Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
509.1 | −1.39273 | − | 0.245576i | − | 3.26492i | 1.87939 | + | 0.684040i | −1.77664 | − | 1.35778i | −0.801785 | + | 4.54715i | −3.95202 | −2.44949 | − | 1.41421i | −7.65971 | 2.14094 | + | 2.32731i | |||||
509.2 | −1.39273 | − | 0.245576i | − | 1.76041i | 1.87939 | + | 0.684040i | 1.35778 | + | 1.77664i | −0.432315 | + | 2.45178i | 0.109289 | −2.44949 | − | 1.41421i | −0.0990599 | −1.45471 | − | 2.80781i | |||||
509.3 | −1.39273 | − | 0.245576i | 1.76041i | 1.87939 | + | 0.684040i | −1.35778 | − | 1.77664i | 0.432315 | − | 2.45178i | −0.109289 | −2.44949 | − | 1.41421i | −0.0990599 | 1.45471 | + | 2.80781i | ||||||
509.4 | −1.39273 | − | 0.245576i | 3.26492i | 1.87939 | + | 0.684040i | 1.77664 | + | 1.35778i | 0.801785 | − | 4.54715i | 3.95202 | −2.44949 | − | 1.41421i | −7.65971 | −2.14094 | − | 2.32731i | ||||||
509.5 | −1.39273 | + | 0.245576i | − | 3.26492i | 1.87939 | − | 0.684040i | 1.77664 | − | 1.35778i | 0.801785 | + | 4.54715i | 3.95202 | −2.44949 | + | 1.41421i | −7.65971 | −2.14094 | + | 2.32731i | |||||
509.6 | −1.39273 | + | 0.245576i | − | 1.76041i | 1.87939 | − | 0.684040i | −1.35778 | + | 1.77664i | 0.432315 | + | 2.45178i | −0.109289 | −2.44949 | + | 1.41421i | −0.0990599 | 1.45471 | − | 2.80781i | |||||
509.7 | −1.39273 | + | 0.245576i | 1.76041i | 1.87939 | − | 0.684040i | 1.35778 | − | 1.77664i | −0.432315 | − | 2.45178i | 0.109289 | −2.44949 | + | 1.41421i | −0.0990599 | −1.45471 | + | 2.80781i | ||||||
509.8 | −1.39273 | + | 0.245576i | 3.26492i | 1.87939 | − | 0.684040i | −1.77664 | + | 1.35778i | −0.801785 | − | 4.54715i | −3.95202 | −2.44949 | + | 1.41421i | −7.65971 | 2.14094 | − | 2.32731i | ||||||
509.9 | −0.909039 | − | 1.08335i | − | 2.68098i | −0.347296 | + | 1.96962i | 2.10758 | − | 0.747066i | −2.90444 | + | 2.43712i | 0.590069 | 2.44949 | − | 1.41421i | −4.18766 | −2.72521 | − | 1.60414i | |||||
509.10 | −0.909039 | − | 1.08335i | − | 1.45525i | −0.347296 | + | 1.96962i | −0.747066 | + | 2.10758i | −1.57654 | + | 1.32288i | −4.94720 | 2.44949 | − | 1.41421i | 0.882256 | 2.96236 | − | 1.10654i | |||||
509.11 | −0.909039 | − | 1.08335i | 1.45525i | −0.347296 | + | 1.96962i | 0.747066 | − | 2.10758i | 1.57654 | − | 1.32288i | 4.94720 | 2.44949 | − | 1.41421i | 0.882256 | −2.96236 | + | 1.10654i | ||||||
509.12 | −0.909039 | − | 1.08335i | 2.68098i | −0.347296 | + | 1.96962i | −2.10758 | + | 0.747066i | 2.90444 | − | 2.43712i | −0.590069 | 2.44949 | − | 1.41421i | −4.18766 | 2.72521 | + | 1.60414i | ||||||
509.13 | −0.909039 | + | 1.08335i | − | 2.68098i | −0.347296 | − | 1.96962i | −2.10758 | − | 0.747066i | 2.90444 | + | 2.43712i | −0.590069 | 2.44949 | + | 1.41421i | −4.18766 | 2.72521 | − | 1.60414i | |||||
509.14 | −0.909039 | + | 1.08335i | − | 1.45525i | −0.347296 | − | 1.96962i | 0.747066 | + | 2.10758i | 1.57654 | + | 1.32288i | 4.94720 | 2.44949 | + | 1.41421i | 0.882256 | −2.96236 | − | 1.10654i | |||||
509.15 | −0.909039 | + | 1.08335i | 1.45525i | −0.347296 | − | 1.96962i | −0.747066 | − | 2.10758i | −1.57654 | − | 1.32288i | −4.94720 | 2.44949 | + | 1.41421i | 0.882256 | 2.96236 | + | 1.10654i | ||||||
509.16 | −0.909039 | + | 1.08335i | 2.68098i | −0.347296 | − | 1.96962i | 2.10758 | + | 0.747066i | −2.90444 | − | 2.43712i | 0.590069 | 2.44949 | + | 1.41421i | −4.18766 | −2.72521 | + | 1.60414i | ||||||
509.17 | −0.483690 | − | 1.32893i | − | 2.44428i | −1.53209 | + | 1.28558i | −0.380200 | − | 2.20351i | −3.24827 | + | 1.18227i | −2.45108 | 2.44949 | + | 1.41421i | −2.97453 | −2.74440 | + | 1.57107i | |||||
509.18 | −0.483690 | − | 1.32893i | − | 0.980457i | −1.53209 | + | 1.28558i | −2.20351 | − | 0.380200i | −1.30295 | + | 0.474237i | 2.74570 | 2.44949 | + | 1.41421i | 2.03870 | 0.560555 | + | 3.11220i | |||||
509.19 | −0.483690 | − | 1.32893i | 0.980457i | −1.53209 | + | 1.28558i | 2.20351 | + | 0.380200i | 1.30295 | − | 0.474237i | −2.74570 | 2.44949 | + | 1.41421i | 2.03870 | −0.560555 | − | 3.11220i | ||||||
509.20 | −0.483690 | − | 1.32893i | 2.44428i | −1.53209 | + | 1.28558i | 0.380200 | + | 2.20351i | 3.24827 | − | 1.18227i | 2.45108 | 2.44949 | + | 1.41421i | −2.97453 | 2.74440 | − | 1.57107i | ||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
17.b | even | 2 | 1 | inner |
40.f | even | 2 | 1 | inner |
85.c | even | 2 | 1 | inner |
136.h | even | 2 | 1 | inner |
680.h | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.h.c | ✓ | 48 |
5.b | even | 2 | 1 | inner | 680.2.h.c | ✓ | 48 |
8.b | even | 2 | 1 | inner | 680.2.h.c | ✓ | 48 |
17.b | even | 2 | 1 | inner | 680.2.h.c | ✓ | 48 |
40.f | even | 2 | 1 | inner | 680.2.h.c | ✓ | 48 |
85.c | even | 2 | 1 | inner | 680.2.h.c | ✓ | 48 |
136.h | even | 2 | 1 | inner | 680.2.h.c | ✓ | 48 |
680.h | even | 2 | 1 | inner | 680.2.h.c | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.h.c | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
680.2.h.c | ✓ | 48 | 5.b | even | 2 | 1 | inner |
680.2.h.c | ✓ | 48 | 8.b | even | 2 | 1 | inner |
680.2.h.c | ✓ | 48 | 17.b | even | 2 | 1 | inner |
680.2.h.c | ✓ | 48 | 40.f | even | 2 | 1 | inner |
680.2.h.c | ✓ | 48 | 85.c | even | 2 | 1 | inner |
680.2.h.c | ✓ | 48 | 136.h | even | 2 | 1 | inner |
680.2.h.c | ✓ | 48 | 680.h | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} + 30T_{3}^{10} + 342T_{3}^{8} + 1872T_{3}^{6} + 5100T_{3}^{4} + 6456T_{3}^{2} + 2888 \)
acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\).