.882622 + 0.470083i \(0.155776\pi\)
\(488\) 2.95363 1.70528i 0.133704 0.0771943i
\(489\) 3.17214 3.17214i 0.143449 0.143449i
\(490\) 22.2386 + 4.15680i 1.00464 + 0.187785i
\(491\) −18.4624 10.6593i −0.833198 0.481047i 0.0217482 0.999763i \(-0.493077\pi\)
−0.854946 + 0.518716i \(0.826410\pi\)
\(492\) 0.903303 1.56457i 0.0407241 0.0705362i
\(493\) −2.83305 + 2.83305i −0.127594 + 0.127594i
\(494\) 0 0
\(495\) −8.01301 + 0.618334i −0.360158 + 0.0277920i
\(496\) −7.37809 27.5354i −0.331286 1.23638i
\(497\) −4.23276 15.7969i −0.189865 0.708587i
\(498\) −26.5549 7.11538i −1.18996 0.318848i
\(499\) 23.0389 + 23.0389i 1.03136 + 1.03136i 0.999492 + 0.0318687i \(0.0101459\pi\)
0.0318687 + 0.999492i \(0.489854\pi\)
\(500\) 15.1408 + 0.465858i 0.677118 + 0.0208338i
\(501\) 0.317803 1.18606i 0.0141984 0.0529891i
\(502\) −39.8727 −1.77960
\(503\) 0.169996 0.634433i 0.00757973 0.0282879i −0.962032 0.272935i \(-0.912006\pi\)
0.969612 + 0.244647i \(0.0786722\pi\)
\(504\) −1.93976 + 3.35977i −0.0864039 + 0.149656i
\(505\) −3.38444 9.60392i −0.150606 0.427369i
\(506\) 2.16050i 0.0960458i
\(507\) 0 0
\(508\) 1.23211 + 1.23211i 0.0546662 + 0.0546662i
\(509\) −30.9400 + 8.29035i −1.37139 + 0.367463i −0.867987 0.496587i \(-0.834586\pi\)
−0.503405 + 0.864050i \(0.667920\pi\)
\(510\) 15.5091 5.46544i 0.686755 0.242014i
\(511\) 45.2197 26.1076i 2.00040 1.15493i
\(512\) 20.4758i 0.904912i
\(513\) −1.10327 1.91092i −0.0487105 0.0843690i
\(514\) −22.6693 6.07422i −0.999901 0.267923i
\(515\) −30.8759 + 2.38258i −1.36056 + 0.104989i
\(516\) 11.8307 + 20.4914i 0.520818 + 0.902084i
\(517\) 36.4929 9.77825i 1.60496 0.430047i
\(518\) 30.4127 + 17.5588i 1.33626 + 0.771489i
\(519\) 13.1232 0.576046
\(520\) 0 0
\(521\) −23.4746 −1.02844 −0.514220 0.857658i \(-0.671919\pi\)
−0.514220 + 0.857658i \(0.671919\pi\)
\(522\) 2.91042 + 1.68033i 0.127386 + 0.0735461i
\(523\) −23.9001 + 6.40400i −1.04508 + 0.280027i −0.740216 0.672370i \(-0.765277\pi\)
−0.304861 + 0.952397i \(0.598610\pi\)
\(524\) −3.78986 6.56423i −0.165561 0.286760i
\(525\) 20.6989 28.3075i 0.903376 1.23544i
\(526\) −29.2009 7.82436i −1.27322 0.341158i
\(527\) 5.92431 + 10.2612i 0.258067 + 0.446985i
\(528\) 37.4226i 1.62861i
\(529\) 19.8383 11.4536i 0.862535 0.497985i
\(530\) 7.91127 16.5214i 0.343643 0.717643i
\(531\) −10.8963 + 2.91964i −0.472857 + 0.126702i
\(532\) 1.82159 + 1.82159i 0.0789759 + 0.0789759i
\(533\) 0 0
\(534\) 17.0776i 0.739019i
\(535\) −6.82795 + 14.2591i −0.295198 + 0.616473i
\(536\) 1.35290 2.34329i 0.0584363 0.101215i
\(537\) −1.12346 + 4.19281i −0.0484809 + 0.180933i
\(538\) −59.1745 −2.55119
\(539\) −5.53871 + 20.6708i −0.238569 + 0.890353i
\(540\) 7.03172 + 10.2647i 0.302597 + 0.441724i
\(541\) −27.6908 27.6908i −1.19052 1.19052i −0.976922 0.213597i \(-0.931482\pi\)
−0.213597 0.976922i \(-0.568518\pi\)
\(542\) −30.9125 8.28297i −1.32780 0.355784i
\(543\) −4.92042 18.3632i −0.211155 0.788042i
\(544\) 3.44185 + 12.8452i 0.147568 + 0.550731i
\(545\) 2.40690 + 31.1911i 0.103100 + 1.33608i
\(546\) 0 0
\(547\) 6.53914 6.53914i 0.279593 0.279593i −0.553353 0.832947i \(-0.686652\pi\)
0.832947 + 0.553353i \(0.186652\pi\)
\(548\) −9.68071 + 16.7675i −0.413540 + 0.716272i
\(549\) 2.31902 + 1.33889i 0.0989733 + 0.0571422i
\(550\) −3.81632 + 35.2738i −0.162729 + 1.50408i
\(551\) −0.751344 + 0.751344i −0.0320083 + 0.0320083i
\(552\) −0.617486 + 0.356506i −0.0262820 + 0.0151739i
\(553\) −4.89500 + 2.82613i −0.208156 + 0.120179i
\(554\) 3.98180 3.98180i 0.169170 0.169170i
\(555\) 19.8072 13.5686i 0.840768 0.575956i
\(556\) 20.4359 + 11.7987i 0.866676 + 0.500375i
\(557\) −8.12429 + 14.0717i −0.344237 + 0.596237i −0.985215 0.171323i \(-0.945196\pi\)
0.640978 + 0.767560i \(0.278529\pi\)
\(558\) 7.02763 7.02763i 0.297503 0.297503i
\(559\) 0 0
\(560\) 29.2903 + 25.0937i 1.23774 + 1.06040i
\(561\) 4.02578 + 15.0244i 0.169969 + 0.634332i
\(562\) −12.5206 46.7277i −0.528151 1.97109i
\(563\) −31.4174 8.41827i −1.32409 0.354788i −0.473579 0.880751i \(-0.657038\pi\)
−0.850507 + 0.525964i \(0.823705\pi\)
\(564\) 18.5161 + 18.5161i 0.779670 + 0.779670i
\(565\) −4.22904 + 2.89704i −0.177917 + 0.121879i
\(566\) −7.27167 + 27.1382i −0.305651 + 1.14071i
\(567\) 38.6538 1.62331
\(568\) 1.41331 5.27453i 0.0593010 0.221314i
\(569\) 16.4164 28.4341i 0.688212 1.19202i −0.284203 0.958764i \(-0.591729\pi\)
0.972416 0.233255i \(-0.0749376\pi\)
\(570\) 4.11313 1.44947i 0.172280 0.0607118i
\(571\) 31.7967i 1.33065i 0.746554 + 0.665325i \(0.231707\pi\)
−0.746554 + 0.665325i \(0.768293\pi\)
\(572\) 0 0
\(573\) −5.22875 5.22875i −0.218434 0.218434i
\(574\) −4.21253 + 1.12874i −0.175828 + 0.0471129i
\(575\) 1.39262 0.614947i 0.0580762 0.0256451i
\(576\) 1.82796 1.05538i 0.0761652 0.0439740i
\(577\) 39.9389i 1.66268i −0.555767 0.831338i \(-0.687575\pi\)
0.555767 0.831338i \(-0.312425\pi\)
\(578\) 11.8102 + 20.4559i 0.491241 + 0.850854i
\(579\) −0.543832 0.145719i −0.0226009 0.00605589i
\(580\) 3.89818 4.55010i 0.161863 0.188933i
\(581\) 13.4008 + 23.2109i 0.555959 + 0.962949i
\(582\) −62.5017 + 16.7473i −2.59078 + 0.694197i
\(583\) 15.0056 + 8.66348i 0.621468 + 0.358805i
\(584\) 17.4345 0.721444
\(585\) 0 0
\(586\) −19.0063 −0.785143
\(587\) −16.1561 9.32773i −0.666834 0.384997i 0.128042 0.991769i \(-0.459131\pi\)
−0.794876 + 0.606772i \(0.792464\pi\)
\(588\) −14.3271 + 3.83892i −0.590838 + 0.158315i
\(589\) 1.57117 + 2.72135i 0.0647389 + 0.112131i
\(590\) 3.83147 + 49.6522i 0.157739 + 2.04415i
\(591\) 49.4837 + 13.2591i 2.03549 + 0.545407i
\(592\) 13.2032 + 22.8686i 0.542647 + 0.939893i
\(593\) 8.65172i 0.355284i 0.984095 + 0.177642i \(0.0568468\pi\)
−0.984095 + 0.177642i \(0.943153\pi\)
\(594\) −25.2380 + 14.5712i −1.03553 + 0.597862i
\(595\) −14.4590 6.92367i −0.592759 0.283843i
\(596\) −17.1836 + 4.60433i −0.703867 + 0.188601i
\(597\) −8.06145 8.06145i −0.329933 0.329933i
\(598\) 0 0
\(599\) 35.1779i 1.43733i 0.695356 + 0.718666i \(0.255247\pi\)
−0.695356 + 0.718666i \(0.744753\pi\)
\(600\) 10.7113 4.72983i 0.437285 0.193095i
\(601\) 20.0384 34.7076i 0.817385 1.41575i −0.0902170 0.995922i \(-0.528756\pi\)
0.907602 0.419831i \(-0.137911\pi\)
\(602\) 14.7834 55.1722i 0.602524 2.24865i
\(603\) 2.12443 0.0865136
\(604\) −0.379473 + 1.41621i −0.0154405 + 0.0576249i
\(605\) −8.81103 1.64694i −0.358219 0.0669577i
\(606\) 11.6890 + 11.6890i 0.474834 + 0.474834i
\(607\) −41.5934 11.1449i −1.68822 0.452358i −0.718292 0.695742i \(-0.755076\pi\)
−0.969930 + 0.243384i \(0.921742\pi\)
\(608\) 0.912802 + 3.40662i 0.0370190 + 0.138157i
\(609\) −3.59000 13.3981i −0.145474 0.542917i
\(610\) 7.69108 8.97731i 0.311403 0.363481i
\(611\) 0 0
\(612\) −1.80063 + 1.80063i −0.0727863 + 0.0727863i
\(613\) 10.1397 17.5625i 0.409540 0.709344i −0.585298 0.810818i \(-0.699022\pi\)
0.994838 + 0.101474i \(0.0323558\pi\)
\(614\) 3.39352 + 1.95925i 0.136952 + 0.0790690i
\(615\) −0.547826 + 2.93084i −0.0220905 + 0.118183i
\(616\) −11.4553 + 11.4553i −0.461546 + 0.461546i
\(617\) −7.50891 + 4.33527i −0.302297 + 0.174531i −0.643474 0.765468i \(-0.722508\pi\)
0.341177 + 0.939999i \(0.389174\pi\)
\(618\) 43.5376 25.1365i 1.75134 1.01114i
\(619\) 21.3034 21.3034i 0.856257 0.856257i −0.134638 0.990895i \(-0.542987\pi\)
0.990895 + 0.134638i \(0.0429871\pi\)
\(620\) −10.0139 14.6181i −0.402168 0.587076i
\(621\) 1.08290 + 0.625215i 0.0434554 + 0.0250890i
\(622\) −3.49919 + 6.06077i −0.140305 + 0.243015i
\(623\) −11.7725 + 11.7725i −0.471657 + 0.471657i
\(624\) 0 0
\(625\) −23.8231 + 7.58013i −0.952925 + 0.303205i
\(626\) 2.04165 + 7.61954i 0.0816007 + 0.304538i
\(627\) 1.06767 + 3.98458i 0.0426385 + 0.159129i
\(628\) 5.61682 + 1.50502i 0.224136 + 0.0600569i
\(629\) −7.76093 7.76093i −0.309449 0.309449i
\(630\) −2.47067 + 13.2179i −0.0984340 + 0.526615i
\(631\) 7.35050 27.4324i 0.292619 1.09207i −0.650472 0.759531i \(-0.725429\pi\)
0.943090 0.332537i \(-0.107905\pi\)
\(632\) −1.88727 −0.0750715
\(633\) 1.65548 6.17835i 0.0657996 0.245567i
\(634\) −21.1670 + 36.6622i −0.840647 + 1.45604i
\(635\) −2.59371 1.24200i −0.102928 0.0492873i
\(636\) 12.0094i 0.476206i
\(637\) 0 0
\(638\) 9.92320 + 9.92320i 0.392863 + 0.392863i
\(639\) 4.14125 1.10965i 0.163825 0.0438969i
\(640\) 6.65997 + 18.8988i 0.263259 + 0.747041i
\(641\) −14.1756 + 8.18429i −0.559903 + 0.323260i −0.753107 0.657899i \(-0.771446\pi\)
0.193204 + 0.981159i \(0.438112\pi\)
\(642\) 25.6652i 1.01292i
\(643\) 20.5258 + 35.5518i 0.809460 + 1.40203i 0.913239 + 0.407425i \(0.133573\pi\)
−0.103779 + 0.994600i \(0.533093\pi\)
\(644\) −1.41012 0.377841i −0.0555666 0.0148890i
\(645\) −29.6555 25.4065i −1.16768 1.00038i
\(646\) −0.996819 1.72654i −0.0392193 0.0679298i
\(647\) −2.73861 + 0.733807i −0.107666 + 0.0288489i −0.312250 0.950000i \(-0.601083\pi\)
0.204584 + 0.978849i \(0.434416\pi\)
\(648\) 11.1772 + 6.45318i 0.439083 + 0.253505i
\(649\) −47.1059 −1.84907
\(650\) 0 0
\(651\) −41.0201 −1.60771
\(652\) 2.65599 + 1.53344i 0.104017 + 0.0600540i
\(653\) −1.21283 + 0.324978i −0.0474619 + 0.0127174i −0.282472 0.959276i \(-0.591154\pi\)
0.235010 + 0.971993i \(0.424488\pi\)
\(654\) −25.3930 43.9820i −0.992947 1.71983i
\(655\) 9.49985 + 8.13874i 0.371190 + 0.318007i
\(656\) −3.16758 0.848749i −0.123673 0.0331381i
\(657\) 6.84427 + 11.8546i 0.267020 + 0.462493i
\(658\) 63.2122i 2.46427i
\(659\) 8.09916 4.67605i 0.315498 0.182153i −0.333886 0.942613i \(-0.608360\pi\)
0.649384 + 0.760460i \(0.275027\pi\)
\(660\) −7.73119 21.9386i −0.300936 0.853958i
\(661\) 24.7963 6.64415i 0.964464 0.258427i 0.257975 0.966152i \(-0.416945\pi\)
0.706489 + 0.707724i \(0.250278\pi\)
\(662\) −2.58641 2.58641i −0.100524 0.100524i
\(663\) 0 0
\(664\) 8.94896i 0.347287i
\(665\) −3.83462 1.83621i −0.148700 0.0712051i
\(666\) −4.60315 + 7.97288i −0.178368 + 0.308943i
\(667\) 0.155847 0.581628i 0.00603441 0.0225207i
\(668\) 0.839440 0.0324789
\(669\) 3.80358 14.1952i 0.147055 0.548817i
\(670\) 1.72318 9.21892i 0.0665724 0.356158i
\(671\) 7.90679 + 7.90679i 0.305238 + 0.305238i
\(672\) −44.4701 11.9157i −1.71547 0.459660i
\(673\) −10.6983 39.9267i −0.412390 1.53906i −0.790007 0.613098i \(-0.789923\pi\)
0.377617 0.925962i \(-0.376744\pi\)
\(674\) 4.10787 + 15.3308i 0.158229 + 0.590519i
\(675\) −16.5759 12.1205i −0.638005 0.466520i
\(676\) 0 0
\(677\) 15.5322 15.5322i 0.596950 0.596950i −0.342549 0.939500i \(-0.611290\pi\)
0.939500 + 0.342549i \(0.111290\pi\)
\(678\) 4.16090 7.20690i 0.159799 0.276779i
\(679\) 54.6308 + 31.5411i 2.09654 + 1.21044i
\(680\) −3.02510 4.41597i −0.116007 0.169345i
\(681\) 5.46862 5.46862i 0.209558 0.209558i
\(682\) 35.9415 20.7508i 1.37627 0.794591i
\(683\) −5.76170 + 3.32652i −0.220465 + 0.127286i −0.606166 0.795338i \(-0.707293\pi\)
0.385700 + 0.922624i \(0.373960\pi\)
\(684\) −0.477541 + 0.477541i −0.0182592 + 0.0182592i
\(685\) 5.87106 31.4098i 0.224322 1.20011i
\(686\) −8.28646 4.78419i −0.316378 0.182661i
\(687\) 17.3696 30.0851i 0.662692 1.14782i
\(688\) 30.3701 30.3701i 1.15785 1.15785i
\(689\) 0 0
\(690\) −1.60790 + 1.87680i −0.0612117 + 0.0714485i
\(691\) 9.73848 + 36.3445i 0.370469 + 1.38261i 0.859853 + 0.510542i \(0.170555\pi\)
−0.489384 + 0.872069i \(0.662778\pi\)
\(692\) 2.32201 + 8.66588i 0.0882698 + 0.329427i
\(693\) −12.2861 3.29204i −0.466709 0.125054i
\(694\) 42.1038 + 42.1038i 1.59824 + 1.59824i
\(695\) −38.2817 7.15555i −1.45211 0.271425i
\(696\) 1.19869 4.47356i 0.0454361 0.169570i
\(697\) 1.36302 0.0516282
\(698\) 3.22603 12.0397i 0.122107 0.455710i
\(699\) 4.04946 7.01387i 0.153165 0.265289i
\(700\) 22.3552 + 8.65976i 0.844949 + 0.327308i
\(701\) 40.3398i 1.52361i −0.647804 0.761807i \(-0.724312\pi\)
0.647804 0.761807i \(-0.275688\pi\)
\(702\) 0 0
\(703\) −2.05825 2.05825i −0.0776285 0.0776285i
\(704\) 8.51379 2.28126i 0.320875 0.0859783i
\(705\) −38.9782 18.6647i −1.46801 0.702955i
\(706\) −43.3459 + 25.0258i −1.63134 + 0.941857i
\(707\) 16.1158i 0.606097i
\(708\) −16.3247 28.2753i −0.613521 1.06265i
\(709\) −43.0733 11.5415i −1.61765 0.433449i −0.667341 0.744752i \(-0.732568\pi\)
−0.950311 + 0.311304i \(0.899234\pi\)
\(710\) −1.45620 18.8709i −0.0546501 0.708213i
\(711\) −0.740887 1.28325i −0.0277854 0.0481258i
\(712\) −5.36959 + 1.43878i −0.201234 + 0.0539204i
\(713\) −1.54217 0.890371i −0.0577546 0.0333447i
\(714\) 26.0250 0.973960
\(715\) 0 0
\(716\) −2.96749 −0.110900
\(717\) −21.7798 12.5746i −0.813383 0.469607i
\(718\) 9.75479 2.61379i 0.364045 0.0975457i
\(719\) 13.7825 + 23.8720i 0.514001 + 0.890276i 0.999868 + 0.0162430i \(0.00517055\pi\)
−0.485867 + 0.874033i \(0.661496\pi\)
\(720\) −6.57846 + 7.67863i −0.245165 + 0.286166i
\(721\) −47.3409 12.6850i −1.76307 0.472413i
\(722\) 17.1361 + 29.6807i 0.637741 + 1.10460i
\(723\) 34.7768i 1.29336i
\(724\) 11.2555 6.49836i 0.418307 0.241510i
\(725\) −3.57186 + 9.22079i −0.132656 + 0.342451i
\(726\) 14.0557 3.76622i 0.521656 0.139777i
\(727\) −29.4624 29.4624i −1.09270 1.09270i −0.995240 0.0974593i \(-0.968928\pi\)
−0.0974593 0.995240i \(-0.531072\pi\)
\(728\) 0 0
\(729\) 14.2845i 0.529057i
\(730\) 56.9944 20.0849i 2.10946 0.743377i
\(731\) −8.92588 + 15.4601i −0.330135 + 0.571811i
\(732\) −2.00591 + 7.48617i −0.0741407 + 0.276697i
\(733\) −23.3958 −0.864144 −0.432072 0.901839i \(-0.642217\pi\)
−0.432072 + 0.901839i \(0.642217\pi\)
\(734\) −8.56885 + 31.9794i −0.316282 + 1.18038i
\(735\) 20.1951 13.8344i 0.744909 0.510290i
\(736\) −1.41323 1.41323i −0.0520924 0.0520924i
\(737\) 8.56897 + 2.29605i 0.315642 + 0.0845761i
\(738\) −0.295907 1.10434i −0.0108925 0.0406513i
\(739\) −4.15644 15.5120i −0.152897 0.570620i −0.999276 0.0380389i \(-0.987889\pi\)
0.846379 0.532581i \(-0.178778\pi\)
\(740\) 12.4647 + 10.6788i 0.458210 + 0.392560i
\(741\) 0 0
\(742\) 20.4995 20.4995i 0.752561 0.752561i
\(743\) −26.1400 + 45.2759i −0.958985 + 1.66101i −0.234011 + 0.972234i \(0.575185\pi\)
−0.724973 + 0.688777i \(0.758148\pi\)
\(744\) −11.8615 6.84824i −0.434864 0.251069i
\(745\) 24.2216 16.5927i 0.887412 0.607909i
\(746\) 20.0933 20.0933i 0.735669 0.735669i
\(747\) −6.08487 + 3.51310i −0.222634 + 0.128538i
\(748\) −9.20901 + 5.31682i −0.336715 + 0.194402i
\(749\) −17.6925 + 17.6925i −0.646468 + 0.646468i
\(750\) 29.5669 27.8017i 1.07963 1.01518i
\(751\) −23.7599 13.7178i −0.867010 0.500569i −0.000656703 1.00000i \(-0.500209\pi\)
−0.866354 + 0.499431i \(0.833542\pi\)
\(752\) 23.7659 41.1638i 0.866655 1.50109i
\(753\) −30.5066 + 30.5066i −1.11172 + 1.11172i
\(754\) 0 0
\(755\) −0.186169 2.41257i −0.00677539 0.0878026i
\(756\) 5.09659 + 19.0207i 0.185361 + 0.691777i
\(757\) 0.622824 + 2.32441i 0.0226369 + 0.0844821i 0.976320 0.216330i \(-0.0694088\pi\)
−0.953683 + 0.300813i \(0.902742\pi\)
\(758\) 37.8037 + 10.1295i 1.37309 + 0.367919i
\(759\) −1.65300 1.65300i −0.0600000 0.0600000i
\(760\) −0.802277 1.17115i −0.0291016 0.0424819i
\(761\) −0.632352 + 2.35997i −0.0229227 + 0.0855488i −0.976440 0.215791i \(-0.930767\pi\)
0.953517 + 0.301340i \(0.0974338\pi\)
\(762\) 4.66848 0.169121
\(763\) −12.8144 + 47.8242i −0.463914 + 1.73135i
\(764\) 2.52761 4.37796i 0.0914459 0.158389i
\(765\) 1.81508 3.79050i 0.0656245 0.137046i
\(766\) 35.5469i 1.28436i
\(767\) 0 0
\(768\) −29.3786 29.3786i −1.06011 1.06011i
\(769\) −13.0944 + 3.50862i −0.472195 + 0.126524i −0.487066 0.873365i \(-0.661933\pi\)
0.0148712 + 0.999889i \(0.495266\pi\)
\(770\) −24.2513 + 50.6448i −0.873955 + 1.82511i
\(771\) −21.9917 + 12.6969i −0.792011 + 0.457268i
\(772\) 0.384901i 0.0138529i
\(773\) −11.2222 19.4375i −0.403636 0.699118i 0.590525 0.807019i \(-0.298921\pi\)
−0.994162 + 0.107901i \(0.965587\pi\)
\(774\) 14.4637 + 3.87555i 0.519888 + 0.139304i
\(775\) 23.6058 + 17.2609i 0.847944 + 0.620031i
\(776\) 10.5315 + 18.2410i 0.378058 + 0.654815i
\(777\) 36.7030 9.83454i 1.31671 0.352812i
\(778\) −23.5701 13.6082i −0.845030 0.487878i
\(779\) 0.361484 0.0129515
\(780\) 0 0
\(781\) 17.9032 0.640626
\(782\) 0.978419 + 0.564890i 0.0349882 + 0.0202004i
\(783\) −7.84541 + 2.10217i −0.280372 + 0.0751255i
\(784\) 13.4618 + 23.3165i 0.480778 + 0.832732i
\(785\) −9.56847 + 0.738363i −0.341513 + 0.0263533i
\(786\) −19.6158 5.25605i −0.699674 0.187477i
\(787\) 6.74791 + 11.6877i 0.240537 + 0.416622i 0.960867 0.277009i \(-0.0893431\pi\)
−0.720330 + 0.693631i \(0.756010\pi\)
\(788\) 35.0224i 1.24762i
\(789\) −28.3280 + 16.3552i −1.00850 + 0.582260i
\(790\) −6.16960 + 2.17418i −0.219504 + 0.0773538i
\(791\) −7.83647 + 2.09978i −0.278633 + 0.0746594i
\(792\) −3.00307 3.00307i −0.106709 0.106709i
\(793\) 0 0
\(794\) 9.66696i 0.343068i
\(795\) −6.58760 18.6934i −0.233638 0.662987i
\(796\) 3.89696 6.74974i 0.138124 0.239238i
\(797\) 1.62398 6.06076i 0.0575242 0.214683i −0.931181 0.364558i \(-0.881220\pi\)
0.988705 + 0.149874i \(0.0478869\pi\)
\(798\) 6.90201 0.244328
\(799\) −5.11330 + 19.0831i −0.180896 + 0.675112i
\(800\) 20.5771 + 25.5698i 0.727510 + 0.904028i
\(801\) −3.08625 3.08625i −0.109047 0.109047i
\(802\) −49.3238 13.2163i −1.74168 0.466683i
\(803\) 14.7943 + 55.2132i 0.522081 + 1.94843i
\(804\) 1.59141 + 5.93922i 0.0561247 + 0.209460i
\(805\) 2.40220 0.185369i 0.0846664 0.00653339i
\(806\) 0 0
\(807\) −45.2744 + 45.2744i −1.59374 + 1.59374i
\(808\) 2.69050 4.66009i 0.0946516 0.163941i
\(809\) 18.6872 + 10.7890i 0.657006 + 0.379322i 0.791135 0.611641i \(-0.209490\pi\)
−0.134130 + 0.990964i \(0.542824\pi\)
\(810\) 43.9733 + 8.21941i 1.54506 + 0.288801i
\(811\) 22.5473 22.5473i 0.791743 0.791743i −0.190035 0.981777i \(-0.560860\pi\)
0.981777 + 0.190035i \(0.0608601\pi\)
\(812\) 8.21215 4.74129i 0.288190 0.166387i
\(813\) −29.9885 + 17.3138i −1.05174 + 0.607223i
\(814\) −27.1839 + 27.1839i −0.952795 + 0.952795i
\(815\) −4.97535 0.929983i −0.174279 0.0325759i
\(816\) 16.9475 + 9.78462i 0.593280 + 0.342530i
\(817\) −2.36721 + 4.10012i −0.0828180 + 0.143445i
\(818\) −3.41289 + 3.41289i −0.119329 + 0.119329i
\(819\) 0 0
\(820\) −2.03230 + 0.156825i −0.0709710 + 0.00547656i
\(821\) 4.64130 + 17.3216i 0.161982 + 0.604526i 0.998406 + 0.0564427i \(0.0179758\pi\)
−0.836423 + 0.548084i \(0.815358\pi\)
\(822\) 13.4259 + 50.1062i 0.468282 + 1.74765i
\(823\) −1.11284 0.298185i −0.0387913 0.0103941i 0.239371 0.970928i \(-0.423059\pi\)
−0.278162 + 0.960534i \(0.589725\pi\)
\(824\) −11.5715 11.5715i −0.403112 0.403112i
\(825\) 24.0681 + 29.9079i 0.837944 + 1.04126i
\(826\) −20.3990 + 76.1300i −0.709771 + 2.64890i
\(827\) −4.45029 −0.154752 −0.0773759 0.997002i \(-0.524654\pi\)
−0.0773759 + 0.997002i \(0.524654\pi\)
\(828\) 0.0990534 0.369672i 0.00344234 0.0128470i
\(829\) −14.5637 + 25.2251i −0.505819 + 0.876103i 0.494159 + 0.869372i \(0.335476\pi\)
−0.999977 + 0.00673181i \(0.997857\pi\)
\(830\) 10.3094 + 29.2547i 0.357845 + 1.01545i
\(831\) 6.09295i 0.211362i
\(832\) 0 0
\(833\) −7.91294 7.91294i −0.274167 0.274167i
\(834\) 61.0685 16.3633i 2.11463 0.566613i
\(835\) −1.30664 + 0.460462i −0.0452181 + 0.0159349i
\(836\) −2.44229 + 1.41006i −0.0844685 + 0.0487679i
\(837\) 24.0199i 0.830249i
\(838\) −18.0142 31.2015i −0.622291 1.07784i
\(839\) 31.2268 + 8.36719i 1.07807 + 0.288867i 0.753804 0.657099i \(-0.228217\pi\)
0.324264 + 0.945967i \(0.394883\pi\)
\(840\) 18.4764 1.42575i 0.637496 0.0491931i
\(841\) −12.5444 21.7275i −0.432565 0.749224i
\(842\) 26.1283 7.00106i 0.900441 0.241273i
\(843\) −45.3309 26.1718i −1.56128 0.901405i
\(844\) 4.37277 0.150517
\(845\) 0 0
\(846\) 16.5715 0.569739
\(847\) −12.2857 7.09313i −0.422140 0.243723i
\(848\) 21.0565 5.64207i 0.723083 0.193750i
\(849\) 15.1999 + 26.3270i 0.521660 + 0.903541i
\(850\) −14.9765 10.9511i −0.513691 0.375619i
\(851\) 1.59333 + 0.426931i 0.0546186 + 0.0146350i
\(852\) 6.20441 + 10.7464i 0.212560 + 0.368164i
\(853\) 9.24230i 0.316450i 0.987403 + 0.158225i \(0.0505772\pi\)
−0.987403 + 0.158225i \(0.949423\pi\)
\(854\) 16.2025 9.35453i 0.554439 0.320105i
\(855\) 0.481373 1.00527i 0.0164626 0.0343794i
\(856\) −8.06972 + 2.16228i −0.275817 + 0.0739051i
\(857\) 37.7913 + 37.7913i 1.29093 + 1.29093i 0.934214 + 0.356713i \(0.116103\pi\)
0.356713 + 0.934214i \(0.383897\pi\)
\(858\) 0 0
\(859\) 6.16263i 0.210266i −0.994458 0.105133i \(-0.966473\pi\)
0.994458 0.105133i \(-0.0335269\pi\)
\(860\) 11.5299 24.0783i 0.393166 0.821063i
\(861\) −2.35941 + 4.08661i −0.0804083 + 0.139271i
\(862\) 8.12181 30.3110i 0.276630 1.03240i
\(863\) −33.7740 −1.14968 −0.574840 0.818266i \(-0.694936\pi\)
−0.574840 + 0.818266i \(0.694936\pi\)
\(864\) −6.97742 + 26.0401i −0.237377 + 0.885902i
\(865\) −8.36789 12.2152i −0.284517 0.415331i
\(866\) −14.5532 14.5532i −0.494539 0.494539i
\(867\) 24.6868 + 6.61482i 0.838409 + 0.224651i
\(868\) −7.25808 27.0875i −0.246355 0.919410i
\(869\) −1.60147 5.97678i −0.0543263 0.202748i
\(870\) −1.23507 16.0053i −0.0418727 0.542630i
\(871\) 0 0
\(872\) −11.6896 + 11.6896i −0.395861 + 0.395861i
\(873\) −8.26870 + 14.3218i −0.279853 + 0.484720i
\(874\) 0.259484 + 0.149813i 0.00877716 + 0.00506750i
\(875\) −39.5474 1.21681i −1.33695 0.0411357i
\(876\) −28.0146 + 28.0146i −0.946527 + 0.946527i
\(877\) −19.6563 + 11.3486i −0.663747 + 0.383214i −0.793703 0.608305i \(-0.791850\pi\)
0.129956 + 0.991520i \(0.458516\pi\)
\(878\) 6.73256 3.88705i 0.227213 0.131181i
\(879\) −14.5417 + 14.5417i −0.490480 + 0.490480i
\(880\) −34.8334 + 23.8621i −1.17423 + 0.804392i
\(881\) 6.78312 + 3.91623i 0.228529 + 0.131941i 0.609893 0.792484i \(-0.291212\pi\)
−0.381364 + 0.924425i \(0.624546\pi\)
\(882\) −4.69331 + 8.12905i −0.158032 + 0.273719i
\(883\) −18.9296 + 18.9296i −0.637032 + 0.637032i −0.949822 0.312790i \(-0.898736\pi\)
0.312790 + 0.949822i \(0.398736\pi\)
\(884\) 0 0
\(885\) 40.9204 + 35.0575i 1.37552 + 1.17844i
\(886\) 10.1615 + 37.9234i 0.341384 + 1.27406i
\(887\) 9.19729 + 34.3248i 0.308815 + 1.15251i 0.929612 + 0.368541i \(0.120143\pi\)
−0.620797 + 0.783972i \(0.713191\pi\)
\(888\) 12.2550 + 3.28372i 0.411251 + 0.110194i
\(889\) −3.21825 3.21825i −0.107937 0.107937i
\(890\) −15.8960 + 10.8893i −0.532836 + 0.365012i
\(891\) −10.9519 + 40.8731i −0.366903 + 1.36930i
\(892\) 10.0467 0.336389
\(893\) −1.35608 + 5.06098i −0.0453796 + 0.169359i
\(894\) −23.8314 + 41.2772i −0.797042 + 1.38052i
\(895\) 4.61908 1.62777i 0.154399 0.0544104i
\(896\) 31.7130i 1.05946i
\(897\) 0 0
\(898\) 18.8417 + 18.8417i 0.628755 + 0.628755i
\(899\) 11.1727 2.99371i 0.372630 0.0998459i
\(900\) −2.27021 + 5.86056i −0.0756736 + 0.195352i
\(901\) −7.84682 + 4.53036i −0.261415 + 0.150928i
\(902\) 4.77421i 0.158964i
\(903\) −30.9015 53.5230i −1.02834 1.78113i
\(904\) −2.61657 0.701108i −0.0870258 0.0233185i
\(905\) −13.9553 + 16.2891i −0.463889 + 0.541469i
\(906\) 1.96411 + 3.40193i 0.0652530 + 0.113022i
\(907\) −44.9172 + 12.0355i −1.49145 + 0.399633i −0.910227 0.414109i \(-0.864093\pi\)
−0.581225 + 0.813743i \(0.697426\pi\)
\(908\) 4.57880 + 2.64357i 0.151953 + 0.0877300i
\(909\) 4.22485 0.140130
\(910\) 0 0
\(911\) 17.7325 0.587504 0.293752 0.955882i \(-0.405096\pi\)
0.293752 + 0.955882i \(0.405096\pi\)
\(912\) 4.49459 + 2.59495i 0.148831 + 0.0859274i
\(913\) −28.3404 + 7.59379i −0.937931 + 0.251318i
\(914\) 27.7449 + 48.0556i 0.917720 + 1.58954i
\(915\) −0.984100 12.7530i −0.0325333 0.421601i
\(916\) 22.9399 + 6.14674i 0.757957 + 0.203094i
\(917\) 9.89902 + 17.1456i 0.326894 + 0.566198i
\(918\) 15.2393i 0.502971i
\(919\) 42.2580 24.3977i 1.39396 0.804806i 0.400213 0.916422i \(-0.368936\pi\)
0.993751 + 0.111617i \(0.0356029\pi\)
\(920\) 0.725574 + 0.347441i 0.0239215 + 0.0114548i
\(921\) 4.09541 1.09736i 0.134948 0.0361593i
\(922\) −8.98564 8.98564i −0.295926 0.295926i
\(923\) 0 0
\(924\) 36.8139i 1.21109i
\(925\) −25.2597 9.78485i −0.830533 0.321724i
\(926\) −28.7990 + 49.8814i −0.946395 + 1.63920i
\(927\) 3.32544 12.4107i 0.109222 0.407621i
\(928\) 12.9820 0.426155
\(929\) 2.68833 10.0330i 0.0882012 0.329171i −0.907700 0.419620i \(-0.862163\pi\)
0.995901 + 0.0904485i \(0.0288300\pi\)
\(930\) −46.6653 8.72260i −1.53022 0.286025i
\(931\) −2.09857 2.09857i −0.0687778 0.0687778i
\(932\) 5.34810 + 1.43302i 0.175183 + 0.0469401i
\(933\) 1.95987 + 7.31433i 0.0641632 + 0.239460i
\(934\) −2.47803 9.24814i −0.0810837 0.302608i
\(935\) 11.4179 13.3274i 0.373406 0.435853i
\(936\) 0 0
\(937\) 5.31856 5.31856i 0.173750 0.173750i −0.614875 0.788625i \(-0.710794\pi\)
0.788625 + 0.614875i \(0.210794\pi\)
\(938\) 7.42149 12.8544i 0.242320 0.419711i
\(939\) 7.39178 + 4.26764i 0.241221 + 0.139269i
\(940\) 5.42842 29.0417i 0.177055 0.947235i
\(941\) −38.9093 + 38.9093i −1.26841 + 1.26841i −0.321497 + 0.946911i \(0.604186\pi\)
−0.946911 + 0.321497i \(0.895814\pi\)
\(942\) 13.4923 7.78981i 0.439604 0.253806i
\(943\) −0.177406 + 0.102425i −0.00577712 + 0.00333542i
\(944\) −41.9064 + 41.9064i −1.36394 + 1.36394i
\(945\) −18.3667 26.8113i −0.597468 0.872170i
\(946\) 54.1514 + 31.2643i 1.76061 + 1.01649i
\(947\) −16.8759 + 29.2298i −0.548392 + 0.949842i 0.449993 + 0.893032i \(0.351426\pi\)
−0.998385 + 0.0568101i \(0.981907\pi\)
\(948\) 3.03256 3.03256i 0.0984930 0.0984930i
\(949\) 0 0
\(950\) −3.97188 2.90431i −0.128865 0.0942281i
\(951\) 11.8554 + 44.2451i 0.384439 + 1.43475i
\(952\) −2.19259 8.18285i −0.0710622 0.265208i
\(953\) −4.26581 1.14302i −0.138183 0.0370260i 0.189065 0.981965i \(-0.439454\pi\)
−0.327248 + 0.944939i \(0.606121\pi\)
\(954\) 5.37407 + 5.37407i 0.173992 + 0.173992i
\(955\) −1.53292 + 8.20103i −0.0496042 + 0.265379i
\(956\) 4.44988 16.6072i 0.143919 0.537115i
\(957\) 15.1845 0.490845
\(958\) −9.17471 + 34.2405i −0.296422 + 1.10626i
\(959\) 25.2858 43.7963i 0.816520 1.41425i
\(960\) −9.09361 4.35448i −0.293495 0.140540i
\(961\) 3.20686i 0.103447i
\(962\) 0 0
\(963\) −4.63819 4.63819i −0.149463 0.149463i
\(964\) −22.9647 + 6.15338i −0.739645 + 0.198187i
\(965\) 0.211132 + 0.599122i 0.00679657 + 0.0192864i
\(966\) −3.38730 + 1.95566i −0.108985 + 0.0629223i
\(967\) 16.2803i 0.523540i −0.965130 0.261770i \(-0.915694\pi\)
0.965130 0.261770i \(-0.0843061\pi\)
\(968\) −2.36837 4.10214i −0.0761223 0.131848i
\(969\) −2.08364 0.558310i −0.0669363 0.0179355i
\(970\) 55.4421 + 47.4986i 1.78014 + 1.52509i
\(971\) −6.40146 11.0877i −0.205433 0.355820i 0.744838 0.667245i \(-0.232527\pi\)
−0.950270 + 0.311426i \(0.899193\pi\)
\(972\) −12.2052 + 3.27038i −0.391482 + 0.104897i
\(973\) −53.3781 30.8179i −1.71122 0.987975i
\(974\) 42.7918 1.37114
\(975\) 0 0
\(976\) 14.0681 0.450309
\(977\) −13.8986 8.02436i −0.444655 0.256722i 0.260915 0.965362i \(-0.415976\pi\)
−0.705570 + 0.708640i \(0.749309\pi\)
\(978\) 7.93687 2.12668i 0.253793 0.0680037i
\(979\) −9.11292 15.7840i −0.291250 0.504460i
\(980\) 12.7088 + 10.8879i 0.405968 + 0.347803i
\(981\) −12.5374 3.35939i −0.400288 0.107257i
\(982\) −19.5239 33.8164i −0.623033 1.07912i
\(983\) 34.3036i 1.09411i −0.837096 0.547057i \(-0.815748\pi\)
0.837096 0.547057i \(-0.184252\pi\)
\(984\) −1.36450 + 0.787797i −0.0434988 + 0.0251141i
\(985\) −19.2110 54.5145i −0.612114 1.73698i
\(986\) −7.08844 + 1.89934i −0.225742 + 0.0604874i
\(987\) −48.3637 48.3637i −1.53943 1.53943i
\(988\) 0 0
\(989\) 2.68296i 0.0853131i
\(990\) −13.2768 6.35762i −0.421966 0.202058i
\(991\) −11.1772 + 19.3596i −0.355057 + 0.614977i −0.987128 0.159934i \(-0.948872\pi\)
0.632071 + 0.774911i \(0.282205\pi\)
\(992\) 9.93658 37.0838i 0.315487 1.17741i
\(993\) −3.95773 −0.125595
\(994\) 7.75287 28.9341i 0.245906 0.917734i
\(995\) −2.36339 + 12.6440i −0.0749246 + 0.400842i
\(996\) −14.3796 14.3796i −0.455637 0.455637i
\(997\) −11.4991 3.08118i −0.364181 0.0975820i 0.0720881 0.997398i \(-0.477034\pi\)
−0.436269 + 0.899816i \(0.643700\pi\)
\(998\) 15.4458 + 57.6445i 0.488928 + 1.82471i
\(999\) −5.75875 21.4920i −0.182199 0.679975i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.f.188.4 20
5.2 odd 4 845.2.o.e.357.2 20
13.2 odd 12 845.2.o.f.258.4 20
13.3 even 3 65.2.t.a.28.2 yes 20
13.4 even 6 845.2.f.d.408.8 20
13.5 odd 4 845.2.o.g.488.4 20
13.6 odd 12 845.2.k.d.268.3 20
13.7 odd 12 845.2.k.e.268.8 20
13.8 odd 4 65.2.o.a.33.2 yes 20
13.9 even 3 845.2.f.e.408.3 20
13.10 even 6 845.2.t.g.418.4 20
13.11 odd 12 845.2.o.e.258.2 20
13.12 even 2 845.2.t.e.188.2 20
39.8 even 4 585.2.cf.a.163.4 20
39.29 odd 6 585.2.dp.a.28.4 20
65.2 even 12 845.2.t.e.427.2 20
65.3 odd 12 325.2.s.b.132.4 20
65.7 even 12 845.2.f.e.437.8 20
65.8 even 4 325.2.x.b.7.4 20
65.12 odd 4 845.2.o.f.357.4 20
65.17 odd 12 845.2.k.d.577.3 20
65.22 odd 12 845.2.k.e.577.8 20
65.29 even 6 325.2.x.b.93.4 20
65.32 even 12 845.2.f.d.437.3 20
65.34 odd 4 325.2.s.b.293.4 20
65.37 even 12 inner 845.2.t.f.427.4 20
65.42 odd 12 65.2.o.a.2.2 20
65.47 even 4 65.2.t.a.7.2 yes 20
65.57 even 4 845.2.t.g.657.4 20
65.62 odd 12 845.2.o.g.587.4 20
195.47 odd 4 585.2.dp.a.397.4 20
195.107 even 12 585.2.cf.a.262.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.2 20 65.42 odd 12
65.2.o.a.33.2 yes 20 13.8 odd 4
65.2.t.a.7.2 yes 20 65.47 even 4
65.2.t.a.28.2 yes 20 13.3 even 3
325.2.s.b.132.4 20 65.3 odd 12
325.2.s.b.293.4 20 65.34 odd 4
325.2.x.b.7.4 20 65.8 even 4
325.2.x.b.93.4 20 65.29 even 6
585.2.cf.a.163.4 20 39.8 even 4
585.2.cf.a.262.4 20 195.107 even 12
585.2.dp.a.28.4 20 39.29 odd 6
585.2.dp.a.397.4 20 195.47 odd 4
845.2.f.d.408.8 20 13.4 even 6
845.2.f.d.437.3 20 65.32 even 12
845.2.f.e.408.3 20 13.9 even 3
845.2.f.e.437.8 20 65.7 even 12
845.2.k.d.268.3 20 13.6 odd 12
845.2.k.d.577.3 20 65.17 odd 12
845.2.k.e.268.8 20 13.7 odd 12
845.2.k.e.577.8 20 65.22 odd 12
845.2.o.e.258.2 20 13.11 odd 12
845.2.o.e.357.2 20 5.2 odd 4
845.2.o.f.258.4 20 13.2 odd 12
845.2.o.f.357.4 20 65.12 odd 4
845.2.o.g.488.4 20 13.5 odd 4
845.2.o.g.587.4 20 65.62 odd 12
845.2.t.e.188.2 20 13.12 even 2
845.2.t.e.427.2 20 65.2 even 12
845.2.t.f.188.4 20 1.1 even 1 trivial
845.2.t.f.427.4 20 65.37 even 12 inner
845.2.t.g.418.4 20 13.10 even 6
845.2.t.g.657.4 20 65.57 even 4