L(s) = 1 | + (−0.909 − 1.08i)2-s + 2.68i·3-s + (−0.347 + 1.96i)4-s + (−2.10 + 0.747i)5-s + (2.90 − 2.43i)6-s − 0.590·7-s + (2.44 − 1.41i)8-s − 4.18·9-s + (2.72 + 1.60i)10-s − 5.24·11-s + (−5.28 − 0.931i)12-s + 2.44·13-s + (0.536 + 0.639i)14-s + (−2.00 − 5.65i)15-s + (−3.75 − 1.36i)16-s + (−4.03 + 0.839i)17-s + ⋯ |
L(s) = 1 | + (−0.642 − 0.766i)2-s + 1.54i·3-s + (−0.173 + 0.984i)4-s + (−0.942 + 0.334i)5-s + (1.18 − 0.994i)6-s − 0.223·7-s + (0.866 − 0.500i)8-s − 1.39·9-s + (0.861 + 0.507i)10-s − 1.58·11-s + (−1.52 − 0.268i)12-s + 0.679·13-s + (0.143 + 0.170i)14-s + (−0.517 − 1.45i)15-s + (−0.939 − 0.342i)16-s + (−0.979 + 0.203i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.480 + 0.876i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.480 + 0.876i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0239194 - 0.0403891i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0239194 - 0.0403891i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.909 + 1.08i)T \) |
| 5 | \( 1 + (2.10 - 0.747i)T \) |
| 17 | \( 1 + (4.03 - 0.839i)T \) |
good | 3 | \( 1 - 2.68iT - 3T^{2} \) |
| 7 | \( 1 + 0.590T + 7T^{2} \) |
| 11 | \( 1 + 5.24T + 11T^{2} \) |
| 13 | \( 1 - 2.44T + 13T^{2} \) |
| 19 | \( 1 + 2.57iT - 19T^{2} \) |
| 23 | \( 1 - 7.58T + 23T^{2} \) |
| 29 | \( 1 + 3.32T + 29T^{2} \) |
| 31 | \( 1 - 4.11iT - 31T^{2} \) |
| 37 | \( 1 + 8.73iT - 37T^{2} \) |
| 41 | \( 1 + 10.8iT - 41T^{2} \) |
| 43 | \( 1 - 6.08T + 43T^{2} \) |
| 47 | \( 1 - 5.98iT - 47T^{2} \) |
| 53 | \( 1 + 10.8T + 53T^{2} \) |
| 59 | \( 1 + 7.40iT - 59T^{2} \) |
| 61 | \( 1 - 6.60T + 61T^{2} \) |
| 67 | \( 1 + 7.40T + 67T^{2} \) |
| 71 | \( 1 - 0.239iT - 71T^{2} \) |
| 73 | \( 1 - 5.97T + 73T^{2} \) |
| 79 | \( 1 + 10.4iT - 79T^{2} \) |
| 83 | \( 1 + 6.83T + 83T^{2} \) |
| 89 | \( 1 + 13.4T + 89T^{2} \) |
| 97 | \( 1 + 17.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53430375776388764742764303872, −9.334530593117817478802721401196, −8.836710617812926882267058695390, −7.901509058401424407246716581643, −6.94518392405056591330596269364, −5.22420104784823117609838449093, −4.36550530117132349164867187270, −3.47743455710401055703744180761, −2.68297717120987182377621829329, −0.03302195321993768631864271517,
1.29262033082805879187084617482, 2.80242647162562642560425558795, 4.64746627728707471027379052916, 5.70246993659599300292312960425, 6.69287412423295294600195874565, 7.34225962715366013850021196014, 8.129249818667940974645126332946, 8.481232211149669335187849416895, 9.681737271393275886976805360437, 10.99378673107873728963168422363