Properties

Label 680.2.h.c
Level $680$
Weight $2$
Character orbit 680.h
Analytic conductor $5.430$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q - 96 q^{9} - 48 q^{15} + 24 q^{34} - 96 q^{36} + 96 q^{49} + 48 q^{60} + 192 q^{64} - 144 q^{66} - 96 q^{70} + 96 q^{76} - 192 q^{84} - 192 q^{86} - 48 q^{89} - 144 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
509.1 −1.39273 0.245576i 3.26492i 1.87939 + 0.684040i −1.77664 1.35778i −0.801785 + 4.54715i −3.95202 −2.44949 1.41421i −7.65971 2.14094 + 2.32731i
509.2 −1.39273 0.245576i 1.76041i 1.87939 + 0.684040i 1.35778 + 1.77664i −0.432315 + 2.45178i 0.109289 −2.44949 1.41421i −0.0990599 −1.45471 2.80781i
509.3 −1.39273 0.245576i 1.76041i 1.87939 + 0.684040i −1.35778 1.77664i 0.432315 2.45178i −0.109289 −2.44949 1.41421i −0.0990599 1.45471 + 2.80781i
509.4 −1.39273 0.245576i 3.26492i 1.87939 + 0.684040i 1.77664 + 1.35778i 0.801785 4.54715i 3.95202 −2.44949 1.41421i −7.65971 −2.14094 2.32731i
509.5 −1.39273 + 0.245576i 3.26492i 1.87939 0.684040i 1.77664 1.35778i 0.801785 + 4.54715i 3.95202 −2.44949 + 1.41421i −7.65971 −2.14094 + 2.32731i
509.6 −1.39273 + 0.245576i 1.76041i 1.87939 0.684040i −1.35778 + 1.77664i 0.432315 + 2.45178i −0.109289 −2.44949 + 1.41421i −0.0990599 1.45471 2.80781i
509.7 −1.39273 + 0.245576i 1.76041i 1.87939 0.684040i 1.35778 1.77664i −0.432315 2.45178i 0.109289 −2.44949 + 1.41421i −0.0990599 −1.45471 + 2.80781i
509.8 −1.39273 + 0.245576i 3.26492i 1.87939 0.684040i −1.77664 + 1.35778i −0.801785 4.54715i −3.95202 −2.44949 + 1.41421i −7.65971 2.14094 2.32731i
509.9 −0.909039 1.08335i 2.68098i −0.347296 + 1.96962i 2.10758 0.747066i −2.90444 + 2.43712i 0.590069 2.44949 1.41421i −4.18766 −2.72521 1.60414i
509.10 −0.909039 1.08335i 1.45525i −0.347296 + 1.96962i −0.747066 + 2.10758i −1.57654 + 1.32288i −4.94720 2.44949 1.41421i 0.882256 2.96236 1.10654i
509.11 −0.909039 1.08335i 1.45525i −0.347296 + 1.96962i 0.747066 2.10758i 1.57654 1.32288i 4.94720 2.44949 1.41421i 0.882256 −2.96236 + 1.10654i
509.12 −0.909039 1.08335i 2.68098i −0.347296 + 1.96962i −2.10758 + 0.747066i 2.90444 2.43712i −0.590069 2.44949 1.41421i −4.18766 2.72521 + 1.60414i
509.13 −0.909039 + 1.08335i 2.68098i −0.347296 1.96962i −2.10758 0.747066i 2.90444 + 2.43712i −0.590069 2.44949 + 1.41421i −4.18766 2.72521 1.60414i
509.14 −0.909039 + 1.08335i 1.45525i −0.347296 1.96962i 0.747066 + 2.10758i 1.57654 + 1.32288i 4.94720 2.44949 + 1.41421i 0.882256 −2.96236 1.10654i
509.15 −0.909039 + 1.08335i 1.45525i −0.347296 1.96962i −0.747066 2.10758i −1.57654 1.32288i −4.94720 2.44949 + 1.41421i 0.882256 2.96236 + 1.10654i
509.16 −0.909039 + 1.08335i 2.68098i −0.347296 1.96962i 2.10758 + 0.747066i −2.90444 2.43712i 0.590069 2.44949 + 1.41421i −4.18766 −2.72521 + 1.60414i
509.17 −0.483690 1.32893i 2.44428i −1.53209 + 1.28558i −0.380200 2.20351i −3.24827 + 1.18227i −2.45108 2.44949 + 1.41421i −2.97453 −2.74440 + 1.57107i
509.18 −0.483690 1.32893i 0.980457i −1.53209 + 1.28558i −2.20351 0.380200i −1.30295 + 0.474237i 2.74570 2.44949 + 1.41421i 2.03870 0.560555 + 3.11220i
509.19 −0.483690 1.32893i 0.980457i −1.53209 + 1.28558i 2.20351 + 0.380200i 1.30295 0.474237i −2.74570 2.44949 + 1.41421i 2.03870 −0.560555 3.11220i
509.20 −0.483690 1.32893i 2.44428i −1.53209 + 1.28558i 0.380200 + 2.20351i 3.24827 1.18227i 2.45108 2.44949 + 1.41421i −2.97453 2.74440 1.57107i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 509.48
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
17.b even 2 1 inner
40.f even 2 1 inner
85.c even 2 1 inner
136.h even 2 1 inner
680.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 680.2.h.c 48
5.b even 2 1 inner 680.2.h.c 48
8.b even 2 1 inner 680.2.h.c 48
17.b even 2 1 inner 680.2.h.c 48
40.f even 2 1 inner 680.2.h.c 48
85.c even 2 1 inner 680.2.h.c 48
136.h even 2 1 inner 680.2.h.c 48
680.h even 2 1 inner 680.2.h.c 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.h.c 48 1.a even 1 1 trivial
680.2.h.c 48 5.b even 2 1 inner
680.2.h.c 48 8.b even 2 1 inner
680.2.h.c 48 17.b even 2 1 inner
680.2.h.c 48 40.f even 2 1 inner
680.2.h.c 48 85.c even 2 1 inner
680.2.h.c 48 136.h even 2 1 inner
680.2.h.c 48 680.h even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 30T_{3}^{10} + 342T_{3}^{8} + 1872T_{3}^{6} + 5100T_{3}^{4} + 6456T_{3}^{2} + 2888 \) acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\). Copy content Toggle raw display